
[Team LiB]

• Table of Contents
Spin Model Checker, The: Primer and Reference Manual
By Gerard J. Holzmann

Publisher: Addison Wesley
Pub Date: September 04, 2003

ISBN: 0-321-22862-6
Pages: 608

SPIN is the world's most popular, and arguably one of the world's most powerful, tools for detecting software defects
in concurrent system designs. Literally thousands of people have used SPIN since it was first introduced almost fifteen
years ago. The tool has been applied to everything from the verification of complex call processing software that is
used in telephone exchanges, to the validation of intricate control software for interplanetary spacecraft.

This is the most comprehensive reference guide to SPIN, written by the principal designer of the tool. It covers the
tool's specification language and theoretical foundation, and gives detailed advice on methods for tackling the most
complex software verification problems.



Design and verify both abstract and detailed verification models of complex systems software


Develop a solid understanding of the theory behind logic model checking


Become an expert user of the SPIN command line interface, the Xspin graphical user interface, and the
TimeLine editing tool



Learn the basic theory of omega automata, linear temporal logic, depth-first and breadth-first search, search
optimization, and model extraction from source code

 The SPIN software was awarded the prestigious Software System Award by the Association for Computing
Machinery (ACM), which previously recognized systems such as UNIX, SmallTalk, TCP/IP, Tcl/Tk, and the World
Wide Web.
[Team LiB]

http://www.informit.com/safari/author_bio.asp@ISBN=0321228626

[Team LiB]

• Table of Contents
Spin Model Checker, The: Primer and Reference Manual
By Gerard J. Holzmann

Publisher: Addison Wesley
Pub Date: September 04, 2003

ISBN: 0-321-22862-6
Pages: 608

Copyright
Preface

Logic Model Checking
The SPIN Model Checker
Book Structure

 Chapter 1. Finding Bugs in Concurrent Systems
Circular Blocking
Deadly Embrace
Mismatched Assumptions
Fundamental Problems of Concurrency

 Chapter 2. Building Verification Models
SPIN
PROMELA
Examples
Hello World
Producers and Consumers
Extending the Example
Mutual Exclusion
Message Passing
In Summary
Bibliographic Notes

 Chapter 3. An Overview of PROMELA
Types of Objects
Processes
Provided Clauses
Data Objects
Data Structures
Message Channels

http://www.informit.com/safari/author_bio.asp@ISBN=0321228626

Channel Poll Operations
Sorted Send And Random Receive
Rendezvous Communication
Rules For Executability
Assignments And Expressions
Control Flow: Compound Statements
Atomic Sequences
Deterministic Steps
Selection
Repetition
Escape Sequences
Inline Definitions
Reading Input
Special Features
Finding Out More

 Chapter 4. Defining Correctness Claims
Stronger Proof
Basic Types of Claims
Basic Assertions
Meta Labels
Fair Cycles
Never Claims
The Link With LTL
Trace Assertions
Notrace
Predefined Variables and Functions
Remote Referencing
Path Quantification
Formalities
Finding Out More

 Chapter 5. Using Design Abstraction
What Makes a Good Design Abstraction?
Data and Control
The Smallest Sufficient Model
Avoiding Redundancy
Counters
Sinks, Sources, and Filters
Simple Refutation Models
Pathfinder
A Disk-Head Scheduler
Controlling Complexity
Example
A Formal Basis for Reduction
Example – A File Server
In Summary
Bibliographic Notes

 Chapter 6. Automata and Logic
Automata
Omega Acceptance
The Stutter Extension Rule
Finite States, Infinite Runs
Other Types of Acceptance

Logic
Temporal Logic
Recurrence and Stability
Using Temporal Logic
Valuation Sequences
Stutter Invariance
Fairness
From Logic To Automata
An Example
Omega-Regular Properties
Other Logics
Bibliographic Notes

 Chapter 7. PROMELA Semantics
Transition Relation
Operational Model
Operational Model, Semantics Engine
Interpreting PROMELA Models
Three Examples
Verification
The Never Claim

 Chapter 8. Search Algorithms
Depth-First Search
Checking Safety Properties
Depth-Limited Search
Trade-Offs
Breadth-First Search
Checking Liveness Properties
Adding Fairness
The SPIN Implementation
Complexity Revisited
Bibliographic Notes

 Chapter 9. Search Optimization
Partial Order Reduction
Visibility
Statement Merging
State Compression
Collapse Compression
Minimized Automaton Representation
Bitstate Hashing
Bloom Filters
Hash-Compact
Bibliographic Notes

 Chapter 10. Notes on Model Extraction
The Role of Abstraction
From ANSI-C to PROMELA
Embedded Assertions
A Framework for Abstraction
Sound and Complete Abstraction
Selective Data Hiding
Example
Bolder Abstractions

Dealing With False Negatives
Thorny Issues With Embedded C Code
The Model Extraction Process
The Halting Problem Revisited
Bibliographic Notes

 Chapter 11. Using SPIN
SPIN Structure
Roadmap
Simulation
Random Simulation
Interactive Simulation
Guided Simulation
Verification
Generating a Verifier
Compiling the Verifier
Tuning a Verification Run
The Number of Reachable States
Search Depth
Cycle Detection
Inspecting Error Traces
Internal State Numbers
Special Cases
Disabling Partial Order Reduction
Boosting Performance
Separate Compilation
Lowering Verification Complexity

 Chapter 12. Notes on XSPIN
Starting a Session With XSPIN
The File Menu
The Edit Menu
The Help Menu
The Run Menu
Syntax Check
Property-Based Slicing
Set Simulation Parameters
(Re)Run Simulation
Set Verification Parameters
(Re)Run Verification
LTL Property Manager
The Automaton View Option
In Summary

 Chapter 13. The Timeline Editor
An Example
Types of Events
Defining Events
Matching a Timeline
Automata Definitions
Constraints
Variations on a Theme
Timelines With One Event
Timelines With Multiple Events
The Link With LTL

Bibliographic Notes

 Chapter 14. A Verification Model of a Telephone Switch
General Approach
Keep it Simple
Managing Complexity
Modeling a Switch
Subscriber Model
Switch Model
Remote Switches
Adding Features
Three-Way Calling
A Three-Way Calling Scenario
In Summary

 Chapter 15. Sample SPIN Models
Eratosthenes
Process Scheduling
A Client-Server Model
Square Roots?
Adding Interaction
Adding Assertions
A Comment Filter

 Chapter 16. PROMELA Language Reference
Name
Syntax
EXECUTABILITY
EFFECT
DESCRIPTION
Examples
Notes
See Also
Grammar Rules
Main Sections
Reference
Special Cases
_
_last
_nr_pr
_pid
accept
active
arrays
assert
assignment
atomic
break
chan
comments
cond_expr
condition
d_step
datatypes
do

else
empty
enabled
end
eval
false
float
full
goto
hidden
hierarchy
if
init
inline
labels
len
local
ltl
macros
mtype
nempty
never
nfull
np_
pc_value
pointers
poll
printf
priority
probabilities
procedures
proctype
progress
provided
rand
real-time
receive
remoterefs
run
scanf
send
separators
sequence
show
skip
STDIN
timeout
trace
true
typedef
unless
xr

 Chapter 17. Embedded C Code
An Example

Data References
Execution
Issues to Consider
Deferring File Inclusion
c_code
c_decl
c_expr

 Chapter 18. Overview of SPIN Options
Compile-Time Options
Simulation Options
Syntax Checking Options
Postscript Generation
Model Checker Generation
LTL Conversion
Miscellaneous Options

 Chapter 19. Overview of PAN Options
PAN Compile-Time Options
Basic Options
Options Related to Partial Order Reduction
Options Used to Increase Speed
Options Used to Decrease Memory Use
Options to Use When Prompted by PAN
Options for Debugging PAN Verifiers
Experimental Options
PAN Run-Time Options
PAN Output Format

 Literature
 Appendix A. Automata Products

Asynchronous Products
Encoding Atomic Sequences
Rendezvous
Synchronous Products
An Example
Non-Progress Cycles
Deadlock Detection

 Appendix B. The Great Debates
Branching Time vs Linear Time
Symbolic Verification vs Explicit Verification
Breadth-First Search vs Depth-First Search
Tarjan Search vs Nested Search
Events vs States
Realtime Verification vs Timeless Verification
Probability vs Possibilty
Asynchronous Systems vs Synchronous Systems
Interleaving vs True Concurrency
Open vs Closed Systems

 Appendix C. Exercises With SPIN
C.1.
C.2.
C.3.

C.4.
C.5.
C.6.
C.7.
C.8.
C.9.

 Appendix D. Downloading Spin
LTL Conversion
Model Extraction
Timeline Editor

 Tables and Figures
Tables
Figures

[Team LiB]

[Team LiB]

Copyright
 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Addison-Wesley, Inc. was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

 The publisher offers discounts on this book when ordered in quantity for special sales. For more information, please
contact:

 U.S. Corporate and Government Sales: (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

 International Sales: (317) 581-3793
 international@pearsontechgroup.com

Visit Addison-Wesley on the Web at: awprofessional.com

 Library of Congress Cataloging-in-Publication Data

 Holzmann, Gerard J.
 The Spin model checker: primer and reference manual / Gerard J. Holzmann
 p. cm
 Includes bibliographical references and index.
 ISBN 0-321-22862-6
 1. Systems engineering––Mathematical models. 2. Computer programs––
 Testing. I. Title.
 TA168.H65 2003
 620'.001'171––dc22
 2003057704
 CIP

Copyright © 2004 Lucent Technologies Inc., Bell Laboratories.

 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the
publisher. Printed in the United States of America. Published simultaneously in Canada.

 This book was written, designed, and typeset by the author while affiliated with the Computing Sciences Research
Center at Bell Laboratories. His current affiliation is with the Laboratory for Reliable Software at NASA's Jet
Propulsion Laboratory / California Institute of Technology.

 For information on obtaining permission to use material from this work, submit a request to:

 Pearson Education, Inc.
 Rights and Contracts Department
 75 Arlington Street, Suite 300
 Boston, MA 02116
 Fax: (617) 848-7047

Text printed on recycled paper

 First printing, September 2003

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm

[Team LiB]

[Team LiB]

Preface
 "If you don't know where you're going, it doesn't really matter which path you take."

 —(Lewis Carroll, 1832–1898)

 "You got to be careful if you don't know where you're going, because you might not get there."

 —(Yogi Berra, 1925–)

 "The worst thing about new books is that they keep us from reading the old ones.''

 —(Joseph Joubert, 1754–1824)

A system is correct if it meets its design requirements. This much is agreed. But if the system we are designing is a
piece of software, especially if it involves concurrency, how can we show this? It is not enough to merely show that a
system can meet its requirements. A few tests generally suffice to demonstrate that. The real test is to show that a
system cannot fail to meet its requirements.

Dijkstra's well-known dictum on testing[1] applies especially to concurrent software: the non-determinism of
concurrent system executions makes it hard to devise a traditional test suite with sufficient coverage. There are
fundamental problems here, related to both the limited controllability of events in distributed system executions and to
the limited observability of those events.[2]

[1] The quote "Program testing can be used to show the presence of bugs, but never to show their absence" first
appeared in Dijkstra [1972], p. 6. The quote has a curious pendant in Dijkstra [1965] that is rarely mentioned: "One
can never guarantee that a proof is correct, the best one can say is: "I have not discovered any mistakes.""

[2] For instance, process scheduling decisions made simultaneously by different processors at distinct locations in a
larger network.

A well-designed system provably meets its design requirements. But, if we cannot achieve this degree of certainty with
standard test methods, what else can we do? Using standard mathematics is not much of an option in this domain. A
thorough hand proof of even simple distributed programs can challenge the most hardened mathematician. At first
blush, mechanical proof procedures also do not seem to hold much promise: it was shown long ago that it is
fundamentally impossible to construct a general proof procedure for arbitrary programs.[3] So what gives?

[3] The unsolvability of the halting problem, for instance, was already proven in Turing [1936].

Fortunately, if some modest conditions are met, we can mechanically verify the correctness of distributed systems
software. It is the subject of this book to show what these "modest conditions" are and how we can use relatively
simple tool-based verification techniques to tackle demanding software design problems.
[Team LiB]

[Team LiB]

Logic Model Checking
 The method that we will use to check the correctness of software designs is standard in most engineering disciplines.
The method is called model checking. When the software itself cannot be verified exhaustively, we can build a
simplified model of the underlying design that preserves its essential characteristics but that avoids known sources of
complexity. The design model can often be verified, while the full-scale implementation cannot.

 Bridge builders and airplane designers apply much the same technique when faced with complex design problems. By
building and analyzing models (or prototypes) the risk of implementing a subtly flawed design is reduced. It is often
too expensive to locate or fix design errors once they have reached the implementation phase. The same is true for the
design of complex software.

 The modeling techniques that we discuss in this book work especially well for concurrent software, which, as luck
will have it, is also the most difficult to debug and test with traditional means.

 The models we will build can be seen as little programs, written in, what may at first look like, a strangely abstract
language. The models that are written in this language are in fact executable. The behaviors they specify can be
simulated and explored exhaustively by the model checker in the hunt for logic errors. Constructing and executing
these high-level models can be fun and insightful. It often also gives a sufficiently different perspective on a
programming problem that may lead to new solutions, even before any precise checks are performed.

 A logic model checker is designed to use efficient procedures for characterizing all possible executions, rather than a
small subset, as one might see in trial executions. Since it can explore all behaviors, the model checker can apply a
range of sanity checks to the design model, and it can successfully identify unexecutable code, or potentially
deadlocking concurrent executions. It can even check for compliance with complex user-defined correctness criteria.
Model checkers are unequalled in their ability to locate subtle bugs in system designs, providing far greater control
than the more traditional methods based on human inspection, testing, or random simulation.

 Model checking techniques have been applied in large scale industrial applications, to reduce the reliance on testing,
to detect design flaws early in a design cycle, or to prove their absence in a final design. Some examples of these
applications are discussed in this book.
[Team LiB]

[Team LiB]

The SPIN Model Checker
 The methodology we describe in this book centers on the use of the model checker SPIN. This verification system
was developed at Bell Labs in the eighties and nineties and is freely available from the Web (see Appendix D). The
tool continues to evolve and has over many years attracted a fairly broad group of users in both academia and
industry. At the time of writing, SPIN is one of the most widely used logic model checkers in the world.

 In 2002 SPIN was recognized by the ACM (the Association for Computing Machinery) with its most prestigious
Software System Award. In receiving this award, SPIN was placed in the league of truly breakthrough software
systems such as UNIX, TeX, Smalltalk, Postscript, TCP/IP, and Tcl/Tk. The award has brought a significant amount
of additional attention to the tool and its underlying technology. With all these developments there has been a growing
need for a single authoritative and comprehensive user guide. This book is meant to be that guide.

 The material in this book can be used either as classroom material or as a self-study guide for new users who want to
learn about the background and use of logic model checking techniques. A significant part of the book is devoted to a
comprehensive set of reference materials for SPIN that combines information that both novice and experienced users
can apply on a daily basis.
[Team LiB]

[Team LiB]

Book Structure
 SPIN can be used to thoroughly check high-level models of concurrent systems. This means that we first have to
explain how one can conveniently model the behavior of a concurrent system in such a way that SPIN can check it.
Next, we have to show how to define correctness properties for the detailed checks, and how to design abstraction
methods that can be used to render seemingly complex verification problems tractable. We do all this in the first part
of this book, Chapters 1 to 5.

 The second part, Chapters 6 to 10, provides a treatment of the theory behind software model checking, and a
detailed explanation of the fundamental algorithms that are used in SPIN.

 The third part of the book, Chapters 11 to 15, contains more targeted help in getting started with the practical
application of the tool. In this part of the book we discuss the command line interface to SPIN, the graphical user
interface XSPIN, and also a closely related graphical tool that can be used for an intuitive specification of correctness
properties, the Timeline editor. This part is concluded with a discussion of the application of SPIN to a range of
standard problems in distributed systems design.

 Chapters 16 to 19, the fourth and last part of the book, include a complete set of reference materials for SPIN and
its input language, information that was so far only available in scattered form in books, tutorials, papers, and Web
pages. This part contains a full set of manual pages for every language construct and every tool option available in the
most recent versions of SPIN and XSPIN.

 The Web site http://spinroot.com/spin/Doc/Book_extras/ contains online versions of all examples used in this book,
some lecture materials, and an up to date list of errata.

 For courses in model checking techniques, the material included here can provide both a thorough understanding of
the theory of logic model checking and hands-on training with the practical application of a well-known model
checking system. For a more targeted use that is focused directly on the practical application of SPIN, the more
foundational part of the book can be skipped.

 A first version of this text was used for several courses in formal verification techniques that I taught at Princeton
University in New Jersey, at Columbia University in New York, and at the Royal Institute of Technology in
Stockholm, Sweden, in the early nineties. I am most grateful to everyone who gave feedback, caught errors, and
made suggestions for improvements, as well as to all dedicated SPIN users who have graciously done this throughout
the years, and who fortunately continue to do so.

 I especially would like to thank Dragan Bosnacki, from Eindhoven University in The Netherlands, who read multiple
drafts for this book with an unusually keen eye for spotting inconsistencies, and intercepting flaws. I would also like to
thank Al Aho, Rajeev Alur, Jon Bentley, Ramesh Bharadwaj, Ed Brinksma, Marsha Chechik, Costas Courcoubetis,
Dennis Dams, Matt Dwyer, Vic Du, Kousha Etessami, Michael Ferguson, Rob Gerth, Patrice Godefroid, Jan Hajek,
John Hatcliff, Klaus Havelund, Leszek Holenderski, Brian Kernighan, Orna Kupferman, Bob Kurshan, Pedro
Merino, Alice Miller, Doug McIlroy, Anna Beate Oestreicher, Doron Peled, Rob Pike, Amir Pnueli, Anuj Puri,
Norman Ramsey, Jim Reeds, Dennis Ritchie, Willem-Paul de Roever, Judi Romijn, Theo Ruys, Ravi Sethi, Margaret
Smith, Heikki Tauriainen, Ken Thompson, Howard Trickey, Moshe Vardi, Phil Winterbottom, Pierre Wolper,
Mihalis Yannakakis, and Ozan Yigit, for their often profound influence that helped to shape the tool, and this book.

 Gerard J. Holzmann
gholzmann@acm.org
[Team LiB]

http://www.spinroot.com/spin/Doc/Book_extras/default.htm
mailto:gholzmann@acm.org
http://spinroot.com/spin/Doc/Book_extras/

[Team LiB]

Chapter 1. Finding Bugs in Concurrent Systems
 "For we can get some idea of a whole from a part, but never knowledge or exact opinion."

 —(Polybius, ca. 150 B.C., Histories, Book I:4)

 SPIN can be used to verify correctness requirements for systems of concurrently executing processes. The tool
works by thoroughly checking either hand-built or mechanically generated models that capture the essential elements
of a distributed systems design. If a requirement is not satisfied, SPIN can produce a sample execution of the model
to demonstrate this.

 There are two basic ways of working with SPIN in systems design. The first method, and the primary focus of this
book, is to use the tool to construct verification models that can be shown to have all the required system properties.
Once the basic design of a system has been shown to be logically sound, it can be implemented with confidence. A
second, less direct, method is to start from an implementation and to convert critical parts of that implementation
mechanically into verification models that are then analyzed with SPIN. Automated model extraction tools have been
built to convert programs written in mainstream programming languages such as Java and C into SPIN models. A
discussion of the latter approach to software verification is given in Chapter 10, and the constructs in SPIN that
directly support model extraction techniques are discussed in Chapter 17.

 We begin by considering in a little more detail what makes it so hard to test concurrent software systems, and why
there is a need for tools such as SPIN.

 It is worth noting up front that the difficulty we encounter when trying to reason about concurrent systems is not
restricted to software design. Almost everything of interest that happens in our world involves concurrency and access
to shared resources. In the supermarket, customers compete for shared resources, both consumable ones (such as
food items) and non-consumable ones (such as checkout clerks). Customers follow simple, and very ancient,
protocols for breaking ties and resolving conflicts. On the road, cars compete for access to road intersections and
parking spots. In telephone systems, similarly, large numbers of simultaneous users compete for shared resources, this
time with the unique feature that the users themselves are among the resources being shared. Problems of interaction
occur in all these cases, and any new and untried set of rules that we may come up with to solve these problems can
backfire in unexpected, sometimes amusing, and sometimes disastrous, ways.
[Team LiB]

[Team LiB]

Circular Blocking

 As a simple example, we can look at the protocol rules that regulate the movements of cars across intersections.
There is no unique solution, or even a best solution to this problem, as testified by the widely different standards that
have been adopted in different countries around the world. In the U.S., when two roads intersect, one direction of
traffic always explicitly has priority over the other direction, as indicated by markings on the pavement and by
roadsigns. At traffic circles, however, an implicit rule applies, rarely explicitly indicated, giving priority to traffic inside
the circle. The implicit rule for circles is sensible, since it gives priority to cars leaving the circle over cars trying to
enter it, which can avoid congestion problems.

 In some European countries, the implicit and explicit rules are reversed. In the Netherlands, for instance, an implicit
rule states that at otherwise unmarked intersections cars approaching from one's right have the right of way. The rule
for traffic circles is explicitly marked to override this rule, again giving priority to traffic inside the circle. The implicit
rule for unmarked intersections is simple and effective. But this rule can have unexpected consequences under heavy
traffic conditions, as illustrated in Figure 1.1. It is not even true that we could avoid this problem with traffic lights that
regularly reverse priority rules. One visit to a sufficiently large city will suffice to make it clear that this cannot prevent
the problem. A fixed priority rule is not preferable either, since it will allow one direction of traffic to deny access to
the other direction for any length of time. On the road, the occurrence of these conditions is typically accepted as just
another fact of life. When they occur, they can often only be resolved by breaking the otherwise agreed upon rules. It
will be clear that in software systems we cannot rely on such resolutions: The rules must cover all conceivable cases,
and unfortunately, they must also cover all the humanly inconceivable ones.

 Figure 1.1. Circular Blocking

[Team LiB]

[Team LiB]

Deadly Embrace

 As another everyday example, to make a person-to-person call, a user must secure exclusive access to at least two
shared resources in the telephone system: the line of the calling party and the line of the called party. The resources
are allocated in a fixed order. Access is always first granted to the calling party's line and only then to the called
party's line. Normally this causes no hardship, but when two subscribers A and B simultaneously attempt to establish
a connection to each other, the access rules will prevent this. If both parties repeatedly pick up the receiver
simultaneously to dial the connection, and refuse to give up until access is granted, they will repeatedly fail. This is
especially curious because the two requests do not actually conflict: both subscribers desire the connection.

 A very similar problem is encountered in the management of shared resources in operating systems. Virtually every
textbook on operating systems contains a description of the problem. In the example used there, the shared resources
are typically a line printer (A) and a card reader (B); the example is indeed that old. Two user processes then
compete for exclusive access to these resources, both of which may be needed simultaneously, for instance to print a
deck of punchcards. A deadly embrace is entered when both processes succeed in obtaining access to one of the two
resources and then decide to wait indefinitely for the other. Of course it will not do to just require the processes to
yield resources back to the operating system while waiting for more resources to become available.

 The generic sequence of steps leading into the deadly embrace is illustrated in Figure 1.2. The solid arrows indicate
the control-flow order in the two user processes. Once the two dashed states are reached simultaneously, there is no
way to proceed. The dotted arrows indicate the dependency relations that prevent progress. Before device B can be
obtained by the first process, it must first be released by the second process, and before device A can be obtained by
the second process, it must first be released by the first. The circular dependencies illustrate the deadly embrace.

 Figure 1.2. Deadly Embrace

[Team LiB]

[Team LiB]

Mismatched Assumptions

 It is a trusted premise of systems engineering that large systems should be built from smaller components, each of
which can be designed and tested with a high degree of confidence. Ideally, the final system is then only assembled
when all the smaller pieces have been proven correct. Some design problems, though, only become evident at the
system level, and the absence of reliable methods for testing system level problems can sometimes take us by surprise.
Decisions that are perfectly legitimate at the component level can have unexpected, and sometimes dramatic
consequences at the system level.

 A good illustration of this phenomenon is what happened September 14, 1993 on the runway at Warsaw airport in
Poland.[1] A Lufthansa Airbus A320-200 with 72 people on board was landing in heavy rain. The plane was not
getting much traction from the wheels in the landing gear on the wet runway, but the pilots knew that they could count
on the thrust reversers on the main engines to bring the plane to a stop. As it happened, the thrust reversers failed to
deploy in time, and the plane overshot the end of the runway.

[1] A description of this accident can be found on the Web site www.crashdatabase.com.

 A thrust reverser should, of course, never be activated when a plane is in flight. Most planes, therefore, have
elaborate protection built-in to prevent this from happening. This includes, for instance, that the thrust reversers cannot
be deployed unless three conditions are met: the landing gear must be down, the wheels must be turning, and the
weight of the plane must be carried on the wheels. In this case the landing gear was down, but the wheels were
hydroplaning, and an unexpected tailwind provided enough lift on the wings that the control software did not decide
until nine seconds after touchdown that the plane had landed. Two people lost their lives when the plane went off the
end of the runway.

 The most fascinating aspect of an accident like this is that no one really made any mistakes in the design or operation
of this plane. All components were designed in a very sensible manner. The control software for the thrust reversers,
though, was not designed to cope with the unexpected combination of events that occurred. This software formed one
component in a complex system with many other interacting parts, including the dominant weather conditions that can
affect a plane's operation.

 When complex systems fail, the scenarios that trigger the failures usually could not easily have been imagined by any
sensible human designer. For every one failure scenario that is considered, there are a million others that may be
overlooked. In cases like this, it is invaluable to have design tools that can hunt down the potential error scenarios
automatically, working from a sober description of the individual piece parts that together form a more complex
integrated system. Automated tools have no trouble constructing the bizarre scenarios that no sane human could
image—just the type of scenario that causes real-life systems to crash.

 "The most pernicious and subtle bugs are system bugs arising from mismatched assumptions made by the authors of
various components."

 (Fred Brooks, The Mythical Man-Month, p.142)
[Team LiB]

http://www.crashdatabase.com/default.htm

[Team LiB]

Fundamental Problems of Concurrency

 The purpose of these few examples is to convince you of two things. First, concurrency-related problems are not
rare oddities that appear only in obscure corners of software engineering. They are a fundamental part of life, and they
can and do turn up almost everywhere. Secondly, it can be uncommonly hard to predict in advance where the
problems in the various schemes can hide. Even the most obvious rules can have unexpected consequences. To find
these problems, it never suffices to take a system apart, to study the individual components, and prove them correct.
These types of problems have to do uniquely with the interaction of multiple, concurrently executing components.
They are caused by the way in which the components are put together.

 These types of problems are also extraordinarily hard to identify with standard system testing techniques. To test a
piece of code, it should be possible to administer a series of reproducible tests and to evaluate the results. The
keyword here is reproducible. Many aspects of the execution in a concurrent system are beyond the control of a
tester. This lack of controllability makes it hard, if not impossible, to administer tests in a reproducible manner. This
applies especially to the details of process execution and process interleaving that are in part determined by process
schedulers, often running on independently executing hosts. The details of process interleaving, and even such subtle
things as the relative speed of execution of asynchronously executing processes, can easily affect the outcome of a
test. Even if the tester could know exactly how the process executions had to be interleaved in time to reproduce an
error scenario, it is in general not possible to enforce such a schedule in a system test.

 Limited observability and limited controllability normally restrict a tester's ability to thoroughly exercise concurrent
system behaviors. As a result, some of the most difficult to diagnose bugs can slip through and hide as residual defects
in production code, with the potential of striking at the least opportune moment in the lifetime of a system. To find
these types of problems in a more systematic way, we need a different type of verification method. In the next chapter
we begin the description of such a method with a tutorial overview of the language that is used to describe verification
models in SPIN.

 Traditional methods for testing software systems focus their energy on system description at the lowest level of detail,
where higher level design errors are the hardest to find and the most costly to fix. By using verification models, we will
be able to describe and verify complex system behavior at any desired level of abstraction, tracking it from concept to
code. As noted, in larger systems it is not just the outright blunders that can cause system failure. Every single part of a
system may have been designed correctly when considered in isolation. But if in the design of the various parts the
system requirements were interpreted in just slightly different ways, the system as a whole can still fail. As system
designers, we need tools that can catch all these types of design errors.
[Team LiB]

[Team LiB]

Chapter 2. Building Verification Models
 "Measure what is measurable, and make measurable what is not so."

 —(Galileo Galilei, 1564–1642)

 To verify a system we need to describe two things: the set of facts we want to verify, and the relevant aspects of the
system that are needed to verify those facts. We investigate the types of facts we may want to prove about distributed
systems in the next chapter. Here, we start with a gentle introduction to the art of describing distributed systems
behavior at a relatively high level of abstraction, so that an automated verification of salient system facts becomes
possible. We call such descriptions verification models.
[Team LiB]

[Team LiB]

SPIN

 The tool that we will use to check verification models is called SPIN, and the specification language that it accepts is
called PROMELA. The name SPIN was originally chosen as an acronym for Simple PROMELA Interpreter. The
tool has arguably outgrown at least two of these three descriptive terms, but the name has stuck. SPIN can be used in
two basic modes: as a simulator and as a verifier. In simulation mode, SPIN can be used to get a quick impression of
the types of behavior that are captured by a system model, as it is being built. SPIN's graphical user interface, XSPIN
(discussed in Chapter 12, p. 267), can conveniently visualize simulation runs, which can be of considerable help in the
debugging of models. We use the term debugging intentionally here. No amount of simulation can prove the facts we
may be interested in; only a verification run can do so. Nonetheless, when the verifier finds a counterexample to a
correctness claim, it relies on the SPIN simulator to display the error trace using guided simulation. Simulation and
verification are therefore tightly coupled in SPIN.

 In this introductory chapter, we use SPIN primarily in simulation mode, only briefly illustrating how verifications can
be set up in some common cases. To keep things simple, we also use the tool only in its basic command-line mode
here, and resist the use of the graphical user interface for now. When we do discuss the graphical user interface, it will
be a definite advantage if the user already knows the basic operation of SPIN itself, and the most important set of
command-line options.

 The focus on model building and simulation in this chapter leaves a lot to be explored in the rest of this book. The
specification of correctness properties, for instance, is covered in Chapters 4 and 13. The use of SPIN for system
verification is discussed in Chapters 11 and 14. And, finally, SPIN's graphical user interface, XSPIN, is discussed in
Chapter 12.
[Team LiB]

[Team LiB]

PROMELA

 PROMELA is an acronym for Process Meta-Language. The use of the term meta is significant in this context. As we
shall see, abstraction is often key to successful verification. The specification language is intended to make it easier to
find good abstractions of systems designs. PROMELA is not meant to be an implementation language but a systems
description language. To make this possible, the emphasis in the language is on the modeling of process
synchronization and coordination, and not on computation. The language is also targeted to the description of
concurrent software systems, rather than the description of hardware circuits (which is more common for model
checking applications).

 The basic building blocks of SPIN models are asynchronous processes, buffered and unbuffered message channels,
synchronizing statements, and structured data. Deliberately, there is no notion of time, or of a clock; there are no
floating point numbers, and there are only few computational functions. These restrictions make it relatively hard to
model the computation of, say, a square root in this language (cf. p. 325), but relatively easy to model and verify the
behavior of clients and servers in networks of processors (cf. p. 299).
[Team LiB]

[Team LiB]

Examples
 To get started, we discuss a few small examples of PROMELA specifications. We will prompt you for the things that
are worth observing in these models, and for some experiments you can do to explore them further. We do not intend
to define the language in full detail here; only to convey the style of system specifications in PROMELA. A more
systematic treatment of various aspects of the language can be found, or skipped, in Chapters 3, 7, 16, and 17.
[Team LiB]

[Team LiB]

Hello World

 The quintessential first program that prints a string on the user's terminal is, of course, hello world. The example dates
from the first C programming language manual, Kernighan and Ritchie [1978]. It has been duplicated in virtually every
language manual since then. We can specify this famous little first program as a PROMELA model as follows:

active proctype main()

{

 printf("hello world\n")

}

 To simulate an execution of this model, assuming that we store it in a file named hello.pml, we can type the following,
on a UNIX or UNIX-like system, at the shell prompt:

$ spin hello.pml

hello world

1 process created

 and be rewarded with the gratifying result. The output, which is from SPIN's simulator, also contains a short reminder
that PROMELA is a process modeling language, not a programming language. One process was created to simulate
the execution of the model; there will usually be many more in a verification model.

 The filename extension .pml is not required. SPIN is equally accommodating if other extensions, or none at all, are
used.

 If you have done some programming in C, all this will look familiar, as will many other features of the language that
we encounter later. But there are some important differences. To begin with a few notable ones from this first
example: active and proctype are keywords in the language, but main is not. That is, we could have used any other
non-reserved word instead of main in this context. Next, there is no semicolon at the end of the printf statement,
where in C this would be required. The reason is that the semicolon is defined as a statement separator in our new
language, not as a statement terminator. This minor detail can of course quickly become a nuisance, so SPIN's parser
is lenient on this issue. If you happen to type a semicolon where none is required, the parser will forgive you and
quietly ignore it.

 If it is not particularly important that the initial process is named, we can also use a shorthand notation to declare and
instantiate an anonymous one, as follows:

init {

 printf("hello world\n")

}

 Clearly, this works for only one single process, so in almost all cases of interest the use of a proctype declaration will
be more useful. The keyword init, though, is a reserved word in the language and cannot be used for any other
purpose, that is, it cannot be used for variable names or for proctype names.

 A SPIN model is used to describe the behavior of systems of potentially interacting processes: multiple,
asynchronous threads of execution. The primary unit of execution in a SPIN model is therefore a process, and not a
C-style procedure. The keyword proctype in the hello world example denotes that the identifier main that follows,
introduces a name for a new type of process. Note carefully that the name does not identify a process, but a process
type, that is, it defines the behavior for a process, but that definition does not automatically imply its execution. To
execute a process, a named proctype must be instantiated explicitly. There can be multiple instantiations of any single
process type.

 The use of the optional prefix active in front of a proctype declaration tells SPIN that we want one process to be
instantiated from the proctype declaration that follows. If that prefix is omitted, no instantiations of the proctype are
created by default. We will see shortly how processes can also be instantiated within the model itself, via a different
mechanism.

 The definition of printf is pretty much the same in PROMELA as it is in C. Many of the standard conversion formats
are recognized, such as %c, %d, %u, %o, and %x, and special characters such as \t, and \n have the same meaning
as in C.

[Team LiB]

[Team LiB]

Producers and Consumers

 The hello world example includes just one single process, so there is not much opportunity there to experiment with
process interaction. Our next example, shown in Figure 2.1, is a little system of two processes that do interact, by
coordinating their actions with the help of a shared global variable.

 Figure 2.1 Simple Producer Consumer Example

mtype = { P, C };

mtype turn = P;

active proctype producer()

{

 do

 :: (turn == P) ->

 printf("Produce\n");

 turn = C

 od

}

active proctype consumer()

{

 do

 :: (turn == C) ->

 printf("Consume\n");

 turn = P

 od

}

 The first line of the model declares two symbolic names, P and C. The effect of this declaration is very much like an
enum declaration in a C program: the SPIN parser assigns a unique, positive integer value to each name, which
represents it internally. As the typename suggests, this type of declaration is often used to define the names of a range
of message types used in interprocess message exchanges.

 Following the mtype declaration, we find a global declaration of a variable named turn of type mtype. The variable
can take any of the values from the mtype declaration, which in this case means that it can be assigned the symbolic
values P and C. If left uninitialized, the value of the variable is zero, which is outside the range of possible mtype
values. To avoid this, we assigned the initial value P. Next, we see two proctype declarations, both with the prefix
active, defining that one process of each type is to be instantiated automatically.

 The control structure within each proctype is the same: both contain a loop. A PROMELA loop starts with the
keyword do and ends with od. The loop body should contain one or more option sequences, with each separate
option sequence preceded by a double colon ::. In this case, the loops have just one single option sequence each.
Each of these sequences has three, not two, statements, as we shall soon see.

 The first statement after a double colon has special significance: it is called the guard statement, and it alone
determines whether or not the execution sequence that follows is selectable for execution. In the case of the producer
process, the one option for execution is guarded by the condition (turn==P). This means that the statements that
follow this guard can only be executed if and when the variable turn has the value P. PROMELA uses the double
equals for the boolean equals operator and single equals for assignment, as in the C language.

 The PROMELA loop is similar to another PROMELA control-flow construct: the selection statement. If we write
the loop from the producer process with a selection statement, for instance, and use a jump and a label to execute it
repeatedly, it looks as follows:

active proctype producer()

{

again: if

 :: (turn == P) ->

 printf("Produce\n");

 turn = C

 fi;

 goto again

}

 The rules for the execution of option sequences are the same as before. The one difference between a selection and a
repetition structure (i.e., a PROMELA do loop) is that a loop is automatically repeated from the start when the
execution of an option completes, while for a selection statement execution moves on to the next statement, which in
this case is a jump that brings us back to the start of the selection in a different way. The execution of a loop can only
be broken by either transferring control explicitly with a goto statement, or by executing a break statement. As in C,
executing a break statement immediately terminates the execution of the innermost loop.

 If all guard conditions in a loop construct evaluate to false (there is only one guard condition in our examples so far),
then there is no available option for execution and the executing process blocks. These semantics allow us to express
process synchronization in a concise and clean way. Notice, for instance, that instead of encoding a busy wait cycle as
in:

wait: if

 :: (turn == P) -> ...

 :: else -> goto wait

 fi;

 ...

 it suffices to write in PROMELA:

(turn == P) -> ...

 Arrows and semicolons are equivalent in PROMELA, so the one statement above (yes, a condition is a full-fledged
statement in PROMELA) can also be written:

(turn == P); ...

 assuming of course that more statements follow. In the usual style of specification, only potentially blocking
statements are followed by an arrow as a statement separator, and all other types of statements are followed by a
semicolon, but this is purely a matter of style, not of grammar.

 We quietly introduced another PROMELA keyword: else. The use of this keyword as a guard statement in a
selection or repetition structure defines a condition that is true if and only if all other guard conditions in the same
structure evaluate to false. So, in the earlier example, the use of else is equivalent to writing

!(turn == P)

 Note that multiple guard conditions in the same structure could also evaluate to true simultaneously. In that case,
SPIN selects one of these guards non-deterministically for execution. There can, however, be no more than one else
per if or do construct, and therefore when an else option is selected it is necessarily the only executable option.

 Another point worth observing is that when the else option is deleted from a selection, execution necessarily blocks
until at least one guard condition evaluates to true. This temporary (or permanent) blocking provides a convenient
means for modeling interprocess synchronization.

 The use of non-determinism within a process definition allows for a considerable amount of freedom in the
construction of a verification model. By saying that two possible events are possible at a particular point in the
execution, we can remove unnecessary detail from the model and verify effectively that the correctness of the design is
independent of such detail. There is also a second type of non-determinism in a PROMELA model. If at any point in
an execution more than one process has an executable statement and could proceed, then the semantics of
PROMELA state that any one of these processes may be selected for execution: the choice itself is a
non-deterministic one. In essence, this system-level non-determinism means that we make no a priori assumptions
about the behavior of process schedulers. Note, for instance, that the asynchronous processes are often under the
control of independent process schedulers, executing on distinct hardware in a network of processors. Assumptions
about process scheduling, even on a single system, are inherently suspect and unnecessarily limit the scope of a
verification.

 Returning to our producer/consumer example, we can note that, since this is a concurrent environment with
potentially many executing processes, the value of turn could well change immediately after the producer process
evaluates its guard condition.

 The initial value for turn is P, so at least one producer process will find that its guard condition evaluates to true, and it
can execute the next two statements. The first of these statements prints a string, and the second sets variable turn to
C, thereby blocking the producer process from repeating the loop sequence, but enabling the guard condition in its
peer process of type consumer. Simulating the execution of this model produces the following output:

$ spin prodcons.pml | more

Produce

 Consume

Produce

 Consume

...

 We forced the two processes to execute in strictly alternating order, ad infinitum. We therefore took the precaution
to filter the output through the UNIX (or cygwin) more program, to avoid being swamped in output. Another method,
that does not rely on the use of UNIX commands, is to use the SPIN option -uN to limit the simulation run to a
maximum of N steps (see p. 513). The output would then look as follows:

$ spin -u14 prodcons.pml

 Produce

 Consume

 Produce

 Consume

depth-limit (-u14 steps) reached

...

 The simulation is now terminated after fourteen steps. We only see four lines produced by print statements, which
means that ten non-print statements were also executed in the above run. Some more information is normally printed
about the state of the system that is now reached, but we will ignore that for now.

[Team LiB]

[Team LiB]

Extending the Example

 What will happen to our little device to enforce the alternation between producer and consumer if we instantiate a
few more processes of each type? We can do so most easily by adding the desired number of processes to be
instantiated to the proctype declarations, as follows:

active [2] proctype producer() { ... }

 Suppose we still wanted to enforce a strict alternation of execution of one of multiple running producer processes and
one of multiple consumer processes. The earlier solution no longer works, because it is now possible that immediately
after a first process of type producer evaluates the guard condition (turn==P) and finds it true, a second process of
the same type comes to the same conclusion and also proceeds with its execution, potentially causing havoc.

 To avoid this problem, we have to add a little more mechanism. First, we add one more symbolic value that we can
use to record that the variable turn is neither P nor C. Let's call this value N. This changes the mtype declaration into:

mtype = { P, C, N };

 We could equally well have added the extra definition in a separate declaration, for instance, as:

mtype = { P, C };

mtype = { N };

 The declaration and initialization of variable turn itself remains as it was, but we add one extra global variable for
bookkeeping purposes. The variable will record the identity of the process that is currently executing as either a
producer or a consumer.

pid who;

 The type of this new variable is pid, and its name is who. We have left the variable uninitialized, since its initial value
does not matter much to us here. If no explicit initial value is specified, the variable is by default initialized to zero.

 The new declaration for the producer processes is as follows:

active [2] proctype producer()

{

 do

 :: request(turn, P, N) ->

 printf("P%d\n", _pid);

 assert(who == _pid);

 release(turn, C)

 od

 }

 We have added an argument to the print statement so that each process can print its process instantiation number
when it executes. That number is available in the predefined, read-only, local variable named _pid.

 Inside the loop, we have changed the guard condition into what at first sight would appear to be a function call:
request(turn,P,N). This is in fact an inline definition, which is a stylized version of a macro that PROMELA supports.
The inline represents a condition here that, if true, allows the producer to continue with the execution of the code that
follows. At the end of the execution sequence we see another inline, called release(turn,C), which serves to yield back
the access permission that was obtained so that other processes, presumably a consumer, can now run.

 A PROMELA inline is very similar to a C-style macro definition. The SPIN parser performs a textual substitution of
the body of each inline definition at each point in the PROMELA code where it is invoked. Doing so, the parser also
applies a direct textual substitution of all actual parameter names that are provided at the point of invocation for the
formal names that are used in the definition.

 The definition of the inline request can be written as follows:

inline request(x, y, z) {

 atomic { (x == y) -> x = z; who = _pid }

}

 Note that the formal parameters have no type designation: they are simply place holders for the actual variable names
that are inserted when the inline is invoked. That is, if the inline is invoked as

request(turn, P, N)

 then the code that is inserted into the model at the point of invocation is

atomic { (turn == P) -> turn = N; who = _pid }

 The body of an inline definition can contain declarations for local variables, but these are not treated any differently
than the remainder of the inline body: they will be included in the text segment that is inserted at each point of
invocation, and therefore their scope depends on the point of invocation of the inline, and is not restricted to the body
of the inline itself.

 The guard condition in our example turned into an execution sequence of three statements. The sequence is
designated as an atomic sequence, which means that once it starts, all steps in the sequence will complete before any
other process is given the chance to execute. The executability of that atomic sequence is again determined by its first
statement: the guard of the sequence. The atomicity of the three statements in the sequence will prevent multiple
producer processes from evaluating the guard (turn==P) in quick succession, before the value of turn can be updated.

 As noted, the execution of an atomic sequence can be initiated only when its guard condition (the executability
condition of the first statement in the sequence) evaluates to true. As expected, in our example this means that
(turn==P) must evaluate to true. Once execution starts, in one atomic action, variable turn is set to the value N, and
the process identity of the producer process is recorded in global variable who.

 Once a producer process gains access by completing the execution of the atomic sequence, it prints some output,
and then checks an assertion. The assertion verifies that the value of global variable who matches the value the
process assigned to it before. If, despite our efforts, it is still possible for multiple producer processes to reach this
piece of code simultaneously, the assertion can fail for at least one of them. Luckily, the SPIN verifier will be able to
prove decisively if this is possible or not.

 Following the assertion, the second inline is executed. It is defined as follows:

inline release(x, y) {

 atomic { x = y; who = 0 }

}

 This means that the call release(turn,C) translates into the inlined piece of code

atomic { turn = C; who = 0 }

 The guard condition in this case is always true, since the first statement of the atomic sequence is now an assignment
statement and not an expression. Executing the sequence indirectly passes control to a consumer process by changing
the value of variable turn, and it also resets the value of who to its initial zero state. (Technically, the zero value can
match a process instantiation number, but that will not impede the effectiveness of the assertion in this example.) The
new model, with two producers and two consumers, is shown in Figure 2.2.

 Figure 2.2 Revised Producer Consumer Example

mtype = { P, C, N };

mtype turn = P;

pid who;

inline request(x, y, z) {

 atomic { x == y -> x = z; who = _pid }

}

inline release(x, y) {

 atomic { x = y; who = 0 }

}

active [2] proctype producer()

{

 do

 :: request(turn, P, N) ->

 printf("P%d\n", _pid);

 assert(who == _pid);

 release(turn, C)

 od

}

active [2] proctype consumer()

{

 do

 :: request(turn, C, N) ->

 printf("C%d\n", _pid);

 assert(who == _pid);

 release(turn, P)

 od

}

 If we simulate this model with SPIN, we may now see the following output:

$ spin prodcons2.pml | more

 P1

 C2

 P1

 C3

P0

 C3

 P1

 C3

...

 There is some non-determinism in this model, since both producers and both consumers share the same guard
conditions that can trigger their actions. The first process to reach a print statement, for instance, can be either P0 or
P1. In this example it is the latter.

 The simulation seems to confirm that we have succeeded in achieving alternate executions of producers and
consumers. No assertion violations are reported in this simulation run: an assertion violation would abort the execution
with a diagnostic message. For instance, executing the model

init { assert(false) }

 produces:

$ spin false.pml

spin: line 1 "false.pml", Error: assertion violated

...

 Of course, the fact that no assertion violations are encountered in a simulation run does not prove that all assertion
violations are also impossible. To prove that we have to invoke SPIN in verification mode. Without getting into too
many details on verification just yet, a basic verification run for this model would proceed as follows. First, the source
text for a model-specific verifier is generated by SPIN, and that source text is then compiled to generate the
executable verifier itself.

$ spin -a prodcons2.pml # generate a verifier

$ cc -o pan pan.c # compile the verifier

 The executable verifier can now be invoked, producing the following result: [1]

[1] Sometimes, typing just pan also works. Typing ./pan, or .\pan on a PC, may be needed if your default search path
for commands does not include the current directory. We will consistently use ./pan in this book. Similarly, the precise
compilation command to be issued depends on the C compiler that is used. Popular alternatives to cc include the Gnu
C compiler gcc, which is available from http://cygwin.com/, and the Microsoft compiler cl. We will consistenly use cc
in all examples that follow.

$./pan # perform the verification

(spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 28 byte, depth reached 7, errors: 0

 14 states, stored

 3 states, matched

 17 transitions (= stored+matched)

 0 atomic steps

...

 We can see that the state-space that the verifier had to search to verify this model was very small, counting merely
fourteen states. No errors, and in particular no assertion violations, are reported here. We will shortly see what we
might do if errors had been reported by the verifier. In later chapters we will also look in more detail at the meaning of
all other output that is generated by the verifier (e.g., cf. p. 540), most of which we have deleted here.

http://www.cygwin.com/,
http://cygwin.com/

[Team LiB]

[Team LiB]

Mutual Exclusion

 Perhaps the best illustration of the difficulty of designing correct coordination schemes for asynchronously executing
processes is the classic mutual exclusion problem. The problem here is to find a way to grant mutually exclusive
access to a shared resource while assuming only the indivisibility of read and write operations. That is, to solve this
problem we cannot assume the availability of atomic sequences to make a series of test and set operations indivisible.
One of the first attempted solutions of the problem was described by Edsger Dijkstra in Dijkstra [1965]. Dijkstra
gives credit for the algorithm to the Dutch mathematician T.J. Dekker, who first devised it in 1962. It solves the
problem for two processes only. The PROMELA version of this algorithm can be written as shown in Figure 2.3.

 Figure 2.3 Dekker's Mutual Exclusion Algorithm (1962)

bit turn;

bool flag[2];

byte cnt;

active [2] proctype mutex()

{ pid i, j;

 i = _pid;

 j = 1 - _pid;

again:

 flag[i] = true;

 do

 :: flag[j] ->

 if

 :: turn == j ->

 flag[i] = false;

 (turn != j) -> /* wait until true */

 flag[i] = true

 :: else ->

 skip /* do nothing */

 fi

 :: else ->

 break /* break from loop */

 od;

 cnt++;

 assert(cnt == 1); /* critical section */

 cnt--;

 turn = j;

 flag[i] = false;

 goto again

}

 The algorithm uses a bit variable named turn with a similar function as in our previous producer/consumer example.
Since there are just two processes in the system, the turn variable can point to one or the other using just a zero or a
one. Note, though, that this time we cannot assume that the two processes will be content to alternate their access to
the critical part of the code where the shared resource is accessed. If only one of the two processes needs access, it
should be able to acquire it arbitrarily often. This makes the problem much harder to solve correctly. Dekker's
algorithm uses an array of two booleans called flag to track the progress of the two processes. In our PROMELA
model we have also added a global variable cnt of type byte to count how many processes can succeed in accessing
the critical section in the code simultaneously. If all is well, this variable can never be assigned a value greater than one
or less than zero. An assertion in the code can check if this is indeed the case.

 We use a local variable, i of type pid, to record the instantiation numbers of the running process. Each process must
also know the pid of its competitor, and since we only have two processes here, predictably with pid numbers zero
and one, each process can obtain the pid of its peer by subtracting its own pid from one.

 The attempt to gain access to the critical section in the code starts by setting an element of boolean array flag to true.
This is followed by a loop that cannot be exited until the competing process disavows interest in entering the critical
section by turning its element in array flag to false. The real problem to be solved is of course when both processes set
their element in the flag array to true simultaneously. The global variable turn will in that case be the tie breaker. For
some measure of fairness, [2] upon exit from the critical section each process sets the value of turn to favor its
competitor, should a similar tie occur again.

[2] The term fairness is used informally here. We discuss a more formal notion of process scheduling fairness in
Chapter 4.

 When a process is forced, by the current value of turn, to yield to the other process, it turns its element of flag to false
and then waits for the other process to exit the critical section. It waits at the condition statement:

(turn != j) ->

 In most languages it would be meaningless to write a condition all by itself, that is, outside a selection or iteration
construct. In fact, in C it would not make a difference whether the expression would evaluate to true or false;
execution of the program would continue immediately in both cases. A unique feature of PROMELA is that every
type of statement can act as a guard in any context, even when used stand-alone as here. For each statement, the
semantic rules of PROMELA define the precise conditions under which the statement is "executable" and what its
effect is when it is executed. For most types of statements these rules are fairly standard. A printf statement, for
instance, is always executable and its effect is to print output during simulation runs. An assignment like turn=j is also
unconditionally executable, and its effect is to assign the current value of the expression on the right-hand side of the =
sign to the variable that is on the left-hand side. A stand-alone expression (exp) is "executable" if and only if the
expression evaluates to true. The statement blocks the process that attempts to "execute" the expression when it
evaluates to false. Fortunately, and not coincidentally, all expressions in PROMELA are guaranteed to be free of side
effects when they evaluate to false, so it does not matter how often we may have to evaluate the executability of a
statement before it turns true: there can be no side effects on the system state as a result of these evaluations.

 We can simulate the execution of Dekker's algorithm as before. No output is generated in this case, and fortunately
no assertion violations either. To prove that assertion violations are indeed impossible, and that Dekker's algorithm
correctly solves the mutual exclusion problem for two processes, we need SPIN's verification mode. The verification
takes a fraction of a second, and quickly confirms that assertion violations are indeed impossible.

$ spin -a mutex.pml

$ cc -o pan pan.c

$./pan

(spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 36 byte, depth reached 65, errors: 0

 190 states, stored

 173 states, matched

 363 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype mutex

 line 38, state 23, "-end-"

 (1 of 23 states)

 The one line of real interest in the output that SPIN produces here is the error count: zero. The remainder of the
ouput spells out more details of the run that was completed, but we can safely ignore all that for the time being.

 Though verification can settle the issue of correctness, Dekker's algorithm has been a rich source of inspiration for
many years. One thought that immediately comes to mind is whether the algorithm could not be simplified or
generalized in some way. For instance, is the outer do-loop really necessary, or could it be turned into an if-selection?
This observation was first made in Doran and Thomas [1980], and at the time it required very careful thought and
proof to determine its accuracy. Today, a verification run with SPIN can produce a definitive verdict virtually
instantaneously: confirming that the observation is indeed correct. The change does not alter the number of reachable
states, and fully preserves the correctness of the algorithm.

 If the do-loop is dispensable, could not the whole nested structure be dispensed with as well? None of these issues
are easy to settle by pen and paper arguments. The number if incorrect mutual exclusion algorithms that have been
dreamt up over the years, often supported by long and persuasive correctness arguments, is considerably larger than
the number of correct ones. Figure 2.4, for instance, shows a version, converted into PROMELA, that was
recommended by a major computer manufacturer in the not too distant past.

 Figure 2.4 Faulty Mutual Exclusion Algorithm

byte cnt;

byte x, y, z;

active [2] proctype user()

{ byte me = _pid + 1; /* me is 1 or 2 */

again:

 x = me;

 if

 :: (y == 0 || y == me) -> skip

 :: else -> goto again

 fi;

 z = me;

 if

 :: (x == me) -> skip

 :: else -> goto again

 fi;

 y = me;

 if

 :: (z == me) -> skip

 :: else -> goto again

 fi;

 /* enter critical section */

 cnt++;

 assert(cnt == 1);

 cnt--;

 goto again

}

 A tool like SPIN has not much trouble exposing the flaw in this algorithm.

 SPIN's verdict on this model is obtained as follows:

$ spin -a mutex_flaw.pml

$ cc -o pan pan.c

$./pan

pan: assertion violated (cnt==1) (at depth 53)

pan: wrote mutex_flaw.pml.trail

...

 The verifier halts execution the moment it has established the possibility of an assertion violation, and it writes the
execution sequence into a trail file.[3] The trail file contains codes that can be understood by the SPIN simulator to
recreate that execution path in as much, or in as little, detail as we can now choose. We can tell SPIN to use the trail
file in a simulation (which is now a guided simulation run) by using the option letter -t. Before we do so, though, we
note from the output above that the error trail is 53 steps long. We could wonder if there isn't a shorter execution
trace that can lead to the same assertion violation. Given that we already know that we do not have to search deeper
than 53 steps, we can set up such a search as follows:

[3] On some systems a filename can only have one period. In that case SPIN will strip the extension .pml, if present,
before adding the suffix .trail. Similarly, if only a three-letter file extension is allowed, SPIN will use the suffix .tra
instead of .trail.

$ cc -DREACH -o pan pan.c # compile differently

$./pan -i -m53 # extra run-time options

 The compile-time directive -DREACH arranges for the verifier to use a different storage discipline that allows it to
keep track of the depth at which each reachable state is found. The run-time option -i instructs the verifier to
iteratively home in on the shortest error trace it can find, by using the extra information that is now available. A
description of the algorithm that is used for this is given in Chapter 8 (see p. 171).

 In this case we also give the verifier a preset maximum search depth of 53, since we already know that there is an
error sequence of that number of steps, but this is of course not required.

 The new output that is produced by the verifier is as follows:

$./pan -i -m53

error: max search depth too small

pan: assertion violated (cnt==1) (at depth 45)

pan: wrote mutex_flaw.pml.trail

pan: reducing search depth to 45

...

pan: reducing search depth to 15

pan: wrote mutex_flaw.pml.trail

pan: reducing search depth to 14

pan: wrote mutex_flaw.pml.trail

pan: reducing search depth to 14

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

...

 In the first line of output, the verifier duly informs us that there do exist longer executions than the depth limit (i.e., the
maximum search depth) of fifty-three steps allows us to peruse this time. Then, it finds the first error trace at a depth
of forty-five steps, and starts looking for an even shorter example by trimming the search depth to that new limit.
Eventually, the shortest trace that the verifier can find turns out to be fourteen steps long.

 An easy alternative to this procedure is to compile the verifier to use an alternative search mode: using a breadth-first
search, instead of the default depth-first search, discipline. In that case we find the shortest path immediately:

$ cc -DBFS -o pan pan.c

$./pan

pan: assertion violated (cnt==1) (at depth 14)

pan: wrote mutex_flaw.pml.trail

...

 We will see later in which cases the breadth-first search mode can be used, and in which cases it cannot.

 We can now ask SPIN to perform a guided simulation for this last version of the error trace that was written into the
trail file, by giving the command:

$ spin -p -t mutex_flaw.pml

 1: proc 1 (user) line 5 ... [x = me]

 2: proc 1 (user) line 8 ... [(((y==0)||(y==me)))]

 3: proc 1 (user) line 10 ... [z = me]

 4: proc 1 (user) line 13 ... [((x==me))]

 5: proc 0 (user) line 5 ... [x = me]

 6: proc 0 (user) line 8 ... [(((y==0)||(y==me)))]

 7: proc 1 (user) line 15 ... [y = me]

 8: proc 1 (user) line 18 ... [((z==me))]

 9: proc 1 (user) line 22 ... [cnt = (cnt+1)]

 10: proc 0 (user) line 10 ... [z = me]

 11: proc 0 (user) line 13 ... [((x==me))]

 12: proc 0 (user) line 15 ... [y = me]

 13: proc 0 (user) line 18 ... [((z==me))]

 14: proc 0 (user) line 22 ... [cnt = (cnt+1)]

spin: line 23 "mutex_flaw.pml", Error: assertion violated

spin: text of failed assertion: assert((cnt==1))

 15: proc 0 (user) line 23 ... [assert((cnt==1))]

spin: trail ends after 15 steps

#processes: 2

 cnt = 2

 x = 1

 y = 1

 z = 1

 15: proc 1 (user) line 23 "mutex_flaw.pml" (state 20)

 15: proc 0 (user) line 24 "mutex_flaw.pml" (state 21)

2 processes created

 We have abbreviated the output slightly here for layout purposes. It is clear, though, that the executions of the two
user processes are interleaved in such a way here that the variable in ends up being incremented twice, once at step
nine and once at step fourteen, which leads immediately to the assertion violation.

 Curiously, there exists a much simpler solution to the mutual exclusion problem, but it took more than fifteen years
before it was discovered. In 1981 G.L. Peterson published the solution shown in Figure 2.5, which SPIN quickly
proves correct.

 Figure 2.5 Peterson's Mutual Exclusion Algorithm (1981)

bool turn, flag[2];

byte cnt;

active [2] proctype P1()

{ pid i, j;

 i = _pid;

 j = 1 - _pid;

again:

 flag[i] = true;

 turn = i;

 (flag[j] == false || turn != i) -> /* wait until true */

 cnt++;

 assert(cnt == 1);

 cnt--;

 flag[i] = false;

 goto again

}

 Much of the algorithm looks familiar, apart from the wonderful simplicity of the solution. Now we can again wonder,
would it not be possible to simplify this algorithm still a little bit further? We may, for instance, consider if the wait
condition could not be simplified to merely (flag[j]==false). SPIN quickly shows that if this is done a deadlock can
result when both processes reach the wait condition simultaneously, with both elements of array flag set to false. At
this point both processes are caught waiting for the other, a problem that is avoided in Peterson's version of the
algorithm.

[Team LiB]

[Team LiB]

Message Passing

 So far we have not shown any example of the use of message passing between asynchronous processes. We will
remedy that now. The following example illustrates the basic mechanism. The specification in Figure 2.6 models a
protocol that was proposed in 1981 at Bell Labs for use in a new data switch.

 Figure 2.6 Data Transfer Protocol

mtype = { ini, ack, dreq, data, shutup, quiet, dead };

chan M = [1] of { mtype };

chan W = [1] of { mtype };

active proctype Mproc()

{

 W!ini; /* connection */

 M?ack; /* handshake */

 timeout -> /* wait */

 if /* two options: */

 :: W!shutup /* start shutdown */

 :: W!dreq; /* or request data */

 M?data -> /* receive data */

 do

 :: W!data /* send data */

 :: W!shutup; /* or shutdown */

 break

 od

 fi;

 M?shutup; /* shutdown handshake */

 W!quiet;

 M?dead

}

active proctype Wproc()

{

 W?ini; /* wait for ini */

 M!ack; /* acknowledge */

 do /* 3 options: */

 :: W?dreq -> /* data requested */

 M!data /* send data */

 :: W?data -> /* receive data */

 skip /* no response */

 :: W?shutup ->

 M!shutup; /* start shutdown */

 break

 od;

 W?quiet;

 M!dead

}

 The first line of the specification contains a declaration of symbolic names for seven different types of messages, using
an mtype declaration as before. Next, we see a new data type called chan. On two subsequent lines, two buffered
message channels are declared, each with a capacity to store one message. The messages themselves that can be
stored in these channels are in both cases declared to be of type mtype (i.e., one of the values from the mtype
declaration on the first line). In general, there can be any number of message fields, of arbitrary types, which could be
specified in a comma-separated list in the spot where we now find only the one mtype keyword.

 Two types of processes are declared and instantiated, as stipulated by the prefix active. The first process, of type
Mproc, receives messages via channel M and sends them to its peer via channel W. The second process, of type
Wproc, does the reverse.

 The first process initiates a connection with its peer by sending the message ini. It then waits for a response, which is
expected to be the message ack. The syntax for specifying a message transmission resembles that of Hoare's CSP
language here: the send operator is represented by an exclamation mark and the receive operator is represented by a
question mark.

 Both operators have two (sets of) operands: one operand is always written to the left of the mark and identifies the
message channel that is addressed by the operation. The remaining operands follow to the right of the mark, and
specify the details of the message to be transmitted or received. In this case we declared message channels with just
one field for each message, so in this example just one right-hand side operand suffices in all message passing
operations.

 After the first message exchange is completed, the system comes to a halt. The second process waits for the first
process to send it one of three possible message types. The first process, however, does nothing until it times out. The
PROMELA semantics state that the predefined boolean variable timeout is true if and only if no other statement [4] in
the entire system is executable; otherwise it is false.

[4] Notice that in this respect the semantics of the PROMELA timeout condition resemble that of the else. The
difference is that else provides an escape clause at the process level, while timeout does so at the system level.

 Once the timeout condition evaluates to true, the process of type Mproc has two options for execution. It can either
send a message of type dreq to request a data transmission from its peer, or it can choose to close down the
connection with a message of type shutup.

 Can this protocol ever deadlock the two processes? We can get an impression of the feasible executions by running
some simulations as before. We might see, for instance, the following output, which confirms that correct execution is
at least possible. We use the -c option to SPIN in this case, to get a conveniently columnated output of just the
message exchanges.

$ spin -c protocol

proc 0 = Mproc

proc 1 = Wproc

q\p 0 1

 1 W!ini

 1 . W?ini

 2 . M!ack

 2 M?ack

timeout

 1 W!shutup

 1 . W?shutup

 2 . M!shutup

 2 M?shutup

 1 W!quiet

 1 . W?quiet

 2 . M!dead

 2 M?dead

 ...

 To show also that incorrect execution is not possible, we will need the verifier. In verification mode, SPIN quickly
homes in on the following sample execution that does lead into a deadly embrace. We will skip the incantations of
SPIN to obtain a short error trace, which proceeds in the same way as in the last example, and go straight to the
guided simulation run that replays the fatal sequence of steps that SPIN finds. It looks as follows:

$ spin -c -t protocol

proc 0 = Mproc

proc 1 = Wproc

q\p 0 1

 1 W!ini

 1 . W?ini

 2 . M!ack

 2 M?ack

 1 W!dreq

 1 . W?dreq

 2 . M!data

 2 M?data

 1 W!data

 1 . W?data

[deadlock state]

final state:

#processes: 2

 queue 2 (M):

 queue 1 (W):

 12: proc 1 (Wproc) line 31 "protocol" (state 10)

 12: proc 0 (Mproc) line 12 "protocol" (state 10)

2 processes created

 After the initial connection setup, the two parties successfully exchange one data item, but then get stuck. The error is
in the encoding of the inner loop inside proctype Mproc. It can be solved by adding an additional timeout option in
this loop, which gives the process an alternate route to the shutdown procedure.

[Team LiB]

[Team LiB]

In Summary
 In this chapter we have taken a first look at some small examples of PROMELA verification models. The examples
are not meant to give an exhaustive overview of the PROMELA language, but they are meant to give an idea of its
main focus, which is to model the behavior of interacting asynchronous processes in distributed systems. The aim of
the SPIN verifier is not to verify the computational aspects of an application; it is to reliably identify problems that are
caused by process interaction. This means that we are interested in the quirky problems of process coordination, and
not in the properties of local, sequential, or deterministic computations.

 At this point, two types of criticism of the language we have discussed may legitimately be raised. The first is that the
language is too permissive, making it too easy to encode dubious constructs, such as arbitrary goto jumps, and
unrestricted access to global variables or message channels. Another valid criticism can be that the language is too
restrictive, lacking many of the more salient features of implementation languages such as C.

 To counter the first criticism, it suffices to note that the purpose of this modeling language is not to prevent the
construction of dubious constructs, but to allow the user to investigate them thoroughly with the help of formal
verification. The language allows us to expose dubious constructs not by argument but by verification, especially in
cases where the designer never suspected that there could possibly be a problem.

 So if the language is not too permissive, is it too restrictive? Why, for instance, not use full C as the specification
language for SPIN? The sobering answer is that we would quickly find that virtually all properties of interest would
become undecidable. We can only obtain an effectively useful verification system by imposing some reasonable limits
on what can be specified. There is no possibility, for instance, to define an infinite buffer in basic PROMELA, or to
describe systems that would require the creation of an infinite number data objects or processes to execute. Attempts
to do so are pedantically flagged as errors by the SPIN verifier. Fortunately, we will see that it is not hard to live
within the self-imposed limits. With some experience in model construction, we can prove or disprove critical
correctness properties of even very substantial systems. The parsimony of PROMELA has another benefit, which is
that compared to more elaborate implementation or specification languages, it takes most users relatively little time to
learn the main concepts well enough to start writing models with confidence.

 Curiously, in this context, one of the more interesting recent extensions of the PROMELA language has broken with
the strict enforcement of the rule of parsimony by allowing the inclusion of embedded fragments of C code into SPIN
models. This extension allows us to come very close to the modeling of implementation level code, especially when
we use automated model extraction tools. With the additional power come additional dangers. As Brian Kernighan
and Rob Pike once put it: "C is a razor-sharp tool, with which one can create an elegant and efficient program or a
bloody mess."

 We discuss model extraction techniques and the extensions that allow the use of embedded C code in SPIN models
in Chapters 10 and 17.
[Team LiB]

[Team LiB]

Bibliographic Notes
 The quote about C from the last section appeared first on page 71 of Kernighan and Pike [1999].

 The producer-consumer problem is one of the many intriguing problems in concurrent systems design that were first
introduced and solved by Edsger Dijkstra. The example first appeared in a series of lecture notes that Dijkstra wrote
in early 1965, and made available to friends and colleagues as EWD123. A revised version of the report was later
distributed more broadly as Dijkstra [1968].

 The mutual exclusion problem that we referred to in this chapter also has a long and colorful history. The problem
was first clearly articulated in Dijkstra [1965], and has triggered a long series of papers and books that continues to
this day. We will not attempt to summarize the debate about mutual exclusion here. A good starting point for a study
can be Raynal [1986], or Lamport [1986].

 A start with the design of the PROMELA language was made in 1979 to support the specification of verification
models for SPIN's earliest predecessor PAN, [5] as described in Holzmann [1981]. There was no firm name for the
language at first, although for brief moments we used the terms PSL, short for Process S pecification L anguage,
PROTO, short for Proto-typing language, and even the non-acronym "Argos" in Holzmann [1987].

[5] PAN was originally the name of a stand-alone tool, and was short for Protocol Analyzer. Many years later, we
reused the name for the verifiers that can be generated by SPIN. The name is now more comfortably understood as
an acronym for Process Analyzer.

 The language was influenced in important ways by Dijkstra [1975]. Dijkstra's proposal for a non-deterministic
guarded command language, though, did not contain primitives for message passing. The syntax for the notation that
was adopted in PROMELA was taken from Hoare's CSP language, as documented in Hoare [1978].

 A third influence on the design of PROMELA that is often mentioned is the programming language C, as first
described in Kernighan and Ritchie [1978]. This influence is also mostly restricted to syntax. Though PROMELA was
influenced by several other languages, there are important differences that we will discuss in more detail in Chapter 3.
The differences are motivated by the unique purpose that PROMELA has. PROMELA models are not meant to be
analyzed manually, and they are not meant to be used as implementations. The purpose of a PROMELA model is
solely to support the effective, automated verification of problems in distributed systems design.
[Team LiB]

[Team LiB]

Chapter 3. An Overview of PROMELA
 "What we see depends on mainly what we look for."

 —(Sir John Lubbock, 1834–1913)

 In the last chapter we saw that the emphasis in PROMELA models is placed on the coordination and synchronization
aspects of a distributed system, and not on its computational aspects. There are some good reasons for this choice.
First, the design and verification of correct coordination structures for distributed systems software tends to be much
harder in practice than the design of a non-interactive sequential computation, such as the computation of compound
interest or square roots. Second, the curious situation exists that the logical verification of the interaction in a
distributed system, though often computationally expensive, can be done more thoroughly and more reliably today
than the verification of even the simplest computational procedure. The specification language we use for systems
verification is therefore deliberately designed to encourage the user to abstract from the purely computational aspects
of a design, and to focus on the specification of process interaction at the system level.

 As a result of this specialization, PROMELA contains many features that are not found in mainstream programming
languages. These features are intended to facilitate the construction of high-level models of distributed systems, The
language supports, for instance, the specification non-deterministic control structures; it includes primitives for process
creation, and a fairly rich set of primitives for interprocess communication. The other side of the coin is that the
language also lacks some features that are found in most programming languages, such as functions that return values,
expressions with side effects, data and functions pointers, etc. The reason is simple: PROMELA is not a programming
language. PROMELA is a language for building verification models.

 A verification model differs in at least two important ways from a program written in a mainstream programming
language such as Java or C.



 A verification model represents an abstraction of a design that contains only those aspects of a system that
are relevant to the properties one wants to verify.



A verification model often contains things that are typically not part of an implementation. It can, for instance,
include worst-case assumptions about the behavior of the environment that may interact with the modeled
system, and, most importantly, it either explicitly or implicitly contains a specification of correctness
properties.

 Even though it can be attractive to have a single specification that can serve as both a verification model and as an
implementation of a system design—verification and implementation have some fundamentally different objectives. A
verification model is comparable in its purpose to the prototype or design model that a civil engineer might construct: it
serves to prove that the design principles are sound. Design models are normally not expected to be part of the final
implementation of a system.

 A full system implementation typically contains more information, and far more detail, than a design model. This
means that it can be difficult to find automatic procedures for converting design models into system implementations.
The reverse, however, is not necessarily true. In Chapter 10 we will explore means for mechanically extracting the
main elements of a verification model directly from an implementation, guided by abstraction techniques. Similarly, in
Chapter 17 we will discuss the specific constructs that are available in PROMELA to facilitate model extraction tools.
These topics, though, should be considered advanced use of the model checker, so we will conveniently ignore them
for now.

 In the last chapter we gave a bird's-eye view of the language, briefly touching on some of the main language
constructs that are available to build verification models. In this chapter we cover the language more thoroughly. We
will try to cover all main language features in a systematic way, starting with the most general constructs, and slowly
descending into more of the specifics. We restrict ourselves here to the mechanisms that are at our disposal for
describing process behavior and process interaction. In the next chapter we will continue the discussion with a
description of the various means we have to define correctness claims. After we have covered these basics, we move
on in Chapter 5 to discuss methods for exploiting design abstraction techniques as an aid in the control of verification
complexity.

 First then, our overview of the basic language for specifying the behavior of concurrently executing, and potentially
interacting, processes in a distributed system.

[Team LiB]

[Team LiB]

Types of Objects

 PROMELA derives many of its notational conventions from the C programming language. This includes, for instance,
the syntax for boolean and arithmetic operators, for assignment (a single equals) and equality (a double equals), for
variable and parameter declarations, variable initialization and comments, and the use of curly braces to indicate the
beginning and end of program blocks. But there are also important differences, prompted by the focus in PROMELA
on the construction of high-level models of the interactions in distributed systems.

 A PROMELA model is constructed from three basic types of objects:


 Processes


Data objects


Message channels

 Processes are instantiations of proctypes, and are used to define behavior. There must be at least one proctype
declaration in a model, and for the model to be of much use there will normally also be at least one process
instantiation.

 A proctype body consists of zero or more data declarations, and one or more statements. The semantics of
statement execution is somewhat special in PROMELA, since it also doubles as the primary mechanism for enforcing
process synchronizations. We have seen some of this in the last chapter, and we will return to it in more detail in the
section on executability (p. 51).

 Process types are always declared globally. Data objects and message channels can be declared either globally, that
is, outside all process type declarations, or locally, that is, within a process type declaration. Accordingly, there are
only two levels of scope in PROMELA: global and process local. It is, for instance, not possible to restrict the scope
of a global object to only a subset of the processes, or to restrict the scope of a local object to only part of a
proctype body.

 The next three sections contain a more detailed discussion of each of the three basic types of objects in PROMELA.
This is followed by a discussion of PROMELA's rules for executability, and a more comprehensive overview of the
primitives in PROMELA for defining flow of control.
[Team LiB]

[Team LiB]

Processes
 In the last chapter we saw that we can declare and instantiate processes by prefixing a proctype declaration with the
keyword active. There are several ways to instantiate processes in PROMELA. We can create multiple instantiations
of a given proctype by adding the desired number in square brackets to the active prefix, for instance as follows:

active [2] proctype you_run()

{

 printf("my pid is: %d\n", _pid)

}

 Each running process has a unique process instantiation number. These instantiation numbers are always
non-negative, and are assigned in order of creation, starting at zero for the first created process. Each process can
refer to its own instantiation number via the predefined local variable _pid. Simulating the example above, for instance,
produces the following output:

$ spin you_run.pml

my pid is: 0

 my pid is: 1

2 processes created

 The two processes that are instantiated here each print the value of their process instantiation number and then
terminate. The two lines of output happen to come out in numeric order here, but since process execution is
asynchronous, it could just as well have been the opposite. By default, during simulation runs, SPIN arranges for the
output of each active process to appear in a different column: the pid number is used to set the number of tab stops
used to indent each new line of output that is produced by a process. [1]

 [1] We can now see that the string hello world in the last chapter was printed left justified by a happy coincidence. It
was because the process executing the statement had pid zero. We can suppress the default indentations by invoking
spin with option -T (see p. 513).

 There is also another way to instantiate new PROMELA processes. Any running process can start other processes
by using a predefined operator called run. For instance, we could rewrite the last example as follows:

proctype you_run(byte x)

{

 printf("x = %d, pid = %d\n", x, _pid)

}

init {

 run you_run(0);

 run you_run(1)

}

 A disadvantage of this solution is that it often creates one process more than strictly necessary (i.e., the init process).
For simulation or implementation, the extra process would not matter too much, but in system verification we usually
take every possible precaution to keep the system descriptions at a minimum: avoiding all unnecessary elements.

 A simulation run of the last model produces the following result:

$ spin you_run2.pml

 x = 1, pid = 2

 x = 0, pid = 1

3 processes created

 In this version of the proctype you_run, we added a parameter of type byte. This formal parameter is initialized in the
run statement, which appears here in the init process. This means that when the "execution" of a run statement results
in the creation of a new process, all formal parameters from the target proctype declaration are initialized to the values
of the corresponding actual parameters that are provided in the run statement (i.e., parameter passing is by value).

 Parameter values, of course, cannot be passed to the init process, or to processes that are instantiated as active
proctypes. If processes created through the use of an active prefix have formal parameters, they are treated as if they
were local variables, and they are initialized to zero. This initialization rule matches the rule for all data objects in
PROMELA: if no explicit initialization is present, an object is always initialized to zero.

 A newly created process may, but need not, start executing immediately after it is instantiated. Similarly, the new
process may, but need not and generally will not, terminate before the process that created it moves on to its next
statement. That is: processes do not behave like functions. Each process, no matter how it is created, defines an
asynchronous thread of execution that can interleave its statement executions in arbitrary ways with other processes.

 We mentioned in passing that run is really an operator, and therefore technically what so far we have casually
referred to as a run "statement" is really an expression. Technically again, the expression is not "executed" but
evaluated. The run expression is the only type of expression that can have a side effect when it evaluates to non-zero,
but not when it evaluates to zero (i.e., when it fails to instantiate a new process). A run expression is also special in the
sense that it can contain only one run operator and cannot be combined with any other conditionals.

 The value of a run expression evaluates to zero if no process can be instantiated, otherwise it evaluates to a non-zero
value which equals the process instantiation number of the newly created process. Note that the pid returned upon
successful process instantiation can never itself be zero, because there must be at least one process running to
evaluate the expression. Evaluating a run expression, then, produces a value of type pid (cf. p. 16, 36).

 Because run is an operator, we can also change the definition of init in the last example into the following version,
where the process instantiation numbers are stored in local variables.

init { pid p0, p1;

 p0 = run you_run(0);

 p1 = run you_run(1);

 printf("pids: %d and %d\n", p0, p1)

}

 Simulating the execution of this model produces:

$ spin you_run2.pml

 x = 1, pid = 2

pids: 1 and 2

 x = 0, pid = 1

3 processes created

 Note that the output from the three processes can again appear in any order because of the concurrent nature of the
executions.

 Finiteness: Why would evaluating a run expression ever fail to instantiate a new process, and return zero? The reason
lies in the fact that a PROMELA model can only define finite systems. Enforcing that restriction helps to guarantee that
any correctness property that can be stated in PROMELA is decidable. It is impossible to define a PROMELA
model for which the total number of reachable system states can grow to infinity. Data objects can only have a finite
range of possible values; there can be only finitely many active processes, finitely many message channels, and every
such channel can have only finite capacity. The language does not prescribe a precise bound for all these quantities,
other than that there is such a bound and that it is finite. For all currently existing versions of SPIN, the bound on the
number of active processes and the bound on the number of message channels is put at 255.

 An attempt to ignore these bounds will necessarily fail. For instance, we could try to define the following model:

active proctype splurge(int n)

{ pid p;

 printf("%d\n", n);

 p = run splurge(n+1)

}

 Simulating the execution of this model with SPIN, using the -T option to disable the default indentation of printf
output, produces the following result:

$ spin -T splurge.pml

0

1

2

3

...

252

253

254

spin: too many processes (255 max)

255 processes created

 The creation of the 256th process fails (note that the process numbering start at zero) and ends the simulation run.
But there are more interesting things to discover here, not just about how processes are instantiated, but also about
how they can terminate and die. Process termination and process death are two distinct events in PROMELA.



 A process "terminates" when it reaches the end of its code, that is, the closing curly brace at the end of the
proctype body from which it was instantiated.



A process can only "die" and be removed as an active process if all processes that were instantiated later than
this process have died first.

 Processes can terminate in any order, but they can only die in the reverse order of their creation. When a process
reaches the end of its code this only signifies process termination, but not process death. When a process has
terminated, this means that it can no longer execute statements, but will still be counted as an active process in the
system. Specifically, the process pid number remains associated with this process and cannot be reused for a new
process. When a process dies, it is removed from the system and its pid can be reused for another process.

 This means that each instantiation of the proctype splurge in the last example terminates immediately after it creates
the next process, but none of these processes can die until the process creation fails for the first time on the 255th
attempt. That last process is the first process that can die and be removed from the system, since it is the most
recently created process in the system. Once this happens, its immediate predecessor can die, followed by its
predecessor, and all the way back to the first created process in stack order, until the number of active processes
drops to zero, and the simulation ends.

[Team LiB]

[Team LiB]

Provided Clauses

 Process execution is normally only guided by the rules of synchronization captured in the statement semantics of
proctype specifications. It is possible, though, to define additional global constraints on process executions. This can
be done with the help of the keyword provided which can follow the parameter list of a proctype declaration, as
illustrated in the following example:

bool toggle = true; /* global variables */

short cnt; /* visible to A and B */

active proctype A() provided (toggle == true)

{

L: cnt++; /* means: cnt = cnt+1 */

 printf("A: cnt=%d\n", cnt);

 toggle = false; /* yield control to B */

 goto L /* do it again */

}

active proctype B() provided (toggle == false)

{

L: cnt--; /* means: cnt = cnt-1 */

 printf("B: cnt=%d\n", cnt);

 toggle = true; /* yield control to A */

 goto L

}

 The provided clauses used in this example force the process executions to alternate, producing an infinite stream of
output:

$ spin toggle.pml | more

A: cnt=1

 B: cnt=0

A: cnt=1

 B: cnt=0

A: cnt=1

 B: cnt=0

A: cnt=1

...

 A process cannot take any step unless its provided clause evaluates to true. An absent provided clause defaults to
the expression true, imposing no additional constraints on process execution.

 Provided clauses can be used to implement non-standard process scheduling algorithms. This feature can carry a
price-tag in system verification, though. The use of provided clauses can disable some of SPIN's most powerful
search optimization algorithms (cf. Chapter 9).
[Team LiB]

[Team LiB]

Data Objects
 There are only two levels of scope in PROMELA models: global and process local. Naturally, within each level of
scope, all objects must be declared before they can first be referenced. Because there are no intermediate levels of
scope, the scope of a global variable cannot be restricted to just a subset of processes, and the scope of a process
local variable cannot be restricted to specific blocks of statements. A local variable can be referenced from its point of
declaration to the end of the proctype body in which it appears, even when it appears in a nested block (i.e., a piece
of code enclosed in curly braces). This is illustrated by the following example:

 Table 3.1. Basic Data Types

Type Typical Range

bit 0,1

bool false,true

byte 0..255

chan 1..255

mtype 1..255

pid 0..255

short –215 .. 215 – 1

int –231 .. 231 – 1

unsigned 0 .. 2n – 1

init {

 /* x declared in outer block */

 int x;

 { /* y declared in inner block */

 int y;

 printf("x = %d, y = %d\n", x, y);

 x++;

 y++;

 }

 /* y remains in scope */

 printf("x = %d, y = %d\n", x, y);

}

 When simulated this model produces the output:

$ spin scope.pml

x = 0, y = 0

x = 1, y = 1

1 process created

 Table 3.1 summarizes the basic data types in PROMELA, and the typical range of values that corresponds to each
type on most machines.

 The data type unsigned, like its counterpart in the C programming language, can be used to declare a quantity that is
stored in a user-defined number of bits n, with 1 n 32. With just two exceptions, these data types can store only
unsigned values. The two exceptions are short and int, which can hold either positive or negative values. The precise
value ranges of the various types is implementation dependent. For short, int, and unsigned, the effective range
matches those of the same types in C programs when compiled on the same hardware. For byte, chan, mtype, and
pid, the range matches that of the type unsigned char in C programs. The value ranges for bit and bool are always
restricted to two values.

 Typical declarations of variables of these basic types include:

bit x, y; /* two single bits, initially 0 */

bool turn = true; /* boolean value, initially true */

byte a[12]; /* all elements initialized to 0 */

chan m; /* uninitialized message channel */

mtype n; /* uninitialized mtype variable */

short b[4] = 89; /* all elements initialized to 89 */

int cnt = 67; /* integer scalar, initially 67 */

unsigned v : 5; /* unsigned stored in 5 bits */

unsigned w : 3 = 5; /* value range 0..7, initially 5 */

 Only one-dimensional arrays of variables are supported, although there are indirect ways of defining multidimensional
arrays through the use of structure definitions, as we will see shortly. All variables, including arrays, are by default
initialized to zero, independent of whether they are global or local to a process.

 Variables always have a strictly bounded range of possible values. The variable w in the last example, for instance,
can only contain values that can be stored in three bits of memory: from zero to seven. A variable of type short,
similarly, can only contain values that can be stored in sixteen bits of memory (cf. Table 3.1). In general, if a value is
assigned to a variable that lies outside its declared domain, the assigned value is automatically truncated. For instance,
the assignment

byte a = 300;

 results in the assignment of the value 44 (300%256). When such an assignment is performed during random or
guided simulations, SPIN prints an error message to alert the user to the truncation. The warning is not generated
during verification runs, to avoid generating large volumes of repetitive output.

 As usual, multiple variables of the same type can be grouped behind a single type name, as in:

byte a, b[3] = 1, c = 4;

 In this case, the variable named a is, by default, initialized to zero; all elements of array b are initialized to one, and
variable c is initialized to the value four.

 Variables of type mtype can hold symbolic values that must be introduced with one or more mtype declarations. An
mtype declaration is typically placed at the start of the specification, and merely enumerates the names, for instance,
as follows:

mtype = { appel, pear, orange, banana };

mtype = { fruit, vegetables, cardboard };

init {

 mtype n = pear; /* initialize n to pear */

 printf("the value of n is ");

 printm(n);

 printf("\n")

}

 Of course, none of the names specified in an mtype declaration can match reserved words from PROMELA, such as
init, or short.

 As shown here, there is a special predefined print routine printm that can be used to print the symbolic name of an
mtype variable. There can be multiple mtype declarations in a model, but distinct declarations do not declare distinct
types. The last model, for instance, is indistinguishable to SPIN from a model with a single mtype declaration,
containing the concatenation (in reverse order) of the two lists, as in:

mtype = { fruit, vegetables, cardboard,

 appel, pear, orange, banana };

 Because of the restricted value range of the underlying type, no more than 255 symbolic names can be declared in all
mtype declarations combined. The SPIN parser flags an error if this limit is exceeded.

[Team LiB]

[Team LiB]

Data Structures

 PROMELA has a simple mechanism for introducing new types of record structures of variables. The following
example declares two such structures, and uses them to pass a set of data from one process to another in a single,
indivisible operation:

typedef Field {

 short f = 3;

 byte g

};

typedef Record {

 byte a[3];

 int fld1;

 Field fld2;

 chan p[3];

 bit b

};

proctype me(Field z) {

 z.g = 12

}

init {

 Record goo;

 Field foo;

 run me(foo)

}

 We have defined two new data types named Field and Record, respectively. The local variable goo in the init
process is declared to be of type Record. As before, all fields in the new data types that are not explicitly initialized
(e.g., all fields except f in variables of type Field) are by default initialized to zero. References to the elements of a
structure are written in a dot notation, as in for instance:

goo.a[2] = goo.fld2.f + 12

 A variable of a user-defined type can be passed as a single argument to a new process in run statements, as shown in
the example, provided that it contains no arrays. So in this case it is valid to pass the variable named foo as a
parameter to the run operator, but using goo would trigger an error message from SPIN about the hidden arrays. In
the next section we shall see that these structure type names can also be used as a field declarator in channel
declarations.

 The mechanism for introducing user-defined types allows for an indirect way of declaring multidimensional arrays,
even though PROMELA supports only one-dimensional arrays as first class objects. A two-dimensional array can be
created, for instance, as follows:

typedef Array {

 byte el[4]

};

Array a[4];

 This creates a data structure of sixteen elements, that can now be referenced as a[i].el[j].

 As in C, the indices of an array of N elements range from zero to N-1.

[Team LiB]

[Team LiB]

Message Channels
 Message channels are used to model the exchange of data between processes. They are declared either locally or
globally. In the declaration

chan qname = [16] of { short, byte, bool }

 the typename chan introduces a channel declaration. In this case, the channel is named qname, and it is declared to
be capable of storing up to sixteen messages. There can be any finite number of fields per message. In the example,
each message is said to consist of three fields: the first is declared to be of type short, the second is of type byte, and
the last is of type bool. Each field must be either a user-defined type, such as Field from the last section, or a
predefined type from Table 3.1. In particular, it is not possible to use an array as a type declarator in a message field.
An indirect way of achieving this effect is again to embed the array into a user-defined type, and to use the type name
as the type declarator for the message field. Note also that since the type chan appears in Table 3.1, it is always valid
to use chan itself as a field declarator. We can make good use of this capability to pass channel identifiers from one
process to another.

 The statement

qname!expr1,expr2,expr3

 sends a message with the values of the three expressions listed to the channel that we just created. The value of each
expression is cast to the type of the message field that corresponds with its relative position in the list of message
parameters. By default [2] the send statement is only executable if the target channel is not yet full, and otherwise it
blocks.

[2] This default can be changed with SPIN option -m into one where the send statement is always executable, but the
message will be lost when an attempt is made to send a message to a full channel.

 The statement

qname?var1,var2,var3

 retrieves a message from the head of the same buffer and stores the values from the three fields into the
corresponding variables.

 The receive statement is executable only if the source channel is non-empty.

 It is an error to send or receive either more or fewer message fields than were declared for the message channel that
is addressed.

 An alternative, and equivalent, notation for the send and receive operations is to use the first message field as a
message type indication, and to enclose the remaining fields in parentheses, for instance, as follows:

qname!expr1(expr2,expr3)

qname?var1(var2,var3)

 Some or all of the parameters to a receive operation can be given as constants (e.g., mtype symbolic constants)
instead of variables:

qname?cons1,var2,cons2

 In this case, an extra condition on the executability of the receive operation is that the value of all message fields
specified as constants match the value of the corresponding fields in the message that is to be received. If we want to
use the current value of a variable for this purpose, that is, to constrain the receive operation to messages that have a
matching field, we can use the predefined function eval, for instance, as follows:

qname?eval(var1),var2,var3

 In this case, the variable var1 is evaluated, and its value is used as a constraint on incoming messages, just like a
constant. The receive operation is now executable only if a message is available that has a first field with a value that
matches the current value of var1. If so, the values of var2 and var3 are set to the values of the corresponding fields in
that message, and the message is removed from channel qname.

 A simple example of the mechanisms discussed so far is as follows:

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };

chan to_rcvr = [2] of { mtype };

active proctype Sender()

{

again: to_rcvr!msg1;

 to_sndr?ack1;

 to_rcvr!msg0;

 to_sndr?ack0;

 goto again

}

active proctype Receiver()

{

again: to_rcvr?msg1;

 to_sndr!ack1;

 to_rcvr?msg0;

 to_sndr!ack0;

 goto again

}

 The model shown here is a simplified version of the alternating bit protocol as defined by Bartlett, Scantlebury, and
Wilkinson [1969]. We will extend it into a more complete version shortly, after we have covered a little bit more of
the language.

 The declaration

mtype = { msg0, msg1, ack0, ack1 };

 introduces the four types of messages we will consider as symbolic constants.

 We have used a label, named again in each proctype and a goto statement, with the usual semantics. We talk in more
detail about control-flow constructs towards the end of this chapter. The first ten steps of a simulation run with the
model above generate the following output.

$ spin -c -u10 alternatingbit.pml

proc 0 = Sender

proc 1 = Receiver

q 0 1

 1 to_rcvr!msg1

 1 . to_rcvr?msg1

 2 . to_sndr!ack1

 2 to_sndr?ack1

 1 to_rcvr!msg0

 1 . to_rcvr?msg0

 2 . to_sndr!ack0

 2 to_sndr?ack0

depth-limit (-u10 steps) reached

...

 We have used the SPIN option -c to generate a columnated display of just the send and receive operations, which in
many cases gives us just the right type of information about process interaction patterns. Every channel and every
process is assigned an identifying instantiation number. Each column in the display above corresponds to a process
number as before. Each row (line) of output also contains the instantiation number of the channel that is addressed in
the left margin.

 We have also used the SPIN option -u10 to limit the maximum number of steps that will be executed in the simulation
to ten.

 There are many more operations in PROMELA that may be performed on message channels. We will review the
most important operations here.

 The predefined function len(qname) returns the number of messages that is currently stored in channel qname. Some
shorthands for the most common uses of this function are: empty(qname), nempty(qname), full(qname), and
nfull(qname) with the obvious connotations.

 In some cases we may want to test whether a send or receive operation would be executable, without actually
executing the operation. To do so, we can transform each of the channel operations into a side effect free expression.
It is, for instance, not valid to say:

(a > b && qname?msg0) /* not valid */

 or

(len(qname) == 0 && qname!msg0) /* not valid */

 because these expressions cannot be evaluated without side effects, or more to the point, because send and receive
operations do not qualify as expressions (they are i/o statements).

 To state a condition that should evaluate to true when both (a > b) and the first message in channel qname is of type
msg0, we can, however, write in

 PROMELA:

(a > b && qname?[msg0]) /* valid */

 The expression qname?[msg0] is true precisely when the receive statement qname?msg0 would be executable at the
same point in the execution, but the actual receive is not executed, only its precondition is evaluated. Any receive
statement can be turned into a side effect free expression in a similar way, by placing square brackets around the list
of message parameters. The channel contents remain undisturbed by the evaluation of such expressions.

[Team LiB]

[Team LiB]

Channel Poll Operations

 It is also possible to limit the effect of a receive statement to just the copying of parameter values from message fields,
without removing the message from the channel. These operations are called channel poll operations. Any receive
statement can be turned into a poll operation by placing angle brackets around its list of parameters. For instance,
assuming that we have declared a channel q with two message fields of type int, the receive statement

q?<eval(y),x>

 where x and y are variables, is executable only if channel q contains at least one message and if the first field in that
message has a value that is equal to the current value of variable y. When the statement is executed the value of the
second field in the incoming message is copied into variable x, but the message itself is not removed from the channel.
[Team LiB]

[Team LiB]

Sorted Send And Random Receive

 Two other types of send and receive statements are used less frequently: sorted send and random receive. A sorted
send operation is written with two, instead of one, exclamation marks, as follows:

qname!!msg0

 A sorted send operation inserts a message into the channel's buffer in numerical, rather than in FIFO, order. For
instance, if a process sends the numbers from one to ten into a channel in random order, but using the sorted send
operation, the channel automatically sorts them, and stores them in numerical order.

 When a sorted send operation is executed, the existing contents of the target channel is scanned from the first
message towards the last, and the new message is inserted immediately before the first message that follows it in
numerical order. To determine the numerical order, all message fields are taken into account and are interpreted as
integer values.

 The counterpart of the sorted send operation is the random receive. It is written with two, instead of one, question
marks:

qname??msg0

 A random receive operation is executable if it is executable for any message that is currently buffered in a message
channel (instead of being restricted to a match on the first message in the channel). In effect, the random receive
operation as implemented in SPIN will always return the first message in the channel buffer that matches, so the term
"random receive" is a bit of a misnomer.

 Normal send and receive operations can freely be combined with sorted send and random receive operations. As a
small example, if we consider the channel with the sorted list of integers from one to ten, a normal receive operation
can only retrieve the first message, which will be the smallest value one. A random receive operation on the same
channel would succeed for any of the values from one to ten: the message need not be at the head of the queue. Of
course, a random receive operation only makes sense if at least one of the parameters is a constant, and not a
variable. (Note that the value of a variable is not evaluated to a constant unless forced with an eval function.)
[Team LiB]

[Team LiB]

Rendezvous Communication

 So far we have talked about asynchronous communication between processes via message channels that are
declared for instance as

chan qname = [N] of { byte }

 where N is a positive constant that defines the maximum number of messages that can be stored in the channel. A
logical extension is to allow for the declaration

chan port = [0] of { byte }

 to define a rendezvous port. The channel capacity is now zero, that is, the channel port can pass, but cannot store
messages. Message interactions via such rendezvous ports are by definition synchronous. Consider the following
example:

mtype = { msgtype };

chan name = [0] of { mtype, byte };

active proctype A()

{ name!msgtype(124);

 name!msgtype(121)

}

active proctype B()

{ byte state;

 name?msgtype(state)

}

 Channel name is a rendezvous port. The two processes synchronously execute their first statement: a handshake on
message msgtype and a transfer of the value 124 from process A into local variable state in process B. The second
statement in process A is unexecutable (it blocks), because there is no matching receive operation for it in process B.

 If the channel name is defined with a non-zero buffer capacity, the behavior is different. If the buffer size is at least
two, the process of type A can complete its execution, before its peer even starts. If the buffer size is one, the
sequence of events is as follows. The process of type A can complete its first send action, but it blocks on the second,
because the channel is now filled to capacity. The process of type B can then retrieve the first message and terminate.
At this point A becomes executable again and also terminates, leaving its second message as a residual in the channel.

 Rendezvous communication is binary: only two processes, a sender and a receiver, can meet in a rendezvous
handshake.

 Message parameters are always passed by value in PROMELA. This still leaves open the possibility to pass the
value of a locally declared and instantiated message channel from one process to another. The value stored in a
variable of type chan is nothing other than the channel identity that is needed to address the channel in send and
receive operations. Even though we cannot send the name of the variable in which a channel identity is stored, we can
send the identity itself as a value, and thereby make even a local channel accessible to other processes. When the
process that declares and instantiates a channel dies, though, the corresponding channel object disappears, and any
attempt to access it from another process fails (causing an error that can be caught in verification mode).

 As an example, consider the following model:

mtype = { msgtype };

chan glob = [0] of { chan };

active proctype A()

{ chan loc = [0] of { mtype, byte };

 glob!loc;

 loc?msgtype(121)

}

active proctype B()

{ chan who;

 glob?who;

 who!msgtype(121)

}

 There are two channels in this model, declared and instantiated in two different levels of scope. The channel named
glob is initially visible to both processes. The channel named loc is initially only visible to the process that contains its
declaration. Process A sends the value of its local channel variable to process B via the global channel, and thereby
makes it available to that process for further communications. Process B now transmits a message of the proper type
via a rendezvous handshake on that channel and both processes can terminate. When process A dies, channel loc is
destroyed and any further attempts to use it will cause an error.

[Team LiB]

[Team LiB]

Rules For Executability
 The definition of PROMELA centers on its semantics of executability, which provides the basic means in the
language for modeling process synchronizations. Depending on the system state, any statement in a SPIN model is
either executable or blocked. We have already seen four basic types of statements in PROMELA: print statements,
assignments, i/o statements, and expression statements. A curiosity in PROMELA is indeed that expressions can be
used as if they were statements in any context. They are "executable" (i.e., passable) if and only if they evaluate to the
boolean value true, or equivalently to a non-zero integer value. The semantics rules of PROMELA further state that
print statements and assignments are always unconditionally executable. If a process reaches a point in its code where
it has no executable statements left to execute, it simply blocks.

 For instance, instead of writing a busy wait loop

while (a != b) /* while is not a keyword in Promela */

 skip; /* do nothing, while waiting for a==b */

 we achieve the same effect in PROMELA with the single statement

(a == b); /* block until a equals b */

 The same effect could be obtained in PROMELA with constructions such as

L: /* dubious */

 if

 :: (a == b) -> skip

 :: else -> goto L

 fi

 or

do /* also dubious */

:: (a == b) -> break

:: else -> skip

od

 but this is always less efficient, and is frowned upon by PROMELA natives. (We will cover selection and repetition
structures in more detail starting at p. 56.)

 We saw earlier that expressions in PROMELA must be side effect free. The reason will be clear: a blocking
expression statement may have to be evaluated many times over before it becomes executable, and if each evaluation
could have a side effect, chaos would result. There is one exception to the rule. An expression that contains the run
operator we discussed earlier can have a side effect, and it is therefore subject to some syntactic restrictions. The
main restriction is that there can be only one run operator in an expression, and if it appears it cannot be combined
with any other operators. This, of course, still allows us to use a run statement as a potentially blocking expression.
We can indicate this effect more explicitly if instead of writing

run you_run(0); /* potentially blocking */

 without change of meaning, we write

(run you_run(0)) -> /* potentially blocking */

 Consider, for instance, what the effect is if we use such a run expression in the following model, as a variation on the
model we saw on p. 39.

active proctype new_splurge(int n)

{

 printf("%d\n", n);

 run new_splurge(n+1)

}

 As before, because of the bound on the number of processes that can be running simultanesously, the 255th attempt
to instantiate a new process will fail. The failure causes the run expression to evaluate to zero, and thereby it
permanently blocks the process. The blocked process can now not reach the end of its code and it therefore cannot
terminate or die. As a result, none of its predecessors can die either. The system of 255 processes comes to a
grinding halt with 254 processes terminated but blocked in their attempt to die, and one process blocked in its attempt
to start a new process.

 If the evaluation of the run expression returns zero, execution blocks, but no side effects have occurred, so there is
again no danger of repeated side effects in consecutive tests for executability. If the evaluation returns non-zero, there
is a side effect as the execution of the statement completes, but the statement as a whole cannot block now. It would
decidedly be dubious if compound conditions could be built with run operators. For instance,

run you_run(0) && run you_run(1) /* not valid */

 would block if both processes could not be instantiated, but it would not reveal whether one process was created or
none at all. Similarly,

run you_run(0) || run you_run(1) /* not valid */

 would block if both attempts to instantiate a process fail, but if successful would not reveal which of the two
processes was created.

[Team LiB]

[Team LiB]

Assignments And Expressions

 As in C, the assignments

c = c + 1; c = c - 1 /* valid */

 can be abbreviated to

c++; c-- /* valid */

 but, unlike in C,

b = c++

 is not a valid assignment in PROMELA, because the right-hand side operand is not a side effect free expression.
There is no equivalent to the shorthands

--c; ++c /* not valid */

 in PROMELA, because assignment statements such as

c = c-1; c = c+1 /* valid */

 when taken as a unit are not equivalent to expressions in PROMELA. With these constraints, a statement such as --c
is always indistinguishable from c--, which is supported.

 In assignments such as

variable = expression

 the values of all operands used in the expression on the right-hand side of the assignment operator are first cast to
signed integers, before any of the operands are applied. The operator precedence rules from C determine the order of
evaluation, as reproduced in Table 3.2. After the evaluation of the right-hand side expression completes, and before
the assignment takes place, the value produced is cast to the type of the target variable. If the right-hand side yields a
value outside the range of the target type, truncation of the assigned value can result. In simulation mode SPIN issues
a warning when this occurs; in verification mode, however, this type of truncation is not intercepted.

 It is also possible to use C-style conditional expressions in any context where expressions are allowed. The syntax,
however, is slightly different from the one used in C. Where in C one would write

expr1 ? expr2 : expr3 /* not valid */

 one writes in PROMELA

(expr1 -> expr2 : expr3) /* valid */

 The arrow symbol is used here to avoid possible confusion with the question mark from PROMELA receive
operations. The value of the conditional expression is equal to the value of expr2 if and only if expr1 evaluates to true
and otherwise it equals the value of expr3. PROMELA conditional expressions must be surrounded by parentheses
(round braces) to avoid misinterpretation of the arrow as a statement separator.

 Table 3.2. Operator Precedence, High to Low

Operators Associativity Comment

() [] . left to right parentheses, array brackets

! ~ ++ -- right to left negation, complement, increment,
decrement

* / % left to right multiplication, division, modulo

+ - left to right addition, subtraction

<< >> left to right left and right shift

< <= > >= left to right relational operators

== != left to right equal, unequal

& left to right bitwise and

^ left to right bitwise exclusive or

| left to right bitwise or

&& left to right logical and

|| left to right logical or

-> : right to left conditional expression operators

= right to left assignment (lowest precedence)

[Team LiB]

[Team LiB]

Control Flow: Compound Statements
 So far, we have mainly focused on the basic statements of PROMELA, and the way in which they can be combined
to model process behavior. The main types of statements we have mentioned so far are: print and assignment
statements, expressions, and send and receive statements.

 We saw that run is an operator, which makes a statement such as run sender() an expression. Similarly, skip is not a
statement but an expression: it is equivalent to (1) or true.

 There are five types of compound statements in PROMELA:


 Atomic sequences


Deterministic steps


Selections


Repetitions


Escape sequences

 Another control flow structuring mechanism is available through the definition of macros and PROMELA inline
functions. We discuss these constructs in the remaining subsections of this chapter.
[Team LiB]

[Team LiB]

Atomic Sequences

 The simplest compound statement is the atomic sequence. A simple example of an atomic sequence is, for instance:

atomic { /* swap the values of a and b */

 tmp = b;

 b = a;

 a = tmp

 }

 In the example, the values of two variables a and b are swapped in a sequence of statement executions that is defined
to be uninterruptable. That is, in the interleaving of process executions, no other process can execute statements from
the moment that the first statement of this sequence begins to execute until the last one has completed.

 It is often useful to use atomic sequences to initialize a series of processes in such a way that none of them can start
executing statements until the initialization of all of them has been completed:

init {

 atomic {

 run A(1,2);

 run B(2,3)

 }

}

 Atomic sequences may be non-deterministic. If, however, any statement inside an atomic sequence is found to be
unexecutable (i.e., blocks the execution), the atomic chain is broken and another process can take over control.
When the blocking statement becomes executable later, control can non-deterministically return to the process, and
the atomic execution of the sequence resumes as if it had not been interrupted.

 Note carefully that without atomic sequences, in two subsequent statements such as

nfull(qname) -> qname!msg0

 or

qname?[msg0] -> qname?msg0

 the second statement is not necessarily executable after the first one is executed. There may be race conditions when
access to the channels is shared between several processes. In the first example, another process can send a message
to the channel just after this process determined that it was not full. In the second example, another process can steal
away the message just after our process determined its presence. On the other, it would be redundant to write

atomic { qname?[msg0] -> qname?msg0 }

 since this is equivalent to the single statement

qname?msg0

[Team LiB]

[Team LiB]

Deterministic Steps

 Another way to define an indivisible sequence of actions is to use the d_step statement. In the above case, for
instance, we could also have written:

d_step { /* swap the values of a and b */

 tmp = b;

 b = a;

 a = tmp

}

 Unlike an atomic sequence, a d_step sequence is always executed as if it were a single statement: it is intended to
provide a means for defining new types of primitive statements in PROMELA. This restricts the use of d_step
sequences in several ways, compared to atomic sequences:



 The execution of a d_step sequence is always deterministic. If non-determinism is encountered in a d_step
sequence, it is resolved in a fixed way, for example, by executing the first true guard in each non-deterministic
selection or repetition structure. The precise way in which the non-determinism inside d_step sequences is
resolved is undefined.



No goto jumps into or out of d_step sequences are permitted: they will be flagged as errors by the SPIN
parser.



The execution of a d_step sequence may not be interrupted by blocking statements. It is an error if any
statement other than the first one (the guard statement) in a d_step sequence is found to be unexecutable.

 None of the above three restrictions apply to atomic sequences. This means that the keyword d_step can always be
replaced with the keyword atomic, but not vice versa. It is safe to embed d_step sequences inside atomic sequences,
but the reverse is not allowed.
[Team LiB]

[Team LiB]

Selection

 Using the relative values of two variables a and b we can define a choice between the execution of two different
options with a selection structure, as follows:

if

:: (a != b) -> option1

:: (a == b) -> option2

fi

 The selection structure above contains two execution sequences, each preceded by a double colon. Only one
sequence from the list will be executed. A sequence can be selected only if its first statement, that is, the first statement
that follows the double colon, is executable. The first statement is therefore called the guard of the option sequence.

 In the last example the guards are mutually exclusive, but they need not be. If more than one guard is executable, one
of the corresponding sequences is selected nondeterministically. If all guards are unexecutable the process will block
until at least one of them can be selected. There is no restriction on the type of statements that can be used as a guard:
it may include sends or receives, assignments, printf, skip, etc. The rules of executability determine in each case what
the semantics of the complete selection structure will be. The following example, for instance, illustrates the use of
send statements as guards in a selection.

mtype = { a, b };

chan ch = [1] of { mtype };

active proctype A() { ch?a }

active proctype B() { ch?b }

active proctype C()

{ if

 :: ch!a

 :: ch!b

 fi

}

 The example defines three processes and one channel. The first option in the selection structure of the process of
type C is executable if channel ch is non-full, a condition that is satisfied in the initial state. Since both guards are
executable, the process of type C can arbitrarily pick one, and execute it, depositing a message in channel ch. The
process of type A can execute its sole statement if the message sent was an a, where a is a symbolic constant defined
in the mtype declaration at the start of the model. Its peer process of type B can execute its sole statement if the
message is of type b, where, similarly, b is a symbolic constant.

 If we switch all send statements for receive statements, and vice versa, we also get a valid PROMELA model. This
time, the choice in C is forced by the message that gets sent into the channel, which in turn depends on the unknown
relative speeds of execution of the processes of type A and B. In both versions of the model, one of the three running
processes hangs at the end of system execution, and will fail to terminate.

 A process of the following type either increments or decrements the value of variable count. Because assignments are
always executable, the choice made here is truly a non-deterministic one that is independent of the initial value of the
variable count.

byte count; /* initial value defaults to zero */

active proctype counter()

{

 if

 :: count++

 :: count--

 fi

}

[Team LiB]

[Team LiB]

Repetition

 We can modify the last model to obtain a cyclic program that randomly changes the value of the variable up or down
by replacing the selection structure with a repetition.

byte count;

active proctype counter()

{

 do

 :: count++

 :: count--

 :: (count == 0) -> break

 od

}

 As before, only one option can be selected for execution at a time. After the option completes, the execution of the
repetition structure is repeated. The normal way to terminate the repetition structure is with a break statement. In the
example, the loop can be broken only when the count reaches zero. Note, however, that it need not terminate since
the other two options always remain executable. To force termination we could modify the program as follows:

active proctype counter()

{

 do

 :: (count != 0) ->

 if

 :: count++

 :: count--

 fi

 :: (count == 0) -> break

 od

 }

 A special type of statement that is useful in selection and repetition structures is the else statement. An else statement
becomes executable only if no other statement within the same process, at the same control-flow point, is executable.
We could try to use it in two places in the example, as follows:

active proctype counter()

{

 do

 :: (count != 0) ->

 if

 :: count++

 :: count--

 :: else

 fi

 :: else -> break

 od

 }

 The first else, inside the nested selection structure, can never become executable though, and is therefore redundant
(both alternative guards of the selection are assignments, which are always executable). The second use of the else,
however, becomes executable exactly when !(count != 0) or (count == 0), and therefore preserves the option to
break from the loop.

 There is also an alternative way to exit the do-loop, without using a break statement: the infamous goto. This is
illustrated in the following PROMELA implementation of Euclid's algorithm for finding the greatest common divisor of
two non-zero, positive numbers.

proctype Euclid(int x, y)

{

 do

 :: (x > y) -> x = x - y

 :: (x < y) -> y = y - x

 :: (x == y) -> goto done

 od;

done:

 printf("answer: %d\n", x)

}

init { run Euclid(36, 12) }

 Simulating the execution of this model, with the numbers given, yields:

$ spin euclid.pml

 answer: 12

2 processes created

 The goto in this example jumps to a label named done. Multiple labels may be used to label the same statement, but
at least one statement is required. If, for instance, we wanted to omit the printf statement behind the label, we must
replace it with a dummy skip. Like a skip, a goto statement is always executable and has no other effect than to
change the control-flow point of the process that executes it.

 With these extra constructs, we can now also define a slightly more complete description of the alternating bit
protocol (cf. p. 46).

mtype = { msg, ack };

chan to_sndr = [2] of { mtype, bit };

chan to_rcvr = [2] of { mtype, bit };

active proctype Sender()

{ bool seq_out, seq_in;

 do

 :: to_rcvr!msg(seq_out) ->

 to_sndr?ack(seq_in);

 if

 :: seq_in == seq_out ->

 seq_out = 1 - seq_out;

 :: else

 fi

 od

}

active proctype Receiver()

{ bool seq_in;

 do

 :: to_rcvr?msg(seq_in) ->

 to_sndr!ack(seq_in)

 :: timeout -> /* recover from msg loss */

 to_sndr!ack(seq_in)

 od

}

 The sender transmits messages of type msg to the receiver, and then waits for an acknowledgement of type ack with
a matching sequence number. If an acknowledgement with the wrong sequence number comes back, the sender
retransmits the message. The receiver can timeout while waiting for a new message to arrive, and will then retransmit
its last acknowledgement.

 The semantics of PROMELA's timeout statement is very similar to that of the else statement we saw earlier. A
timeout is defined at the system level, though, and an else statement is defined at the process level. timeout is a
predefined global variable that becomes true if and only if there are no executable statements at all in any of the
currently running processes. The primary purpose of timeout is to allow us to model recovery actions from potential
deadlock states. Note carefully that timeout is a predefined variable and not a function: it takes no parameters, and in
particular it is not possible to specify a numeric argument with a specific timebound after which the timeout should
become executable. The reason is that the types of properties we would like to prove for PROMELA models must
be fully independent of all absolute and relative timing considerations. The relative speeds of processes is a
fundamentally unknown and unknowable quantity in an asynchronous system.

[Team LiB]

[Team LiB]

Escape Sequences

 The last type of compound structure to be discussed is the unless statement. This type of statement is used less
frequently, but it requires a little more explanation. It is safe to skip this section on a first reading.

 The syntax of an escape sequence is as follows:

{ P } unless { E }

 where the letters P and E represent arbitrary PROMELA fragments. Execution of the unless statement begins with
the execution of statements from P. Before each statement execution in P the executability of the first statement of E is
checked, using the normal PROMELA semantics of executability. Execution of statements from P proceeds only
while the first statement of E remains unexecutable. The first time that this 'guard of the escape sequence' is found to
be executable, control changes to it, and execution continues as defined for E. Individual statement executions remain
indivisible, so control can only change from inside P to the start of E in between individual statement executions. If the
guard of the escape sequence does not become executable during the execution of P, then it is skipped entirely when
P terminates.

 An example of the use of escape sequences is:

A;

do

:: b1 -> B1

:: b2 -> B2

...

od unless { c -> C };

D

 As shown in the example, the curly braces around the main sequence (or the escape sequence) can be deleted if
there can be no confusion about which statements belong to those sequences. In the example, condition c acts as a
watchdog on the repetition construct from the main sequence. Note that this is not necessarily equivalent to the
construct

A;

do

:: b1 -> B1

:: b2 -> B2

...

:: c -> break

od; C; D

 if B1 or B2 are non-empty. In the first version of the example, execution of the iteration can be interrupted at any
point inside each option sequence. In the second version, execution can only be interrupted at the start of the option
sequences.

 An example application of an escape sequence is shown in Figure 3.1. Shown here is a somewhat naive model of the
behavior of a pots (plain old telephone service) system (cf. Chapter 14, p. 299).

 Figure 3.1 Simple Model of a Telephone System

mtype = { offhook, dialtone, number, ringing,

 busy, connected, hangup, hungup };

chan line = [0] of { mtype, chan };

active proctype pots()

{ chan who;

idle: line?offhook,who;

 { who!dialtone;

 who?number;

 if

 :: who!busy; goto zombie

 :: who!ringing ->

 who!connected;

 if

 :: who!hungup; goto zombie

 :: skip

 fi

 fi

 } unless

 { if

 :: who?hangup -> goto idle

 :: timeout -> goto zombie

 fi

 }

zombie: who?hangup; goto idle

}

active proctype subscriber()

{ chan me = [0] of { mtype };

idle: line!offhook,me;

 me?dialtone;

 me!number;

 if

 :: me?busy

 :: me?ringing ->

 if

 :: me?connected;

 if

 :: me?hungup

 :: timeout

 fi

 :: skip

 fi

 fi;

 me!hangup; goto idle

}

 There are two processes in this system, a subscriber and the pots server. The subscriber process follows a strict
regimen. After going offhook it always waits for a dial tone, and it always sends a number to be connected to when
the dial tone message is received. After that it waits to receive either a busy or a ring tone. On seeing a busy tone, our
idealized subscriber process hangs up and tries the call again. On seeing a ring tone, it either waits for the signal that
the call is connected, or it impatiently hangs up. When connected, it waits for notification from the pots server that the
remote party has disconnected the call, but if this does not come, it can timeout and terminate the call anyway.

 The model of the subscriber behavior is fairly standard, requiring no unusual control-flow constructs. We can be
more creative in modeling the pots server. The server process starts in its idle state by waiting for a subscriber to send
an offhook signal together with the channel via which it wants to communicate with the server for this session. The
server always complies by sending a dial tone, and then waits for the number to be dialed. Once the number has been
received, either a busy tone or a ring tone is chosen, matching the subscriber's expectations at this point in the call. A
ring tone is followed by a connected signal, and after this the server process proceeds to the zombie state where it
waits for the subscriber to hangup the phone, possibly, but not necessarily sending a hungup message first. Note that
the skip and the goto zombie statements lead to the same next state in this case (meaning that the goto is really
redundant here).

 Note that we have not included any treatment for a subscriber hangup message in this main flow of the pots behavior.
The reason is that we would like to model the fact that the behavior of the pots server can be interrupted at any point
in this flow if a hangup message should unexpectedly arrive. Similarly, if the pots server gets stuck at any point in its
flow, it should be possible to define a timeout option, without spelling out that very same option at any point in the
main flow where the server could possibly get stuck. The escape clause of the unless construct spells out the two
conditions under which the main flow should be aborted, and gives the actions that must be taken in each case. After
a hangup, the server simply returns to its idle state, since it knows that the subscriber is back onhook. After a timeout,
it moves to the zombie state.

 A fragment of the output for a SPIN simulation run for this system follows. The run can in principle be continued ad
infinitum, so it is prudent to filter the output from SPIN through a utility like more. The first two full executions, starting
and ending with both processes in their idle state, look as follows:

$ spin -c pots.pml | more

proc 0 = pots

proc 1 = subscriber

q\p 0 1

 2 . line!offhook,1

 2 line?offhook,1

 1 who!dialtone

 1 . me?dialtone

 1 . me!number

 1 who?number

 1 who!ringing

 1 . me?ringing

 1 who!connected

 1 . me?connected

timeout

 1 . me!hangup

 1 who?hangup

 2 . line!offhook,1

 2 line?offhook,1

 1 who!dialtone

 1 . me?dialtone

 1 . me!number

 1 who?number

 1 who!ringing

 1 . me?ringing

 1 . me!hangup

 1 who?hangup

 There are no surprises here. The model, though, cannot properly be called a verification model just yet. For that, we
would have to add some statement of the requirements or properties that we would like this model to satisfy. We may
well ask, for instance, if it is possible for the server to get stuck permanently in the zombie state. Only a verification
run can give the answer to such questions.

[Team LiB]

[Team LiB]

Inline Definitions

 Some motivation for and examples of the use of PROMELA inline's was already given in the last chapter. The
PROMELA inline is meant to provide some of the structuring mechanism of a traditional procedure call, without
introducing any overhead during the verification process. The PROMELA parser replaces each point of invocation of
an inline with the text of the inline body. If any parameters are used, their actual values from the call will textually
replace the formal place holders that are used inside the definition of the inline body. That is, there is no concept of
value passing with inline's. The parameter names used inside the definition are mere stand ins for the names provided
at the place of call. A small example can clarify the working and intent of this mechanism, as follows:

inline example(x, y) {

 y = a;

 x = b;

 assert(x)

}

init {

 int a, b;

 example(a,b)

}

 In this example we have defined an inline named example and we gave it two parameters. The parameters do not
have a type associated with them. They could in fact be replaced in a call with variables of any type that matches the
use of the names inside the inline body.

 At the point of invocation the names of two variables are provided as actual parameters. The parser treats this code
as if we had written the following specification instead:

init {

 int a, b;

 b = a;

 a = b;

 assert(a)

}

 This version of the model is obtained by inserting the body of the inline at the point of call, while textually replacing
every occurrence of the name x with the name a and every occurrence of y with b, as stipulated by the parameter list
at the point of invocation.

 We could have achieved the same effect by defining a C-style macro, as follows:

#define example(x, y) \

 y = a; \

 x = b; \

 assert(x)

init {

 int a, b;

 example(a,b)

}

 For a small inline function the difference is not that remarkable, but for larger pieces of code the macro method can
quickly become unwieldy. There is one other benefit to the use of an inline compared to a macro definition. When we
simulate (or verify) the version of the example using the inline definition of example, we see the following output:

$ spin inline.pml

spin: line 4 "inline", Error: assertion violated

spin: text of failed assertion: assert(a)

#processes: 1

 3: proc 0 (:init:) line 4 "inline" (state 3)

1 process created

 Not surprisingly, the assertion is violated. The line number pointed at by SPIN is the location of the assert statement
inside the inline body, as one would expect. If, however, we try to do the same with the version using a macro, we
see this result:

$ spin macro.pml

spin: line 9 "macro", Error: assertion violated

spin: text of failed assertion: assert(a)

#processes: 1

 3: proc 0 (:init:) line 9 "macro" (state 3)

1 process created

 The same assertion violation is reported, but the line number reference now gives the point of invocation of the
macro, rather than the location of the failing assertion. Finding the source of an error by searching through possibly
complex macro definitions can be challenging, which makes the use of PROMELA inlines preferable in most cases.

 To help find out what really happens with parameter substitution in inline functions and preprocessing macros, option
-I causes SPIN to generate a version of the source text that shows the result of all macro-processing and inlining on
proctype bodies. It can be an invaluable source of information in determining the cause of subtle problems with
preprocessing. The two versions of our sample program, the first using an inline definition and the second using a
macro, produce the following results:

$ spin -I inline.pml

proctype :init:()

{

 {

 b = a;

 a = b;

 assert(a);

 };

}

$ spin -I macro.pml

proctype :init:()

{

 b = a;

 a = b;

 assert(a);

}

 Note that the version of the model that is generated with the -I option is not itself a complete model. No variable
declarations are included, and some of the names used for proctypes and labels are the internally assigned names used
by SPIN (using, for instance, :init: instead of init). The proctype body text, though, shows the result of all
preprocessing.

 There is not much difference in the output for the two versions, except that the use of the inline function creates a
non-atomic sequence (the part enclosed in curly braces), where the macro definition does not. There is no difference
in behavior.

 When using inline definitions, it is good to keep the scope rules of PROMELA in mind. Because PROMELA only
knows two levels of scope for variables, global and process local, there is no subscope for inline bodies. This means
that an attempt to declare a local scratch variable, such as this:

inline thisworks(x) {

 int y;

 y = x;

 printf("%d\n", y)

}

init {

 int a;

 a = 34;

 thisworks(a)

}

 produces the following, after inlining is performed:

init {

 int a;

 a = 34;

 int y;

 y = a;

 printf("%d\n", y) }

 This works because variable declarations can appear anywhere in a PROMELA model, with their scope extending
from the point of declaration to the closing curly brace of the surrounding proctype or init body. This means that the
variable y remains in scope, also after the point of invocation of the inline. It would therefore be valid, though certainly
confusing, to write

inline thisworks2(x) {

 int y;

 y = x;

 printf("%d\n", y)

}

init {

 int a;

 a = 34;

 thisworks(a);

 y = 0

}

 that is, to access the variable y outside the inline body in which it was declared.

[Team LiB]

[Team LiB]

Reading Input

 On an initial introduction to PROMELA it may strike one as odd that there is a generic output statement to
communicate information to the user in the form of the printf, but there is no matching scanf statement to read
information from the input. The reason is that we want verification models to be closed to their environment. A model
must always contain all the information that could possibly be required to verify its properties. It would be rather
clumsy, for instance, if the model checker would have to be stopped dead in its tracks each time it needed to read
information from the user's keyboard.

 Outputs, like printf, are harmless in this context, since they generate no new information that can affect future
behavior of the executing process, but the executing of an input statement like scanf can cause the modification of
variable values that can impact future behavior. If input is required, its source must always be represented in the
model. The input can then be captured with the available primitives in PROMELA, such as sends and receives.

 In one minor instance we deviate from this rather strict standard. When SPIN is used in simulation mode, there is a
way to read characters interactively from a user-defined input. To enable this feature, it suffices to declare a channel
of the reserved type STDIN in a PROMELA model. There is only one message field available on this predefined
channel, and it is of type int. The model in Figure 3.2 shows a simple word count program as an example.

 Figure 3.2 Word Count Program Using STDIN Feature

chan STDIN;

int c, nl, nw, nc;

init {

 bool inword = false;

 do

 :: STDIN?c ->

 if

 :: c == -1 ->

 break /* EOF */

 :: c == '\n' ->

 nc++;

 nl++

 :: else ->

 nc++

 fi;

 if

 :: c == ' '

 || c == '\t'

 || c == '\n' ->

 inword = false

 :: else ->

 if

 :: !inword ->

 nw++;

 inword = true

 :: else /* do nothing */

 fi

 fi

 od;

 assert(nc >= nl);

 printf("%d\t%d\t%d\n", nl, nw, nc)

}

 We can simulate the execution of this model (but not verify it) by invoking SPIN as follows, feeding the source text
for the model itself as input.

$ spin wc.pml < wc.pml

27 85 699

1 process created

 PROMELA supports a small number of other special purpose keywords that can be used to fine-tune verification
models for optimal performance of the verifiers that can be generated by SPIN. We mention the most important of
these here. (This section can safely be skipped on a first reading.)

[Team LiB]

[Team LiB]

Special Features

 The verifiers that can be generated by SPIN by default apply a partial order reduction algorithm that tries to minimize
the amount of work done to prove system properties. The performance of this algorithm can be improved, sometimes
very substantially, if the user provides some hints about the usage of data objects. For instance, if it is known that
some of the message channels are only used to receive messages from a single source process, the user can record
this knowledge in a channel assertion.

 In the example shown in Figure 3.3, for instance, the number of states that has to be searched by the verifier is
reduced by 16 percent if the lines containing the keywords xr and xs are included. (The two keywords are acronyms
for exclusive read access and exclusive write access, respectively.) These statements are called channel assertions.

 Figure 3.3 Using Channel Assertions

mtype = { msg, ack, nak };

chan q = [2] of { mtype, byte };

chan r = [2] of { mtype };

active proctype S()

{ byte s = 1;

 xs q; /* assert that only S sends to chan q */

 xr r; /* and only S receives from chan r */

 do

 :: q!msg(s);

 if

 :: r?ack; s++

 :: r?nak

 fi

 od

}

active proctype R()

{ byte ns, s;

 xs r; /* only R sends messages to chan r */

 xr q; /* only R retrieves messages from chan q */

 do

 :: q?msg(ns);

 if

 :: (ns == s+1) -> s = ns; r!ack

 :: else -> r!nak

 fi

 od

}

 The statements are called assertions because the validity of the claims they make about channel usage can, and will,
be checked during verifications. If, for instance, it is possible for a process to send messages to a channel that was
claimed to be non-shared by another process, then the verifier can always detect this and it can flag a channel
assertion violation. The violation of a channel assertion in effect means that the additional reduction that is based on its
presence is invalid. The correct counter-measure is to then remove the channel assertion.

 The reduction method used in SPIN (more fully explained in Chapter 9) can also take advantage of the fact that the
access to local variables cannot be shared between processes. If, however, the verification model contains a globally
declared variable that the user knows to be non-shared, the keyword local can be used as a prefix to the variable
declaration. For instance, in the last example we could have declared the variable ns from proctype R as a global
variable, without incurring a penalty for this change from the partial order reduction algorithm, by declaring it globally
as:

local byte ns;

 The use of this prefix allows the verifier to treat all access to this variable as if it were access to a process local
variable. Other than for channel assertions, though, the verifier does not check if the use of the prefix is unwarranted.

 Another case that one occasionally runs into is when a variable is used only as a scratch variable, for temporary use,
say, deep inside a d_step or an atomic sequence. In that case, it can be beneficial to tell the verifier that the variable
has no permanent state information and should not be stored as part of the global state-descriptor for the modeled
system. We can do so by using the prefix hidden. The variable must again be declared globally, for instance, as:

hidden int t;

 In the following PROMELA fragment the variable t is used as a temporary variable that stores no relevant
information that must be preserved outside the d_step sequence in which it is used:

d_step { /* swap the values of a an b */

 t = a;

 a = b;

 b = t

}

 As with the use of the local prefix, the verifier takes the information on good faith and does not check if the use of the
hidden keyword is unwarranted. If a hidden variable does contain relevant state information, the search performed by
the verifier will be incomplete and the results of the search become unreliable.

 There is a third, and last, type of prefix that can be used with variable declarations in special cases. The use of the
prefix show on a variable declaration, as in

show byte cnt;

 tells SPIN's graphical user interface XSPIN that any value changes of this variable should be visualized in the
message sequence charts that it can generate. We will discuss this interface in more detail in Chapter 12.

 The show prefix can be used on both global and local variable declarations.

[Team LiB]

[Team LiB]

Finding Out More
 This concludes our overview of the main features of the PROMELA specification language. A few more seldomly
used constructs were only mentioned in passing here, but are discussed in greater detail in the manual pages that are
included in Chapters 16 and 17. More examples of PROMELA models are included in Chapters 14 and 15. A
definition of the operational semantics for PROMELA can be found in Chapter 7.

 Alternate introductions to the language can be found in, for instance, Ruys [2001] and Holzmann [1991]. Several
other tutorial-style introductions to the language can also be found on the SPIN Web site (see Appendix D).
[Team LiB]

[Team LiB]

Chapter 4. Defining Correctness Claims
 If the odds are a million to one against something occurring, chances are fifty-fifty that it will.

 —(Folklore wisdom)

 The goal of system verification is to establish what is possible and what is not. Often, this assessment of what is
logically possible will be subject to some set of assumptions about the context in which a system executes, such as the
possible behavior of external components that the system will be interacting with. When performing logical verification
we are especially interested in determining whether design requirements could possibly be violated, not necessarily in
how likely or unlikely such violations might be. Dramatic system failures are almost always the result of seemingly
unlikely sequences of events: that is precisely why these sequences of events are often overlooked in the design phase.
Once we understand how a requirement may be violated, we can reconsider the original design decisions made, and
devise alternate strategies that can prevent the error from occurring. Logical correctness, then, is concerned primarily
with possibilities, not with probabilities.
[Team LiB]

[Team LiB]

Stronger Proof

 This restriction to the possible, rather than the probable, has two implications. For one, it can strengthen the proofs of
correctness we can achieve with system verification. If the verifier tells us that there is no possible violation of a given
requirement, this is a significantly stronger result than the verdict that violating executions have a low probability of
occurrence. Secondly, the restriction makes it possible to perform verification more efficiently than if we attempted to
consider also the probability of execution scenarios. The results of probability estimates are further undermined by the
difficulty one would face in deriving accurate metrics for the probabilities of execution of specific statements in the
system. Any errors of judgment made here are magnified in the verification process, limiting the value of the final
results.

 We should be able to prove the essential logical correctness properties of a distributed system independently of any
assumption about the relative speeds of execution of processes, the time it takes to execute specific instructions, or
the probability of occurrence of particular types of events, such as the loss of messages on a transmission channel or
the failure of external devices.

 The proof of correctness of an algorithm is ideally also implementation independent. Specifically, the correctness of
the algorithm should not depend on whether it is implemented on a fast machine or on a slow machine. In the
verification process, therefore, we should not rely on such assumptions. It is even desirable that we cannot make such
statements at all. Not surprisingly, PROMELA effectively makes it impossible to state any correctness requirement
that would violate these rules.

 The rules we follow here are specific to our area of interest: the verification of distributed systems software. Different
rules apply in, for instance, hardware verification. The correctness of a chip may well depend critically, and
unavoidably, on signal propagation delays and the speed of individual circuit elements. Signal propagation times and
the layout of circuit elements are part of a chip's design and functionality: they cannot be changed independently from
it. The correctness of a data communications protocol or a distributed operating system, on the other hand, should
never depend on such issues. The speed of execution of a software system is almost guaranteed to change
dramatically over the lifetime of the design.
[Team LiB]

[Team LiB]

Basic Types of Claims
 In distributed systems design it is standard to make a distinction between two types of correctness requirements:
safety and liveness. Safety is usually defined as the set of properties that the system may not violate, while liveness is
defined as the set of properties that the system must satisfy. Safety, then, defines the bad things that should be
avoided, and liveness defines the good things that capture the required functionality of a system. The function of a
verification system, however, is not as lofty. It need not, and indeed cannot, determine what is good or bad; it can
only help the designer to determine what is possible and what is not.

 From the point of view of the verifier there are also two types of correctness claims: claims about reachable or
unreachable states and claims about feasible or infeasible executions (i.e., sequences of states). The former are
sometimes called state properties and the latter path properties. Paths, or executions, can be either finite or infinite
(e.g., cyclic).

 A simple type of state property is a system invariant that should hold in every reachable state of the system. A slightly
weaker version is a process assertion that should hold only in specific reachable states. State properties can be
combined to build path properties. An example of a path property is, for instance, that every visit to a state with
property P must eventually be followed by a visit to a state with property Q, without in the interim visiting any state
with property R. The verifier SPIN can check both state and path properties, and both can be expressed in the
specification language PROMELA.

 Some types of properties are so basic that they need not be stated explicitly. SPIN checks them by default. One
such property is, for instance, the absence of reachable system deadlock states. The user can, however, modify the
semantics of also the built-in checks through a simple form of statement labeling. A deadlock, for instance, is by
default considered to be an unintended end state of the system. We can tell the verifier that certain specific end states
are intended by placing end-state labels, as we shall see shortly.

 Correctness properties are formalized in PROMELA through the use of the following constructs:


 Basic assertions


End-state labels


Progress-state labels


Accept-state labels


Never claims


Trace assertions

 Never claims can be written by hand, or they can (often more easily) be automatically generated from logic formulae
or from timeline property descriptions. We will discuss each of these constructs in more detail below.
[Team LiB]

[Team LiB]

Basic Assertions

 Statements of the form

assert(expression)

 are called basic assertions in PROMELA to distinguish them from trace assertions that we will discuss later. The
usefulness of assertions of this type was recognized very early on. A mention of it can even be found in the work of
John von Neumann (1903-1957). It reads as follows. Of course, the letter C that is used here does not refer to
programming language that would be created some 30 years later:

 It may be true, that whenever C actually reaches a certain point in the flow diagram, one or more bound variables will
necessarily possess certain specified values, or possess certain properties, or satisfy certain relations with each other.
Furthermore, we may, at such a point, indicate the validity of these limitations. For this reason we will denote each
area in which the validity of such limitations is being asserted, by a special box, which we call an 'assertion box.'

 —Goldstein and von Neumann, 1947

 PROMELA basic assertions are always executable, much like assignments, and print or skip statements. The
execution of this type of statement has no effect provided that the expression that is specified evaluates to the boolean
value true, or alternatively to a non-zero integer value. The implied correctness property is that it is never possible for
the expression to evaluate to false (or zero). A failing assertion will trigger an error message.

 As also noted in Chapter 2 (p. 18), the trivial model:

init { assert(false) }

 results in the following output when executed:

$ spin false.pml

spin: line 1 "false.pml", Error: assertion violated

#processes: 1

 1: proc 0 (:init:) line 1 "false.pml" (state 1)

1 process created

 Here SPIN is used in simulation mode. Execution stops at the point in the model where the assertion failure was
detected. When the simulation stops, the executing process, with pid zero, is at the internal state numbered one. The
simulator will always list the precise state at which execution stops for all processes that have been initiated but that
have not yet died. If we change the expression used in the assertion to true, no output of note will appear, because
there are no running processes left when the execution stops with the death of the only process.

$ spin true.pml

1 process created

 An assertion statement is the only type of correctness property in PROMELA that can be checked during simulation
runs with SPIN. All other properties discussed in this chapter require SPIN to be run in verification mode to be
checked. If SPIN fails to find an assertion violation in any number of simulation runs, this does not mean that the
assertions that are embedded in the model that is simulated cannot be violated. Only a verification run with SPIN can
establish that result.

[Team LiB]

[Team LiB]

Meta Labels

 Labels in a PROMELA specification ordinarily serve merely as targets for unconditional goto jumps. There are three
types of labels, though, that have a special meaning when SPIN is run in verification mode. The labels are used to
identify:



 End states


Progress states


Accept states

 End States:

 When a PROMELA model is checked for reachable deadlock states, using SPIN in verification mode, the verifier
must be able to distinguish valid system end states from invalid ones. By default, the only valid end states, or
termination points, are those in which every PROMELA process that was instantiated has reached the end of its code
(i.e., the closing curly brace in the corresponding proctype body). Not all PROMELA processes, however, are meant
to reach the end of their code. Some may very well linger in a known wait state, or they may sit patiently in a loop
ready to spring back to action when new input arrives.

 To make it clear to the verifier that these alternate end states are also valid, we can define special labels, called
end-state labels. We have done so, for instance, in Figure 4.1 in process type Dijkstra, which models a semaphore
with the help of a rendezvous port sema. The semaphore guarantees that only one of three user processes can enter
its critical section at a time. The end label defines that it is not an error if, at the end of an execution sequence, the
process has not reached its closing curly brace, but waits at the label. Of course, such a state could still be part of a
deadlock state, but if so, it is not caused by this particular process.

 Figure 4.1 Labeling End States

mtype { p, v };

chan sema = [0] of { mtype };

active proctype Dijkstra()

{ byte count = 1;

end: do

 :: (count == 1) ->

 sema!p; count = 0

 :: (count == 0) ->

 sema?v; count = 1

 od

}

active [3] proctype user()

{ do

 :: sema?p; /* enter */

critical: skip; /* leave */

 sema!v;

 od

}

 There can be any number of end-state labels per PROMELA model, provided that all labels that occur within the
same proctype body remain unique.

 To allow the use of more than one end-state label within the same proctype body, PROMELA uses the rule that
every label name that starts with the three-letter prefix end defines an end-state label. The following label names,
therefore, are all counted as valid end-state labels: endme, end0, end_of_this_part.

 In verification mode, SPIN checks for invalid end states by default, so no special precautions need to be made to
intercept these types of errors. If, on the other hand, the user is not interested in hearing about these types of errors,
the run-time flag -E can be used to suppress these reports. In a similar way, using the run-time flag -A we can disable
the reporting of assertion violations (e.g., if we are hunting for other types of errors that may appear only later in a
verification run). To disable both types of reports for the sample model in Figure 4.1, we would proceed as follows:

$ spin -a dijkstra.pml

$ cc -o pan pan.c

$./pan -E -A # add two restrictions

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations - (disabled by -A flag)

 acceptance cycles - (not selected)

 invalid end states - (disabled by -E flag)

State-vector 36 byte, depth reached 8, errors: 0

 15 states, stored

 4 states, matched

 19 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype Dijkstra

 line 14, state 10, "-end-"

 (1 of 10 states)

unreached in proctype user

 line 22, state 7, "-end-"

(1 of 7 states)

 The output is virtually identical to the one we would get if we had not used either the -A or the -E option, since there
are neither invalid end states nor assertion violations in this model. As a reminder of the restrictions used, though, the
verifier duly notes in its output that it has in fact disabled both types of reports.

 A SPIN generated verifier can also be asked to impose a stricter requirement on end states than the defaults
sketched above. If the additional run-time option -q is used with the compiled verifier, all processes must have
reached a valid end state and all message channels must be empty for a system state to be considered valid. In the
normal case, that is without the -q option, the requirement on the emptiness of message channels is omitted.

 Progress States:

 Similar syntax conventions apply to the use of PROMELA progress labels. We can use progress labels to mark
statements in a PROMELA model that accomplish something desirable, signifying that the executing process is making
effective progress, rather than just idling or waiting for other processes to make progress. We can use the verification
mode of SPIN to verify that every potentially infinite execution cycle that is permitted by a model passes through at
least one of the progress labels in that model. If cycles can be found that do not have this property, the verifier can
declare the existence of a non-progress loop, corresponding to possible starvation.

 We can, for instance, place a progress label in the Dijkstra example from Figure 4.1, as follows:

active proctype Dijkstra()

{ byte count = 1;

end: do

 :: (count == 1) ->

progress: sema!p; count = 0

 :: (count == 0) ->

 sema?v; count = 1

 od

}

 We interpret the successful passing of a semaphore test as progress here and ask the verifier to make sure that in all
infinite executions the semaphore process reach the progress label infinitely often.

 To run a check for the absence of non-progress cycles we have to compile the verifier with a special option that adds
the right type of temporal claim to the model (we will show the details of that claim on p. 93). The check then
proceeds as follows:

$ spin -a dijkstra_progress.pml

$ cc -DNP -o pan pan.c # enable non-progress checking

$./pan -l # search for non-progress cycles

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim +

 assertion violations + (if within scope of claim)

 non-progress cycles + (fairness disabled)

 invalid end states - (disabled by never claim)

State-vector 40 byte, depth reached 18, errors: 0

 27 states, stored (39 visited)

 27 states, matched

 66 transitions (= visited+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype Dijkstra

 line 14, state 10, "-end-"

 (1 of 10 states)

unreached in proctype user

 line 22, state 7, "-end-"

 (1 of 7 states)

 At the start of the output we see that the search for non-progress cycles was enabled, and that a never claim was
used. The latter may be surprising, since our model did not contain such a claim. Never claims are usually
user-defined, or derived from logic formulae. A claim can also be generated by SPIN internally, though, to support a
predefined check. In this case, the claim was generated by SPIN and automatically inserted into the model to define a
check for the non-progress property. The insertion of the claim was triggered by the use of compiler directive -DNP.
We will cover the purpose and use of user-defined never claims in more detail later in this chapter.

 The output from the verifier also tells us that a check for both assertion violations and for non-progress cycles was
performed. The error count is zero, which means that no assertion violations or non-progress cycles were found. We
can conclude that the model from Figure 4.1 permits no infinite executions that do not contain infinitely many
semaphore P operations.

 By enabling the search for non-progress properties (a liveness property), we automatically disabled the search for
invalid end states (a safety property). It is also worth noting that, compared to our last check, the number of reachable
states has almost doubled. When we discuss the search algorithms that are used in SPIN for checking the various
types of properties (Chapter 8, p. 167) we will see what the cause is.

 If more than one state carries a progress label, variations with a common prefix are again valid, such as progress0, or
progression.

 As a very simple example of what a non-progress cycle might look like, consider the following contrived model with
two processes. [1]

[1] Note that the two proctype bodies are equal. We could, therefore, also have defined the same behavior with two
instantiations of a single proctype.

byte x = 2;

active proctype A()

{ do

 :: x = 3 - x

 od

}

active proctype B()

{ do

 :: x = 3 - x

 od

}

 Clearly, the two processes will cause the value of the global variable x to alternate between 2 and 1, ad infinitum. No
progress labels were used, so every cycle is guaranteed to be a non-progress cycle.

 We perform the check for non-progress cycles as before:

$ spin -a fair.pml

$ cc -DNP -o pan pan.c # enable non-progress checking

$./pan -l # search for non-progress cycles

pan: non-progress cycle (at depth 2)

pan: wrote fair.pml.trail

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim +

 assertion violations + (if within scope of claim)

 non-progress cycles + (fairness disabled)

 invalid end states - (disabled by never claim)

State-vector 24 byte, depth reached 7, errors: 1

 3 states, stored (5 visited)

 4 states, matched

 9 transitions (= visited+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

 As expected, a non-progress cycle is found. Recall that when the verifier finds an error it writes a complete trace fpr
the error execution into a file called pan.trail. Using that file, we can reproduce the error trail with the help of SPIN's
guided simulation option, for instance, as follows:

$ spin -t -p fair.pml

spin: couldn't find claim (ignored)

 2: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 4: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 <<<<<START OF CYCLE>>>>>

 6: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 8: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

spin: trail ends after 8 steps

#processes: 2

 x = 2

 8: proc 1 (B) line 11 "fair.pml" (state 2)

 8: proc 0 (A) line 5 "fair.pml" (state 2)

2 processes created

 The warning that SPIN could not locate the claim for this error trail is innocent: the claim we used to state that
non-progress cycles cannot exist was predefined. (This claim turns out to be false for this model.) The steps that do
not appear in the numbered output (steps 1, 3, 5, and 7) are the steps that were executed by the hidden claim
automaton.

[Team LiB]

[Team LiB]

Fair Cycles

 The counterexample shows an infinite execution of the process of type B alone, without participation of any other
process in the system. Given the fact that SPIN does not allow us to make any assumptions about the relative speeds
of execution of processes, the special-case where the process of type A pauses indefinitely is allowed, and so the
counterexample is valid. Still, there may well be cases where we would be interested in the existence of property
violations under more realistic fairness assumptions. One such assumption is the finite progress assumption. It says that
any process than can execute a statement will eventually proceed with that execution.

 There are two variations of this assumption. The stricter version states that if a process reaches a point where it has
an executable statement, and the executability of that statement never changes, it will eventually proceed by executing
the statement. A more general version states that if the process reaches a point where it has a statement that becomes
executable infinitely often, it will eventually proceed by executing the statement. The first version is commonly referred
to as weak fairness and the second as strong fairness. In our example enforcing weak fairness in the search for
non-progress cycles would rule out the counterexample that is reported in the default search. We can enforce the
weak fairness rule as follows during the verification:

$./pan -l -f

pan: non-progress cycle (at depth 8)

pan: wrote fair.pml.trail

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim +

 assertion violations + (if within scope of claim)

 non-progress cycles + (fairness enabled)

 invalid end states - (disabled by never claim)

State-vector 24 byte, depth reached 15, errors: 1

 4 states, stored (12 visited)

 9 states, matched

 21 transitions (= visited+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

 The new cycle that is reported here should now be consistent with the weak fairness finite progress assumption. A
quick look at the new counterexample can confirm this.

$ spin -t -p fair.pml

spin: couldn't find claim (ignored)

 2: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 4: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 6: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 8: proc 0 (A) line 6 "fair.pml" (state 1) [x = (3-x)]

 <<<<<START OF CYCLE>>>>>

 10: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 12: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 14: proc 1 (B) line 12 "fair.pml" (state 1) [x = (3-x)]

 16: proc 0 (A) line 6 "fair.pml" (state 1) [x = (3-x)]

spin: trail ends after 16 steps

#processes: 2

 x = 2

 16: proc 1 (B) line 11 "fair.pml" (state 2)

 16: proc 0 (A) line 5 "fair.pml" (state 2)

2 processes created

 As another experiment, we could now add a progress label into one (but not both) of the two proctypes, for
instance, as follows:

active proctype B()

{

 do

 :: x = 3 - x; progress: skip

 od

}

 The process of type B will now alternate between a progress state and a non-progress state, and in principle it could
pause forever in its non-progress state at the start of the loop. Think for a moment what you would expect the verifier
to find now with the different options we have discussed for finding non-progress cycles, with and without the weak
fairness option. Perform the experiment and see if it matches your understanding.[2]

[2] If all is well, you should be able to confirm with this experiment that only non-fair non-progress cycles exist.

 Of course, the enforcement of the additional fairness constraint adds to the computational complexity of the
verification problem. It is not very noticeable in this small example, but in general, the amount of work that the verifier
has to do can increase by a factor N, where N is the number of active processes. The cost would be even higher for
enforcing a strong fairness assumption (increasing to a factor of N2). In practice, this type of overhead would limit the
use of a strong fairness option to only the simplest of test cases. Where needed, arbitrary variations of finite progress
and fairness assumptions can always be expressed with the help of temporal logic formula, or directly as -regular
properties with the help of PROMELA never claims.

 Note also that the notion of fairness that is used in SPIN applies to process scheduling decisions only: it does not
apply to the resolution of non-deterministic choices inside processes. Where needed, other types of fairness can be
defined with logic formula. We will return to this in Chapter 6.

 We will talk more about the implementation of the weak fairness option in SPIN in Chapter 8 (p. 182).

 Accept States:

 The last type of label, the accept-state label, is normally reserved for use in never claims, which are often
mechanically generated from logic formulae. We discuss never claims in the next section. Although this is rarely done,
accept-state labels can also be used elsewhere in a PROMELA model, and do not require the presence of a never
claim.

 By marking a state with any label that starts with the prefix accept we can ask the verifier to find all cycles that do
pass through at least one of those labels.

 Like progress-state labels, accept-state labels have no meaning in simulation runs: they are only interpreted when
SPIN is used in verification mode.

 The implicit correctness claim that is expressed by the presence of an accept-state label is that there should not exist
any executions that can pass through an accept-state label infinitely often.

 To allow for the use of more than one accept-state label in a single proctype or never claim, the name can again be
extended. For instance, the following variants are all valid: accept, acceptance, accepting.

 The observations we made above about the use of fairness assumptions apply equally to non-progress cycles and
acceptance cycles. Try, for instance, to replace the progress label in the last example with an accept label, and
confirm that the verifier can find both fair and non-fair acceptance cycles in the resulting model. The verification steps
to be performed are as follows:

$ spin -a fair_accept.pml

$ cc -o pan pan.c # note: no -DNP is used

$./pan -a # all acceptance cycles

...

$./pan -a -f # fair acceptance cycles only

...

[Team LiB]

[Team LiB]

Never Claims
 Up to this point we have talked about the specification of correctness criteria with assertion statements and with meta
labels. Powerful types of correctness criteria can already be expressed with these tools, yet so far our only option is
to add them into the individual proctype declarations. We cannot easily express the claim, "every system state in
which property p is true eventually leads to a system state in which property q is true." The reason we cannot check
this property with the mechanisms we have described so far is that we have no way yet of defining a check that would
be performed at every single execution step of the system. Note that we cannot make assumptions about the relative
speeds of processes, which means that in between any two statement executions any standard PROMELA process
can pause for an arbitrary number of steps taken by other system processes. PROMELA never claims are meant to
give us the needed capability for defining more precise checks.

 In a nutshell: a never claim is normally used to specify either finite or infinite system behavior that should never occur.

 How a Never Claim Works

 Consider the following execution of the little pots model from the Chapter 3 (p. 64).

$ spin -c pots.pml | more

proc 0 = pots

proc 1 = subscriber

q 0 1

 2 . line!offhook,1

 2 line?offhook,1

 1 who!dialtone

 1 . me?dialtone

 1 . me!number

 1 who?number

 1 who!ringing

 1 . me?ringing

 1 who!connected

 1 . me?connected

timeout

 1 . me!hangup

 1 who?hangup

 2 . line!offhook,1

 2 line?offhook,1

 1 who!dialtone

 1 . me?dialtone

 1 . me!number

 1 who?number

 1 who!ringing

 1 . me?ringing

 1 . me!hangup

 1 who?hangup

 There are twenty-four system execution steps here. Eleven statements were executed by the pots server and thirteen
were executed by the subscriber process. Because this is a distributed system, not only the specific sequence of
statements executed in each process, is important, but also the way in which these statement executions are
interleaved in time to form a system execution.

 A never claim gives us the capability to check system properties just before and just after each statement execution,
no matter which process performs them. A never claim can define precisely which properties we would like to check
at each step. The simplest type of claim would be to check a single property p at each and every step, to make sure
that it never fails. It is easy to check system invariants in this way.

 A claim to check such an invariant property could be written in several ways. Originally, a never claim was only
meant to match behavior that should never occur. That is, the verification system could flag it as an error if the full
behavior specified in the claim could be matched by any feasible system execution. The simplest way to write a never
claim that checks for the invariance of the system property p. Then would be as follows:

never {

 do

 :: !p -> break

 :: else

 od

}

 The claim process is executed at each step of the system. As soon as property p is found to be false, the claim
process breaks from its loop and terminates, thereby indicating that the error behavior occurred. As long as p remains
true, though, the claim remains in its initial state, and all is well.

 It is easy to abuse the properties of a never claim a little by writing more intuitive versions of the checker. For
instance, we accomplish the same effect with the following version of the never claim:

never {

 do

 :: assert(p)

 od

}

 The loop now contains the relevant assertion that the property p is always true. The assertion statement is executed
over and over. It is executed for the first time in the initial system state. After that point it is executed again
immediately following each system execution step that can be performed. If the property is violated in the initial system
state, the claim exits immediately, reporting the error before any system step was taken. Clearly, both the expression
statement !p and the assertion assert(p) are always side effect free, so neither version of the claim can enable system
behavior that would not be possible in the claim's absence.

 For the property we are considering, a simple system invariant, we could also get away with an alternative
specification without using never claims. We could, for instance, express the property also by adding an extra
PROMELA process that acts as a monitor on system executions, as follows:

active proctype monitor()

{

 atomic { !p -> assert(false) }

}

 The monitor could initiate the execution of the atomic sequence at any point in the system execution where p is found
to be false. This means that if there exists any reachable system state where the invariant property p is violated, the
monitor could execute in precisely that state and flag a violation. If the behavior is possible this means that the verifier
will find it and report it, so in this case the monitor process could solve the problem. This is not necessarily the case
once we move to slightly more complex temporal properties.

 Consider, for instance, the property:

 Every system state in which p is true eventually leads to a system state in which q is true, and in the interim p remains
true.

 In SPIN verifications, we are not interested in system executions that satisfy this property, but in the executions that
can violate it. This means that we want to know if it is possible for first p to become true in an execution and thereafter
q either to remain false forever, or p to become false before q becomes true. This behavior should never happen.

 Note that a violation of the property where q remains false forever can only be demonstrated with an infinite
execution. Since we are dealing with finite state spaces, every infinite execution is necessarily a cyclic execution. We
cannot use simple process assertions to capture such (liveness) errors. We can capture precisely the right type of
check, though, with the following never claim.

never {

S0: do

 :: p && !q -> break

 :: true

 od;

S1:

accept:

 do

 :: !q

 :: !(p || q) -> break

 od

}

 This type of claim is most easily written as a formula in Linear Temporal Logic (LTL), as illustrated in Figure 4.2. [3]
We will explore the link with LTL in more detail in the next section, and we will explore the use of LTL itself in greater
detail in Chapter 6.

[3] We follow the usual conventions by indicating the initial state of every automaton with a short arrow, and by
marking the accepting states with a double circle (more details on this will follow in Chapter 6).

 Figure 4.2. Control Flow Structure for LTL Property ¬ (p (p U q)) (LTL, or Linear Temporal Logic, is
discussed in Chapter 6)

 Claims like this are only interpreted when SPIN is run in verification mode. They are ignored in SPIN simulation runs.
The first thing that will happen in a verification is a claim step, to make sure that the never claim can perform its first
check on the initial system state itself.

 Execution of the claim starts at the statement labeled S0, which contains a loop with two options for execution. The
second option has just a single statement, the expression statement true. Clearly, this option is always executable and
has no effect when executed. It leaves the claim in its initial state. The first option is only executable when expression p
evaluates to true and expression q evaluates to false. If this is the case, we have found a match for the antecedent of
the property: the truth of p but not yet the truth of also q. Execution will continue at the statement labeled accept As
can also be seen in Figure 4.2, the interpretation of a break statement, like a goto statement, does not really take up
an execution step. It merely acts as a special type of statement separator that overrides the default allocation of a
successor state. The break that appears here defines which statement is to be executed after the second guard in the
first cycle is successfully passed.

 (Can be skipped on a first reading.) In principle, the order in which options are placed in a selection or repetition
structure is irrelevant: it does not change the semantics of the model. The verifier will consider all possible executions
of the model. Although this is strictly seen immaterial, when it has a choice, the verifier will try the various options for
execution in the order in which they are listed in the specification. The fact that we have placed the option that can
jump to the accept state first in the list of options for state S0 is therefore no accident: it can help the verifier to find the
accepting runs faster.

 Clearly, the claim cannot get stuck in its first state, since it always has at least the true guard to execute. Executing the
true guard in effect amounts to the claim ignoring the system for one step, deferring any checks until later.

 In the accept state of the claim there are again two options for execution. The only way for the claim to remain in this
state is for expression q to remain false forever. If this is possible, it would constitute a violation of our property. For
this reason we have marked the state with an accept label. The violation can now be caught by the verifier as an
acceptance cycle. The only other possible way in which the property can be violated is when p becomes false before
q becomes true. This type of violation is caught by forcing the termination of the never claim. Termination of the claim
is interpreted as a full match of the behavior specified; behavior that is never supposed to happen.

 What happens when both p and q are found to be true while the claim executes in its accept state? Neither of the two
options for continued execution are executable: the claim gets stuck. Curiously, this is not an error but a desirable
condition. If the claim cannot match the system execution in its next step, then this means that the undesirable behavior
that is captured in the never claim cannot fully be matched in a system execution. All is well; the claim stops tracking
the system along this execution path and no error is reported. For the verifier to be of use here, we should be able to
guarantee that the verifier effectively matches the behavior expressed by the claim against not just one but all possible
system executions, so that if any such execution can match, it will be found. Clearly, in simulation mode SPIN cannot
give any such guarantee, but in verification mode it can, and it does.

 There is one other important observation to be made about the sample never claim above. Note that when p is true
and q is false in state S0, the claim has two possible options for execution: both guards in the loop are executable.
This form of non-determinism is critically important here. If the guard that is now expressed as true would be replaced
with else, the claim would require only that the first time in a system execution that expression p becomes true should
lead to a state where q is also true. It would not place any requirements on any future events that would make p true
after the requirement is met the first time. The non-determinism makes it possible to make a far stronger statement:
every time that p becomes true should lead to a state where also q is true.

 In the sample never claims we have given here, the statements we used were always side effect free. In fact, apart
from general control-flow constructs, we have used only two types of statements: condition statements and assertions.
This is of course no accident. A never claim is meant to monitor or track system behavior and not to contribute to it.
The declaration or the manipulation of variables or message channels, or generally the execution of any statement that
could have a side effect on the state of data objects used in the system, is therefore never allowed inside never claims.

 A nice property of never claims is that they can be used not just to define correctness properties, but also to restrict
the search of the verifier to a user-defined subset, or slice, of the system. The verifier in effect always eliminates all
behavior that cannot be matched by the claim. This is safe to do in verification because the claim is used to specify
only invalid behavior, which means that behavior that is eliminated is by definition (of the claim) behavior that is
irrelevant to the verification attempt. As a very simple example of this, note that a very simple claim such as

never { do :: p od }

 can be used to restrict a verification run to all states where the condition p evaluates to true. If p is in fact a system
invariant, this results in no reduction of work, but otherwise the state space that is searched is reduced by this claim.
Of course, if condition p turns out to be false in the initial system state, the state space will be completely empty,
which is unlikely to be useful.

[Team LiB]

[Team LiB]

The Link With LTL

 Never claims provide a powerful mechanism for expressing properties of distributed systems. Admittedly, though, it
can be hard to come up with correct formalizations of system properties by directly encoding them into never claims.
Fortunately, there are easier ways to do this. One such method is to use SPIN's built-in translator from formulae in
linear temporal logic (LTL) to never claims. The last claim, for instance, corresponds to the LTL formula

)

 We can generate the never claim from this formula with the command:

$ spin -f ')'

never { /*) */

T0_init:

 if

 :: (! ((q)) && (p)) -> goto accept_S4

 :: (1) -> goto T0_init

 fi;

 accept_S4:

 if

 :: (! ((q))) -> goto accept_S4

 :: (! ((p)) && ! ((q))) -> goto accept_all

 fi;

 accept_all:

 skip

}

 Another method is to use a little graphical tool, called the timeline editor, to convert timeline descriptions into never
claims. In many cases, temporal logic formulae are simpler to understand and use than never claims, but they are also
strictly less expressive. Timeline properties, in turn, are simpler to understand and use than temporal logic formulae,
but again less expressive than these. Fortunately, almost all properties of interest can be expressed as either timeline
properties or temporal logic formulae. We will discuss temporal logic in more detail in Chapter 6, and the various
methods to generate never claims mechanically from either formulae or timelines in, respectively, Chapter 6 (p. 127)
and Chapter 13 (p. 283).
[Team LiB]

[Team LiB]

Trace Assertions
 Like never claims, a trace assertion does not specify new behavior, but instead expresses a correctness requirement
on existing behavior in the remainder of the system. A trace assertion expresses properties of message channels, and
in particular it formalizes statements about valid or invalid sequences of operations that processes can perform on
message channels.

 All channel names referenced in a trace assertion must be globally declared, and all message fields must be globally
known constants or mtype symbolic constants. A simple example of a trace assertion is as follows:

trace {

 do

 :: q1!a; q2?b

 od

}

 In this example, the assertion specifies the correctness requirement that send operations on channel q1 alternate with
receive operations on channel q2, and furthermore that all send operations on q1 are exclusively messages of type a,
and all receive operations on channel q2 are exclusively messages of type b.

 Trace assertions apply only to send and receive operations on message channels. They can be used to specify a
specific relative order in which these types of operations must always be performed. Only the channel names that are
specified in the assertion are considered to be within the scope of the check. All send and receive operations on other
channels are ignored. The trace assertion trivially defines an automaton that can step through a finite number of control
states while it monitors a system execution. The automaton only changes state when a send or a receive operation is
executed that is within its scope. If an operation is executed that is within scope, but that cannot be matched by a
transition of the trace automaton, the verifier will immediately report an error.

 If at least one send (receive) operation on a channel appears in a trace assertion, then all send (receive) operations on
that channel are subject to the check.

 As with never claims, there are some restrictions on the types of statements that can appear in a trace assertion.
Apart from control-flow constructs, a trace assertion may contain only simple send and receive operations. It cannot
contain variations such as random receive, sorted send, or channel poll operations. No data objects can be declared
or referred to inside a trace assertion.

 If a message field must be matched in a send or receive operation that appears inside a trace assertion, it must be
specified with a standard mtype name or with a constant value. Don't care values for specific message fields can be
specified with the predefined write-only variable _ (i.e., the underscore symbol).

 Sends and receives that appear in an event trace are called monitored events. These events do not generate new
behavior, but they are required to match send or receive events on the same channels in the model, with matching
message parameters. A send or receive event occurs when a send or a receive statement is executed in the system,
that is, an event that occurs during a state transition.

 On rendezvous channels, a rendezvous handshake consists of an offer (the send half of the handshake) and an accept
(the receive half of the handshake). Even traces can only capture the occurrence of the receive part of a handshake,
not of the send part. The reason is that the send (the offer) can be made many times before it results in a successful
accept.

 A trace assertion can contain end-state, progress-state, and accept-state labels with the usual interpretation. There
are, however, a few important differences between trace assertions and never claims:



 Unlike never claims, trace assertions must always be deterministic.


A trace assertion can match event occurrences that occur in the transitions between system states, whereas a
never claim matches propositional values on system states only.



A trace assertion monitors only a subset of the events in a system: only those of the types that are mentioned
in the trace (i.e., the monitored events). A never claim, on the other hand, looks at all global system states that
are reached, and must be able to match the state assignments in the system for every state reached.

 A trace assertion, just like a never claim, has a current state, but it only executes transitions if a monitored event
occurs in the system. Unlike never claims, trace assertions do not execute synchronously with the system; they only
execute when events of interest occur.

 Note that receive events on rendezvous channels can be monitored with trace assertions, but not with never claims.

[Team LiB]

[Team LiB]

Notrace

 Sometimes it is desirable to specify precisely the opposite of a trace assertion: a sequence of events that should not
occur in an execution. For this purpose the keyword notrace is also supported, though it is only rarely used. A
notrace assertion is violated if the event sequence that is specified, subject to the same rules as trace assertions, is
matched completely. The assertion is considered to be matched completely when either an end-state label is reached
inside the notrace sequence, or the closing curly brace of that sequence is reached.
[Team LiB]

[Team LiB]

Predefined Variables and Functions
 Some predefined variables and functions can be especially useful in trace assertions and never claims.

 There are only four predefined variables in PROMELA. They are:

_

np_

_pid

_last

 We have discussed the _pid variable before (p. 16, 36), as well as the global write-only variable _ (p. 92). These
two variables can be used freely in any proctype declaration.

 But we have not encountered the two variables np_ and _last before. These two variables are meant to be used only
inside trace assertions or never claims.

 The predefined variable np_ holds the boolean value false in all system states where at least one running process is
currently at a control-flow state that was marked with a progress label. That is, the value of variable np_ tells whether
the system is currently in a progress or a non-progress state. We can use this variable easily to build a never claim that
can detect the existence of non-progress cycles, for instance, as follows:

never { /* non-progress cycle detector */

 do

 :: true

 :: np_ -> break

 od;

accept:

 do

 :: np_

 od

}

 After a finite prefix of arbitrary length, optionally passing through any finite number of non-progress states, the claim
automaton moves from its initial state to the final accepting state, where it can only remain if there exists at least one
infinitely long execution sequence that never traverses any more progress states.

 The true purpose of the np_ variable is not in the definition of this claim, since this precise claim is used automatically
when SPIN's default search for non-progress cycles is invoked. The availability of the variable makes it possible to
include the non-progress property into other more complex types of temporal properties. A standard application, for
instance, would be to search for non-progress cycles while at the same time enforcing non-standard fairness
constraints.

 The predefined global variable _last holds the instantiation number of the process that performed the last step in a
system execution sequence. Its value is not part of the system state unless it is explicitly used in a specification. Its
initial value is zero.

 The use of the following three predefined functions is restricted to never claims:

pc_value(pid)

enabled(pid)

procname[pid]@label

 The first of these functions,

pc_value(pid)

 returns the current control state of the process with instantiation number pid or zero if no such process exists. The
number returned is always a non-negative integer and it corresponds to the internal state number that SPIN tracks as
the equivalent of a program-counter in a running process.

 In the following example, one process will print out its internal state number for three consecutive steps, and a second
blocks until the first process reaches at least a state that is numbered higher than two.

active proctype A()

{

 printf("%d\n", pc_value(_pid));

 printf("%d\n", pc_value(_pid));

 printf("%d\n", pc_value(_pid));

}

active proctype B()

{

 (pc_value(0) > 2);

 printf("ok\n")

}

 If we simulate the execution of this model, the following is one of two possible runs:

$ spin pcval.pml

spin: Warning, using pc_value() outside never claim

 1

 2

 ok

 3

2 processes created

 SPIN's warning reminds us that the use of this predefined function is intended to be restricted to never claims.

 The function

enabled(pid)

 tells whether the process with instantiation number pid has at least one statement that is executable in its current state.
The following example illustrates the use of _last and enabled():

/* It is not possible for the process with pid 1

* to remain enabled without ever executing.

*/

never {

accept:

 do

 :: _last != 1 && enabled(1)

 od

}

 The last predefined function

procname[pid]@label

 returns a nonzero value only if the next statement that can be executed in the process with instantiation number pid is
the statement that was marked with label label in proctype procname It is an error if the process referred to with the
pid number is not an instantiation of the specified proctype.

 The following example shows how one might employ this type of remote referencing inside a never claim:

/*

* Processes 1 and 2 cannot enter their

* critical sections at the same time.

*/

never {

 do

 :: user[1]@critical && user[2]@critical ->

 break /* implicitly accepting */

 :: else /* repeat */

 od

}

 If there is only one instantiation of a given proctype in the system, the process identify is really superfluous, and (in
SPIN version 4.0 and higher) the reference from the last example can in that case be given as

user@critical.

 If, nonetheless, there turns out to be more than one instantiation of the proctype, this type of reference selects an
arbitrary one of them. The SPIN simulator issues a warning if it encounters a case like this; the verifier does not.

[Team LiB]

[Team LiB]

Remote Referencing

 In SPIN version 4.0 and higher (cf. Chapters 10 and 17), another type of reference is also supported. The additional
type of reference bypasses the standard scope rules of PROMELA by making it possible for any process, and also
the never claim, to refer to the current value of local variables from other processes. This capability should be used
with caution, since it conflicts with the assumptions about scope rules that are made in SPIN's partial order reduction
strategy (see Chapter 9).

 The syntax is the same as for remote label references, with the replacement of the "@" symbol for a single colon ":".
For instance, if we wanted to refer to the variable count in the process of type Dijkstra in the example on page 77, we
could do so with the syntax

Dijkstra[0]:count.

 If there is only one instantiation of proctype Dijkstra, we can again use the shorter version

Dijkstra:count,

 following the same rules as before.
[Team LiB]

[Team LiB]

Path Quantification
 We will discuss the verification algorithms used in SPIN in more detail in later chapters, but we can already note a
few important features of the approach taken. All correctness properties that can be verified with the SPIN system
can be interpreted as formal claims that certain types of behavior are, or are not, possible.



 An assertion statement formalizes the claim that it is impossible for the given expression to evaluate to false.


An end label states that it is impossible for the system to terminate without all active processes having either
terminated or stopped at one of the specially labeled end states.



A progress label states that it is impossible for the system to execute forever without also passing through at
least one of the specially labeled progress states infinitely often.



An accept label states that it is impossible for the system to execute forever while also passing through at least
one of the specially labeled accept states infinitely often.



A never claim states that it is impossible for the system to exhibit, either infinite or finite, behavior that
completely matches the behavior that is formalized by the claim.



A trace assertion, finally, states that it is impossible for the system to deviate from the behavior that is
formalized.

 In all cases, the verification performed by SPIN is designed to prove the user wrong: SPIN will try its best to find a
counterexample to at least one of the formal claims that is stated. So, in a way SPIN never tries to prove the
correctness of a specification. It tries to do the opposite.

 Hunting for counterexamples, rather than direct proof, has advantages. Specifically, it can allow the verifier to employ
a more efficient search procedure. If, for instance, the error behavior is formalized in a never claim, SPIN can restrict
its search for counterexamples to the behaviors that match the claim. never claims, then, in a way act as a restriction
on the search space. If the error behavior is indeed impossible, as the user claims, the verifier may have very little
work to do. If the error behavior is almost impossible, it may have to do a little more work, but still not necessarily as
much as when it has to search the entire space of all possible behaviors. This only happens in the worst case.
[Team LiB]

[Team LiB]

Formalities

 Let E be the complete set of all possible -runs of the system. Given a correctness property ø formalized as an LTL
property, we say that the system satisfies ø if and only if all runs in E do. We can express this as

 Equation 4.1

SPIN, however, does not attempt to prove this directly. We can only use SPIN in an attempt to disprove the claim by
trying to find a counterexample that shows that ¬ ø is satisfied for at least one run. That is, instead of proving [4.1]
directly, SPIN tries to show the opposite

 Equation 4.2

where of course ¬ (|= ø) means that (|= ¬ ø).

 If the attempt to show that the right-hand side of [4.2] holds succeeds, we have shown that ¬ (E|= ø), and therefore
that the left-hand side of [4.1] does not hold: the system does not satisfy the property.

 If the attempt to find a counterexample fails, we have shown that the left-hand side of [4.2] does not hold, and
therefore that the left-hand side of [4.1] must hold: the system satisfies the property.

 This all looks fairly straightforward, but note carefully that the step from [4.1] to [4.2] cannot be achieved by the
mere negation of property ø. If, for instance, instead of property ø we try to prove with the same procedure that ¬ ø
is satisfied, then [4.1] becomes

 Equation 4.3

which is the same as

 Equation 4.4

Note that the right-hand sides of [4.2] and [4.4] differ. The logical negation of the right-hand side of [4.1] is the
right-hand side of [4.2], and not the right-hand side of [4.4]. In other words, (E|= ¬ ø)is not the same as ¬ (E|= ø).
The first equation does logically imply the second, but the reverse is not necessarily true:

 Equation 4.5

It is not too hard to come up with examples where we have simultaneously:

 Equation 4.6

For instance, if ø is the property that some variable x is never equal to zero, then ¬ ø states that x is zero at least once.
It is quite possible to construct a model that has at least one run where variable x eventually becomes zero (providing
a counterexample to ø), and also at least one run where x never becomes zero (providing a counterexample to ¬ ø).

 The following simple system has precisely that property.

byte x = 1;

init {

 do

 :: x = 0

 :: x = 2

 od

}

#define p (x != 0)

#ifdef PHI

never { /* []p */

accept:

 do

 :: (p)

 od

}

#else

never { /* ![]p */

 do

 :: !p -> break

 :: true

 od

}

#endif

 Both the property []p and its negation ![]p will produce counterexamples for this model, as is quickly demonstrated
by SPIN:

$ spin -DPHI -a prop.pml

$ cc -o pan pan.c

$./pan -a

pan: acceptance cycle (at depth 2)

pan: wrote prop.pml.trail

...

 We can replay this first error trail with the guided simulation option, as before.

$ spin -t -p -v -DPHI prop.pml

1: proc - (:never:) line 18 "prop.pml" (state 1) [(x!=0)]

Never claim moves to line 18 [(x!=0)]

2: proc 0 (:init:) line 7 "prop.pml" (state 2) [x = 2]

 <<<<<START OF CYCLE>>>>>

3: proc - (:never:) line 18 "prop.pml" (state 1) [(x!=0)]

4: proc 0 (:init:) line 7 "prop.pml" (state 2) [x = 2]

5: proc - (:never:) line 18 "prop.pml" (state 1) [(x!=0)]

spin: trail ends after 5 steps

...

 And, for the negated version of the claim:

$ spin -DNOTPHI -a prop.pml

$ cc -o pan pan.c

$./pan

pan: claim violated! (at depth 3)

pan: wrote prop.pml.trail

...

$ spin -t -p -v -DNOTPHI prop.pml

1: proc - (:never:) line 27 "prop.pml" (state 3) [(1)]

Never claim moves to line 27 [(1)]

2: proc 0 (:init:) line 6 "prop.pml" (state 1) [x = 0]

3: proc - (:never:) line 26 "prop.pml" (state 1) [!(x!=0)]

Never claim moves to line 26 [!(x!=0)]

spin: trail ends after 3 steps

...

 Specifically, therefore, if a SPIN verification run shows that a given system S fails to satisfy property ø, we cannot
conclude that the same system S will satisfy the inverse property ¬ ø.

[Team LiB]

[Team LiB]

Finding Out More
 This concludes our overview of the various ways for expressing correctness requirements that are supported in
PROMELA. More information about the derivation of never claims from Linear Temporal Logic formulae can be
found in Chapter 6. More about the specification of requirements for a SPIN verification in a more intuitive, graphical
format can be found in Chapter 13 where we discuss the timeline editing tool.

 We have seen in this chapter that there are many different ways in which correctness requirements can be expressed.
Be reassured, though, that the most easily understood mechanism for this purpose is also the most commonly used:
the simple use of assertions.

 The terms safety and liveness were first systematically discussed by Leslie Lamport, cf. Lamport [1983], and see
also Alpern and Schneider [1985,1987]. An excellent introduction to the formalization of correctness properties for
distributed systems can be found in Manna and Pnueli [1995]. Many other textbooks contain excellent introductions
to this material; see, for instance, Berard et al. [2001], Clarke et al. [2000], or Huth and Ryan [2000].

 A more detailed treatment of the differences between various ways of specifying, for instance, system invariants in
PROMELA can be found in Ruys [2001].
[Team LiB]

[Team LiB]

Chapter 5. Using Design Abstraction
 "Seek simplicity, and distrust it."

 —(Alfred North Whitehead, 1861–1947)

 System design is a process of discovery. By exploring possible solutions, a designer discovers the initially unknown
constraints, and weeds out the designs that seemed plausible at first, but that do not survive closer scrutiny. In the
process, the designer determines not only what is right and what is wrong, but also what is relevant and what is
irrelevant to the basic design premises.

 For a design tool to be effective in this context, it needs to be able to assist the designer in the creation and the
analysis of intuitive high-level abstractions without requiring the resolution of implementation-level detail. The tool
should be able to warn when the design premises are logically flawed, for instance, when the design is ambiguous,
incomplete, or inconsistent, or when it does not exhibit the properties it was designed to have. To use such a tool well,
the designer should be comfortable building and checking design abstractions. This task is sufficiently different from
the task of building design implementations that it is worth a closer look.
[Team LiB]

[Team LiB]

What Makes a Good Design Abstraction?

 The purpose of a design model is to free a designer from having to resolve implementation-level details before the
main design premises can be checked. SPIN not only supports design abstractions, it requires them. At first sight,
SPIN's input language may look like an imperative programming language, but it intentionally excludes a number of
features that would be critical to an implementation language. It is not directly possible, for instance, to express
floating point arithmetic, process scheduling, or memory management operations. Although all of these things can be
important in an implementation, they can and should be abstracted from a high-level design model. Note that in much
the same vein, most of today's higher-level programming languages make it impossible to express decisions on register
allocation, or the management of instruction caches. These issues, though important, are best resolved and checked at
a different level of abstraction.

 So, what makes a good design abstraction in concurrent systems design? The focus on concurrent systems has
important implications. In a sequential application, the best abstraction is typically data-oriented. In a concurrent
application the preferred abstraction is control-oriented.
[Team LiB]

[Team LiB]

Data and Control

 A large sequential program is typically divided into smaller modules, each performing a well-defined computational
function. The interfaces between these modules are kept as small as possible, reducing the number of assumptions that
one module must make about the others. The interface definitions in this case are data-oriented, not control-oriented.
The modules in a sequential application typically do not maintain internal state information independently from the rest
of the program.

 This is different in distributed systems design. In a distributed system, the module structure is typically determined by
an externally imposed system architecture (e.g., determined by a physical separation of the main components of the
system). Each module then has its own independent thread of control, which necessarily carries state information. In
this case control, not data, is the primary concern in the definition of module interfaces.

 In a SPIN verification model the focus is on the control aspects of a distributed application, not on the computational
aspects. PROMELA allows us to express the assumptions that are made within each module about the interactions
with other modules. The language discourages the specification of detailed assumptions about process-internal
computations.

 To make sure that the models we can specify in PROMELA always have effectively verifiable properties, we impose
two requirements:



 the model can only specify finite systems, even if the underlying application is potentially infinite, and


the model must be fully specified, that is, it must be closed to its environment.

 The second requirement says that the behavior that is defined in a verification model may not depend on any hidden
assumptions or components. All input sources must be part of the model, at least in abstract form.

 For arbitrary software applications these two requirements are not automatically satisfied. To achieve verifiability, we
have to apply abstraction.

 A program that allows unrestricted recursion, or that contains unbounded buffers, for instance, is not finite-state. A
program that reads input from a file-descriptor or an input-stream, similarly, is not closed to its environment. These
programs cannot be verified with automatic techniques unless some abstractions are made.

 The need for abstraction, or modeling, is often seen as a hurdle instead of a feature in model checking applications.
Choosing the right level of abstraction, though, can mean the difference between a tractable model with provable
properties and an intractable model that is only amenable to simulation, testing, or manual review. Sometimes we have
to choose between proving simple properties of a complex model, formalized at a low-level abstraction, and proving
more complex properties of a simpler model, formalized at a higher-level abstraction.

 The importance of abstraction places demands on the design of the input language of a model checking tool. If the
input language is too detailed, it discourages abstractions, which in the end obstructs the verification process. We have
to be careful, therefore, in choosing which features are supported in a verification system. In SPIN, for instance, a
number of otherwise desirable language features have been left out of the specification language. Among them are
support for memory management, floating point calculations, and numerical analysis. Other verification systems are
even more restrictive, and exclude also structured data types, message passing, and process creation. Still other
systems are more permissive, and, at the price of increased complexity, include support for: real-time verification,
probabilities, and procedures. All other things being equal, we should expect the most permissive system to be the
easiest to build models for, but the least efficient to verify them. SPIN attempts to find a balance between ease of use
and model checking efficiency.

 The recommended way to develop a verification model is as follows:


 First decide which aspects of the design are important and require verification. Express these in a set of
system requirements. Requirements, to be of use in the verification process, must be testable. It should be
possible to state clearly under which precise conditions a requirement is violated. It should further not be
possible for the system to fail without violating at least one of the requirements. The collection of an adequate
set of requirements is in itself a process of discovery. What at first may be thought to be an insignificant
requirement may become the dominant design issue over time. Other design requirements or design
constraints may at first be completely unknown, until an initial analysis reveals their relevance.



Next, consider the essence of the design itself, specifically those aspects that are meant to secure the behavior
of interest, and that help the system meet its requirements.



Only then construct an executable abstraction in PROMELA for the design. The abstraction should be
detailed enough to capture the essence of the solution, and no more. What we are looking for is the smallest
sufficient model that allows us to perform a verification.

 It is sometimes helpful to think of a verification model as a system of process modules and interfaces. Each process
module represents an asynchronous entity in a distributed system. Each process is only detailed enough to capture the
minimal set of assumptions that this module must make about its peers. These assumptions take the form of interface
definitions. The purpose of the verification is to check that all interface definitions, formalizing the assumptions that
processes in the system make about each other, are logically consistent. We can perform such checks without having
to detail each module's precise implementation. The modules remain, as it were, black boxes.

 Phrased differently, the purpose of design verification is to find logical flaws in the reasoning that produced a design.
The goal is not to find computational errors or coding errors.

 The verification model must allow us to make refutable statements about a design. As Imre Lakatos once phrased it

 "The purpose of analysis is not to compel belief but rather to suggest doubt."

 Elements of a model that cannot contribute to its refutability can and should be deleted in the interest of enhancing the
model's verifiability.

 In the last two decades verification tools have evolved from simple reachability analyzers, run on relatively small
machines, into powerful model checking systems, that can be run on machines that are orders of magnitude faster and
larger. One thing has not changed though: computational complexity remains the single most important issue in this
area. There is just one powerful weapon that can reliably defeat the dragon of computational complexity, and that
weapon is abstraction.

 New users of SPIN often attempt to build verification models that remain relatively close to the implementation level
of an application, making only syntactic changes to accommodate the whims of the input language. These users often
only seriously consider abstraction when a concept or feature is encountered that cannot be represented at all in the
language of the model checker. At this point, the user is often frustrated, and frustration is a poor motivator in the
search for good design abstractions. Much of the detail included in verification models that are produced in this way is
functionally irrelevant to the properties to be checked, yet all this detail can seriously limit the thoroughness of a
possible check.

[Team LiB]

[Team LiB]

The Smallest Sufficient Model

 It is sometimes easy to lose sight of the one real purpose of using a model checking system: it is to verify system
properties that cannot be verified adequately by other means. If verification is our objective, computational complexity
is our foe. The effort of finding a suitable design abstraction is therefore the effort of finding the smallest model that is
sufficient to verify the properties that we are interested in. No more, and no less. A one-to-one translation of an
implementation into a verification modeling language such as PROMELA may pass the standard of sufficiency, but it is
certainly not the smallest such model and may cause unnecessary complexity in verification, or even render the
verification intractable. To reduce verification complexity we may sometimes choose to generalize a problem, and
sometimes we may choose to specialize it.

 As the difference between a verification model and an implementation artifact becomes larger, one may well question
if the facts that we are proving still have relevance. We take a very pragmatic view of this here. For our purposes, two
models are equivalent if they have the same properties. This means that we can always simplify a verification model if
its properties of interest are unaffected by the simplifications. A verification system, for that matter, is effective if it can
be used to uncover real defects in real systems. There is little doubt that the verification methodology we are
discussing here can do precisely that.
[Team LiB]

[Team LiB]

Avoiding Redundancy

 The success of the model checking process for larger applications relies on our skill in finding and applying
abstractions. For smaller applications this skill amounts mostly to avoiding simple cases of redundancy. It should be
noted, for instance, that paradigms that are commonly used in simulation or testing can be counterproductive when
used in verification. A few examples will suffice to make this point.
[Team LiB]

[Team LiB]

Counters

 In the construction of a simulation model it is often convenient to add counters, for instance, to keep track of the
number of steps performed. The counter is basically a write-only variable, used only in print statements.

 The example in Figure 5.1 illustrates a typical use. The variable cnt is used here as if it were a natural number with
infinite range. No check for overflow, which will inevitably occur, is made. The implicit assumption that in practical
cases overflow is not likely to be a concern may be valid in program testing or simulation; it is false in verifications
where all possible behaviors must be taken into account.

 Figure 5.1 Counter Example

active proctype counter ()

{ int cnt = 1;

 do

 :: can_proceed ->

 /* perform a step */

 cnt++;

 printf("step: %d\n", cnt)

 od

}

 It should be noted carefully that it is not necessarily a problem that the variable cnt may take up to 32 bits of storage
to maintain its value. The real problem is that this variable can reach 232 distinct values (over four billion). The
complexity of the verification problem may be increased by that same amount. Phrased differently: Removing a
redundant counter can reduce the complexity of a naive verification model by about nine orders of magnitude.
[Team LiB]

[Team LiB]

Sinks, Sources, and Filters

 Another avoidable source of complexity is the definition of processes that act solely as a source, a filter, or a sink for
a message stream. Such processes often add no refutation power to a verification model, and are almost always
better avoided.[1]

[1] The exception would be if a given correctness property directly depends on the process being present in the
model. This should be rare.



 A sink process, for instance, merely receives and then discards messages. Since the messages are discarded
in the model, they should probably not even be sent within the model. Having them sent but not processed
would indicate an incomplete abstraction.



A source process generates a set of possible messages that is then forwarded to a given destination. If the
sole function of the source process is to provide the choice of messages, this choice can possibly be moved
beneficially into the destination process, avoiding the sending of these messages altogether.



A filter process passes messages from one process to another, possibly making small changes in the stream
by dropping, duplicating, inserting, or altering messages. Again, if the desired effect is to generate a stream
with a particular mix of messages, it is often possible to generate just such a stream directly.

 Figure 5.2 shows a simple example of each of these three types of processes. To see how much can be saved by
removing the sink process, for instance, consider the number of reachable states that is contributed by the storage of
messages in the channel named q. The channel can hold between zero and eight distinct messages, and each of these
is one of three possible types. This gives a total number of states equal to:

 Figure 5.2 A Sink, a Source, and a Filter Process

mtype = { one, two, three };

chan q = [8] of { mtype };

chan c = [8] of { mtype };

active proctype sink()

{

 do

 :: q?one

 :: q?two

 :: q?three

 od

}

active proctype filter()

{ mtype m;

 do

 :: c?m -> q!m

 od

}

active proctype source()

{

 do

 :: c!one

 :: c!two

 :: c!three

 od

}

 This means that removing the process and the associated channel can decrease the complexity of the model by
almost four orders of magnitude. The refutation power of the model is increased accordingly.

 The temptation to include a dummy process is often given by a desire to model all existing parts of a system. The
application being modeled may, for instance, contain a process or a task that performs a function that ends up being
of only peripheral interest to the verification. There is an understandable uneasiness in the user to discard such
processes, until it is reinforced that one is constructing a verification model, not the duplicate of an implementation.
The difference in complexity can again be orders of magnitude.

[Team LiB]

[Team LiB]

Simple Refutation Models

 Is it realistic to expect that we can build models that are of practical significance and that remain computationally
tractable? To answer this, we discuss two remarkably simple models that have this property. The first model counts
just twelve reachable states, which could be sketched on a napkin. The second model is not much larger, with
fifty-one reachable states, yet it too has undeniable practical significance. A naive model for either of these examples
could easily defeat the capabilities of the most powerful model checking system. By finding the right abstraction,
though, we can demonstrate that the design represented by the first model contains a design flaw, and we can prove
the other to be a reliable template for the implementation of device drivers in an operating systems kernel.

 The two abstractions discussed here require less computational power to be verified than what is available on an
average wristwatch today. To be sure, it is often harder to find a simple model than it is to build a complex one, but
the effort to find the simplest possible expression of a design idea can provide considerably greater benefits.
[Team LiB]

[Team LiB]

Pathfinder

 NASA's Pathfinder landed on the surface of Mars on July 4th, 1997, releasing a small rover to roam the surface. The
mechanical and physical problems that had to be overcome to make this mission possible are phenomenal. Designing
the software to control the craft may in this context seem to have been one of the simpler tasks, but designing any
system that involves concurrency is challenging and requires the best minds and tools. Specifically, in this case, it was
no easier to design the software than the rest of the spacecraft. And, as it turned out, it was only the control software
that occasionally failed during the Pathfinder mission. A design fault caused the craft to lose contact with earth at
unpredictable moments, causing valuable time to be lost in the transfer of data.

 It took the designers a few days to identify the origin of the bug. To do so required an attempt to reproduce an
unknown, non-deterministic execution sequence with only the tools from a standard system test environment, which
can be very time-consuming.

 The flaw turned out to be a conflict between a mutual exclusion rule and a priority rule used in the real-time task
scheduling algorithm. The essence of the problem can be modeled in a SPIN verification model in just a few lines of
code, as illustrated in Figure 5.3.

 Figure 5.3 Small Model for the Pathfinder Problem

mtype = { free, busy, idle, waiting, running };

mtype H_state = idle;

mtype L_state = idle;

mtype mutex = free;

active proctype high_priority()

{

end:

 do

 :: H_state = waiting;

 atomic { mutex == free -> mutex = busy };

 H_state = running;

 /* produce data */

 atomic { H_state = idle; mutex = free }

 od

}

active proctype low_priority() provided (H_state == idle)

{

end:

 do

 :: L_state = waiting;

 atomic { mutex == free -> mutex = busy };

 L_state = running;

 /* consume data */

 atomic { L_state = idle; mutex = free }

 od

}

 Two priority levels are modeled here as active proctypes. Both processes need access to a critical region for
transferring data from one process to the other, which is protected by a mutual exclusion lock. If by chance the high
priority process starts running while the low priority process holds the lock, neither process can proceed: the high
priority process is locked out by the mutex rule, and the low priority process is locked out by the priority rule, which
is modeled by a provided clause on the low priority process.

 The model shown here captures the essence of this problem in as few lines as possible. A verification of this model is
a routine exercise with SPIN. The verifier is generated and compiled for exhaustive search as follows:

$ spin -a pathfinder.pml

$ cc -o pan pan.c

 Next, the verification run is performed:

$./pan

pan: invalid end state (at depth 4)

pan: wrote pathfinder.pml.trail

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 20 byte, depth reached 4, errors: 1

 5 states, stored

 1 states, matched

 6 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.493 memory usage (Mbyte)

 The verifier finds an error after exploring only five system states. The full state space counts no more than twelve
reachable system states, as illustrated in Figure 5.4, which should be compared to the many billions of possible states
of the real memory-module in the Pathfinder controller that must be searched in exhaustive tests of the non-abstracted
system. (All states can be generated by the verifier if we use option -c0, cf. Chapter 19, p. 536.)

 Figure 5.4. Reachability Graph for Pathfinder Problem

 Process states: i = idle, w = waiting, r = running

Mutex lock states: f == free, b = busy

System states (x,y,z): x = high priority process, y = low priority process, z = mutex lock

Reachable Deadlock states: (w,w,b) and (w,r,b)

Starvation Cycles: {(i,i,f),(w,i,f),(w,i,b),(r,i,b)} and {(i,w,f),(w.w.f),(w,w,b),(r,w,b)}

 The complete reachability graph for this system is readily built, even by a human model checker without computerized
assistance. In Figure 5.4 we have marked the reachable system states with a triple. The first two elements of the triple
identify the local state of each of the two processes: i for idle, w for waiting, and r for running. The third element of the
triple records the state of the shared mutual exclusion lock variable: f for free, and b for busy.

 Clearly, with two processes and one boolean lock, this level of abstraction gives rise to a maximum of eighteen
system states (3x3x2), only twelve of which are effectively reachable from the initial system state. A verifier such as
SPIN can efficiently build and analyze reachability graphs with billions of reachable system states, so a problem of this
size is hardly challenging.

 In this case, it is also not difficult to identify the two possible deadlock trajectories in the reachability graph, even by
hand. The two system deadlock states in the graph are the states without any outgoing arrows. There is no possible
exit from either state (w,w,b) or state (w,r,b) because in both cases the low priority process holds the lock and
thereby blocks the high priority process, but the process holding the lock cannot proceed because of the priority rule
that blocks it when the high priority process is not idle.

 To analyze the behavior of this model we can look for paths leading into deadlock states. The verifier found the first
such path, ending in state (w,r,b) (some information is elided for layout purposes):

$ spin -t -p pathfinder.pml

1: proc 1 (low) line 40 ... [l_state = waiting]

2: proc 1 (low) line 41 ... [((mutex==free))]

2: proc 1 (low) line 41 ... [mutex = busy]

3: proc 1 (low) line 42 ... [l_state = running]

4: proc 0 (high) line 27 ... [h_state = waiting]

spin: trail ends after 4 steps

#processes: 2

 h_state = waiting

 l_state = running

 mutex = busy

4: proc 1 (low) line 46 "pathfinder.pml" (state 8)

4: proc 0 (high) line 28 "pathfinder.pml" (state 4)

2 processes created

 We can also use the verifier to look for more subtle types of properties. We may ask, for instance, if there is any way
for one process to delay the execution of the other process indefinitely. Of course, because of the priority rule, there is
such a possibility here. The use of the term indefinitely means that we are looking for possibly infinite executions with a
special property.

 The only type of infinite execution that can be performed in a finite reachability graph is, of course, a cyclic one. It is
not hard to identify three basic cycles in the graph from Figure 5.4 with the property that only one of the processes
repeatedly gets to its running state, while the other remains in its idle, or waiting state.

 There is only effective denial of service if a process is indefinitely waiting to execute, that is, if the denied process has
at least reached its waiting state. This rules out one of the three cycles, but leaves the other two as candidates for
further inspection. As we shall see in more detail in Chapters 8 and 9, SPIN can reveal the existence of executions
like this in even very large reachability graphs. One way to do so, in this case, is to mark the running state of either
process as a progress state, and then ask SPIN to report on the existence of non-progress cycles in the reachability
graph.

 We will mark the running state in the low priority process as a progress state, as follows:

progress: l_state = running;

 The check for the absence of non-progress cycles is now performed as follows:

$ spin -a pathfinder.pml

$ cc -DNP -o pan pan.c # enable NP algorithm

$./pan -l -f # search for fair non-progress cycles

pan: non-progress cycle (at depth 24)

pan: wrote pathfinder.pml.trail

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim +

 assertion violations + (if within scope of claim)

 non-progress cycles + (fairness enabled)

 invalid end states - (disabled by never claim)

State-vector 24 byte, depth reached 31, errors: 1

 11 states, stored (23 visited)

 4 states, matched

 27 transitions (= visited+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.493 memory usage (Mbyte)

 Inspecting the error trail reveals the path leading into a potentially infinite cycle where the high priority process starves
its low priority counterpart:

$ spin -t -p pathfinder.pml

 2: proc 1 (low) line 40 ... [l_state = waiting]

 4: proc 1 (low) line 41 ... [((mutex==free))]

 4: proc 1 (low) line 41 ... [mutex = busy]

 6: proc 1 (low) line 42 ... [l_state = running]

 8: proc 1 (low) line 46 ... [l_state = idle]

 8: proc 1 (low) line 46 ... [mutex = free]

10: proc 1 (low) line 40 ... [l_state = waiting]

12: proc 0 (high) line 27 ... [h_state = waiting]

14: proc 0 (high) line 28 ... [((mutex==free))]

14: proc 0 (high) line 28 ... [mutex = busy]

16: proc 0 (high) line 29 ... [h_state = running]

18: proc 0 (high) line 33 ... [h_state = idle]

18: proc 0 (high) line 33 ... [mutex = free]

20: proc 0 (high) line 27 ... [h_state = waiting]

22: proc 0 (high) line 28 ... [((mutex==free))]

22: proc 0 (high) line 28 ... [mutex = busy]

24: proc 0 (high) line 29 ... [h_state = running]

 <<<<<START OF CYCLE>>>>>

26: proc 0 (high) line 33 ... [h_state = idle]

26: proc 0 (high) line 33 ... [mutex = free]

28: proc 0 (high) line 27 ... [h_state = waiting]

30: proc 0 (high) line 28 ... [((mutex==free))]

30: proc 0 (high) line 28 ... [mutex = busy]

32: proc 0 (high) line 29 ... [h_state = running]

spin: trail ends after 32 steps

#processes: 2

 h_state = running

 l_state = waiting

 mutex = busy

32: proc 1 (low) line 41 "pathfinder.pml" (state 4)

32: proc 0 (high) line 33 "pathfinder.pml" (state 8)

2 processes created

 Although the sample verification model for the Pathfinder problem is trivial to analyze, it should be added here that if
a model of the mutual exclusion and priority scheduling rules had been constructed before the launch of the mission,
before the design flaw manifested itself, the verification model would likely have contained more detail. In the real
system, for instance, a third intermediate priority level was responsible for keeping the low priority process from
releasing the lock, which prevented the high priority process from completing its task. Similarly, there were also other
tasks in the system that manipulated the mutual exclusion locks that would likely have been included into the model
and thereby increased the complexity of the verification beyond mere napkin size. The verification itself, though,
should also in these cases have been able to reveal the problem.

[Team LiB]

[Team LiB]

A Disk-Head Scheduler

 The next example illustrates how an abstract model can be constructed, again in just a few lines of high-level code, to
confirm that a design has the properties it is intended to have. The example is a standard problem in operating system
design: scheduling access of multiple client processes to a single server, which in this case is a disk scheduler. Only
one client request is served by the disk-scheduler at a time. If multiple requests arrive, they are to be queued and
served in order of arrival.

 In a first attempt to build a verification model for this problem, it is natural to introduce separate processes to model
the disk scheduler, the disk controller, the disk device driver, and the individual client processes that submit requests.
To initiate a disk operation, a client process submits a request to the scheduler, where it may get queued. When it is
ready to be serviced, the scheduler sends a start command to the controller, which then initiates the requested
operation through the device driver. Completion of the operation is signaled by a hardware interrupt, which is
intercepted by the scheduler. This basic architecture is illustrated in Figure 5.5.

 Figure 5.5. Disk Scheduler Context

 Our objective is to check the basic design of the interaction between the disk scheduler and its clients. This means
that the internal details of the device driver (e.g., mapping disk blocks to cylinders, sending commands to move the
disk heads, etc.) are not directly relevant to this aspect of the design. To focus the verification model on the area of
primary interest, we can and should abstract from the internals of the device driver process and the physical disk. The
possible interactions between the device driver and the scheduler are, for instance, already captured in the device
driver model from Figure 5.6.

 Figure 5.6 Minimal Device Driver Interface Model

proctype Contr(chan req, signal)

{

 do

 :: req?IO ->

 /* perform IO operations */

 signal!Interrupt

 od

}

 The only assumption we are making here about the behavior of the device driver is that it will respond to every IO
request with an interrupt signal within a finite, but otherwise arbitrary, amount of time. The relevant behavior of a client
process can be modeled very similarly. It suffices to assume that each client can submit one request at a time, and that
it will then wait for the matching response from the scheduler.

 Before looking at the remainder of the verification model, though, we can already see that these initial models for the
device driver and the client have all the characteristics of filter processes. The same is true for a minimal model of the
disk controller. This is not too surprising, since we deliberately placed the focus on the verification of request queuing
at the disk scheduler, not on the surrounding processes.

 The temptation is to include the extra processes in the abstract model anyway, simply because they represent artifacts
in the application. For the actual verifi-cation job, however, their presence serves no purpose and will increase the
complexity of the model. These types of processes can be removed readily by applying the relatively simple
abstractions of the type we have discussed. Doing so leads to the model shown in Figure 5.7.

 Figure 5.7 Disk Scheduler Model

#define Nclients 3

inline disk_io() {

 activeproc = curproc;

 assert(Interrupt_set == false);

 Interrupt_set = true;

}

inline Serve_client(x) {

 client_busy[x] = true;

 curproc = x+1;

 if /* check disk status */

 :: activeproc == 0 -> disk_io()

 :: else /* Busy */ -> req_q!curproc

 fi

}

inline Handle() {

 Interrupt_set = false;

 client_busy[activeproc-1] = false;

 if

 :: req_q?curproc -> disk_io()

 :: empty(req_q) -> activeproc = 0

 fi

}

active proctype disk_sched()

{ chan req_q = [Nclients] of { byte };

 bool client_busy[Nclients] = false;

 bool Interrupt_set = false;

 byte activeproc, curproc;

 do

 :: !client_busy[0] -> progress_0: Serve_client(0)

 :: !client_busy[1] -> progress_1: Serve_client(1)

 :: !client_busy[2] -> progress_2: Serve_client(2)

 :: Interrupt_set == true -> Handle()

 od

}

 A client process should be unable to submit a new request until the last one was completed. In the model from Figure
5.7, the client's busy status is recorded in a boolean array (rather than recorded as a process state, as in the
equivalent of Figure 5.6).

 We have added two correctness properties to this model. The first property is an assertion, claiming that no new
interrupt can be generated before the last one was handled. The second property is expressed with a progress label
which appears at the point in the code where a new client request is submitted. SPIN can check that neither assertion
violations nor non-progress cycles are possible for this design. The validity of the second property implies that there
cannot be any infinite execution without infinite progress for at least some client.

 With two clients, the reachability graph for the model in Figure 5.7 has no more than 35 states. With three clients, as
shown, the number of states increases to 142. In both cases this poses no challenge to any verifier.

 For a complete verification, we will have to do two separate verification runs: one run to prove absence of assertion
violations and deadlock states (safety properties), and a second run to prove the absence of non-progress cycles (a
liveness property). The first check, for assertion violations and deadlock states proceeds as follows:

$ spin -a diskhead.pml

$ cc -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 25 byte, depth reached 67, errors: 0

 142 states, stored

 27 states, matched

 169 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.493 memory usage (Mbyte)

unreached in proctype disk_sched

 line 41, state 56, "-end-"

 (1 of 56 states)

 The run shows that assertion violations or deadlocks (invalid end states) are not possible, and that all local process
states in the disk_sched process are effectively reachable.

 To check for the presence of non-progress cycles requires a slightly larger search, where each state can be visited up
to two times. The run confirms that also non-progress cycles are not possible in this model:

$ spin -a diskhead.pml

$ cc -DNP -o pan pan.c

$./pan -l

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim +

 assertion violations + (if within scope of claim)

 non-progress cycles + (fairness disabled)

 invalid end states - (disabled by never claim)

State-vector 29 byte, depth reached 146, errors: 0

 268 states, stored (391 visited)

 252 states, matched

 643 transitions (= visited+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.493 memory usage (Mbyte)

unreached in proctype disk_sched

 line 41, state 56, "-end-"

 (1 of 56 states)

 But are three clients also sufficient to prove the required properties for an arbitrary number of clients? Every increase
in the number of clients naturally increases the number of reachable states to be inspected due in large part to the
increased number of permutations of distinct client requests in the request queue. Since all clients behave the same, it
should suffice to prove each client-specific property for one arbitrarily chosen client.

 We can do this by showing that a client-specific property holds no matter at what point in the disk scheduler's
operation the client's request may arrive. Assuming that the request queue is large enough to hold the maximum
number of simultaneous requests from clients, there are just three boolean conditions that together completely
determine the scheduler's state and its actions upon accepting a new client request. They are:



 empty(req_q)


(activeproc == 0)


Interrupt_set == true

 This gives us maximally eight relevant combinations (i.e., local scheduler states). With just one client process the truth
assignment to the three conditions necessarily defaults to true, true, and false when a new request is initiated, so this
definitely does not suffice to produce all eight combinations. With two clients we reach more, but we still cannot have
both Interrupt_set and empty(req_q) be true at the same time. Three clients are the minimum needed to cover all eight
combinations. Adding more client processes can increase the complexity of the verification further, but it cannot cover
more cases or reveal anything new about this model. Admittedly, this is a very simple example of a system where
processes communicate exclusively through message passing and do not access any globally shared data.
Nonetheless, the original model of this system was successfully used as a guideline for the correct design and
implementation of device driver modules in a commercial operating system, so even simple verification models can
have realistic practical significance.

 In practice, the need to produce simple verification models is not as strict as what may be suggested by the examples
from this chapter. SPIN can analyze models at a rate of 10,000 to 100,000 states per second, depending on the size
of the state descriptors, and the speed of the CPU. This much power should in most cases suffice to tackle even the
most challenging design problems.

[Team LiB]

[Team LiB]

Controlling Complexity
 We will see in Chapter 8 that the worst-case computational expense of verifying any type of correctness property
with a model checker increases with the number of reachable system states R of a model. By reducing the size of R,
therefore, we can try to reduce the complexity of a verification. Abstraction is the key tool we can use to keep the
size of R small, but there are also other factors that we could exploit in model building.

 Let n be the number of concurrent components, and let m be the total number of data objects they access. If we
represent the number of control states of the i-th component by Ti, and the number of possible values for the j-th data
object by Dj, then in the worst case the size of R could be the product of all values T1 to Tn and all values D1 to x
Dm. That is, the value of R itself may well be exponential in the number of concurrent components and the number of
data objects. As a general rule, therefore, it is always good to search for a model with the fewest number of
components (processes, channels, data objects), that is, to construct the smallest sufficient model.
[Team LiB]

[Team LiB]

Example

 Let us consider the complexity that can be introduced by a single useful type of abstract data object that is commonly
used in distributed systems: a message channel or buffer. Let q be the number of buffers we have, let s be the
maximum number of messages we can store in each buffer, and let m be the number of different message types that
can be used. In how many different states can this set of data objects be? Each buffer can hold between zero and s
messages, with each message being a choice of one out of m, therefore, the number of states RQ is:

 Figure 5.8 shows how the number of states varies for different choices of the parameters q, s, and m. In the top-left
graph of Figure 5.8, the parameters s and q are fixed to a value of 2, and the number of message types is varied from
1 to 10. There is a geometric increase in the number of states, but clearly not an exponential one. In the top-right
graph, the parameters m and q are fixed to a value of 2, and the number of queue slots s is varied. This time there is
an exponential increase in the number of states. Similarly, in the bottom-left graph, the parameters m and s are fixed,
and the number of queues is varied. Again, we see an exponential increase in the number of states. Worse still, in the
bottom-right graph of the figure, only the number of message types is fixed and the parameters s and q are equal and
varied from 1 to 10. As can be expected, the increase is now doubly exponential. The number of possible states
quickly reaches astronomical values.

 Figure 5.8. Number of Possible States for q Message Buffers with s Buffer Slots and m Message Types

 Exponential effects work both ways. They can quickly make simple correctness properties of an uncarefully
constructed model computationally intractable, but they can also help the model builder to prove subtle properties of
complex systems by controlling just a few carefully chosen parameters.

 The size of the available memory on a computer unavoidably restricts the size of the largest problems we can verify.
We can try clever encoding and storage options for state space information, but at some point either the machine will
run out of available memory or the user will run out of time, waiting for a verification run to complete. If the system is
too complex to be analyzed exhaustively, we have no choice but to model it with a system that has fewer states. The
tools that are used to accomplish this are: reduction, abstraction, modularity, and structure.

 The existence of the state explosion phenomenon we have sketched above should never be used to excuse a
designer from proving that a concurrent system fulfills its correctness requirements. It may well be considered to be
the very objective of design verification to construct a tractable model and to formalize its properties. After all, since
the final verification is a purely mechanical task, model building is the only real problem that the human designer must
tackle.

[Team LiB]

[Team LiB]

A Formal Basis for Reduction

 The SPIN verification algorithms work by detecting the presence of a counterexample to a correctness claim. If we
want to prove that p holds, we can use SPIN to try to find a counterexample where the negation of p holds. For
temporal logic formulae the same principle is applied. Instead of proving that there exist behaviors for which a given
temporal logic formula is valid, SPIN tries to do the opposite: it attempts to find at least one behavior for which the
negation of the formula is satisfied. If no counterexample can be found in an exhaustive verification, the formula is
proven valid for all possible behaviors.

 Call E the set of all possible runs of a system. The verification algorithms we have discussed demonstrate that either E
does not contain any runs that violate a correctness requirement, or they provide positive proof that at least one such
run exists. The verifier need not search for all possible runs in which the correctness requirement is satisfied, and
indeed it often cannot do so.

 This means that it is possible to add runs to E without affecting the validity of the proof, provided of course that we
do not remove or alter any of the existing runs in E. We will use an example to demonstrate a number of strategies
that can be used to reduce the complexity of a verification task by adding runs to E, such that in all cases E E'. This
principle is formalized in the following property.[2]

[2] The formal definitions for the terms "finite state automaton," "run," and "correctness property" are given in Chapter
6.

 Property 5.1 (Reduction Property)

 Given two finite state automata T and T', with sets of runs E and E', respectively. If E E' then any correctness
property proven for T' necessarily also holds for T.

 Proof: The violation of a correctness property for T is not possible without the existence of a run in E that
demonstrates it. If no such run exists in E' then no such run can exist in E either, since E' includes E.

 We will see that abstractions of this type can dramatically reduce the number of reachable states of a system. Note
that we can generalize a problem by removing constraints from it. The behavior of a model that is less specific often
can be represented with fewer states. The least specific model would be one that imposes no constraints whatsoever
on, for instance, the messages it can send. It can be represented by a one-state demon that randomly generates
messages within its vocabulary, one by one, in an infinite sequence.
[Team LiB]

[Team LiB]

Example – A File Server

 Assume our task is to verify the correctness of a transfer protocol that is used to access a remote file server. Our first
obligation is to determine precisely which correctness properties the transfer protocol must have, and what may be
assumed about the behavior of the file server and of the transmission channel.

 Consider first the transmission channel. Assume the channel is an optical fiber link. The protocol verifier's job is not to
reproduce the behavior of the fiber link at the finest level of detail. The quality of a verification does not improve with
a more detailed model of the link. Just the opposite is the case. This is worth stating explicitly:

 A less detailed verification model is often more tractable, and allows for more general, and thus stronger, proofs.

 A verification model should represent only those behaviors that are relevant to the verification task at hand. It need
not contain information about the causes of those behaviors. If, in the file server example, the fiber link has a non-zero
probability of errors, then the possibility of errors must be present in our model, but little more. The types of errors
modeled could include disconnection, message-loss, duplication, insertion, or distortion. If all these types of errors are
present, and relevant to the verification task at hand, it should suffice to model the link as a one-state demon that can
randomly disconnect, lose, duplicate, insert, or distort messages.

 A fully detailed model of the link could require several thousand states, representing, for instance, the clustering of
errors, or the nature of distortions. For a design verification of the transfer protocol, however, it not only suffices to
represent the link by a one-state demon: doing so guarantees a stronger verifi-cation result that is independent of
clustering or distortion effects. Clearly, a model that randomly produces all relevant events that can be part of the real
link behavior satisfies the requirements of Property 5.1. Of course, the random model of a link can contribute artificial
behaviors where specific types of errors are repeated without bound. Our verification algorithms, however, provide
the means to prune out the uninteresting subsets of these behaviors. If, for instance, we mark message loss as a
pseudo progress event and start a search for non-progress cycles, we can secure that every cyclic execution that is
reported by the verifier contains only finitely many message loss events.

 Next, consider the file server. It can receive requests to create and delete, open and close, or read and write distinct
files. Each such request can either succeed or fail. A read request on a closed file, for instance, will fail. Similarly, a
create or write request will fail if the file server runs out of space. Again, for the verification of the interactions with the
file server, we need not model in detail under what circumstances each request may succeed or fail. Our model of the
server could again be a simple one-state demon that randomly accepts or rejects requests for service, without even
looking at the specifics of the request.

 Our one-state server would be able to exhibit behaviors that the real system would not allow, for instance, by
rejecting valid requests.[3] All behaviors of the real server, however, are represented in the abstract model. If the
transfer protocol can be proven correct, despite the fact that our model server may behave worse than the real one,
the result is stronger than it would have been if we had represented the server in more detail. By generalizing the
model of the file server, we separate, or shield, the correctness of the transfer protocol from the correctness
requirements of the server. Again, the model that randomly produces all relevant events satisfies the requirements of
Property 5.1.

[3] Remember that it is not the file server's behavior we are verifying, but the behavior of the transfer protocol. If the
file server would have been the target of our verification, we would try to model it in more detail and generalize the
transfer protocol that accesses it.

 Finally, let us consider the number of message types and message buffers that are needed to represent the interaction
of user processes with the remote file server. If no single user can ever have more than one request outstanding, we
need minimally three distinct types of messages, independent of how many distinct services the remote system actually
offers. The three message types are request, accept, and reject.

 If there are q users and only one server, the server must of course know which response corresponds to which
request. Suppose that we use a single buffer for incoming requests at the server, and mark each request with a
parameter that identifies the user. This gives q distinct types of messages that could arrive at the server. If q x s is the
total number of slots in that buffer, the number of distinct states will be:

 What if we replaced the single buffer with q distinct buffers, each of s slots, one for each user? Now we need only
one type of request, and the number of buffer states is now (s + 1)q. Which is better?

 Note that every feasible state of the multiple buffers can be mapped to a specific state of the single buffer, for
instance, by simply concatenating all s slots of all q buffers, in numerical order, into the q x s slots of the single buffer.
But the single buffer has many more states, that is, all those states that correspond to arbitrary interleavings of the
contents of the multiple buffers. With these parameters, then, it can make a large difference in complexity if we replace
a single buffer with a set of buffers.

 To get an idea of the difference, assume s = 5 and q = 3; then the total number of states of all multiple buffers
combined is (s + 1)q= 63 = 216, and the total number of states of the single buffer is or about five orders of
magnitude larger. Of course, in all these cases it remains the responsibility of the model builder to make certain that
only abstractions are made that are independent of the property to be proven, and that satisfy the requirements of
Property 5.1.

 Assuming that we have the smallest possible model that still captures the essential features of a system, is there
anything more we can do to reduce the complexity of the verification task still further? Fortunately, the answer is yes.
In the next two sections, we will discuss two such techniques. The first technique modifies the verification algorithms
we have developed in the previous chapter in such a way that redundant work can be avoided without diminishing the
accuracy or the validity of the verification itself. The second technique is meant for cases where all the other reduction
methods have failed, and we are faced with a verification problem that is still too complex to handle within the
confines of available computational resources. This technique attempts to maximize the accuracy of a verification for
those cases where no exact proofs are possible.

[Team LiB]

[Team LiB]

In Summary
 The goal of this chapter is to show that applying model checking tools in a focused and targeted manner can be far
more effective than blindly applying them as brute force reachability analyzers.

 In a nutshell, the application of model checking in a design project typically consists of the following four steps:


 First, the designer chooses the properties (the correctness requirements) that are critical to the design.


Second, the correctness properties are used as a guideline in the construction of a verification model.
Following the principle of the smallest sufficient model, the verification model is designed to capture everything
that is relevant to the properties to be verified, and little else. The power of the model checking approach
comes in large part from our ability to define and use abstractions. Much of that power may be lost if we
allow the verification model to come too close to the specifics of an implementation.



Third, the model and the properties are used to select the appropriate verification method. If the model is very
large, this could mean the choice between a precise verification of basic system properties (such as a check
for absence of deadlock and the correctness of all process and system assertions), or a more approximate
check of more complex logical and temporal properties.



Fourth, the result of the verification is used to refine the verification model and the correctness requirements
until all correctness concerns are adequately satisfied.

 In the construction of a verifiable model it is good to be aware of the main causes of combinatorial complexity: the
number and size of buffered channels, and the number of asynchronously executing processes. We can often bring the
complexity of a verification task under control by carefully monitoring and adjusting these few parameters.

 We return to the topic of abstraction in Chapter 10, where we consider it in the context of automated model
extraction methods from implementation level code.
[Team LiB]

[Team LiB]

Bibliographic Notes
 The solution to the disk scheduler problem discussed in this chapter is based on Villiers [1979].

 The importance of abstraction in verification is generally recognized and features prominently in many papers in this
area. Foundational work goes back to the early work of Patrick and Radhia Cousot on abstract interpretation, e.g.,
Cousot and Cousot [1976].

 A detailed discussion of the theoretical background for abstraction is well beyond the scope of this book, but a good
starting point for such a discussion can be found in, for instance, the work of Abadi and Lamport [1991], Kurshan
[1993], Clarke, Grumberg, and Long [1994], Graf and Saidi [1997], Dams [1996], Dams, Gerth, and Grumberg
[1997], Kesten and Pnueli [1998], Das, Dill, and Park [1999], and in Chechik and Ding [2002]. A good overview
can also be found in Shankar [2002]. A general discussion of the role of abstraction in applications of SPIN is also
given in Holzmann [1998b], from which we have also derived some of the examples that were used in this chapter.

 An interesting discussion of the use of abstraction techniques that exploit symmetry in systems models to achieve a
reduction in the complexity of verifications can be found in Ip and Dill [1996].
[Team LiB]

[Team LiB]

Chapter 6. Automata and Logic
 "Obstacles are those frightful things you see when you take your eyes off your goal."

 —(Henry Ford, 1863–1947)

 The model checking method that we will describe in the next few chapters is based on a variation of the classic
theory of finite automata. This variation is known as the theory of -automata. The main difference with standard finite
automata theory is that the acceptance conditions for -automata cover not just finite but also infinite executions.

 Logical correctness properties are formalized in this theory as -regular properties. We will see shortly that 
-automata have just the right type of expressive power to model both process behavior in distributed systems and a
broad range of correctness properties that we may be interested in proving about such systems.
[Team LiB]

[Team LiB]

Automata
 To develop the theory, we begin with a few basic definitions.

 Definition 6.1 (FSA)

 A finite state automaton is a tuple (S, s0, L, T, F), where

S is a finite set of states,

s0 is a distinguished initial state, s0 S,

L is a finite set of labels,

T is a set of transitions, T (S x L x S), and

F is a set of final states, F S.

We will refer to state set S of finite state automaton A with a dot notation: A. S. Similarly, the initial state of A is
referred to as A. s0, etc.

 In the simplest case, an automaton is deterministic, with the successor state of each transition uniquely defined by the
source state and the transition label. Determinism is defined more formally as follows.

 Definition 6.2 (Determinism)

 A finite state automaton (S, s0, L, T, F) is deterministic if, and only if,

 Many of the automata we will use do not have this property, that is, they will be used to specify non-deterministic
behaviors. As we shall see, there is nothing in the theory that would make the handling of non-deterministic automata
particularly troublesome.

 Definition 6.3 (Runs)

 A run of a finite state automaton (S, s0, L, T, F) is an ordered, possibly infinite, set of transitions (a sequence)

 such that

 Occasionally we will want to talk about specific aspects of a given run, such as the sequence of states that is
traversed, or the sequence of transition labels that it defines. Note that for non-deterministic automata the sequence of
states traversed cannot necessarily be derived from the sequence of transition labels, and vice versa.

 Definition 6.4 (Standard acceptance)

 An accepting run of finite state automaton (S, s0, L, T, F) is a finite run in which the final transition (sn-1, ln-1, sn) has
the property that sn F.

 The run is considered accepted if and only if it terminates in a final state of the automaton.

 Figure 6.1 shows a simple finite state automaton with five states. It is defined as follows:

 Figure 6.1. A Simple Finite State Automaton

 The initial state s0 is traditionally marked with a short arrow, and the elements of set F are marked with a double
circle in graphical representations, as we have done in Figure 6.1.

 The labels on the transitions in a finite state automaton do not themselves have any inherent semantics. For the
purpose of the definitions, they are just symbols or uninterpreted text strings. We can freely choose to interpret some
of these labels as inputs or outputs or, where appropriate, as conditions or actions. The sample automaton from
Figure 6.1, for instance, could be interpreted as modeling the life of a user process in a time-sharing system,
controlled by a process scheduler, as illustrated in Figure 6.2. State s0 then represents the "Initial" state where the
process is being instantiated, state s1 is the "Ready" state, s2 is the "Run" state, s3 is the "Blocked" state, for example,
where the process may be waiting for a system call to complete, and s4 is the "End" state, reached if and when the
process terminates.

 Figure 6.2. A Possible Interpretation of the Automaton in Figure 6.1

 One possible accepting run of this system is represented by the sequence

 (s0,0s1), (s1,1,s2), (s2,5,s4),

 which, under our chosen interpretation, corresponds to the sequence of scheduler actions: start, run, stop.

[Team LiB]

[Team LiB]

Omega Acceptance

 With the definition of a finite state automaton given here, we can model terminating executions, but we still cannot
decide on acceptance or non-acceptance of ongoing, potentially infinite, executions. Looking at Figure 6.2, for
instance, if we were to model the underlying scheduler, rather than the processes being scheduled, the termination of
the scheduler itself would not necessarily be a desirable result. The same is true for many other interesting systems,
such as the control software for a nuclear power plant, a telephone switch, an ATM machine, or a traffic light.

 An infinite run is often called an -run (pronounced: "omega run"). Acceptance properties for -runs can be defined
in a number of different ways. The one we will adopt here was introduced by J.R. Büchi [1960].

 If  is an infinite run, let the symbol  represent the set of states that appear infinitely often within 's set of
transitions, and + the set of states that-appear only finitely many times. The notion of Büchi acceptance is defined as
follows.

 Definition 6.5 (Büchi acceptance)

 An accepting -run of finite state automaton (S, s0, L, T, F) is any infinite run such that sf, sf F sf .

 That is, an infinite run is accepted if and only if some state in F is visited infinitely often in the run. Without further
precautions then, in the automaton from Figure 6.1 we could only see an accepting run under the definition of Büchi
acceptance if at least one of the states s1, s2, or s3 were members of final set F, since only these states can be visited
infinitely often in a run.

 With these definitions it is also easy to formalize the notion of non-progress that we discussed before. Let P S be
the set of progress states. An -run  then corresponds to a non-progress cycle if: sf, sf  sf P.
[Team LiB]

[Team LiB]

The Stutter Extension Rule

 The given formalization of acceptance applies only to infinite runs. It would clearly be convenient if we could
somehow find a way to extend it so that the classic notion of acceptance for finite runs (cf. Definition 6.4) would be
included as a special case. This can be done with the adoption of a stuttering rule. To apply the rule, we must extend
our label sets with a fixed predefined null-label , representing a no-op operation that is always executable and has no
effect (much like PROMELA's skip statement). The stutter extension of a finite run can now be defined as follows.

 Definition 6.6 (Stutter Extension)

 The stutter extension of finite run  with final state sn is the -run ,(sn, , sn).

 The final state of the run, then, is thought to persist forever by infinitely repeating the null action . It follows that such
a run would satisfy the rules for Büchi acceptance if, and only if, the original final state sn is in the set of accepting
states F, which means that it indeed generalizes the classical definition of finite acceptance.

 A couple of abbreviations are so frequently used that it is good to summarize them here. The set of runs that is
accepted by an automaton is often referred to as the language of the automaton. An automaton with acceptance
conditions that are defined over infinite runs is often called an -automaton.

 Accepting -runs of a finite state automaton can always be written in the form of an expression, using a dot to
represent concatenation and the superfix  to represent infinite repetition:

 with Ui and Vi regular expressions over transitions in the automaton. That is, each such run consists of a finite prefix
U, corresponding to an initial part of the run that is executed just once, and a finite suffix V, corresponding to a part of
the run that is repeated ad infinitum. These expressions are called -regular expressions, and the class of properties
that they express are called -regular properties. As a final bit of terminology, it is common to refer to automata with
Büchi acceptance conditions simply as Büchi Automata.
[Team LiB]

[Team LiB]

Finite States, Infinite Runs

 It is clear that also an automaton with only finitely many states can have runs that are infinitely long, as already
illustrated by Figure 6.1. With some reflection, it will also be clear that a finite automaton can have infinitely many
distinct infinite runs.

 To see this, imagine a simple automaton with eleven states, ten states named s0 to s9, and one final (accepting) state
s10. Define a transition relation for this automaton that connects every state to every other state, and also include a
transition from each state back to itself (a self-loop). Label the transition from state si to sj with the PROMELA print
statement printf("%d\n", i). Use this labeling rule for all transitions except the self-loop on the one final state s10, which
is labeled skip. That is, if the transition from si to sj is taken, the index number of the source transition will be printed,
with as the single exception the transition from s10 back to s10, which produces no output.

 Every accepting run of this automaton will cause a number to be printed. This automaton has precisely one accepting
run for every imaginable non-negative integer number, and there are infinitely many distinct numbers of this type.
[Team LiB]

[Team LiB]

Other Types of Acceptance

 There are of course many other ways to formalize the acceptance conditions of -automata. Most of these methods
are named after the authors that first proposed them.



 Define F to be a set of subsets from state set S, that is, F 2s. We can require that the set of all states that
are visited infinitely often in run  equals one of the subsets in F:

 This notion of acceptance is called Muller acceptance, and the corresponding automata are called Muller
Automata.



We can also define a finite set of n pairs, where for each pair (Li, Ui) we have Li S and Ui S. We can now
require that there is at least one pair i in the set for which none of the states in Li appear infinitely often in ,
but at least one state in Ui does:

 This notion of acceptance is called Rabin acceptance, and the corresponding automata are called Rabin
Automata



Using the same definition of pairs of sets states, we can also define the opposite condition that for all pairs in
the set either none of the states in Ui appear infinitely often in , or at least one state in Li does:

 This notion of acceptance is called Streett acceptance, and the corresponding automata are called Streett
Automata.

 All these types of acceptance are equally expressive and define the same class of -regular properties as Büchi
Automata.

 Many interesting properties of Büchi automata have been shown to be decidable. Most importantly, this applies to
checks for language emptiness (i.e., deciding whether the set of accepting runs of a given Büchi automaton is empty),
and language intersection (i.e., generating a single Büchi automaton that accepts precisely those -runs that are
accepted by all members of a given set of Büchi automata). We shall see in Chapter 8 that the verification problem for
SPIN models is equivalent to an emptiness test for an intersection product of Büchi automata.
[Team LiB]

[Team LiB]

Logic
 Automata models offer a good formalism for the analysis of distributed system models. As noted in earlier chapters,
though, a complete verification model contains not just the specification of system behavior but also a formalization of
the correctness requirements that apply to the system. We will now show how higher-level requirements can be
expressed in a special type of logic that has a direct connection to the formalism of Büchi Automata.

 A run of an automaton captures the notion of system execution. Through the definition of acceptance conditions we
can already distinguish the runs that satisfy a given set of requirements from those that violate it. It can be a daunting
task, though, to express correctness requirements at this relatively low level of abstraction. We need a more
convenient method.

 Consider the automaton from Figure 6.3 with initial and final state s0. The formulation of a correctness property for
this automaton requires the ability to interpret its runs, minimally to distinguish the good runs from the bad ones. To do
so, we can define a semantics on the labels that are used. We will use the semantics interpretation of PROMELA. An
integer variable named x is assigned values, and is tested in conditionals.

 Figure 6.3. Model of a Simple Computation

 The sequence of states traversed during a run of this (deterministic) automaton is:

 s0, s1, s2, s3, s2, s3, s2, s3, s2, s0,

 Of course, not every accepting run of the automaton will automatically be consistent with our chosen semantics
interpretation of the labels. Given an initial value for x, we can write down the new value for x that is consistent with
the PROMELA assignment statements from the labels. A run is only consistent with the semantics interpretation if all
condition labels that appear in the run, such as x > 0 and x 0, evaluate to true.

 Given the initial value zero of x, we can annotate each state in the run above with the corresponding value for x, as
follows:

 (s0, 0), (s1, 13), (s2, 7), (s3, 7), (s2, 3), (s3, 3), (s2, 1), (s3, 1), (s2, 0), (s0, 0),

 Jointly, the state number si and the value of variable x define an extended system state. We can derive a pure
(non-extended) finite state automaton from the one that is specified in Figure 6.3 by expanding the set of states. State
s2, for instance, would generate four copies in such an unfolding. For values 7, 3, 1, and 0 of x, and state s3 would
generate three copies, one for each of the values 7, 3, and 1. The resulting expanded finite state automaton has nine
states, all of which appear in the annotated state sequence.

 We can formulate properties of runs of the expanded automaton. The most interesting properties would deal with the
achievable and non-achievable values of x during a run. Consider, for instance, the properties

 p: "the value of x is odd"

q: "the value of x is 13"

 We can deduce a truth value for p and for q at each extended system state. These types of properties are formally
called state formulae, to distinguish them from the temporal formulae we will discuss next. The sequence of truth
values for p and q then are:

 p: false, true, true, true, true, true, true, true, false, false, ...

q: false, true, false, false, false, false, false, false, false, false, ...

 To pursue this idea one step further still, we can make statements about possible and impossible sequences of
boolean values for p and q throughout a run, as in:



 p is invariantly true,


p eventually becomes invariantly false,


p always eventually becomes false at least once more,


q always implies ¬p,


p always implies eventually q.

 Note that the latter types of statements can only be fully evaluated for complete runs of the system, not just for
individual system states in isolation. It is clear that the first two properties above do not hold for the (single) accepting
run of our extended finite state automaton. The third and the fifth properties both hold, but the fourth does not.

 There are two questions that remain to be answered: can we formalize the properties of the type we have just
discussed in terms of a simple logic, and can we express the properties in terms of Büchi acceptance conditions? The
next two sections provide the answers to these two questions.

[Team LiB]

[Team LiB]

Temporal Logic

 The branch of logic that allows one to reason about both causal and temporal relations of properties is called
temporal logic. Temporal logic was first studied in the late sixties and early seventies, but primarily as a tool in
philosophical arguments that involved the passage of time. A first paper proposing the application of this type of logic
for the analysis of distributed system was authored by Amir Pnueli in 1977. It took more than a decade, though, for
the fundamental importance of these ideas to be more generally accepted.

 Temporal logic allows us to formalize the properties of a run unambiguously and concisely with the help of a small
number of special temporal operators. Most relevant to the verification of asynchronous process systems is a specific
branch of temporal logic that is known as linear temporal logic, commonly abbreviated as LTL. The semantics of LTL
is defined over infinite runs. With the help of the stutter extension rule, however, it applies equally to finite runs, as we
shall see in more detail shortly.

 A well-formed temporal formula is built from state formulae and temporal operators, using the following two basic
rules:

 Definition 6.7 (Well-Formed Temporal Formulae)


 All state formulae, including true and false, are well-formed temporal formulae.


If  is a unary temporal operator,  is a binary temporal operator, and p and q are well-formed temporal
formulae, than so are  p, p  q, (p), and !p (¬ p).

 The first temporal operator we will discuss is the binary operator until, which we will represent by the symbol . The
truth of a formula such as pUq can be evaluated for any given -run . The symbols p and q can be replaced with
arbitrary state formulae or with temporal sub-formulae. If a temporal formula f holds for -run , we write:

 |= f.

 In the definitions that follow, we use the notational convention that i represents the i-th element of the run , and 
[i] represents the suffix of  that starts at the i-th element. Trivially  [1] 1[2].

 There are two variations of the until operator that are distinguished by the adjective weak and strong. The definition
of the weak until operator is:

 Definition 6.8 (Weak Until)

 Notice that this definition does not require that the sub-formula q ever become true. The second variant of the
operator, called strong until and written U, adds that requirement.

 Definition 6.9 (Strong Until)

 There are two special cases of these two definitions that prove to be especially useful in practice. The first is a
formula of the type p false. Note that the truth of this formula only depends on the value of sub-formula p. We
introduce a special operator to capture this:

 Definition 6.10 (Always)

 The formula p captures the notion that the property p remains invariantly true throughout a run. The operator is
therefore pronounced always or box.

 The second special case is a formula of the type true q, which again reduces the number of operands from two to
one. The case is important enough to warrant the introduction of another shorthand.

 Definition 6.11 (Eventually)

 The formula p captures the notion that the property p is guaranteed to eventually become true at least once in a run.
The operator is therefore pronounced eventually, or diamond. It conveniently captures the notion of liveness.

 There is just one other temporal operator that we have to discuss here to complete the basic temporal logic
framework. This is the unary next operator which is represented by the symbol X. The semantics of the X operator
can be defined as follows.

 Definition 6.12 (Next)

 The formula X p then simply states that property p is true in the immediately following state of the run.

[Team LiB]

[Team LiB]

Recurrence and Stability

 There are many standard types of correctness properties that can be expressed with the temporal operators we have
defined. Two important types are defined next.

 Definition 6.13

 A recurrence property is any temporal formula that can be written in the form p, where p is a state formula.

 The recurrence property p states that if p happens to be false at any given point in a run, it is always guaranteed to
become true again if the run is continued.

 Table 6.1. Frequently Used LTL Formulae

Formula Pronounced Type/Template

p always p invariance

p eventually p guarantee

p q p implies eventually q response

p q r p implies q until r precedence

p always eventually p recurrence (progress)

p eventually always p stability (non-progress)

p q eventually p implies eventually q correlation

Definition 6.14

 A stability property is any temporal formula that can be written in the form p, where p is a state formula.

 The stability property p states that there is always a point in a run where p will become invariantly true for the
remainder of the run.

 Recurrence and stability are in many ways dual properties that reflect a similar duality between the two earlier
canonical correctness requirements we discussed: absence of non-progress cycles and absence of acceptance cycles.

 There are other interesting types of duality. For instance, if "!" denotes logical negation, it is not hard to prove that in
any context:

 Equation 1

Equation 2

Which also implies, for instance, p ! !p and p ! !p. We will refer to the above two standard equivalence
rules by number in the remainder of this chapter. Some other commonly used rules are:

 Many types of temporal logic formula are used so frequently that they have special names. One can consider such
formulae templates for expressing common types of properties. Table 6.1 lists the most popular of these templates.
We use the symbols and for logical implication and equivalence, defined as follows.

 Definition 6.15 (Implication)

 Definition 6.16 (Equivalence)

 Armed with this logic, we can now revisit the earlier examples of temporal properties that we wanted to be able to
express (p. 134), as shown in Table 6.2.

 Table 6.2. Formalization of Properties

Formula English

p p is invariantly true,

!p p eventually becomes invariantly false

!p p always eventually becomes false at least once more

(q !p) q always implies !p

(p q) p always implies eventually q

[Team LiB]

[Team LiB]

Using Temporal Logic

 The logic looks straightforward enough, and it is not difficult to develop an intuition for the meaning of the operators.
Still, it can sometimes be difficult to find the right formalization in temporal logic of informally stated requirements. As
an example, consider the informal system requirement that p implies q. The formalization that first comes to mind is

 which is almost certainly wrong. Note that as a formula in temporal logic this property must hold for every run of the
system. There are no temporal operators used here, just logical implication. This means that it holds if and only if

 which holds if in the first state of the run either p is false or q is true. It says nothing about the remaining steps in [2].
To make the property apply to all steps in the run we would have to change it into

 but also that is most likely not what is meant, because this expresses merely a logical implication between p and q,
not a temporal implication. If a temporal implication was meant, the formula should be written as follows:

 This still leaves some room for doubt, since it allows for the case where q becomes true in precisely the same state as
where p becomes true. It would be hard to argue that this accurately captures the notion that the truth of q is
somehow caused by the truth of p. To capture this, we need to modify the formula again, for instance, by adding a
next operator.

 After all this work, this formula may still prove to be misleading. If the antecedent p is invariantly false throughout
each run, for instance, the property will be satisfied. In this case, we call the property vacuously true. It is almost
surely not what we meant when we formalized the property. This brings us to the final revision of the formula by
adding the statement that we expect p to become true at some point. This produces the final form

 which is quite different from the initial guess of (p q).
[Team LiB]

[Team LiB]

Valuation Sequences

 Let P be the set of all state formulae that are used in a given temporal logic formula. Each such state formula is
typically represented by a lower-case propositional symbol (say p or q). Let, further, V represent the set of all the
possible boolean truth assignments to the propositional symbols in P (i.e., set V has 2|P| elements, where |P| is the
number of elements of set P). We call V the set of valuations of P. With each run  of a system we can now associate
a sequence of valuations from V, denoting the specific boolean values that all propositional symbols take, as we
illustrated earlier for the system in Figure 6.3. We will refer to that sequence as V().
[Team LiB]

[Team LiB]

Stutter Invariance

 The next operator, X, can be useful to express complex system requirements, but it should be used with caution.
Note first that in a distributed system the very notion of a "next" state is somewhat ambiguous. It is usually unknown
and unknowable how the executions of asynchronously execution processes are going to be interleaved in time. It can
therefore usually not be determined with certainty how a given current system state relates to the one that happens to
follow it after one more step in a run. We can assume that every process will make finite progress, unless it becomes
permanently blocked, but it is usually not justified to make more specific assumptions about the precise rate of
progress, relative to other processes, since this may depend on uncontrollable and often unobservable aspects of a
distributed system, such as the relative speeds of processors or subtle details of process scheduling.

 These somewhat vague notions about what can and what cannot safely be stated about the runs of a distributed
system can be made more precise with the help of the notion of stutter invariance.

 Consider a run  and its valuation  = V(). Remember that  is a sequence of truth assignments to the elements of
a finite set of boolean propositions P used in a given temporal formula. Two subsequent elements of this sequence are
either equal or they differ. We will replace series of equal consecutive elements in a valuation with a single symbol with
the number of repetitions recorded in a superfix.

 Let N be a sequence of positive numbers N1, N2, Each valuation  of a run can then be written in the form

 with an appropriate choice for N. Given such a sequence , we can derive a stutter-free variant of  by setting all
elements of N to one: N= 1, 1, We can also derive a set of variants of  that includes all possible choices for N.
Such a set is called the stutter extension of  and written as E().

 For temporal logic formula f to be satisfied on some run , the valuation V() must satisfy the formula, that is, we
must have V() |= f. We are now ready to define stutter invariance.

 Definition 6.17 (Stutter invariance)

 A temporal logic formula f is stutter invariant if and only if

 This means that the property is stutter invariant if it is insensitive to the number of steps that individual valuations of the
boolean propositions remain in effect.

 We argued earlier that it would be dangerous for the correctness of a system to depend on execution speed, so this
nicely captures our intuition about well-formed formulae in temporal logic: such formulae should be stutter invariant.

 It can be shown that if we bar the next operator, X, from temporal logic, the temporal formulae that we write will be
guaranteed to be stutter invariant. Moreover, it can also be shown that without the next operator we can precisely
express all stutter invariant properties. This does not mean that a temporal logic formula that includes a X operator is
necessarily not stutter invariant: it may well be so, but it is not guaranteed.

 In a later chapter we will see another reason why we will want to be cautious with the use of X: properties that are
known to be stutter invariant can be verified more efficiently than properties that do not have this property.

[Team LiB]

[Team LiB]

Fairness

 One of the attractive features of LTL is that it can be used to express a fairly broad range of fairness assumptions.
SPIN itself supports only a limited notion of fairness that applies only to the specific way in which process-level
non-determinism is resolved (i.e., it applies only to process scheduling decisions). In some cases, we may want to
express that also non-deterministic choices within a process are resolved conform some user-specified notion a
fairness. These types of fairness conditions are readily expressed in LTL. If, for instance, our correctness claim is ,
we can add the fairness constraint that if a process of type P visits a state labeled U infinitely often, it must also visit a
state labeled L infinitely often, by adding a conjunct to the property:

[Team LiB]

[Team LiB]

From Logic To Automata
 It was shown in the mid eighties that for every temporal logic formula there exists a Büchi automaton that accepts
precisely those runs that satisfy the formula. There are algorithms that can mechanically convert any temporal logic
formulae into the equivalent Büchi automaton. One such algorithm is built into SPIN.

 Strictly speaking, the system description language PROMELA does not include syntax for the specification of
temporal logic formulae, but SPIN does have a separate parser for such formulae and it can mechanically translate
them into PROMELA syntax, so that LTL can effectively become part of the language that is accepted by SPIN.
LTL, however, can only be used for specifying correctness requirements on PROMELA verification models. The
models themselves cannot be specified in LTL. SPIN's conversion algorithm translates LTL formulae into never
claims, and it automatically places accept labels within the claim to capture the semantics of the -regular property
that is expressed in LTL.

 To make it easier to type LTL formulae, the box (always) operator is written as a combination of the two symbols [],
and the diamond operator (eventually) is written as the two symbols <>. SPIN only supports the strong version of the
until operator, represented by the capital letter U. To avoid confusion, state properties are always written with
lower-case symbols such as p and q.

 We can, for instance, invoke SPIN as follows:

$ spin -f '<>[] p"

never { /* <>[]p */

T0_init:

 if

 :: (p) -> goto accept_S4

 :: (1) -> goto T0_init

 fi;

accept_S4:

 if

 :: (p) -> goto accept_S4

 fi

}

 Note carefully that in a UNIX environment the temporal logic formula must be quoted to avoid misinterpretation of
the angle symbols by the command interpreter, and to secure that the formula is seen as a single argument even if it
contains spaces.[1] SPIN places braces around all expressions to make sure that there can be no surprises in the
enforcement of precedence rules in their evaluation. Note also that the guard condition (1) is equivalent to the boolean
value true.

[1] On some, but not all, UNIX systems, the argument with the formula can also be enclosed in double quotes.

 A note on syntax: SPIN accepts LTL formulae that consist of propositional symbols (including the predefined terms
true and false), unary and binary temporal operators, and the three logical operators ! (logical negation), (logical
and), and (logical or). The logical and operator can also be written in C style as &&, and the logical or operator
can also be written as ||. Also supported are the abbreviations -> for logical implication and <-> for logical
equivalence (see Definitions 6.15 and 6.16). Arithmetic operators (e.g., +, -, *, /) and relational operators (e.g., >,
>=, <, <=, ==, !=) cannot appear directly in LTL formulae.

For example, the following attempt to convert a formula fails:

$ spin -f '([] p -> <> (a+b <= c))'

tl_spin: expected ')', saw '+'

tl_spin: ([] p -> <> (a+b <= c))

------------------------^

To succesfully convert this formula, we must introduce a new propositional symbol to hide the arithmetic and relational
operators, as follows:

#define q (a+b <= c)

We can now invoke SPIN's converter on the new formula:

$ spin -f ' ([] p -> <> q)'

Also be aware of operator precedence rules. The formula above is quite different, for instance, from:

$ spin -f ' ([] (p -> <> q))'

(Hint: try the conversions with SPIN to see the difference).

 The automaton for the formula p is shown in Figure 6.4. The automaton has two states, one initial state s0, which
corresponds to the never claim state T0_init, and one accepting state s1, which corresponds to never claim state
accept_S4.

 Figure 6.4. Automaton for p

 Note that the automaton contains no transitions labelled (!p), in state accept_S4 or s1. The reason is that when p
becomes false after we have reach this state, the continuation of the run can no longer lead to acceptance. The
automaton needs to monitor only those runs that may still produce a counterexample if continued sufficiently far. All
other runs are irrelevant to the verification procedure and can summarily be rejected. A direct benefit of leaving the
automaton incomplete in this sense is therefore that the verifier will have to inspect fewer runs, which makes it more
efficient.

 The never claim that is generated by SPIN can be included into a PROMELA model to check if the behavior defined
by the temporal logic formula can occur in the model, provided that the propositional symbols that are used (here only
p) are defined. Typically, the definitions are done with macros, for instance, as follows:

#define p (x > 0 && x <= 100)

 SPIN will flag it as an error if an accepting run can be found that matched the behavior expressed. That is, SPIN will
find those runs that satisfy the LTL formula that was used to generate the never claim. To show that a property such
as p should not be violated, we can simply negate the formula before the claim is generated, for instance, as
follows:

$ spin -f ' !<>[]p'

never { /* !<>[]p */

T0_init:

 if

 :: (!(p)) -> goto accept_S9

 :: (1) -> goto T0_init

 fi;

accept_S9:

 if

 :: (1) -> goto T0_init

 fi;

}

 The corresponding automaton is shown in Figure 6.5.

 Figure 6.5. Automaton for ¬ p = ¬ p

 Because of the known equivalences we can deduce that !<> p is equivalent to ! p which in turn is equivalent to
!p. This means that if we ask SPIN to convert the formula !p we should get the same result as for !<> p. This is

readily confirmed by a little experiment:

$ spin -f ' []<>!p'

never { /* []<>!p */

T0_init:

 if

 :: (!(p)) -> goto accept_S9

 :: (1) -> goto T0_init

 fi;

accept_S9:

 if

 :: (1) -> goto T0_init

 fi;

}

 It should be carefully noted that the automaton for neither the original nor the negated version of this formula can
accept finite runs (cf. p. 130), and neither version necessarily matches all possible system behaviors. The claim is
meant to capture only those accepting runs that satisfy the temporal formula; no more and no less.

 The automata that are produced by most conversion algorithms are not always the smallest possible. It can be useful
to understand how never claims work, so that in special cases, when performance is at a premium, the claim
automaton can be edited to remove unnecessary states or transitions. A detailed explanation of the working of never
claims can be found in Chapter 4, p. 85.

 In some cases, also, it can be difficult, or risky, to manually change a SPIN generated claim. It can then be useful to
compare the SPIN generated claims with those produced by alternate converters. As an example, consider the
following suboptimal claim for the requirement (p q):

$ spin -f ' [] (p -> <> q)'

never { /* [] (p -> <> q) */

T0_init:

 if

 :: ((! (p)) || (q)) -> goto accept_S20

 :: (1) -> goto T0_S27

 fi;

accept_S20:

 if

 :: ((! (p)) || (q)) -> goto T0_init

 :: (1) -> goto T0_S27

 fi;

accept_S27:

 if

 :: (q) -> goto T0_init

 :: (1) -> goto T0_S27

 fi;

T0_S27:

 if

 :: (q) -> goto accept_S20

 :: (1) -> goto T0_S27

 :: (q) -> goto accept_S27

 fi;

}

 An alternative converter, [2] called ltl2ba, written by Paul Gastin and Denis Oddoux, produces a smaller claim:

[2] Gastin and Oddoux's converter is available as part of the standard SPIN distribution. See Appendix D.

$ ltl2ba -f '[] (p -> <> q)'

never { /* [] (p -> <> q) */

accept_init:

 if

 :: (!p) || (q) -> goto accept_init

 :: (1) -> goto T0_S2

 fi;

T0_S2:

 if

 :: (1) -> goto T0_S2

 :: (q) -> goto accept_init

 fi;

}

 The corresponding automaton structure is shown in Figure 6.6.

 Figure 6.6. Automaton for (p q)

 The logical negation of this last requirement is also interesting. It can be derived as follows:

! (p q) (by the definition of)

! (!p q) (by equivalence rule [1], p. 137)

!(!p q) (by De Morgan's Laws)

(p ! q) (by equivalence rule [2])

(p !q)

 The corresponding never claim is shown in Figure 6.7.

 Figure 6.7. Never Automaton for (p !q)

 We can of course also let SPIN do the derivation of the negated formula. The never claim that matches Figure 6.7 is
generated as follows:

$ spin -f '![] (p -> <> q)'

never { /* ![] (p -> <> q) */

T0_init:

 if

 :: (! ((q)) && (p)) -> goto accept_S4

 :: (1) -> goto T0_init

 fi;

accept_S4:

 if

 :: (! ((q))) -> goto accept_S4

 fi;

}

 This time the built-in algorithm from SPIN does much better in generating a small automaton. Note carefully that using
else instead of (1) (i.e., true) in the first selection construct would imply a check for just the first occurrence of
expression (!(q)&&(p)) becoming true in the run. The claim as generated checks for all such occurrences, anywhere
in a run.

 As a slightly more complicated variation on the previous example, consider the requirement (p (r q)). The
corresponding automaton is shown in Figure 6.8. In this case, all possible (infinite) runs of the automaton are
accepting. But not all runs are possible. Runs in which, for instance, r becomes false before q becomes true in state s1
are not accepted. The negation of the property can be derived as follows.

 Figure 6.8. Automaton for (p (r q))

! (p (r q)) (by the definition of)

! (!p (r q)) (by equivalence rule [1], p. 137)

!(!p (r q)) (by De Morgan's Laws)

(p !(r q)).

 Of course, it is typically easier to let SPIN handle the negation and do the conversion than to work out the negations
manually. The automaton that corresponds to either the LTL formula (p !(r q)) or the formula ! (p (r q)) is
shown in Figure 6.9.

 Figure 6.9. Automaton for (p !(r q))

 This three-state -automaton can be generated in SPIN's never claim format as follows:

$ spin -f '![] (p -> (q U r))'

never { /* ![] (p -> (q U r)) */

T0_init:

 if

 :: (!(r) && (p)) -> goto accept_S4

 :: (!(r) && (p) && (!(q))) -> goto accept_all

 :: (1) -> goto T0_init

 fi;

accept_S4:

 if

 :: (!(r)) -> goto accept_S4

 :: (!(q)) && (!(r)) -> goto accept_all

 fi;

accept_all: /* instant violation */

 skip

}

 Note again the use of (1) (or equivalently true) instead of else to allow us to initiate the check anywhere in an infinite
run.

 Not all properties of interest can be specified in LTL, so in some cases we can build a stronger property by
hand-writing a never claim directly, instead of deriving one from an LTL formula. Technically, the properties that can
be express in LTL are a subset of the set of -regular properties. PROMELA never claims can express all -regular
properties, and are therefore some what more expressive than LTL alone.

[Team LiB]

[Team LiB]

An Example

 Consider the following model:

int x = 100;

active proctype A()

{

 do

 :: x%2 -> x = 3*x+1

 od

}

active proctype B()

{

 do

 :: !(x%2) -> x = x/2

 od

}

 What can the range of values of x be? We may want to prove that x can never become negative or, more
interestingly, that it can never exceed its initial value of one hundred. We can try to express this in the following
formula:

$ spin -f ' [] (x > 0 && x <= 100)' # wrong

tl_spin: expected ')', saw '>'

tl_spin: [] (x > 0 && x <= 100)

----------------^

 But this is not right for two reasons. The first is indicated by the syntax error that SPIN flags. For SPIN to be able to
translate a temporal formula it may contain only logical and temporal operators and propositional symbols: it cannot
directly include arithmetic or relational expressions. We therefore have to introduce a propositional symbol to
represent the expression (x > 0 && x <= 100), and write

$ spin -f '[] p' # better, but still wrong

never { /* []p */

accept_init:

T0_init:

 if

 :: p -> goto T0_init

 fi;

}

 Elsewhere in the model itself we can now define p as:

#define p (x > 0 && x <= 100)

 To see that this is still incorrect, notice that we have used SPIN to generate a never claim: expressing behavior that
should never happen. We can use SPIN only to check for violations of requirements. So what we really meant to
state was that the following property, the violation of the first, cannot be satisfied:

$ spin -f '![] p' # correct

never { /* ![]p */

T0_init:

 if

 :: (!(p)) -> goto accept_all

 :: (1) -> goto T0_init

 fi;

accept_all:

 true

}

 This automaton exits, signifying a violation, when the condition p ever becomes false, which is what we intended to
express. SPIN can readily prove that violations are not possible, proving that with the given initialization the value of x
is indeed bounded.

 Another property we can try to prove is that the value of x eventually always returns to one. Again, to check that this
is true we must check that the opposite cannot happen. First we introduce a new propositional symbol q.

#define q (x == 1)

 Using q, the negated property is written as follows:

$ spin -f '![]<>q'

never { /* ![]<>q */

T0_init:

 if

 :: (!(q)) -> goto accept_S4

 :: (1) -> goto T0_init

 fi;

accept_S4:

 if

 :: (!(q)) -> goto accept_S4

 fi;

}

 Also in this case SPIN readily proves the truth of the property.

 Note also that to make these claims about the possible values of the integer variable x, the scope of the variable must
include the never claim. This means that we can only make these claims about global variables. A local variable is
never within the scope of a PROMELA never claim.

[Team LiB]

[Team LiB]

Omega-Regular Properties

 PROMELA never claims can express a broader range of properties that can be expressed in temporal logic, even
when the next operator is allowed. Formally, a never claim can express any -regular property. To capture a
property that is not expressible in temporal logic we can try to encode it directly into a never claim, but this is an
error-prone process. There is an alternative, first proposed by Kousha Etessami. The alternative is to extend the
formalism of temporal logic. A sufficient extension is to allow each temporal logic formula to be prefixed by an
existential quantifier that is applied to one of the propositional symbols in the formula. Etessami proved that this single
extension suffices to extend the power of temporal logic to cover all -regular properties.

 Consider the case where we want to prove that it is impossible for p to hold only in even steps in a run, but never at
odd steps. The temporal logic property [] X p would be too strong for this, since it would require p to hold on all
even steps. This property can be expressed with existential quantification over some pseudo variable t as follows.

{E t} t && [](t -> X !t) && [](!t -> X t) && [](p -> !t)

 This property states that there exists a propositional symbol t that is initially true and forever alternates between true
and false, much like a clock. The formula further states that the truth of the p that we are interested in always logically
implies the falseness of the alternating t. The automaton that corresponds to this formula is as follows.

$ eqltl -f '{E t} t && [](t -> X !t) && \

 [] (!t -> X t) && [](p -> !t)'

never {

accept0:

 if

 :: (!(p)) -> goto accept1

 fi;

accept1:

 if

 :: (1) -> goto accept0

 fi

}

 In the first step, and every subsequent odd step in the run, p is not allowed to be true. No check on the value of p is
in effect during the even steps.

 The eqltl program was developed by Kousha Etessami.
[Team LiB]

[Team LiB]

Other Logics

 The branch of temporal logic that we have described here, and that is supported by the SPIN system, is known as
linear time temporal logic. The prefix linear is due to the fact that these formulae are evaluated over single sequential
runs of the system. With the exception of the small extension that we discussed in the previous section, no quantifiers
are used. Linear temporal logic is the dominant formalism in software verification. In applications of model checking to
hardware verification another version of temporal logic is frequently used. This logic is known as branching time
temporal logic, with as the best known example CTL (an acronym for computation tree logic), which was developed
at Carnegie Mellon University. CTL includes both universal and existential quantification, and this additional power
means that CTL formulae are evaluated over sets of executions (trees), rather than over individual linear execution
paths. There has been much debate in the literature about the relative merits of branching and linear time logics, a
debate that has never culminated in any clear conclusions. Despite many claims to the contrary, there is no definitive
advantage to the use of either formalism with regard to the complexity of verification. This complexity is dominated by
the size of the verification model itself, not by the type of logic used to verify it. This issue, and some other frequently
debated issues in model checking, is explored in greater detail in Appendix B.
[Team LiB]

[Team LiB]

Bibliographic Notes
 The basic theory of finite automata was developed in the fifties. A good summary of the early work can be found in
Perrin [1990]. The theory of -automata dates back almost as far, starting with the work of Büchi [1960]. An
excellent survey of this work, including definitions of the various types of acceptance conditions, can be found in
Thomas [1990].

 Amir Pnueli's influential paper, first proposing the use of temporal logic in the analysis of distributed systems, is Pnueli
[1977]. The main notions used in the definition of temporal logic were derived from earlier work on tense logics.
Curiously, this work, including the definition of some of the key operators from temporal logic, did not originate in
computer science but in philosophy, see, for instance, Prior [1957,1967], and Rescher and Urquhart [1971]. An
excellent overview of temporal logic can be found in Emerson [1990].

 The correspondence between linear temporal logic formulae and Büchi automata was first described in Wolper,
Vardi, and Sistla [1983]. An efficient conversion procedure, which forms the basis for the implementation used in
SPIN, was given in Gerth, Peled, Vardi, and Wolper [1995]. The SPIN implementation uses some further
optimizations of this basic procedure that are described in Etessami and Holzmann [2000].

 There are several other implementations of the LTL conversion procedure, many of which can outperform the
procedure that is currently built into SPIN. A good example is the procedure outlined in Gastin and Oddoux [2001].
Their converter, called ltl2ba, is available as part of the SPIN distribution.

 The notion of stuttering is due to Lamport [1983], see also Peled, Wilke, and Wolper [1996] and Peled and Wilke
[1997]. Etessami's conversion routine for handling LTL formulae with existential quantification is described in
Etessami, Wilke, and Schuller [2001].
[Team LiB]

[Team LiB]

Chapter 7. PROMELA Semantics
 "The whole is often more than the sum of its parts."

 —(Aristotle, Metaphysica, 10f–1045a, ca. 330 B.C.)

 As we have seen in the earlier chapters, a SPIN model can be used to specify the behavior of collections of
asynchronously executing processes in a distributed system. By simulating the execution of a SPIN model we can in
principle generate a large directed graph of all reachable system states. Each node in that graph represents a possible
state of the model, and each edge represents a single possible execution step by one of the processes. PROMELA is
defined in such a way that we know up-front that this graph will always be finite. There can, for instance, be no more
than a finite number of processes and message channels, there is a preset bound on the number of messages that can
be stored in each channel, and each variable has a preset and finite range of possible values that it can attain during an
execution. So, in principle, the complete graph can always be built and analyzed in a finite amount of time.

 Basic correctness claims in PROMELA can be interpreted as statements about the presence or absence of specific
types of nodes or edges in the global reachability graph. More sophisticated temporal logic properties can be
interpreted to express claims about the presence or absence of certain types of subgraphs, or paths, in the reachability
graph. The global reachability graph can itself also be interpreted as a formal object: a finite automaton, as defined in
Appendix A (p. 553).

 The structure of the reachability graph is determined by the semantics of PROMELA. In effect, the PROMELA
semantics rules define how the global reachability graph for any given PROMELA model is to be generated. In this
chapter we give operational semantics of PROMELA in precisely those terms. The operational semantics definitions
should allow us to derive in detail what the structure of the global reachability graph is for any given SPIN model.
[Team LiB]

[Team LiB]

Transition Relation
 Every PROMELA proctype defines a finite state automaton, (S, s0, L, T, F), as defined in Chapter 6. The set of
states of this automaton S corresponds to the possible points of control within the proctype. Transition relation T
defines the flow of control. The transition label set L links each transition in T with a specific basic statement that
defines the executability and the effect of that transition. The set of final states F, finally, is defined with the help of
PROMELA end-state, accept-state, and progress-state labels. A precise description of how set F is defined for
safety and for liveness properties can be found in Appendix A.

 Conveniently, the set of basic statements in PROMELA is very small. It contains just six elements: assignments,
assertions, print statements, send or receive statements, and PROMELA's expression statement (cf. p. 51). All other
language elements of PROMELA serve only to specify the possible flow of control in a process execution, that is,
they help to specify the details of transition relation T. As one small example, note that goto is not a basic statement in
PROMELA. The goto statement, much like the semicolon, merely defines control-flow.

 As a small example of how PROMELA definitions translate into automata structures, consider the PROMELA
model shown in Figure 7.1, which corresponds to the automaton structure shown in Figure 7.2. The presence of the
goto achieves that the execution of the assertion statement leads to control state s2, instead of s4. Thereby it changes
the target state of a transition, but it does not in itself add any transitions. In other words, the goto effects a change in
transition relation T, but it does not, and cannot, appear in label set L.

 Figure 7.1 Sample PROMELA Model

active proctype not_euclid(int x, y)

{

 if

 :: (x > y) -> L: x = x - y

 :: (x < y) -> y = y - x

 :: (x == y) -> assert(x!=y); goto L

 fi;

 printf(";%d\n", x)

}

 Figure 7.2. Transition Relation for the Model in Figure 7.1

 Two points are especially worth noting here. First, language elements such as if, goto, the statement separators
semicolon and arrow, and similarly also do, break, unless, atomic, and d_step, cannot appear as labels on transitions:
only the six basic types of statements in PROMELA can appear in set L.

 Second, note that expression statements do appear as first-class transition labels in the automaton, and they are from
that point of view indistinguishable from the other types of basic statements. In PROMELA every basic statement has
a precondition that defines when it is executable, and an effect that defines what happens when it is executed. We
explore many of these issues in more detail in the remainder of this chapter.

[Team LiB]

[Team LiB]

Operational Model
 Our operation model centers on the specification of a semantics engine which determines how a given PROMELA
model defines system executions, including the rules that apply to the interleaved execution of process actions. The
semantics engine operates on abstract objects that correspond to asynchronous processes, variables, and message
channels. We give formal definitions of these abstract objects first. We also define the concept of a global system
state and a state transition, corresponding, respectively, to nodes and edges in a global reachability graph. We skip
the definition of more basic terms, such as sets, identifiers, integers, and booleans.

 Definition 7.1 (Variable)

 A variable is a tuple (name,scope,domain,inival,curval) where

name is an identifier that is unique within the given scope,

scope is either global or local to a specific process.

domain is a finite set of integers.

inival, the initial value, is an integer from the given domain, and

curval, the current value, is also an integer from the given domain.

 We will refer to the elements of a tuple with a dot notation. For instance, if v is a variable, then v.scope is its scope.

 The scope of a variable is either global, including all processes, or it is restricted to one specific process (to be
defined below). The type of a variable trivially determines its domain. For instance, a variable of type bit has domain
{0,1}.

 Definition 7.2 (Message)

 A message is an ordered set of variables (Def. 7.1).

 Definition 7.3 (Message Channel)

 A channel is a tuple (ch_id,nslots,contents) where

ch_id is a positive integer that uniquely identifies the channel,

nslots is an integer, and

contents is an ordered set of messages (Def. 7.2) with maximum cardinality nslots.

 Note that the definition of a channel does not contain a scope, like the definition of a variable. A PROMELA channel
always has global scope. It can be created either globally or locally, by an active process, but its method of creation
does not affect its scope. Every channel is in principle accessible to every active process, by knowledge of channel
instantiation number ch_id. The variable that holds this channel instantiation number can have a local scope, but not
the channel itself.

 Definition 7.4 (Process)

 A process is a tuple

(pid,lvars,lstates,initial,curstate,trans)where

pid is a positive integer that uniquely identifies the process,

lvars is a finite set of local variables (Def. 7.1), each with a scope

that is restricted to the process with instantiation number pid.

lstates is a finite set of integers (see below),

initial and curstate are elements of set lstates, and

trans is a finite set of transitions (Def. 7.5) on lstates.

 The pid value is the process instantiation number which uniquely identifies a running process within the system. In the
initial state of a newly created process curstate=initial, and all elements of lvars have curval=inival.

 We refer to the elements of set lstates as the local states of a process. The integer values serve to uniquely identify
each state within the set, but hold no more information.

 Definition 7.5 (Transition)

 A transition in process P is defined by a tuple

(tr_id,source,target,cond,effect,prty,rv) where

tr_id is a non-negative integer,

source and target are elements from set P.lstates (i.e., integers),

cond is a boolean condition on the global system state (Def. 7.6),

effect is a function that modifies the global system state (Def. 7.6),

prty and rv are integers.

 As we shall see later, the integers prty and rv are used inside cond and effect definitions to enforce the semantics of
unless constructs and rendezvous operations, respectively.

 Definition 7.6 (System State)

 A global system state is a tuple of the form

(gvars,procs,chans,exclusive,handshake,timeout,else, stutter) where

gvars is a finite set of variables (Def. 7.1) with global scope,

procs is a finite set of processes (Def. 7.4),

chans is a finite set of message channels (Def. 7.3),

exclusive, and handshake are integers,

timeout, else, and stutter are booleans.

 In the initial system state all processes (Def. 7.4) are in their initial state, all global variables (Def. 7.1) have
curval=inival, all message channels (Def. 7.3) have contents={} (i.e., empty), exclusive and handshake are zero, and
the booleans timeout and else and stutter all have the initial value false.

 Definitions 7.1 to 7.6 capture the minimal information that is needed to define the semantics of the PROMELA
language in terms of an operational model, with processes defined as transition systems (i.e., automata). A small
number of predefined integer "system variables" that are manipulated by the semantics engine appear in these
definitions:



 prty, which is used to enforce the semantics of the unless construct,


rv and handshake, to enforce the semantics of rendezvous operations,


exclusive, to enforce the semantics of atomic and d_step sequences,


stutter, to enforce the stutter extension rule (cf. p. 130), and timeout and else, to enforce the semantics of the
matching PROMELA statements.

 In the next section we define the semantics engine. With the help of this definition it should be possible to resolve any
question about the interpretation of PROMELA constructs independently from the implementation of SPIN.

[Team LiB]

[Team LiB]

Operational Model, Semantics Engine

 The semantics engine executes a SPIN model in a step by step manner. In each step, one executable basic statement
is selected. To determine if a statement is executable or not, one of the conditions that must be evaluated is the
corresponding executability clause, as described in the PROMELA manual pages that start on p. 363. If more than
one statement is executable, any one of them can be selected. The semantics definitions deliberately do not specify (or
restrict) how the selection of a statement from a set of simultaneously executable statements should be done. The
selection could, for instance, be random. By leaving this decision open, we in effect specify that the correctness of
every SPIN model should be independent of the selection criterion that is used.

 For the selected statement, the effect clause from the statement is applied, as described in the PROMELA manual
pages for that statement, and the control state of the process that executes the statement is updated. The semantics
engine continues executing statements until no executable statements remain, which happens if either the number of
processes drops to zero, or when the remaining processes reach a system deadlock state.

 The semantics engine executes the system, at least conceptually, in a stepwise manner: selecting and executing one
basic statement at a time. At the highest level of abstraction, the behavior of this engine can be defined as follows:

 Let E be a set of pairs (p,t), with p a process, and t a transition. Let executable(s) be a function, yet to be defined,
that returns a set of such pairs, one for each executable transition in system state s. The semantics engine then
performs as shown in Figure 7.3.

 Figure 7.3 PROMELA Semantics Engine

1 while ((E = executable(s)) != {})

2 {

3 for some (p,t) from E

4 { s' = apply(t.effect, s)

5

6 if (handshake == 0)
7 { s = s'

8 p.curstate = t.target

9 } else

10 { /* try to complete rv handshake */

11 E' = executable(s')

12 /* if E' is {}, s is unchanged */

13

14 for some (p',t') from E'

15 { s = apply(t'.effect, s')

16 p.curstate = t.target

17 p'.curstate = t'.target

18 }

19 handshake = 0
20 } }

21 }

22 while (stutter) { s = s } /* 'stutter' extension */

 As long as there are executable transitions (corresponding to the basic statements of PROMELA), the semantics
engine repeatedly selects one of them at random and executes it.

 The function apply() applies the effect of the selected transition to the system state, possibly modifying system and
local variables, the contents of channels, or even the values of the reserved variables exclusive and handshake, as
defined in the effect clauses from atomic or rendezvous send operations, respectively. If no rendezvous offer was
made (line 6), the global state change takes effect by an update of the system state (line 7), and the current state of the
process that executed the transition is updated (line 8).

 If a rendezvous offer was made in the last transition, it cannot result in a global state change unless the offer can also
be accepted. On line 11 the transitions that have now become executable are selected. The definition of the function
executable() below guarantees that this set can only contain accepting transitions for the given offer. If there are none,
the global state change is declined, and execution proceeds with the selection of a new executable candidate transition
from the original set E. If the offer can be matched, the global state change takes effect (line 15). In both processes,
the current control state is now updated from source to target state (lines 16 and 17).

 To verify liveness properties with SPIN, we must be able to treat finite executions as special cases of infinite
executions. The standard way of doing so is to define a stutter extension of finite executions, where the final state is
repeated ad infinitum. The engine in Figure 7.3 uses the system variable stutter to determine if the stuttering rule is in
effect (line 22). Only the verification system can change this variable.

 Changes in the value of this particular system variable are not covered by the semantics of PROMELA proper, but
they are determined by the verification algorithms that are used for checking, for instance, -regular properties of
PROMELA models. Note that the stutter variable is only used to render a formal judgment on the semantics of a
given model; it is not part of the semantics definition itself. More specific notes on the verification of PROMELA
models follow at the end of this chapter.

 A key part of the semantics is in the definition of what precisely constitutes an executable transition. One part will be
clear: for transition t to be executable in the current system state, its executability clause t.cond must be satisfied. But
there is more, as illustrated by the specification of function executable() in Figure 7.4. To avoid confusion, the
reserved state variables timeout, else, and exclusive are set in bold in the figure. These variables are the only ones that
can be modified within this function as part of the selection process.

 Figure 7.4 Specification of Procedure executable()

1 Set

2 executable(State s)

3 { new Set E

4 new Set e

5

6 E = {}

7 timeout = false
8 AllProcs:

9 for each active process p

10 { if (exclusive == 0

11 or exclusive == p.pid)

12 { for u from high to low /* priority */

13 { e = {}; else = false
14 OneProc: for each transition t in p.trans

15 { if (t.source == p.curstate

16 and t.prty == u

17 and (handshake == 0

18 or handshake == t.rv)

19 and eval(t.cond) == true)
20 { add (p,t) to set e

21 } }

22 if (e != {})

23 { add all elements of e to E

24 break /* on to next process */

25 } else if (else == false)
26 { else = true
27 goto OneProc

28 } /* or else lower the priority */

29 } } }

30

31 if (E == {} and exclusive != 0)
32 { exclusive = 0
33 goto AllProcs

34 }

35 if (E == {} and timeout == false)
36 { timeout = true
37 goto AllProcs

38 }

39

40 return E /* executable transitions */

41 }

 For a transition to be added to the set of executable transitions it has to pass a number of tests.


 The test on line 10-11 checks the value of the reserved system variable exclusive. By default it is zero, and
the semantics engine itself never changes the value to non-zero. Any transition that is part of an atomic
sequence sets exclusive to the value of p.pid, to make sure that the sequence is not interrupted by other
processes, unless the sequence itself blocks. In the latter case the semantics engine restores the defaults (line
32).



The test on line 16 checks the priority level, set on line 12. Within each process, the semantics engine selects
the highest priority transitions that are executable. Note that priorities can affect the selection of transitions
within a process, not between processes. Priorities are defined in PROMELA with the unless construct.



The test on line 15 matches the source state of the transition in the labeled transition system with the current
state of the process, selected on line 9.



The test on lines 17-18 makes sure that either no rendezvous offer is outstanding, or, if one is, that the
transition being considered can accept the offer on the corresponding rendezvous port.



The test on line 19, finally, checks whether the executability condition for the transition itself is satisfied.

 If no transitions are found to be executable with the default value false for system variable else, the transitions of the
current process are checked again, this time with else equal to true (lines 26-27). If no transitions are executable in
any process, the value of system variable timeout is changed to true and the entire selection process is repeated (lines
32-35). The new value of timeout sticks for just one step (line 7), but it can cause any number of transitions in any
number of processes to become executable in the current global system state. The syntax of PROMELA prohibits the
use of both else and timeout within a single condition statement.

 Note again that the semantics engine does not establish the validity or invalidity of correctness requirements, as the
judgement of what is correct system behavior is formally outside the definition of PROMELA semantics proper.

[Team LiB]

[Team LiB]

Interpreting PROMELA Models
 The basic objects that are manipulated by the semantics engine are, of course, intended to correspond to the basic
objects of a PROMELA model. Much of the language merely provides a convenient mechanism for dealing with the
underlying objects. In the PROMELA reference manual in Chapter 16, some language constructs are defined as
meta-terms, syntactic sugar that is translated into PROMELA proper by SPIN's preprocessor. Other language
elements deal with the mechanism for declaring and instantiating variables, processes, and message channels. The
control-flow constructs, finally, provide a convenient high-level means for defining transition relations on processes.
An if statement, for instance, defines how multiple transitions can exit from the same local process state. The
semantics engine does not have to know anything about control-flow constructs such as if, do, break, and goto; as
shown, it merely deals with local states and transitions.

 Some PROMELA constructs, such as assignments and message passing operations, cannot be translated away. The
semantics model is defined in such a way that these primitive constructs correspond directly to the transitions of the
underlying state machines. We call these PROMELA constructs basic statements, and there are surprisingly few of
them in the language. The language reference manual defines the transition elements for each basic statement that is
part of the language.
[Team LiB]

[Team LiB]

Three Examples

 Consider the following PROMELA model.

chan x = [0] of { bit };

chan y = [0] of { bit };

active proctype A() { x?0 unless y!0 }

active proctype B() { y?0 unless x!0 }

 Only one of two possible rendezvous handshakes can take place. Do the semantics rules tell us which one? If so, can
the same rules also resolve the following, very similar, situation?

chan x = [0] of { bit };

chan y = [0] of { bit };

active proctype A() { x!0 unless y!0 }

active proctype B() { y?0 unless x?0 }

 And, finally, what should we expect to happen in the following case?

chan x = [0] of { bit };

chan y = [0] of { bit };

active proctype A() { x!0 unless y?0 }

active proctype B() { y!0 unless x?0 }

 Each of these cases can be hard to resolve without guidance from a semantics definition. The semantics rules for
handling rendezvous communication and for handling unless statements seem to conflict here. This is what we know.



 The definition of unless states that the statement that precedes the unless keyword has a lower execution
priority than the statement that follows it. These priorities must be used to resolve executability conflicts
between the two transitions within each process.



Rendezvous handshakes occur in two parts: the send statement constitutes a rendezvous offer, which can
succeed if it is matched by a receive operation on the same channel in the immediately following execution
step by the other process. To make the offer, the send statement must be executable by the rules of the
semantics engine, and to accept the offer the matching receive operation must be executable.



The effect clause of the rendezvous send operation states that the value of reserved variable handshake is set
to the value of the channel instantiation number ch_id for the channel used. Lines 17-18 in Figure 7.4 then
imply that no statement can now be executed, unless it has the rv parameter on that transition set to the same
value, which is only the case for receive operations that target the same channel. A global state transition in the
main execution loop of the semantics engine can only take place for rendezvous operations if the offer can be
accepted.

 We are now ready to resolve the semantics questions.

 In the first example, according to the priority rule enforced by the unless operator, two statements are executable in
the initial state: x!0 and y!0. Either one could be selected for execution. If the first is executed, we enter a rendezvous
offer, with handshake set to the ch_id of channel x. In the intermediate global state s' then reached, only one statement
can be added to set E', namely x?0. The final successor state has handshake == 0 with both processes in their final
state. Alternatively, y!0 could be selected for execution, with an analogous result. The resulting state space structure is
illustrated in Figure 7.5. For convenience, we have included the intermediate states where rendezvous offers are in
progress. If a rendezvous offer cannot be accepted, the search algorithm will not actually store the intermediate state
in the state space. Similarly, if the offer is accepted, the transition from state s0 to s1 is equivalent to an atomic step.

 Figure 7.5. State Space Structure for First and Third Example

 In the second example, only one statement is executable in the initial system state: y!0, and only the corresponding
handshake can take place. The resulting state space structure is illustrated in Figure 7.6.

 Figure 7.6. State Space Structure for Second Example

 In the third example, the first two statements considered, at the highest priority (line 12, Figure 7.3), are both
unexecutable. One priority level lower, though, two statements become executable: x!0 and y!0, and the resulting two
system executions are again analogous to those from the first example, as illustrated in Figure 7.5.

 A few quick checks with SPIN can confirm that indeed the basic executions we derived here are the only ones that
can occur.

[Team LiB]

[Team LiB]

Verification
 The addition of a verification option does not affect the semantics of a PROMELA model as it is defined here. Note,
for instance, that the semantics engine does not include any special mention or interpretation of valid end states,
accepting states, non-progress states, or assertions, and it does not include a definition for the semantics of never
claims or trace assertions. The reason is that these language elements have no formal semantics within the model: they
cannot be used to define any part of the behavior of a model.

 Assertion statements, special labels, never claims, and trace assertions are used for making meta statements about the
semantics of a model. How such meta statements are to be interpreted is defined in a verifier, as part of the
verification algorithm.

 When a verifier checks for safety properties it is interested, for instance, in cases where an assert statement can fail,
or in the presence of executions that violate the requirements for proper termination (e.g., with all processes in a valid
end state, and all message channels empty). In this case, the predefined system variable stutter, used in the definition
of the semantics engine on line 22 in Figure 7.3, is set to false, and any mechanism can be in principle used to generate
the executions of the system, in search of the violations.

 When the verifier checks for liveness properties, it is interested in the presence of infinite executions that either
contain finitely many traversals of user-defined progress states, or infinitely many traversals of user-defined accept
states. The predefined system variable stutter is set to true in this case, and, again, any mechanism can be used to
generate the infinite executions, as long as it conforms to the semantics as defined before. We discuss the algorithms
that SPIN uses to solve these problems in Chapters 8 and 9. The definition of final states in product automata is
further detailed in Appendix A.
[Team LiB]

[Team LiB]

The Never Claim

 For purposes of verification, it is not necessary that indeed all finite or infinite executions that comply with the formal
semantics are inspected by the verifier. In fact, the verifiers that are generated by SPIN make every effort to avoid
inspecting all possible executions. Instead, they try to concentrate their efforts on a small set of executions that suffices
to produce possible counterexamples to the correctness properties. The use of never claims plays an important role
here. A never claim does not define new semantics, but is used to identify which part of the existing semantics can
violate an independently stated correctness criterion.

 The interpretation of a never claim by the verifier in the context of the semantics engine is as follows. Note that the
purpose of the claim is to suppress the inspection of executions that could not possibly lead to a counterexample. To
accomplish this, the verifier tries to reject some valid executions as soon as possible. The decision whether an
execution should be rejected or continued can happen in two places: at line 2 of the semantics engine, and at line 22 (
Figure 7.3), as illustrated in Figure 7.7.

 Figure 7.7 Claim Stutter

 1 while ((E = executable(s)) != {})

 *2 { if (check_fails()) Stop;
 3 for some (p,t) from E

 . . .

 21 }

*22 while (stutter) { s = s; if (check_fails()) Stop; }

 SPIN implements the decision from line 22 by checking at the end of a finite execution if the never claim automaton
can execute at least one more transition. Repeated stutter steps can then still lead to a counterexample. When the
claim is generated from an LTL formula, all its transitions are condition statements, formalizing atomic propositions on
the global system state. Only infinite executions that are consistent with the formal semantics of the model and with the
constraint expressed by the never claim can now be generated.

 With or without a constraint provided by a never claim, a verifier hunting for violations of liveness properties can
check infinite executions for the presence of counterexamples to a correctness property. The method that the verifier
uses to find and report those infinite executions is discussed in Chapter 8.
[Team LiB]

[Team LiB]

Chapter 8. Search Algorithms
 "If I had eight hours to chop down a tree, I'd spend six hours sharpening my axe."

 —(Abraham Lincoln, 1809–1865)

 In this chapter we will discuss the basic algorithms that SPIN uses to verify correctness properties of PROMELA
models. The basic algorithms are fairly simple and can quickly be explained. But, if we are interested in applying a
verifier to problems of practical size, the mere basics do not always suffice. There are many ways in which the
memory use and the run-time requirements of the basic algorithms can be optimized. Perhaps SPIN's main strength
lies in the range of options it offers to perform such optimizations, so that even very large problem sizes can be
handled efficiently. To structure the discussion somewhat, we will discuss the main optimization methods that SPIN
uses separately, in the next chapter. In this chapter we restrict ourselves to a discussion of the essential elements of the
search method that SPIN employs.

 We start with the definition of a depth-first search algorithm, which we can then extend to perform the types of
functions we need for systems verification.
[Team LiB]

[Team LiB]

Depth-First Search

 Consider a finite state automaton A = (S, s0, L, T, F) as defined in Chapter 6 (p. 127). This automaton could, for
instance, be the type of automaton that is generated by the PROMELA semantics engine from Chapter 7, capturing
the joint behavior of a number of asynchronously executing processes. Every state in such an automaton then
represents a global system state. For the discussion that follows, though, it is immaterial how the automaton was
constructed or what it represents precisely.

 The algorithm shown in Figure 8.1 performs a depth-first search to visit every state in set A.S that is reachable from
the initial state A.s0. The algorithm uses two data structures: a stack D and a state space V.

 Figure 8.1 Basic Depth-First Search Algorithm

Stack D = {}

Statespace V = {}

Start()

{

 Add_Statespace(V, A.s0)

 Push_Stack(D, A.s0)

 Search()

}

Search()

{

 s = Top_Stack(D)

 for each (s, l, s') .A.T

 if In_Statespace(V, s') == false

 { Add_Statespace(V, s')

 Push_Stack(D, s')

 Search()

 }

 Pop_Stack(D)

 }

 A state space is an unordered set of states. As a side effect of the execution of the algorithm in Figure 8.1, some of
the contents of set A.S is reproduced in state space V, using the definition of initial state A.s0 and of transition relation
A.T. Not all elements of A.S will necessarily appear in set V, because not all these elements may effectively be
reachable from the given initial state.

 The algorithm uses just two routines to update the contents of the state space:


 Add_Statespace(V,s) adds state s as an element to state space V


In_Statespace(V,s) returns true if s is an element of V, otherwise it returns false

 A stack is an ordered set of states. If the symbols < and > indicate the ordering relation, we have for any stack D:

 Because of the ordering relation, a stack also has a unique top and bottom element. If the stack is non-empty, the top
is the most recently added element and the bottom is the least recently added element.

 The algorithm in Figure 8.1 uses three routines to access stack D:


 Push_Stack(D,s) adds state s as an element to stack D


Top_Stack(D) returns the top element from D, if D is non-empty, and otherwise returns nil


Pop_Stack(D) removes the top element from D, if D is non-empty, and otherwise returns nil

 It is not hard to show that this algorithm secures that state space V will contain no duplicates and can grow no larger
than A.S.

 The algorithm deliberately stores only states in set V, and no transitions. In this case complete information about all
possible transitions is of course already available in relation A.T, but we may not always have this information
available in precomputed form. When SPIN executes algorithm 8.1, for instance, it constructs both state set A.S and
transition relation A.T on-the-fly, as an interleaving product of smaller automata, each one of which represents an
independent thread of control, as explained in more detail in Appendix A.

 To modify the algorithm from Figure 8.1 for on-the-fly verification is straightforward. The modified algorithm starts
from a global initial system state, which is now specified as a composite of component states: { A1.s0, A2.s0,
...,An.s0 }. All other system states in A.S are unknown at this point. Instead of relying on a precomputed definition of
A.T, the successor states of any given system state { A1.si, A2.sj, ..., An.sk } are now computed on the fly from the
transition relations of the individual components { A1.T1, A2.T2, ..., An.Tn }, subject to the semantics rules from
Chapter 7.

 By avoiding the storage of transitions in the state space, we can gain a substantial savings in the memory requirements
during verification. We will see shortly that to perform safety and liveness checks we only need the information that is
collected in the two data-structures that are maintained by the algorithm from Figure 8.1: state space V and stack D.

 The algorithm in Figure 8.1 has the following important property:

 Property 8.1

 The algorithm from Figure 8.1 always terminates within a finite number of steps.

 Proof:

 Before each new recursive call to routine Search (), at least one state from A.S that is not yet contained in V must be
added to V. Because set A.S is finite, this can only happen a finite number of times.

[Team LiB]

[Team LiB]

Checking Safety Properties
 The depth-first search algorithm systematically visits every reachable state, so it is relatively straightforward to extend
the algorithm with an evaluation routine that can check arbitrary state or safety properties. The extension of the search
algorithm that we will use is shown in Figure 8.2. It uses a generic routine for checking the state properties for any
given state s, called Safety (s).

 Figure 8.2 Extension of Figure 8.1 for Checking Safety Properties

Stack D = {}

Statespace V = {}

Start()

{

 Add_Statespace(V, A. s0)

 Push_Stack(D, A. s0)

 Search()

}

Search()

{

 s = Top_Stack(D)

* if !Safety(s)

* { Print_Stack(D)

* }

 for each (s, l, s') A.T

 if In_Statespace(V, s') == false

 { Add_Statespace(V, s')

 Push_Stack(D, s')

 Search()

 }

 Pop_Stack(D)

}

 This routine could, for instance, flag the presence of a deadlock state by checking if state s has any successors, but it
can also flag the violation of process assertions or system invariants that should hold at s. Since the algorithm visits all
reachable states, it has the desirable property that it can reliably identify all possible deadlocks and assertion
violations.

 The only real issue to resolve is what precisely the algorithm should do when it finds that a state property is violated.
It could, of course, merely print a message, saying, for instance:

dfs: line 322, assertion (a > b) can be violated, aborting.

 There are two things wrong with this approach. First and foremost, this solution would leave it to the user to
determine just how and why the assertion could be violated. Just knowing that a state property can be violated does
not help us to understand how this could happen. Secondly, it is not necessary to abort a verification run after a single
violation was found. The search for other violations can continue.

 To solve the first problem, we would like our algorithm to provide the user with some more information about the
sequence of steps that can lead to the property violation. Fortunately, all the information to do so is readily available.
Our algorithm can produce a complete execution trace that demonstrates how the state property was violated. The
trace can start in the initial system state, and end at the property violation itself. That information is contained in stack
D. For this purpose, the algorithm in Figure 8.2 makes use of a new stack routine Print_Stack(D):

 Print_Stack(D) prints out the elements of stack D in order, from the bottom element up to and including the top
element.

 When SPIN uses this algorithm, it prints out not just each state that is reached along the execution path that leads
from the initial state to the state where a property violation was discovered, it also adds some details on the transitions
from set A.T that generated each new state in the path. To allow SPIN to do so, all that is needed is to save an
integer index into a lookup table of local process transitions with each element in stack D.

 Note that the counterexamples that are produced with this algorithm are not necessarily the shortest possible
counterexamples. This is unpleasant, but not fatal: it often suffices to look at just the last few steps in an execution
sequence to understand the nature of a property violation.

[Team LiB]

[Team LiB]

Depth-Limited Search

 We can adapt the depth-first search algorithm fairly easily into a depth-limited search that guarantees coverage up to
a given depth bound. Such an algorithm is given in Figure 8.4. One change is the addition of an integer variable depth
to maintain a running count of the size of stack D. Before growing the stack, the algorithm now checks the value of
variable Depth against upper-bound BOUND. If the upper-bound is exceeded, routine Search () does not descend
the search tree any further, but returns to the previous expansion step.

 This change by itself is not sufficient to guarantee that all safety violations that could occur within BOUND steps will
always be found. Assume, for instance, an upper-bound value of three for the size of D. Now consider a state s2 that
is reachable from the initial state via two paths: one path of two steps and one path of one step. If s2 has an error
state e among its successors (i.e., a state exhibiting a property violation) that error state is reachable via either a path
of three steps or via a path of two steps. The first path exceeds our presumed bound of three, but the second does
not. If the depth-first search starts by traversing the first path, it will have added states s0, s1, and s2 to state space V
when it runs into the depth bound of three. It will then return, first to state s1 and next to state s0 to explore the
remaining successor states. One such successor state of s0 is s2. This state, however, is at this point already in V and
therefore not reconsidered. (It will not be added to the stack again.) The second path to the error state e will
therefore not be explored completely, and the reachability of the error state within three steps will go unreported. The
situation is illustrated in Figure 8.3.

 Figure 8.3. Example for Depth-Limited Search

 We can avoid this type of incompleteness by storing the value of variable Depth together with each state in state
space V. The algorithm from Figure 8.4 uses this information in a slightly modified version of the two state space
access routines, as follows:



 Add_Statespace(V,s,d) adds the pair (s, d) to state space V, where s is a state and d the value of Depth,
that is, the current size of the stack



In_Statespace(V,s,d) returns true if there exists a pair (s', d') in V such that s' s and d' <- d. Otherwise it
returns false

 Figure 8.4 Depth-Limited Search

Stack D = {}

Statespace V = {}

int Depth = 0

Start()

{

 Add_Statespace(V, A.s0, 0)

 Push_Stack(D, A.s0)

 Search()

}

Search()

{

* if Depth >= BOUND

* { return

* }

* Depth++

 s = Top_Stack(D)

 if !Safety(s)

 { Print_Stack(D)

 }

 for each (s, l, s') A. T

* if In_Statespace(V, s', Depth) == false

* { Add_Statespace(V, s', Depth)

 Push_Stack(D, s')

 Search()

 }

 Pop_Stack(D)

* Depth--

}

 Compared to the simpler algorithm from Figure 8.2, this version of the depth-first search is clearly more expensive. In
the worst case, if R is the number of reachable states that is explored, we may have to explore each state up to R
times. This means that in this worst case there can be a quadratic increase in the run-time requirements of the
algorithm, while the memory requirements increase only linearly with R to accommodate the depth field in V.

 The algorithm from Figure 8.4 is implemented as an option in SPIN. To invoke it, the verifier is compiled with a
special compiler directive -DREACH. If the verifier is compiled in this way, the run-time option -i can be used to
iteratively search for the shortest error trail. This only works for safety properties though. An alternative algorithm to
use in this case is a breadth-first search, which we will discuss shortly (see Figure 8.6).

 The example from Figure 8.3 could be expressed in PROMELA as follows:

init { /* Figure 8.3 */

 byte x;

S0: if

 :: x = 1; goto S1

 :: x = 2; goto S2

 fi;

S1: x++;

S2: x++;

E: assert(false)

}

 We can confirm that the default search with a depth-limit of three fails to find the assertion violation.

$ spin -a example.pml

$ cc -o pan pan.c

$./pan -m3

error: max search depth too small

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 12 byte, depth reached 2, errors: 0

 3 states, stored

 2 states, matched

 5 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.253 memory usage (Mbyte)

unreached in proctype :init:

 line 10, state 10, "-end-"

 (1 of 10 states)

 If we switch to the depth-bounded search algorithm from Figure 8.4, and repeat the search with the same depth
bound, the assertion violation is correctly reported:

$ spin -a example.pml

$ cc -DREACH -o pan pan.c

$./pan -m3

error: max search depth too small

pan: assertion violated 0 (at depth 2)

pan: wrote example.pml.trail

...

 The search algorithm can also be extended to allow the verifier to iteratively home in on the shortest possible path to
an error state, but adjusting the depth bound to the length of the last error path that was reported and allowing the
search to continue after each new error, until the entire graph has been searched. In this case, we would replace the
part of the code in Figure 8.4 that does the error check with the following fragment:

 if !Safety(s)

 { Print_Stack(D)

* if (iterative)

* BOUND = Depth

 }

 Each new error path is now guaranteed to be shorter than all earlier paths, which means that the last reported path
will also be the shortest. A run of the verifier that uses this option looks as follows:

$./pan -i # iterative search for shortest error

pan: assertion violated 0 (at depth 3)

pan: wrote example.pml.trail

pan: reducing search depth to 3

pan: wrote example.pml.trail

pan: reducing search depth to 2

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 12 byte, depth reached 3, errors: 2

 4 states, stored

 2 states, matched

 6 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

 The first error path reported in this run is of length three. The new depth bound is then set to three and the search
continues. Next, the shorter path of two steps is found and reported, which is also the shortest such path. Even though
the worst case behavior of this algorithm is disconcerting, to say the least, this worst case behavior is rarely observed
in practice. The typical use of the iterative search option is to find a shorter equivalent to an error path, only after the
existence of an error path was demonstrated with a regular search. The length of that error path can then be used as
an initial upper-bound for the iterative search.

[Team LiB]

[Team LiB]

Trade-Offs

 The computational requirements for the depth-first search algorithm are linear in the number of reachable states in
A.S. If A.S is itself computed from asynchronous components, which is the typical case in applications of SPIN, the
size of this state set is in the worst case equal to the size of the Cartesian product of all component state sets Ai.S (cf.
Appendix A). The size of this set can increase exponentially with the number of component systems. Although in
practice the number of reachable states is no more than a small fraction of this upper bound, a small fraction of a
potentially astronomically large number can still be very large.

 One of the advantages of on-the-fly verification is that it allows us to trade memory requirements for run-time
requirements when needed. One way to do this would be to randomly erase part of the state space when the
algorithm runs out of memory, provided that the part erased contains no states that are still on the stack. Note
carefully that the state space access routines (not the stack routines) serve only to prevent the multiple exploration of
states. These routines do not affect the actual coverage of the search.

 If we omit the call on routine Add_Statespace(), and replace the routine In_Statespace() with a new stack routine
In_Stack(), we still have a correct algorithm that is guaranteed to terminate within a finite number of steps. The routine
In_Stack(D,s) can be defined to return true if state s is currently contained in stack D, and false in all other cases.

 The real purpose of the state space access routines is to improve the efficiency of the search by avoiding the
repetition of work. If we completely eliminate the state space routines, as illustrated in Figure 8.5, the efficiency of the
search could deteriorate dramatically. This change may cause each state to be revisited once from every other state in
the state space, which means a worst-case increase in complexity from O(R) to O(RR) steps, where R is the total
number of reachable states.

 Figure 8.5 Stateless Search

Stack D = {}

Start()

{

* Push_Stack(D, A.s0)

 Search()

}

Search()

{

 s = Top_Stack(D)

 if !Safety(s)

 { Print_Stack(D)

 if (iterative)

 BOUND = Depth

 }

 for each (s, l, s') A. T

* if In_Stack(D, s') == false

* { Push_Stack(D, s')

 Search()

 }

 Pop_Stack(D)

}

 Intermediate solutions are possible, for example, by changing the state space V from an exhaustive set into a cache of
randomly selected previously visited states, but it is hard to avoid cases of seriously degraded performance. SPIN
therefore does not use caching strategies to reduce memory use. The optimization strategies implemented in SPIN are
all meant to have a more predictable effect on performance. We discuss these strategies in Chapter 9.
[Team LiB]

[Team LiB]

Breadth-First Search

 The implementation of a breadth-first search discipline looks very similar to that of the depth-first search. Instead of a
search stack, though, we now use a standard queue. Successor states are added to the tail of the queue during the
search, and they are removed from the head. A queue is just an ordered set of states. We use two new functions to
access it.



 Add_Queue(D,s) adds state s to the tail of queue D,


Del_Queue(D) deletes the element from the head of D and returns it.

 This search procedure is illustrated in Figure 8.6.

 Figure 8.6 Breadth-First Search Algorithm

Queue D = {}

Statespace V = {}

Start()

{

 Add_Statespace(V, A.s0)

 Add_Queue(D, A.s0)

 Search()

}

Search()

{

 s = Del_Queue(D)

 for each (s, l, s') A. T

 if In_Statespace(V, s') == false

 { Add_Statespace(V, s')

 Add_Queue(D, s')

 Search()

 }

}

 Despite the similarities of depth-first and breadth-first searches, the two algorithms have quite different properties.
For one, the depth-first search can easily be extended to detect cycles in graphs; the breadth-first search cannot. With
the depth-first search algorithm, we also saw that it suffices to print out the contents of the stack to reconstruct an
error path. If we want to do something similar with a breadth-first search, we have to store more information. One
simple method is to store a link at state in state space V that points to one of the predecessors of each state. These
links can then be followed to trace a path back from an error state to the initial system state when an error is
encountered. It is then easy to use the breadth-first search algorithm for the detection of safety violations, for instance
with the following extension that can be placed immediately after the point where a new state s is retrieved from queue
D.

if !Safety(s)

{ Find_Path(s)

}

 We have introduced a new procedure Find_Path(s) here that traces back and reproduces the required error path.
SPIN has an implementation of this procedure that is enabled by compiling the verifier source text with the optional
compiler directive -DBFS. For the example specification, for instance, this gives us the shortest error path
immediately.

$ spin -a example.pml

$ cc -DBFS -o pan pan.c

$./pan

pan: assertion violated 0 (at depth 2)

pan: wrote example.pml.trail

...

 The clear advantage of this method is that, if the memory requirements are manageable, it will guarantee that the
shortest possible safety errors will be found first. The main disadvantages of the method are that it can sometimes
substantially increase the memory requirements of the search, and that it cannot easily be extended beyond safety
properties, unlike the depth-first search method.

[Team LiB]

[Team LiB]

Checking Liveness Properties
 We will show how the basic algorithm from Figure 8.1 can be extended for the detection of liveness properties, as
expressible in linear temporal logic. Liveness deals with infinite runs, -runs. Clearly, we can only have an infinite run
in a finite system if the run is cyclic: it reaches at least some of the states in the system infinitely often. We are
particularly interested in cases where the set of states that are reached infinitely often contains one or more accepting
states, since these runs correspond to -accepting runs. We have seen in Chapter 6 how we can arrange things in
such a way that accepting runs correspond precisely to the violation of linear temporal logic formulae.

 An acceptance cycle in the reachability graph of automaton A exists if and only if two conditions are met. First, at
least one accepting state is reachable from the initial state of the automaton A.s0. Second, at least one of those
accepting states is reachable from itself.

 The algorithm that is used in SPIN to detect reachable accepting states that are also reachable from themselves is
shown in Figure 8.7. The state space and stack structures now store pairs of elements: a state and a boolean value
toggle, for reasons we will see shortly.

 Figure 8.7 Nested Depth-First Search for Checking Liveness Properties

Stack D = {}

Statespace V = {}

State seed = nil

Boolean toggle = false

Start()

{

 Add_Statespace(V, A.s0, toggle)

 Push_Stack(D, A.s0, toggle)

 Search()

}

Search()

{

 (s,toggle) = Top_Stack(D)

 for each (s, l, s') A. T

 {

 /* check if seed is reachable from itself */

 if s' == seed V On_Stack(D,s',false)

 { PrintStack(D)

 PopStack(D)

 return

 }

 if In_Statespace(V, s', toggle) == false

 { Add_Statespace(V, s', toggle)

 Push_Stack(D, s', toggle)

 Search()

 }

 }

 if s A. F && toggle == false

 { seed = s /* reachable accepting state */

 toggle = true

 Push_Stack(D, s, toggle)

 Search() /* start 2nd search */

 Pop_Stack(D)

 seed = nil

 toggle = false

 }

 Pop_Stack(D)

}

 When the algorithm determines that an accepting state has been reached, and all successors of that state have also
been explored, it starts a nested search to see if the state is reachable from itself. It does so by storing a copy of the
accepting state in a global called seed. If this seed state can be reached again in the second search, the accepting state
was shown to be reachable from itself, and an accepting -run can be reported.

 The check for a revisit to the seed state contains one alternative condition that is equivalent to a match on the seed
state itself. If a successor state s' appears on the stack of the first search (that lead us to the seed state), then we
know immediately that there also exists a path from s' back to the seed state. That path is contained in stack D,
starting at the state that is matched here and ending at the first visit to the seed state, from which the nested search
was started.

 Property 8.2

 The algorithm from Figure 8.7 will detect at least one acceptance cycle if at least one such cycle exists.

 Proof

 For an acceptance cycle to exist there must be at least one accepting state that is both reachable from the initial
system state and reachable from itself. Consider the very first such state that is encountered in post-order during the
depth-first search; call it za. This need not be the first accepting state encountered as such, since there may well be
accepting states that are not reachable from themselves that were encountered earlier in the search.

After all states that are reachable from za have been explored with a toggle attribute false, seed is set to za. The value
of toggle is now set to true, and a new search (the nested search) is initiated starting from seed. At this point there can
only be states in the state space with a toggle attribute equal to true if they are either accepting states that were
reached earlier in the first depth-first search, or if they are states that are reachable from those accepting states.

There is only one case in which the nested depth-first search starting at za can fail to generate a full path back to za.
This case occurs if that path contains a state that is already present in the state space with a true toggle attribute. Call
that earlier state ze, and call the earlier accepting state from which it was reached zn. Note that the nested depth-first
search truncates when reaching state ze for the second time.

Now, even though state za is reachable from an earlier accepting state zn in the nested search, za could not have been
reached from zn in the first search, because in that case the nested search for za would have been initiated before the
nested search for zn. (Due to the post-order search discipline.) This necessarily means that the path that leads from ze
to za must intersect the depth-first search stack in the first search somewhere above state zn. But if that is the case,
the earlier accepting state zn is necessarily also reachable from itself, through the path that is on the stack. This
contradicts the assumption that za is the first accepting state encountered that is reachable from itself.

 When, therefore, the first accepting state that is reachable from itself is generated the state space cannot contain any
previously visited states with a true toggle attribute from which this state is reachable, and thus the self-loop is
necessarily constructed.

 The property we have proven above does not necessarily hold for any accepting state after the first one that is
encountered that is reachable from itself. Therefore, this algorithm can only guarantee that if one or more acceptance
cycles exist, at least one of them will be found. That property suffices to perform formal verification. After all, only one
counterexample is needed to disprove a correctness claim.

 As in Figure 8.1, we have defined the algorithm in Figure 8.7 for a single given automaton A. In the context of SPIN,
the automaton A is not given but has to be computed. If, for instance, we want to verify an LTL property f for a given
system automaton S, then we first convert ¬ f into a never claim (a Büchi automaton) B. The desired automaton A is
then computed as the synchronous product of S and B. System automaton S may have to be computed as the
asynchronous product of n components {S1, S2, ... Sn} as well. The definitions of synchronous and asynchronous
products can be found in Appendix A.

[Team LiB]

[Team LiB]

Adding Fairness

 LTL is rich enough to express many fairness constraints directly, for example, in properties of the form (trigger
response). Specific types of fairness can also be predefined and built into the search algorithm. Recall that the

asynchronous product of finite automata that is the ultimate subject of LTL model checking is built as an interleaving of
transitions from smaller automata, A = A1 x A2 ...Ak (cf. Appendix A). Each of the automata A1 x A2 ...Ak
contributes transitions to the runs of A. Component automaton Ai is said to be enabled at state s of the global
automaton A if s has at least one valid outgoing transition from Ai. We can now define two standard notions of
fairness.

 Definition 8.1 (Strong Fairness)

 An -run  satisfies the strong fairness requirement if it contains infinitely many transitions from every component
automaton that is enabled infinitely often in .

 Definition 8.2 (Weak Fairness)

 An -run  satisfies the weak fairness requirement if it contains infinitely many transitions from every component
automaton that is enabled infinitely long in .

 The two definitions differ just in the use of the terms infinitely often and infinitely long, yet the computational overhead
that is required to check these two requirements is vastly different. As we shall see shortly, the check for weak
fairness increases the run-time expense of a verification run by a factor that is linear in the number of component
automata (i.e., the number of running processes in a SPIN model). To check strong fairness within a system like
SPIN, however, would increase the run time of a basic verification by a factor that is quadratic in the number of
component automata, which for all practical purposes puts it beyond our reach. Not surprisingly, therefore, SPIN
only includes support for weak fairness, and not for strong fairness.

 SPIN's implementation of the weak fairness requirement is based on Choueka's flag construction method (see the
Bibliographic Notes at the end of this chapter). Although the details of the implementation in SPIN are complex, it is
not hard to describe the intuition behind the algorithm.

 The depth-first search algorithm from Figure 8.1 explores the global reachability graph for an automaton A. Assume
again that A itself is computed as the product of k component automata A1, ..., Ak. We will now create (k + 2)
copies of the global reachability graph that is computed by the algorithm from Figure 8.1. We preserve the
acceptance labels from all accepting states only in the first copy of the state graph, that for convenience we will call
the 0-th copy. We remove the accepting labels from all states in the remaining (k + 1) copies. Next, we make some
changes in the transition relation to connect all copies of the state graph, without really removing or adding any
behavior.

 We change the destination states for all outgoing transitions of accepting states in the 0-th copy of the state space, so
that they point to the same states in the next copy of the state space, with copy number one.

 In the i-th copy of the state graph, with 1 i k, we change the destination state of each transition that was
contributed by component automaton Ai (i.e., the i-th process) to the same state in the (i + 1)-th copy of the state
graph. For the last copy of the state space, numbered (k + 1), we change all transitions such that their destination
state is now in the 0-th copy of the state graph.

 The unfolding effect is illustrated in Figure 8.8, which is based on a similar figure in Bosnacki [2001].

 Figure 8.8. (k+2) Times Unfolded State Space for Weak Fairness

 These changes do not add or remove behavior, but it should be clear that any accepting -run in the (k + 2) times
unfolded state space now necessarily includes transitions from all k component automata. Note particularly that there
can be no accepting cycles that are contained within the 0-th copy of the state graph, since all transitions that emerge
from accepting states lead out of that graph. This means that we can use the nested depth-first search procedure from
Figure 8.7 on the unfolded state graph to detect all fair accepting runs in the original graph.

 We have to make one final adjustment to this procedure to account for the fact that, according to Definition 8.2, a
component automaton that has no enabled transitions in a given state need not participate in an infinite run that
traverses that state. To account for this we can add a null transition from every state s in the i-th copy of the state
graph, 1 i k, to the same state s in the (i + 1)-th copy whenever automaton component i has no enabled
transitions in s. Without that null transition a complete cycle through all (k + 2) copies would of course not always be
possible.

 The algorithm thus modified can enforce weak fairness, but not strong fairness. Consider, for instance, the case
where a component automaton is intermittently blocked and enabled. With the procedure we have outlined we cannot
detect whether this automaton should or should not be included in an accepting -run.

 Drawing the unfolded state space for even small examples can create rather complex graphs. A trivial example is
shown in Figure 8.9, where we have drawn a two-state state space, which we assume to be generated by the joint
execution of two asynchronous processes. The process numbered one contributes one single transition, from state s1
to state s2, and the process numbered two contributes one single transition back from state s2 to state s1. State s2 is
assumed to be accepting. Clearly, in this case there is just one behavior, and this one behavior corresponds to a fair
acceptance cycle. With k equal to two, the unfolded state space, shown in Figure 8.10, contains four copies of the
state space, each with two states. Only five of the eight states in the unfolded state space are reachable, though. The
acceptance cycle is indicated with the bold arrows in Figure 8.10. Note also that as a side effect of the state space
unfolding the length of the counterexample that will be generated by SPIN can be longer than strictly necessary. The
path contains four steps in this case. The shortest possible counterexample would contain just two steps.

 Figure 8.9. A Two-State Global State Space Example

 Figure 8.10. Unfolded State Space for Example in Figure 8.9

 As another, only slightly more realistic, example, consider the following PROMELA model with two processes:

active proctype A()

{ bit i;

accept:

 do

 :: i = 1-i

 od

}

active proctype B()

{ bit i;

 do

 :: i = 1-i

 od

}

 The verifier is generated and compiled as usual.

$ spin -a fairness.pml

$ cc -o pan pan.c

 The default search for acceptance cycles then quickly succeeds.

$./pan -a

pan: acceptance cycle (at depth 2)

pan: wrote fairness.pml.trail

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles + (fairness disabled)

 invalid end states +

State-vector 16 byte, depth reached 3, errors: 1

 3 states, stored (5 visited)

 5 states, matched

 10 transitions (= visited+matched)

 0 atomic steps

...

 This cycle, however, is restricted to just executions of the process of type B, which is not very interesting (and
violates a reasonable assumption of finite progress that we could make for both processes in this system).

$ spin -t -p fairness.pml

 1: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 2: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

 <<<<<START OF CYCLE>>>>>

 3: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 4: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

spin: trail ends after 4 steps

#processes: 2

 4: proc 1 (B) line 12 "fairness.pml" (state 2)

 4: proc 0 (A) line 5 "fairness.pml" (state 2)

 2 processes created

 The problem is resolved if we enforce weak fairness. We repeat the search as follows:

$./pan -a -f

pan: acceptance cycle (at depth 4)

pan: wrote fairness.pml.trail

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles + (fairness enabled)

 invalid end states +

State-vector 16 byte, depth reached 11, errors: 1

 3 states, stored (15 visited)

 10 states, matched

 25 transitions (= visited+matched)

 0 atomic steps

...

 Note that a little more work was done in the search, reflected by an increase in the number of states that were visited
and the number of transitions that were executed. The number of states stored, however, does not increase. The new
cycle that is found now looks as follows:

$ spin -t -p fairness.pml

 1: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 2: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 3: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

 4: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 <<<<<START OF CYCLE>>>>>

 5: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 6: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 7: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

 8: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 9: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 10: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 11: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

 12: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

spin: trail ends after 12 steps

#processes: 2

 12: proc 1 (B) line 12 "fairness.pml" (state 2)

 12: proc 0 (A) line 5 "fairness.pml" (state 2)

2 processes created

 This time the trace includes actions from both processes. The trace is of course not the shortest possible one. At a
risk of increasing the complexity of the search, we can try to find a shorter variant by proceeding as follows:

$ cc -DREACH -o pan pan.c

$./pan -a -f -i

pan: acceptance cycle (at depth 4)

pan: wrote fairness.pml.trail

pan: reducing search depth to 12

pan: wrote fairness.pml.trail

pan: reducing search depth to 11

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles + (fairness enabled)

 invalid end states +

State-vector 16 byte, depth reached 11, errors: 2

 4 states, stored (19 visited)

 16 states, matched

 35 transitions (= visited+matched)

 0 atomic steps

...

 Although the verifier did find a shorter variant of the cycle in this case, in general this is not guaranteed to be the case.
Note that the -DREACH variant of the search is designed for the detection of safety errors, using a single depth-first
search. It can lose its essential properties in a nested search. This can mean, for instance, that an interative search for
cycles without the -DREACH option could in principle find a shorter variant of a cycle than a search performed with
the option, though not in this case. So, for liveness properties, it can be worth trying both approaches to see which
one produces the shortest trail. When the -DREACH option was used, the verifier had to do a little more work to
build the state space, and it could run out of memory sooner than the variant without the option.

 The shorter acceptance cycle that was found looks as follows:

$ spin -t -p fairness.pml

 1: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 2: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 3: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

 4: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 5: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 6: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 7: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

 <<<<<START OF CYCLE>>>>>

 8: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 9: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

 10: proc 1 (B) line 13 "fairness.pml" (state 1) [i=(1-i)]

 11: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

 12: proc 0 (A) line 6 "fairness.pml" (state 1) [i=(1-i)]

spin: trail ends after 12 steps

#processes: 2

12: proc 1 (B) line 12 "fairness.pml" (state 2)

12: proc 0 (A) line 5 "fairness.pml" (state 2)

2 processes created

[Team LiB]

[Team LiB]

The SPIN Implementation
 (Can be skipped on a first reading.) SPIN's implementation of the weak fairness algorithm differs on minor points
from the description we have given. The modifications are meant to reduce the memory and run-time requirements of
the search.

 A first difference is that the SPIN implementation does not actually store (k + 2) full copies of each reachable state.
Doing so would dramatically increase the memory requirements for the weak fairness option. It suffices to store just
one copy of each state plus (k + 2) bits of overhead. The additional bits record in which copy of the state graph each
state was visited: the i-th bit is set when the state is encountered in the i-th copy of the state graph. Creating one extra
copy of the state graph now requires just one extra bit per state. If the reachable state space contains R states, each
of B bits, the memory requirements for the algorithm can thus be reduced from (R x B) x (k + 2) to (R x B) + (k + 2)
bits.

 Another small difference is that the nested depth-first search for cycles is not initiated from an acceptance state in the
0-th copy of the state graph, but from the last copy of the state graph. Note that whenever this last copy is reached
we can be certain of two things:



 A reachable accepting state exists.


A (weakly) fair execution is possible starting from that accepting state.

 Each state in the last copy of the state graph now serves as the seed state for a run of the nested depth-first search
algorithm, in an effort to find a cycle. As before, all transitions from the last copy of the state graph move the system
unconditionally back to the 0-th copy of the state graph, and therefore the only way to revisit the seed state is to pass
an accepting state and close the cycle with a fair sequence of transitions.
[Team LiB]

[Team LiB]

Complexity Revisited
 In the worst case, the algorithm from Figure 8.7 for checking liveness properties uses twice as much run time as the
algorithm from Figure 8.2, which sufficed only for checking safety properties. Clearly, in the algorithm from Figure 8.7
each state can now appear in the state space twice: once with the a true toggle and once with a false toggle attribute.
The algorithm can, however, be implemented with almost no memory overhead. As we noted earlier in the discussion
of weak fairness, each state needs only be stored once, and not twice, with the right bookkeeping information. The
bookkeeping information in this case requires just two bits per state. The first bit is set to one when the state is visited
with a toggle value false; the second bit is set to one if the state is visited with a toggle value true (i.e., in the nested
part of the search). Clearly, the combination (0,0) for these two bits will never be seen in practice, but each of the
three remaining combinations can appear and the two bits together suffice to accurately identify all reached states
separately in each of the two (virtual) state graphs.

 The algorithm from Figure 8.2 incurs a computational expense that is linear in the number of reachable states for a
given system model, that is, there is a largely fixed amount of work (computation time and memory space) associated
with each reachable system state. Adding cycle detection increases the run-time expenses by a factor of maximally
two, but does not impact the memory requirements noticeably. Adding a property automaton (e.g., a never claim
generated from an LTL requirement) of N states increases the expense of a straight reachability by another factor of
maximally N. The size N of the property automaton itself, though, can increase exponentially with the number of
temporal operators used in an LTL formula. This exponential effect, though, is rarely, if ever, seen in practice.

 Adding the weak fairness constraint causes an unfolding of the reachable state space by a factor of (k + 2), where k
is the number of active processes in the system. In the implementation, the memory cost of the unfolding is reduced
significantly by storing each copy of a reachable state not (k + 2) times but once, and annotating it with (k + 2) bits to
record in which copies of the state graph the state has been encountered. If we use the nested depth-first search cycle
detection method, the memory overhead per reachable state then remains limited to 2(k + 2) bits per reached state. In
the worst case, though, the run-time requirements can increase by a factor of 2(k + 2), although in practice it is rare to
see an increase greater than two.

 Clearly, automated verification can be done most efficiently for pure safety properties: basic assertions, system
invariants, absence of deadlock, etc. Next in efficiency is the verification of liveness properties: proving the absence of
non-progress cycles or the presence of acceptance cycles. Next in complexity comes the verification of LTL
properties. The more complex the temporal formula, the more states there can be in the corresponding property
automaton, and the greater the computational expense of the verification can be. This is a worst-case assessment only,
though. In many cases, there is a tight coupling between transitions in a property automaton that is generated from an
LTL formula and the reachable states of a system, which means that often the computational expense is only modestly
affected by the size of the property automaton or the size of the underlying LTL formula.
[Team LiB]

[Team LiB]

Bibliographic Notes
 The best known alternative method to detect acceptance cycles in a finite graph is based on the construction of all the
maximal strongly connected components in the graph. If at least one component contains at least one accepting state,
then an accepting -run can be constructed. The strongly connected components in a graph can be constructed with
time and space that is linear in the size of the graph with a depth-first search, Tarjan [1972]. Tarjan's procedure
requires the use of two integers to annotate each state (the depth-first number and the low-link number), while the
nested depth-first search procedure from Figure 8.7 requires the addition of just two bits of information. Tarjan's
procedure, though, can identify all accepting -runs in a graph. The nested depth-first search procedure can always
identify at least one such run, but not necessarily all. The nested depth-first search procedure is compatible with all
lossless and lossy memory compression algorithms that we will explore in the next chapter, while Tarjan's procedure
is not.

 State space caching methods were described in Holzmann, Godefroid, and Pirottin [1992], and in Godefroid,
Holzmann, and Pirottin [1995].

 The nested depth-first search procedure was first described in Courcoubetis, Vardi, Wolper, and Yannakakis
[1990], and its application to SPIN is described in Godefroid and Holzmann [1993]. A similar procedure for the
detection of non-progress cycles can also be found in Holzmann [1991], and is discussed in more detail in Holzmann
[2000]. A modification of the nested depth-first search procedure to secure compatibility with partial order reduction
methods is described in Holzmann, Peled, and Yannakakis [1996].

 Choueka's flag construction method was first described in Choueka [1974]. Its potential use for the enforcement of
fairness with a nested depth-first search was mentioned in Courcoubetis et al. [1990]. An alternative, detailed
description of SPIN's implementation of the weak fairness algorithm can be found in Chapters 3 and 7 of Bosnacki
[2001].
[Team LiB]

[Team LiB]

Chapter 9. Search Optimization
 "Don't find fault. Find a remedy."

 —(Henry Ford, 1863–1947)

 The basic algorithms for performing explicit state verification, as implemented in SPIN, are not very complicated. The
hard problem in the construction of a verification system is therefore not so much in the implementation of these
algorithms, but in finding effective ways to scale them to handle large to very large verification problems. In this
chapter we discuss the methods that were implemented in SPIN to address this issue.

 The optimization techniques we will review here have one of two possible aims: to reduce the number of reachable
system states that must be searched to verify properties, or to reduce the amount of memory that is needed to store
each state.

 SPIN's partial order reduction strategy and statement merging technique fall into the first of these two categories. In
the second category we find techniques that are based on either lossless or lossy compression methods. The former
preserve the capability to perform exhaustive verifications, though often trading reductions in memory use for
increases in run time. The lossy compression methods can be more aggressive in saving memory use without incurring
run-time penalties, by trading reductions in both memory use and speed for a potential loss of coverage. The bitstate
hashing method, for which SPIN is perhaps best known, falls into the latter category. A range of lossless compression
methods is also supported in SPIN. We will briefly discuss the principle of operation of the hash-compact method,
collapse compression, and the minimized automaton representation. We begin with a discussion of partial order
reduction.
[Team LiB]

[Team LiB]

Partial Order Reduction
 Consider the two finite state automata T1 and T2 shown in Figure 9.1. If we interpret the labels on the transitions, we
can see that the execution of each system is meant to have a side effect on three data objects. The automata share
access to an integer data object named g, and they each have access to a private data object, named x and y,
respectively. Assume that the initial value of all data objects is zero, and the range of possible values is 0...4.

 Figure 9.1. The Finite State Automata T1 and T2

 The expanded asynchronous product of T1 and T2 (cf. Appendix A) is illustrated in Figure 9.2. We have used the
state labels in Figure 9.2 to record the values of the data objects in the order: x, y, g.

 Figure 9.2. Expanded Asynchronous Product of T1 and T2

 The paths through the graph from Figure 9.2 represent all possible interleavings of the combined execution of the four
statements from automata T1 and T2. Clearly, the two possible interleavings of the statements x = 1 and y = 1 both
lead to the same result, where both x and y have value 1. The two possible interleavings of the statements g = g + 2
and g = g * 2, on the other hand, lead to two different values for g. The underlying notion of data independence and
data dependence can be exploited to define an equivalence relation on runs.

 The system is small enough that we can exhaustively write down all finite runs. There are only six:

1 = {(0, 0, 0), (1, 0, 0), (1, 0, 2), (1, 1, 2), (1, 1, 4)}

2 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 2), (1, 1, 4)}

3 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 0), (1, 1, 2)}

4 = {(0, 0, 0), (0, 1, 0), (0, 1, 0), (1, 1, 0), (1, 1, 2)}

5 = {(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 2)}

6 = {(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 2), (1, 1, 4)}

 The sequence of statement executions that correspond to these six runs can be written as follows:

 1: x = 1; g = g+2; y = 1; g = g*2;

 2: x = 1; y = 1; g = g+2; g = g*2;

 3: x = 1; y = 1; g = g*2; g = g+2;

 4: y = 1; g = g*2; x = 1; g = g+2;

 5: y = 1; x = 1; g = g*2; g = g+2;

 6: y = 1; x = 1; g = g+2; g = g*2;

 The first two runs differ only in the relative order of execution of the two transitions y = 1 and g = g+2, which are
independent operations. Similarly, runs 4 and 5 differ only in the relative order of execution of the independent
operations x = 1 and g = g*2, By a process of elimination, we can reduce the number of distinct runs to just two, for
instance to:

 2: x = 1; y = 1; g = g+2; g = g*2;

 3: x = 1; y = 1; g = g*2; g = g+2;

 The four other runs can be obtained from these two by the permutation of adjacent independent operations. We have
the following mutual dependencies in this set of transitions:

 g = g*2 and g = g+2 because they touch the same data object

 x = 1 and g = g+2 because they are both part of automaton T1

 y = 1 and g = g*2 because they are both part of automaton T2

 The following operations are mutually independent:

 x = 1 and y = 1

 x = 1 and g = g*2

 y = 1 and g = g+2

 Using this classification of dependent and independent operations, we can partition the runs of the system into two
equivalence classes: {1, 2, 6} and {3, 4, 5}. Within each class, each run can be obtained from the other
runs by one or more permutations of adjacent independent transitions. The eventual outcome of a computation
remains unchanged under such permutations. For verification, it therefore would suffice to consider just one run from
each equivalence class.

 For the system from Figure 9.2 it would suffice, for instance, to consider only runs 2 and 3. In effect this
restriction amounts to a reduction of the graph in Figure 9.2 to the portion that is spanned by the solid arrows,
including only the states that are indicated in bold. There are three states fewer in this graph and only half the number
of transitions, yet it would suffice to accurately prove LTL formulae such as:

[Team LiB]

[Team LiB]

Visibility

 Would it be possible to formulate LTL properties for which a verification could return different results for the reduced
graph and the full graph? To answer this question, consider the LTL formula

 This formula indeed has the unfortunate property that it holds in the reduced graph but can be violated in the full
graph.

 What happened? The formula secretly introduces a data dependence that was assumed not to exist: it relates the
values of the data objects x and y, while we earlier used the assumption that operations on these two data objects
were always independent. The dependence of operations, therefore, does not just depend on automata structure and
access to data, but also on the logical properties that we are interested in proving about a system. If we remove the
pair x = 1 and y = 1 from the set of mutually independent operations, the number of equivalence classes of runs that
we can deduce increases to four, and the reduced graph gains one extra state and two extra transitions.

 The new graph will now correctly expose the last LTL formula as invalid, in both the full and in the reduced graph.

 The potential benefits of partial order reduction are illustrated in Figure 9.3. Shown is the reduction in the number of
states in the product graph that needs to be explored to perform model checking when partial order reduction is either
enabled (solid line) or disabled (dashed line). In this case, the improvement increases exponentially with the problem
size. It is not hard to construct cases where partial order reduction cannot contribute any improvement (e.g., if all
operations are dependent). The challenge in implementing this strategy in a model checker is therefore to secure that in
the worst case the graph construction will not suffer any noticeable overhead. This was done in the SPIN model
checker with a static reduction method. In this case, the dependency relations are computed offline, before a model
checking run is initiated, so that no noticeable run-time overhead is incurred.

 Figure 9.3. Effect of Partial Order Reduction Increase in Number of States as a Function of Problem Size
(Sample of Best Case Performance for Leader Election Protocol)

 The partial order reduction strategy is enabled by default for all SPIN verification runs. There are a small number of
language constructions that are not compatible with the enforcement of a partial order reduction strategy. They are
listed in Chapter 16. In these cases, and for experimental purposes, the partial order reduction strategy can be
disabled by compiling the verification code that is generated by SPIN with the compiler directive -DNOREDUCE.
[Team LiB]

[Team LiB]

Statement Merging
 A special case of partial order reduction is a technique that tries to combine sequences of transitions within the same
process into a single step, thus avoiding the creation of intermediate system states after each separate transition. The
merging operation can be performed, for instance, for sequences of operations that touch only local data. In effect,
this technique automatically adds d_steps into a specification, wherever this can safely be done.

 To see the potential effect of statement merging, consider the following example:

#ifdef GLOBAL

 byte c;

#endif

active proctype merging()

{

#ifndef GLOBAL

 byte c;

#endif

 if

 :: c = 0

 :: c = 1

 :: c = 2

 fi;

 do

 :: c < 2 -> c++

 :: c > 0 -> c--

 od

}

 If we make the declaration for variable c global, none of the operations on this variable can be considered safe under
the partial order reduction rules, and the statement merging technique cannot be applied.

 Note that proctype merging has five control states, and variable c can take three different values, so there can be no
more than fifteen system states.

 There is one control state before, and one after the if statement. Then there is also one control state at each of the
two arrow symbols. The fifth control control state is the termination state of the process: immediately following the do
construct.

 It turns out that only eight of these fifteen states can be reached, as confirmed by this first run:

$ spin -DGLOBAL -a merging.pml

$ cc -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 16 byte, depth reached 6, errors: 0

 8 states, stored

 4 states, matched

 12 transitions (= stored+matched)

 0 atomic steps

...

 If we now turn c from a global into a local variable, all operations on this variable become local to the one process in
this system, which means that the SPIN parser can recognize the corresponding transitions as necessarily independent
from any other statement execution in the system. The statement merging technique can now combine the two
option-sequences inside the do loop into a single step each, and thereby removes two of the control states. The result
should be a reduction in the number of states that is reached in a verification. If we perform this experiment, we can
see this effect confirmed:

$ spin -a merging.pml

$ cc -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 16 byte, depth reached 3, errors: 0

 4 states, stored

 4 states, matched

 8 transitions (= stored+matched)

 0 atomic steps

...

 There is only one downside to the statement merging technique: it can make it harder to understand the automaton
structure that is used in the verification process. Statement merging can be disabled with an extra command-line
option in SPIN. For instance, if we generate the verifier as follows:

$ spin -a -o3 merging.pml

 statement merging is surpressed, and the system will again create eight system states during a verification.

[Team LiB]

[Team LiB]

State Compression
 The aim of the partial order reduction strategy is to reduce the number of system states that needs to be visited and
stored in the state space to solve the model checking problem. An orthogonal strategy is to reduce the amount of
memory that is required to store each system state. This is the domain of memory compression techniques.

 SPIN supports options for both lossless and lossy compression: the first type of compression reduces the memory
requirements of an exhaustive search by increasing the run-time requirements. The second offers a range of proof
approximation techniques that can work with very little memory, but without guarantees of exhaustive coverage.

 We first consider lossless state compression. SPIN has two different algorithms of this type. The COLLAPSE
compression mode exploits a hierarchical indexing method to achieve compression. The MA, or minimized
automaton, compression mode reduces memory by building and updating a minimized finite state recognizer for state
descriptors.
[Team LiB]

[Team LiB]

Collapse Compression

 At first sight, it may strike us as somewhat curious that the number of distinct system states that the verifier can
encounter during a search can become so large so quickly, despite the fact that each process and each data object
can typically reach only a small number of distinct states (i.e., values). The explosion in the number of reachable
system states is only caused by the relatively large number of ways in which the local states of individual system
components, such as processes and data objects, can be combined. Replicating a complete description of all local
components of the system state in each global state that is stored is therefore an inherently wasteful technique,
although it can be implemented very efficiently.

 SPIN's collapse compression mode tries to exploit this observation by storing smaller state components separately
while assigning small unique index numbers to each one. The unique index numbers for the smaller components are
now combined to form the global state descriptor.

 There are now several choices that can be made about how precisely to break down a global system state into
separate components, ideally with as little correlation as possible between components. SPIN assigns components as
illustrated in Figure 9.4.

 Figure 9.4. State Components for COLLAPSE Compression



 A first component is formed by the set of all global data objects in the model, including the contents of all
message channels, irrespective of whether they were declared locally or globally. This component also
includes a length field that records the original length of the state vector (i.e., the state descriptor) before
compression.



Next, there is one component for each active process, recording its control state together with the state of all
its local variables, but excluding the contents of locally declared channels.

 Because the number of component states cannot be known in advance, the method should be able to adjust the
number of bits it uses to record index values. The SPIN implementation does this by adding an extra two bits to each
component index to record how many bytes are used for the corresponding index field. In this way, the compressor
can use up to four bytes per index, which suffices for up to 232 possible separate component states. The table of
index widths is added to the global variables component. The width of the index for the global variables component
itself is stored in a fixed separate byte of the compressed state descriptor.

 To make sure no false partial matches can occur, the length of each separately stored component is also always
stored with the component data.

 The collapse compression method is invoked by compiling the verifier source text that is generated by SPIN with the
extra compile-time directive -DCOLLAPSE. For instance:

$ spin -a model

$ cc -DCOLLAPSE -o pan pan.c

$./pan

...

 There should be no change in the results delivered by the verifier, other than that run time may increase while the
memory requirements decrease.

 To see the effect of the COLLAPSE algorithm, consider the example PROMELA model of the leader election
protocol that is part of the standard SPIN distribution. We will set the number of processes to seven (changing it from
the default value in the distributed version of five) and will disable the partial order reduction method to increase the
state space size to a more interesting value. We proceed as follows:

$ spin -a leader.pml

$ cc -DNOREDUCE -DMEMLIM=200 pan.c

$ time ./pan

(Spin Version 4.0.7 -- 1 August 2003)

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 276 byte, depth reached 148, errors: 0

 723053 states, stored

3.00211e+006 states, matched

3.72517e+006 transitions (= stored+matched)

 16 atomic steps

hash conflicts: 2.70635e+006 (resolved)

(max size 2^18 states)

Stats on memory usage (in Megabytes):

205.347 equivalent memory usage for states (...)

174.346 actual memory usage for states (compression: 84.90%)

 State-vector as stored = 233 byte + 8 byte overhead

1.049 memory used for hash table (-w18)

0.240 memory used for DFS stack (-m10000)

175.266 total actual memory usage

unreached in proctype node

 line 53, state 28, "out!two,nr"

 (1 of 49 states)

unreached in proctype :init:

 (0 of 11 states)

real 0m16.657s

user 0m0.015s

sys 0m0.015s

 Running on a 2.5 GHz PC, the search took 16.7 seconds, and it consumed 175.2 Mbytes of memory. A statistic is
also printed for the "equivalent memory usage," which is obtained by multiplying the number of stored states with the
size of each state descriptor, plus the overhead of the lookup table. The default search does a little better than this by
always using a simple byte masking technique that omits some redundant information from the state descriptors before
they are stored (e.g, padded bytes that are inserted to secure proper alignment of components inside the state
descriptor).

 Next, we recompile the model checker with COLLAPSE compression enabled and repeat the search.

$ cc -DMEMLIM=200 -DNOREDUCE -DCOLLAPSE pan.c

$ time ./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Compression

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 276 byte, depth reached 148, errors: 0

 723053 states, stored

3.00211e+006 states, matched

3.72517e+006 transitions (= stored+matched)

 16 atomic steps

hash conflicts:

3.23779e+006 (resolved)

(max size 2^18 states)

Stats on memory usage (in Megabytes):

208.239 equivalent memory usage for states (...)

23.547 actual memory usage for states (compression: 11.31%)

 State-vector as stored = 21 byte + 12 byte overhead

1.049 memory used for hash table (-w18)

0.240 memory used for DFS stack (-m10000)

24.738 total actual memory usage

nr of templates: [globals chans procs]

collapse counts: [2765 129 2]

unreached in proctype node

 line 53, state 28, "out!two,nr"

 (1 of 49 states)

unreached in proctype :init:

 (0 of 11 states)

real 0m20.104s

user 0m0.015s

sys 0m0.015s

 As expected, the same number of states was reached, but this time the search took 20.1 seconds (about 20% more
than the first run) and the memory usage dropped to 24.7 Mbytes (a decrease of about 85%). The use of
COLLAPSE is well rewarded in this case.

 At the end of the run, a few additional statistics are printed to give some impression of how many components of
each basic type were seen. The components are called templates in this list, and the maximum number of entries made
in the lookup table for each basic type (global variables, message channels, and processes) is given here as 2,765,
129, and 2.

 Although the effect of the reduction looks impressive, if we repeat this search with the standard partial order
reduction strategy enabled, the state space size reduces to just 133 states in this case. As a result, the run time drops
to a fraction of a second, and the memory requirements to about 1.5 Mbytes. Clearly, state compression is not an
alternative to partial order reduction, but can be combined with it very fruitfully.

[Team LiB]

[Team LiB]

Minimized Automaton Representation

 A second lossless compression method that is supported in SPIN optionally stores the set of reachable system states
not in a conventional lookup table, but instead performs state matching by building and maintaining a minimal
deterministic finite state automaton that acts as a recognizer for sets of state descriptors. The automaton, represented
as a finite graph, is interrogated for every system state encountered during the search, and updated immediately if a
new state descriptor is seen. The savings in memory use with this method can be very large, sometimes allowing the
verifier to use exponentially smaller amounts of memory than required for the standard search methods. The run-time
penalty, though, can be very significant.

 Figure 9.5 shows the minimized automaton structure for a state descriptor of three bits, after the first three state
descriptors have been stored. All paths in the automaton that lead from node s0 to the accepting state s6 are part of
the state space, all paths from node s0 to the non-accepting terminal state s3 are not part of the state space. The
dashed lines separate the subsequent layers in the automaton. The edges between the node in the first (left-most) layer
and the second layer represent the possible values of the first bit in the state descriptor, those between the second and
the third layer represent possible values of the second bit, and so on.

 Figure 9.5. Minimized Automaton Structure After Storing {000, 001, 101}

 Figure 9.6 shows how this structure is updated when one more state descriptor is added, again restoring the
minimized form. There is a close resemblance between this minimized automaton structure and OBDDs (ordered
binary decision diagrams). In our implementation of this storage method, each node in the graph does not represent a
single bit but a byte of information, and each node therefore can have up to 255 outgoing edges. Edges are merged
into ranges wherever possible to speed up the lookup and update procedures.

 Figure 9.6. Automaton Structure After Storing {000, 001, 101, 100}

 In principle, the minimized automaton has the same expected complexity as the standard search based on the storage
of system states in a hashed lookup table. In both cases, an update of the state space has expected complexity O(S),
with S the maximum length of the state descriptor for a system state. The constant factors in both procedures are very
different, though, which means that the minimized automaton procedure can consume considerably more time than the
other optimization algorithms that are implemented in SPIN. Nonetheless, when memory is at a premium, it can well
be worth the extra wait to use the more aggressive reduction technique.

 To enable the minimized automaton procedure, the user should provide an initial estimate of the maximal depth of the
graph that is constructed for the minimized automaton representation. The estimate is not hard to obtain: the size of the
state vector that the verifier prints at the end of a normal run can serve as the initial estimate. The number can be used
as an initial value for the compile-time directive that enables the minimized automaton procedure. For instance, if we
take the last run for the leader election protocol as a starting point. The state vector size reported there was 276
bytes. The size needed for the minimized automaton structure is typically a little smaller, so we make an initial guess of
270 bytes and recompile and run the verifier as follows:

$ cc -DMEMLIM=200 -DNOREDUCE -DMA=270 pan.c

$ time ./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Graph Encoding (-DMA=270)

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 276 byte, depth reached 148, errors: 0

MA stats: -DMA=234 is sufficient

Minimized Automaton: 161769 nodes and 397920 edges

 723053 states, stored

3.00211e+006 states, matched

3.72517e+006 transitions (= stored+matched)

 16 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

Stats on memory usage (in Megabytes):

202.455 equivalent memory usage for states (...)

7.235 actual memory usage for states (compression: 3.57%)

0.200 memory used for DFS stack (-m10000)

7.338 total actual memory usage

unreached in proctype node

 line 53, state 28, "out!two,nr"

 (1 of 49 states)

unreached in proctype :init:

 (0 of 11 states)

real 1m11.428s

user 0m0.015s

sys 0m0.015s

 Again, the same number of states was reached, but note that the memory requirements dropped to just 7.338
Mbytes, compared to 175 Mbytes for the default search without compression, giving an average of just 10 bytes used
per state stored. This impressive reduction comes at a price, though. While the memory requirements were reduced,
the run-time requirements increased from 16.7 seconds to about 71.4 seconds: a very noticeable penalty.

 At the end of the run, the verifier also tells us that instead of our estimate of 270 bytes, a smaller value of 234 bytes
would have sufficed. Using that value could reduce the memory and run-time requirements somewhat. In this case, the
run time would reduce to 133 seconds and the memory requirements to 7.301 Mbytes, giving a small additional
benefit.

 It is safe to combine the minimized automaton compression method with the COLLAPSE compression method to
achieve additional reductions. If we do this for the leader election protocol (while still suppressing the partial order
reduction algorithm to create a large state space), we obtain the following result:

$ cc -DMEMLIM=200 -DNOREDUCE -DMA=21 -DCOLLAPSE pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Compression

 + Graph Encoding (-DMA=21)

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 276 byte, depth reached 148, errors: 0

Minimized Automaton: 5499 nodes and 25262 edges

 723053 states, stored

3.00211e+006 states, matched

3.72517e+006 transitions (= stored+matched)

 16 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

Stats on memory usage (in Megabytes):

208.239 equivalent memory usage for states (...)

0.892 actual memory usage for states (compression: 0.43%)

1.049 memory used for hash table (-w18)

0.200 memory used for DFS stack (-m10000)

2.068 total actual memory usage

nr of templates: [globals chans procs]

collapse counts: [2765 129 2]

unreached in proctype node

 line 53, state 28, "out!two,nr"

 (1 of 49 states)

unreached in proctype :init:

 (0 of 11 states)

real 0m44.214s

user 0m0.015s

sys 0m0.015s

 After one iteration, we could determine that the value for compiler directive MA that suffices now reduces to just 21,
and with this value the memory requirements drop to a remarkable 2.068 Mbyte, while the search stores the same
number of reachable states as before. The run-time requirements are now also slightly less, reducing to 44.2 seconds,
thanks to the smaller, collapsed state descriptors that are now handled by the minimized automaton recognizer. This
favorable effect is not always observed, but an experiment like this is often worth trying.

 Note carefully that even though this last search consumed only 2.7 bytes for each state stored, the search was still
completely exhaustive, and the result of the verification is 100% accurate. This is due to the fact that both the
COLLAPSE and the MA compression methods are lossless. If we give up the requirement of guaranteed exhaustive
coverage, a number of other interesting search techniques become possible. Some of these techniques can succeed in
analyzing very large problem sizes with very minimal run-time requirements. We will consider two of the techniques
that are implemented in SPIN: bitstate hashing and hash-compact.

 "An approximate answer to the right question is worth a great deal more than a precise answer to the wrong
question."

 —(John Tukey, 1915–2000)

[Team LiB]

[Team LiB]

Bitstate Hashing

 The standard depth-first search algorithm constructs a set of states. Each state that is explored in the verification
process is stored in a state space. Since the model checking problem for all practical purposes is reduced to the
solution of a reachability problem (cf. Chapter 8), all the model checker does is construct states and check whether
they were previously visited or new. The performance of a model checker is determined by how fast it can do this.

 The state space structure serves to prevent the re-exploration of previously visited states during the search: it turns
what would otherwise be an exponential algorithm into a linear one, that visits every reachable state in the graph at
most once. To enable fast lookup of states, the states are normally stored in a hash table, as illustrated in Figure 9.7.

 Figure 9.7. Standard Hash Table Lookup

 Assume we have a hash table with h slots. Each slot contains a list of zero or more states. To determine in which list
we store a new state s, we compute a hash-value hash(s), unique to s and randomly chosen in the range 0..h-1. We
check the states stored in the list in hash table slot hash(s) for a possible match with s. If a match is found, the state
was previously visited and need not be explored again. If no match is found, state s is added to the list, and the search
continues.

 Each state is represented in memory as a sequence of S bits. A simple (but very slow) hashing method would be to
consider the array of bits as one large unsigned integer, and to calculate the remainder of its division by h, with h a
prime number. A more efficient method, and one of the methods implemented in SPIN, is to use a checksum
polynomial to compute the hash values. We now choose h as a power of 2 and use the polynomial to compute a
checksum of log(h) bits. This checksum is then used as the hash value.

The default hashing method that is currently implemented in SPIN is based on a method known as Jenkins' hash. It is
slightly slower than the checksum polynomial method, but it can be shown to give notably better coverage.

 Let r be the number of states stored in the hash table and h the number of slots in that table. When h >> r, each state
can be stored in a different slot, provided that the hash function is of sufficiently good quality. The lists stored in each
slot of the hash table will either be empty or contain one single state. State storage has only a constant overhead in this
case, carrying virtually no time penalty.

 When h < r, there will be cases for which the hash function computes the same hash value for different states. These
hash collisions are resolved by placing all states that hash to the same value in a linked list at the corresponding slot in
the hash table. In this case we may have to do multiple state comparisons for each new state that is checked against
the hash table: towards the end of the search on average r/h comparisons will be required per state. The overhead
incurred increases linearly with growing r/h, once the number of stored states r exceeds h.

 Clearly, we would like to be in the situation where h >> r. In this case, a hash value uniquely identifies a state, with
low probability of collision. The only information that is contained in the hash table is now primarily whether or not the
state that corresponds to the hash value has been visited. This is one single bit of information. A rash proposal is now
to indeed store only this one bit of information, instead of the S bits of the state itself. This leads to the following
trade-offs.

 Assume that we have m bits of memory to store the hash table, S bits of data in each state descriptor, r reachable
states, and a hash table with h slots. Clearly, fewer than m/S states will fit in memory, since the hash table itself will
also take some memory. If r > m/S, the search will exhaust the available resources (and stop) after exploring a
fraction of m/(r · S) of the state space. Typical values for these parameters are: m = 109, S = 103, and r = 107,
which gives a ratio m/(r · S) = 10-2, or a coverage of the problem size of only 1%.

 If we configure the hash table as an array of 8m bits, using it as a hash table with h = 8m 1-bit slots, we now have h
>> r, since 8 · 109 >> 107, which should give us an expected coverage close to 100%. When, with low probability,
a hash collision happens, our model checking algorithm will conclude incorrectly that a state was visited before, and it
will skip it. It may now miss other states that can only be reached via a path in the reachability graph that passes
through this state. This, therefore, would lead to loss of coverage, but it cannot lead to false error reports. We will see
shortly that in almost all cases where this method is used (i.e., when normal state storage is impossible due to limited
resources available), coverage increases far more due to the increased capacity to store states than it is reduced due
to hash collisions.

 This storage discipline was referred to in Morris [1968] as follows:

 "A curious possible use of virtual scatter tables arises when a hash address can be computed with more than about
three times as many bits as are actually needed for a calculated address. The possibility that two different keys have
the same virtual hash address becomes so remote that the keys might not need to be examined at all. If a new key has
the same virtual hash address as an existing entry, then the keys could be assumed to be the same. Then, of course,
there is no longer any need to keep the keys in the entry; unless they are needed for some other purpose, they can just
be thrown away. Typically, years could go by without encountering two keys in the same program with the same
virtual address. Of course, one would have to be quite certain that the hash addresses were uniformly spread over the
available addresses.

No one, to the author's knowledge, has ever implemented this idea, and if anyone has, he might well not admit it."

 To reduce the probability of collision, we can use multiple independent hash functions, and set more than one bit per
state. Using more bits can increase the precision but reduce the number of available slots in the bit hash-table. The
trade-offs are delicate and deserve a more careful study.

[Team LiB]

[Team LiB]

Bloom Filters

 Let m again be the size of the hash table in bits, r is the number of states stored, and k the number of hash functions
used. That is, we store k bits for each state stored, with each of the k bit-positions computed with an independent
hash function that uses the S bits of the state descriptor as the key.

 Initially, all bits in the hash table are zero. When r states have been stored, the probability that any one specific bit is
still zero is:

 The probability of a hash collision on the (r + 1)st state entered is then

 which gives us an upper-bound for the probability of hash collisions on the first r states entered. (The probability of a
hash collision is trivially zero for the first state entered.) The probability of hash collisions is minimal when k = log(2) ·
m/r, which gives

 For m = 109 and r = 107 this gives us an upper-bound on the probability of collision in the order 10-21, for a value
of k = 89.315. Figure 9.8 illustrates these dependencies.

 Figure 9.8. Optimal Number of Hash Functions and Probability of Hash Collision The dashed line plots the
probabilitie for optimal k The dotted line plots the probabilities for fixed k=2 The solid line plots the
optimal value for k, 1 k < 100

 In practice, k must be an integer (e.g., 90). In a well-tuned model checker, the run-time requirements of the search
depend linearly on k: computing hash values is the single most expensive operation that the model checker must
perform. The larger the value of k, therefore, the longer the search for errors will take. In the model checker SPIN,
for instance, a run with k = 90 would take approximately 45 times longer than a run with k = 2. Although time is a
more flexible commodity than memory, the difference is significant. The question is then how much quality we sacrifice
if we select a smaller than optimal value of k. The trade-off is illustrated in Figure 9.8.

 For the suboptimal value k = 2, the value used in SPIN, the upper-bound on the collision probability becomes 4 ·
10-4, which reduces the expected coverage of the search from 100% to near 99%, still two orders of magnitude
greater than realized by a hash table lookup method for this case. We can also see in Figure 9.8 that the hashing
method starts getting very reliable for m/r ratios over 100. To be compatible with traditional storage methods, this
means that for state descriptors of less than 100 bits (about 12 bytes), this method is not competitive. In practice,
state descriptors exceed this lower-bound by a significant margin (one or two orders of magnitude).

 The bitstate hashing method is invoked by compiling the verifier source with the additional compiler directive
-DBITSTATE, for instance, as follows:

$ spin -a model

$ cc -DBITSTATE -o pan pan.c

$./pan

...

 A straight bitstate run for the leader election protocol example, for instance, produces this result:

$ spin -a leader.pml

$ cc -DNOREDUCE -DMEMLIM -DBITSTATE -o pan pan.c

$ time ./pan

(Spin Version 4.0.7 -- 1 August 2003)

Bit statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 276 byte, depth reached 148, errors: 0

 700457 states, stored

2.9073e+006 states, matched

3.60775e+006 transitions (= stored+matched)

 16 atomic steps

hash factor: 5.98795 (best coverage if >100)

(max size 2^22 states)

Stats on memory usage (in Megabytes):

198.930 equivalent memory usage for states (...)

0.524 memory used for hash array (-w22)

2.097 memory used for bit stack

0.240 memory used for DFS stack (-m10000)

3.066 total actual memory usage

unreached in proctype node

 line 53, state 28, "out!two,nr"

 (1 of 49 states)

unreached in proctype :init:

 (0 of 11 states)

real 0m28.550s

user 0m0.015s

sys 0m0.015s

 The number of states explored is a little short of the real number of reachable states that we can measure in an
exhaustive run. Still, the run reached 96.7% of all reachable states, while the memory requirements dropped from 175
to 3 Mbytes, and the run-time requirements remained relatively low at 28.5 seconds.

[Team LiB]

[Team LiB]

Hash-Compact

 An interesting variant of this strategy is the hash-compact method, first proposed for use in verification by Pierre
Wolper. In this case we try to increase the size of m far beyond what would be available on an average machine, for
instance to 264 bits. We now compute a single hash value within the range 0..(264-1) as a 64-bit number, and store
this number, instead of the full state s, in a regular hash table. We have one hash function, so k = 1, and we simulate a
memory size of m = 264 1019 bits. For the value of r = 107, we then get a probability of collision near 10-57,
giving an expected coverage of 100%. To store 107 64-bit numbers takes less than m = 109 bits. Instead of storing
64 bits at a time, we can also store a smaller or larger number of bits. The maximum number of bits that could be
accommodated is trivially m/r. The 64-bit version of hash-compact, then, should be expected to perform best when r.
64 m r.S. Unfortunately, although m and S are often known a priori, in most cases r is usually not known before
an exhaustive verification is completed, and therefore the optimal ration m/r is also typically unknown.

 A measurement of the performance of the hash-compact method and double-bit hashing (i.e., with two independent
hash functions) for a fixed problem size r and available memory m varying from 0 to m > r.S is shown in Figure 9.9,
which is taken from Holzmann [1998].

 Figure 9.9. Measured Coverage of Double Bitstate Hashing (k=2) Compared with Hash-Compact (hc),
and Exhaustive Search Problem size: 427567 reachable states, state descriptor 1376 bits

 When sufficient memory is available, traditional exhaustive state storage is preferred, since it gives full coverage with
certainty. For the problem shown in Figure 9.9 this is the area of the graph with m > 229. Barring this, if sufficient
memory is available for the hash-compact method, then this is the preferred method. This is the area of the graph
where 223 < m < 229. Below that, in Figure 9.9 for all values m < 223, the double-bit hashing method is superior.
The latter method, for instance, still achieves a problem coverage here of 50% when only 0.1% of the memory
resources required for an traditional exhaustive search are available.

 The hash-compact method can be enabled by compiling a SPIN-generated verifier with the compiler directive HC4,
for instance as follows (see also Chapter 19, p. 530):

$ spin -a model

$ cc -DHC4 -o pan pan.c

$./pan

...

 Applying the hash-compact to the leader election protocol from before, using four bytes per state, produces this
result:

$ cc -DNOREDUCE -DMEMLIM=200 -DHC4 -o pan pan.c

$ time ./pan

(Spin Version 4.0.7 -- 1 August 2003)

Hash-Compact 4 search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 276 byte, depth reached 148, errors: 0

 723053 states, stored

3.00211e+006 states, matched

3.72517e+006 transitions (= stored+matched)

 16 atomic steps

hash conflicts: 2.41742e+006 (resolved)

(max size 2^18 states)

Stats on memory usage (in Megabytes):

205.347 equivalent memory usage for states (...)

11.770 actual memory usage for states (compression: 5.73%)

 State-vector as stored = 8 byte + 8 byte overhead

1.049 memory used for hash table (-w18)

0.240 memory used for DFS stack (-m10000)

12.962 total actual memory usage

unreached in proctype node

 line 53, state 28, "out!two,nr"

 (1 of 49 states)

unreached in proctype :init:

 (0 of 11 states)

real 0m15.522s

user 0m0.031s

sys 0m0.000s

 No states are missed. The memory requirements dropped to 12.9 Megabytes, and the run-time requirements
remained largely unchanged from an exhaustive search.

 The coverage of both the hash-compact and the double-bit hashing method can be increased by performing multiple
searches, each time with an independent set of hash functions. If each search misses a fraction p of the state space, t
independent searches could reduce this to pt. Though potentially expensive in run time, this gives us a capability to
increase the quality of a verification under adverse constraints.

 Which of all these storage methods is best? There is, alas, no single answer to this question. The behavior of each
algorithm can depend to some extent on unpredictable particulars of an application. All compression methods can be
expected to bring some improvement, but the maximal improvement is not always achieved with the same technique
for all applications. If there is enough memory to complete an exhaustive search, the problem of search optimization
need not even be considered. When the problem is too large to be verified exhaustively with the default search
method, two experiments that can be performed relatively quickly and without much thought are collapse compression
and hash-compact. To go beyond what is achieved with these methods, more thought, and perhaps more search time,
may be needed. As a last resort, but only for very large problem sizes, the bitstate hashing method is often hard to
defeat, and will likely give the best results.

[Team LiB]

[Team LiB]

Bibliographic Notes
 A formal treatments of the notions of dependence of actions (transitions) and the equivalence of -runs can be found
in, for instance, Mazurkiewicz [1986], and Kwiatkowska [1989]. The application of these notions to model checking
is described in Peled [1994], and Holzmann and Peled [1994], with a small, but important, adjustment that is
explained in Holzmann, Peled, and Yannakakis [1996].

 A formal proof of correctness of the partial order reduction algorithm implemented in SPIN is given in Chou and
Peled [1999], and is also discussed in Clarke, Grumberg, and Peled [2000].

 The statement merging technique that is implemented in SPIN was first proposed in Schoot and Ural [1996]. The
SPIN implementation is discussed in Holzmann [1999].

 The COLLAPSE compression method is described in detail in Holzmann [1997]. The design and implementation of
the minimized automaton storage method is detailed in Holzmann and Puri [1999]. There are several interesting
similarities, but also significant differences, between the minimized automaton procedure and methods based on the
use of BDDs (binary decision diagrams) that are commonly used in model checking tools for hardware circuit
verification. A discussion of these and other points can be found in Holzmann and Puri [1999].

 The application of the hash-compact method to verification was described in Wolper and Leroy [1993], and also
independently in Stern and Dill [1995]. An earlier theoretical treatment of this storage method can also be found in
Carter at al. [1978].

 Bitstate hashing, sometimes called supertrace, was introduced in Holzmann [1988] and studied in more detail in
Holzmann [1998]. The first explicit description of the notion of bitstate hashing, though not the term, appeared in
Morris [1968], in a paper on "scatter storage" techniques. In Bob Morris's original paper, the technique was
mentioned mostly as a theoretical curiosity, unlikely to have serious applications. Dennis Ritchie and Doug McIlroy
found an application of this storage technique in 1979 to speed up the UNIX spelling checking program, as later
described in McIlroy [1982].

 The original implementation of spell was done by Steve Johnson. The new, faster version was written by Dennis
Ritchie, and was distributed as part of the 7th Edition version of UNIX. The mathematics McIlroy used in his 1982
paper to explain the working of the method is similar to the elegant exposition from Bloom [1970]. Bloom's 1970
paper, in turn, was written in response to Morris [1968], but was rediscovered only recently. Bob Morris, Dennis
Ritchie, Doug McIlroy, and Steve Johnson all worked in the UNIX group at Bell Labs at the time.

 The code used in the 1979 version of spell for table lookup differs significantly from the version that is used in the
SPIN implementation for bitstate hashing, given the differences in target use. The first hash function that was
implemented in SPIN for default state storage during verification was based on the computation of 32-bit cyclic
redundancy checksum polynomials, and was implemented in close collaboration with (then) Bell Labs researchers Jim
Reeds, Ken Thompson, and Rob Pike.

 The current hashing code used in SPIN is based on Jenkins [1997]. Jenkins' hash function is slightly slower than the
original code, but it incurs fewer collissions. The original hash functions are reinstated when the pan.c source code is
compiled with directive -DOHASH.
[Team LiB]

[Team LiB]

Chapter 10. Notes on Model Extraction
 "In all affairs it's a healthy thing now and then to hang a question mark on the things you have long taken for granted."

 —(Bertrand Russell, 1872–1970)

 Arguably, the most powerful tool we have in our arsenal for the verification of software applications is logical
abstraction. By capturing the essence of a design in a mathematical model, we can often demonstrate conclusively that
the design has certain inevitable properties. The purpose of a verification model, then, is to enable proof. If it fails to
do so, within the resource limits that are available to the verification system, the model should be considered
inadequate.
[Team LiB]

[Team LiB]

The Role of Abstraction
 The type of abstraction that is appropriate for a given application depends both on the type of logical properties that
we are interested in proving and on the resource limits of the verification system. This situation is quite familiar: it is no
different from the one that applies in standard mathematics. When we reason about the correctness of a system
without the benefit of a mechanized prover, using straight logic and pen and paper mathematics, we must also use our
judgement in deciding which parts of a system are relevant, and which are not, with respect to the properties to be
proven. Similarly, we must be aware of resource limitations in this situation as well. If only a very limited amount of
time, or a very limited amount of mathematical talent, is available for rendering the proof, perhaps a coarser proof
would have to be used. If unlimited time and talent is available, a more detailed proof may be possible. Whether we
choose a mechanized process or a manual one, we have to recognize that some really difficult types of problems may
remain beyond our reach. It is the skill of the verifier to solve as much of a problem as is feasible, within given
resource limits.

 For the best choice of an abstraction method in the construction of a verification model, we unavoidably have to rely
on human judgement. Which parts of the system should we look at? What properties should apply? These types of
decisions would be hard to automate. But even though there will unavoidably be a human element in the setup of a
verification process, once the basic decisions about abstractions are made and recorded, it should in principle be
possible to mechanize the remainder of the verification process.

 Given the source text of an application and the properties of interest, we would like to generate a verification model
automatically from the source text, where the model extraction process is guided by a user-defined abstraction
function. In this chapter we discuss how we can do so.
[Team LiB]

[Team LiB]

From ANSI-C to PROMELA
 To get an impression of what it takes to mechanically convert a C program into a PROMELA model, consider the
following program. The program is one of the first examples used in Kernighan and Ritchie's introduction to the C
programming language, with a slightly more interesting control structure than the infamous hello world example.

#include <stdio.h>

int

main(void)

{ int lower, upper, step;

 float fahr, celsius;

 lower = 0;

 upper = 300;

 step = 20;

 fahr = lower;

 while (fahr <= upper) {

 celsius = (5.0/9.0) * (fahr - 32.0);

 printf("%4.0f %6.1f\n", fahr, celsius);

 fahr = fahr + step;

 }

}

 The program defines a function called main, declares five local variables, and does some standard manipulations to
compute a conversion table from temperature measured in degrees Fahrenheit to the equivalent expressed in degrees
Celsius. Suppose we wanted to convert this little program into a PROMELA model. The first problem we would run
into is that PROMELA does not support the C data-type float, and has no keyword while. The control-structure that
is used in the program, though, could easily be expressed in PROMELA. If we ignore the data-types for the moment,
and pretend that they are integers, the while loop could be expressed like this:

fahr = lower;

do

:: (fahr <= upper) ->

 celsius = (5/9) * (fahr-32);

 printf("%d %d\n", fahr, celsius);

 fahr = fahr + step;

:: else -> break

od

 It is not hard to see almost all control-flow structures that can be defined in C can be replicated in PROMELA.
(There are some exceptions, though, that we will consider shortly.) The control structure can be derived, for instance,
from the standard parse-tree representation of a program that is constructed by a C compiler. Figure 10.1 shows a
parse tree for the example temperature conversion program.

 Figure 10.1. The Complete Parse Tree for fahr.c

 The complete tree is large, even for this small program, including nodes for the main program, but also for all default
global declarations that are retrieved from the included stdio.h file. The interesting part of the tree is on the lower right,
which is reproduced in a little more detail in Figure 10.2. It contains the top of the parse-tree structure for the while
loop.

 Figure 10.2. Part of Parse Tree Structure for the While Loop

 The node at the top of Figure 10.2 has two successors. The left child (reached via the transition marked L defines the
loop condition, and the right child defines the code fragment for the loop body as a sequence of statements that are
further detailed in the subtree below it.

 A parse tree is acyclic. To convert it into a control-flow graph we have to interpret the semantics of keywords such
as if, for, while, and goto. The control flow graph representation shown in Figure 10.3 can be derived automatically
from the parse tree structure in this way, and is already much closer to the final automaton representation that we
would like to generate.

 Figure 10.3. Control-Flow Graph for While Construct from Figure 10.2

 So, although there can be some thorny issues that we will sidestep for now, it should be clear that most of the control
flow from a C program can be reproduced in a PROMELA model without too many difficulties. But what about C
declarations and basic C statements that manipulate the values of data objects that have no direct equivalent in
PROMELA? To make a conversion work, we must also find a method to bridge this gap. One way to handle this
would be to rely solely on abstraction methods, for instance, to map values of type float, which are not defined in
PROMELA, to values of type int, or perhaps even bool. This may not always be possible, or convenient, though. It
should, in principle, also be possible to use only minimal abstractions, and to build a verification model that behaves as
closely as possible to the real application, including the use of variables of type float, for instance, if that is most
convenient.

 The key to the solution of this problem lies in the observation that SPIN already generates C code from PROMELA
models when it generates the pan.c code for a verification run. To do this, SPIN must generate a fragment of C code
for every basic PROMELA statement that can appear in the model. This mechanism gives us a good way to use C as
a host language for other parts of a model specification. Rather than write the complete model in PROMELA, we can
devise means to write parts of it directly in C code, in such a way that these C code fragments can be embedded
directly into the verifiers that are generated by SPIN.

 In SPIN version 4.0 and later, trusted fragments of C code can be embedded into a SPIN model as basic
statements. For this purpose, PROMELA uses a new type of primitive statement, called c_code. An embedded C
code statement for the manipulation of the two variables of type float in the example program, for instance, could be
written in PROMELA as follows:

c_code { celsius = (5/9) * (fahr-32); };

 Similarly, the model can contain trusted declarations for embedded data declarations of C data objects that are
included into the model, and become an integral part of the state descriptor. The embedded statements and
declarations are trusted, because they fall outside the PROMELA language definition and their syntax or semantics
cannot be checked by the SPIN parser.

 The extensions allow us to bypass the PROMELA parser to include native C data objects into the state vector of the
model checker, and the matching state transformers that are written as embedded fragments of native C code. To
declare the foreign data objects fahr and celsius as C data-types, we can use the declarator c_state, as follows:

c_state "float fahr" "Local main"

c_state "float celsius" "Local main"

 The first of these two declarations states that the declaration float fahr is to be inserted into the proctype declaration
called main as a local data object. Similarly, the second declaration introduces celsius as another data object of type
float. The first argument to c_state remains uninterpreted. To SPIN it is merely a string that is inserted at the
appropriate point into the source text of the model checker as a data declaration. If the declaration is in error, for
instance, if it used the data type floatt instead of float, SPIN would not be able to detect it. The error would show up
only when we compile the generated model checking code: the embedded fragments are trusted blindly by SPIN.

 With these declarations, we have to modify our embedded C code fragment a little bit, to inform the C compiler that
the two float variables are not regular C variables, but imported local variables that will appear in the state descriptor.
This is done by prefixing the variable names, for instance, as follows:

c_code { Pmain->celsius = (5/9) * (Pmain->fahr-32); };

 A detailed explanation of the rules for accessing local or global variables, and the extensions to PROMELA that
support the use of embedded declarations and C code fragments, is given in Chapter 17. For the purpose of this
chapter, it suffices to know the basic mechanism that can be exploited. Since the embedded code fragments bypass
the checks that SPIN can normally make, the intent of the PROMELA extensions is primarily, perhaps exclusively, to
support automated model extraction tools that can replicate trusted portions of application software in a PROMELA
verification model.

 The complete model for the Fahrenheit conversion program, generated automatically by the model extraction tool
MODEX,[1] is shown in Figure 10.4.

[1] See Appendix D for downloading the MODEX software.

 Figure 10.4 MODEX Generated SPIN model

$ spin -a fahr.pml

$ cc -o pan pan.c

c_state "float fahr" "Local main"

c_state "float celsius" "Local main"

active proctype main()

{ int lower;

 int upper;

 int step;

 c_code { Pmain->lower=0; };

 c_code { Pmain->upper=300; };

 c_code { Pmain->step=20; };

 c_code { Pmain->fahr=Pmain->lower; };

 do

 :: c_expr { (Pmain->fahr <= Pmain->upper) };

 c_code { Pmain->celsius =

 ((5.0/9.0)*(Pmain->fahr-32.0)); };

 c_code { Printf("%4.0f %6.1f\n",

 Pmain->fahr, Pmain->celsius); };

 c_code { Pmain->fahr = (Pmain->fahr+Pmain->step); };

 :: else -> break

 od

}

 The model extractor makes sure that all declared state variables are accessed with the proper prefixes. The Printf
function is a predefined function within SPIN that makes sure that calls to printf are suppressed during the depth-first
search process, but enabled when an error trail is played back.

 Although we have not specified any properties to be verified for this model, we can let the verifier check how many
reachable system states there are.

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 32 byte, depth reached 70, errors: 0

 71 states, stored

 0 states, matched

 71 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype main

 (0 of 13 states)

 The four statements in the loop are executed a total of sixteen times, once for each of the values of fahr between 0
and 300 inclusive (in increments of 20). That loop traversal should generate a total of 4x16 = 64 distinct system
states. Then there are a total of four initialization statements for the various local variables, increasing the total to 68,
plus the initial state for the system, and two terminal states: one where the process reaches the closing curly brace and
terminates, and another state that is reached after the process has died and been removed from the state descriptor
altogether. This gives us a sum total of 71 reachable states, which matches the number that is reported by the verifier.

 There is nothing very remarkable about the run, other than the fact that the statements executed manipulate data
objects and use operations that are not part of the PROMELA language. Note, for instance, that using the same
principles we can analyze code that contains C pointers and arbitrary types of data structures, provided that we make
sure that all data objects that contain state information are registered with the model checker so that it can be included
in the state descriptors.

 If we wanted to get a sample error trace from the model, it would be simple enough to add an assert(false) as the last
statement in the model. If we repeat the verification, we now find the assertion violation after 70 steps.

 Basically, what we have defined here is that the only possible execution of the model, which is the computation and
printing of the conversion table, is erroneous. If we reproduce the error trail in non-verbose mode, using the
executable pan, the computation and generation of the conversion table is reproduced precisely:

$./pan -r -n # replay error trail in non-verbose mode

 0 -17.8

 20 -6.7

 40 4.4

 60 15.6

 80 26.7

 100 37.8

 120 48.9

 140 60.0

 160 71.1

 180 82.2

 200 93.3

 220 104.4

 240 115.6

 260 126.7

 280 137.8

 300 148.9

pan: assertion violated 0 (at depth 70)

spin: trail ends after 70 steps

#processes 1:

 70: proc 0 (main) line 28 (state 14)

 assert(0)

global vars:

local vars proc 0 (main):

 int lower: 0

 int upper: 300

 int step: 20

 If we were to use the standard guided simulation option of SPIN to reproduce the trail, the best that SPIN can do is
to reproduce the text of every C code fragment, but it cannot execute it.

$ spin -t fahr.pml

c_code1: { Pmain->lower=0; }

c_code2: { Pmain->upper=300; }

c_code3: { Pmain->step=20; }

c_code4: { Pmain->fahr=Pmain->lower; }

c_code5: (Pmain->fahr <= Pmain->upper)

c_code6: { Pmain->celsius =

 ((5.0/9.0)*(Pmain->fahr-32.0)); }

c_code7: { Printf("%4.0f %6.1f\n",

 Pmain->fahr, Pmain->celsius); }

c_code8: { Pmain->fahr = (Pmain->fahr+Pmain->step); }

...

spin: line 28 "fahr.pml", Error: assertion violated

spin: text of failed assertion: assert(0)

spin: trail ends after 70 steps

#processes: 1

 70: proc 0 (main) line 30 "fahr.pml" (state 15)

1 process created

 In order for SPIN to be able to also execute the embedded C code fragments in simulation mode, it would need to
have access to a built-in interpreter for the complete C language. The alternative that has been adopted is, instead of
using SPIN's existing simulation mode, to reproduce all error trails that contain embedded C code with the executable
program pan, which of course already contains the compiled code for all embedded C code fragments.

[Team LiB]

[Team LiB]

Embedded Assertions

 Because SPIN lacks a parser for the C language, it has to treat all embedded C code fragments as trusted code that
is passed through to the model checker as user-defined text strings. The intent is that the C code fragments are
generated by a model extraction program, but even then the possibility still exists that the code thus generated may
contain subtle bugs that cannot be intercepted by the model checker either, and that could cause the program to crash
without producing any useful results. A mild remedy is to allow the user, or model extractor, to annotate every c_expr
and c_code statement with a precondition that, if it evaluates to true, can guarantee that the statement can be executed
correctly.

 The preconditions act as embedded assertions. We can write, for instance

c_state "int *ptr;" "Local main"

...

c_code [Pmain->ptr != NULL] { *(Pmain->ptr) = 5; };

 to state that the integer pointer variable ptr must have a non-zero value for the pointer dereference operation that
follows in the code fragment to be safely executable. If a case is found where ptr evaluates to NULL (i.e., the
precondition evaluates to false), then an assertion violation is reported and an error trail can be generated. Without the
optional precondition, the model checker would try to execute the dereference operation without checks, and an
unhelpful crash of the program would result.

 We can use this feature to intercept at least some very common causes of program failures: nil-pointer dereferencing,
illegal memory access operations, and out of bound array indexing operations. Consider the following example. For
simplicity, we will ignore standard prefixing on state variables for a moment, and illustrate the concept here with
access to non-state variables only.

c_code {

 int *ptr;

 int x[256];

 int j;

};

...

c_code { ptr = x; };

if

:: c_expr [j >= 0 && j < 256] { x[j] != 25 } ->

 c_code [ptr >= x && ptr < &(x[256])] { *ptr = 25; }

:: else

fi

 If the variable j is not initialized, more than likely it would cause an out of bound array index in the c_expr statement.
The precondition checks for the bounds, so that such an occurrence can be intercepted as a failure to satisfy the
precondition of the statement. Similarly, the correctness of indirect access to array locations via pointer ptr can be
secured with the use of a precondition.
[Team LiB]

[Team LiB]

A Framework for Abstraction
 Let us take another look at the temperature conversion example. We have noted that we can distinguish the problem
of converting the control flow structure of the program cleanly from the problem of converting the actions that are
performed: the basic statements. Converting the control flow structure is the easier of the two problems, although
there can be some thorny issues there that we will consider more closely later.

 We will now consider how we can apply user-defined abstractions systematically to the statements that appear in a
program. It is important to note that the control flow aspect of a program is only of secondary importance in this
regard. Once some of the basic statements in a program have been replaced with abstracted versions, it may well be
that also the control flow structure of the program can be simplified. The latter is only done, though, if it does not
change the meaning of the program. We will see some examples of this notion shortly. The abstractions we will
consider here are applied exclusively to the basic statements that appear in a program, and to the data objects that
they access.

 Given an ANSI-C program, like the Fahrenheit to Celcius conversion example, the model extractor MODEX can
generate a default translation of each procedure that appears in the program into a PROMELA proctype, using
embedded C code fragments to reproduce those statements that have no equivalent in PROMELA itself. The
translation can be specified as a MODEX lookup table, using a simple two column format with the source text on the
left and the text for the corresponding abstraction to be used in the verification model on the right. For instance, a
lookup table that describes the defaults used in MODEX (i.e., without user-defined abstraction) for the Fahrenheit
program would map the nine entries:

(fahr<=upper)

!(fahr<=upper)

lower=0

upper=300

step=20

fahr=lower

fahr=(fahr+step)

celsius=((5/9)*(fahr-32))

printf("%4.0f %6.1f\n",fahr,celsius)

 to the following nine results:

c_expr { (Pmain->fahr<=Pmain->upper) }

else

c_code { Pmain->lower=0; }

c_code { Pmain->upper=300; }

c_code { Pmain->step=20; }

c_code { Pmain->fahr=Pmain->lower; }

c_code { Pmain->fahr=(Pmain->fahr+Pmain->step); }

c_code { Pmain->celsius=((5.0/9.0)*(Pmain->fahr-32.0)); }

c_code { Printf("%4.0f %6.1f\n", \

 Pmain->fahr, Pmain->celsius); }

 The first entry in the table is the conditional from the while statement in the C version of the code. The negation of that
statement, corresponding to the exit condition from the loop, appears as a separate entry in the table, to make it
possible to define a different translation for it. It would, for instance, be possible to replace the target code for both
the loop condition and the loop exit condition with the boolean value true to create a non-deterministic control
structure in the model. (In this case, of course, this would not be helpful.) The default conversion for the remaining
statements simply embeds the original code within a PROMELA c_code statement, and prefixes every variable
reference as required for local variables that appear in the model.

 The default treatment in MODEX for variable declarations is to embed them into the model with the help of
PROMELA c_state statements. All the defaults, though, can be overridden, for instance, to enforce abstraction.

 As a small illustration of the mechanism that can be invoked here to enforce abstraction, let us assume we wanted to
generate a pure PROMELA model from the C code, using integer variables and integer computations to approximate
the results of the Fahrenheit to Celsius conversions. The mechanism for doing so that is supported in MODEX is the
lookup table.

 First, we replace the default embedded data declarations with an integer version. We do so by including the following
five lines in the user-defined version of the lookup table that will be used to override MODEX's defaults.

Declare int fahr main

Declare int celsius main

Declare int upper main

Declare int lower main

Declare int step main

 The keyword Declare is followed by three tab-separated fields. The first field specifies the name of a data type, the
second the name of a variable, and the third specifies the scope of the variable. In this case, the scope is local and
indicated by the name of the target proctype, "main." If global, the last field would contain the MODEX keyword
Global.

 Now that we have integer data, the C statements from the original program can be interpreted directly as
PROMELA statements, rather than as embedded C code fragments. We can specify this by using the MODEX
keyword keep as the target for the corresponding entries in the lookup table. This can be done for seven of the nine
entries, as follows:

(fahr<=upper) keep

!(fahr<=upper) else

lower=0 keep

upper=300 keep

step=20 keep

fahr=lower keep

fahr=(fahr+step) keep

 The computation of the conversion values for the variable celcius will have to be done a little more carefully. Note
that the sub-expression (5/9) would evaluate to zero in integer arithmetic, resulting in all computed values being
approximated as zero. With the following translations, we avoid this by making sure that the division by nine happens
last, not first. Next, the print statement needs a slightly different format to print integer instead of floating point values.
Because the integer data types are recognized by PROMELA directly, these statements need not be embedded in C
code fragments, but can also be generated directly as PROMELA code, as follows:

celsius=((5/9)*(fahr-32)) celsius = ((fahr-32)*5)/9

printf(... printf("%d %d\n",fahr,celsius)

 The model extractor checks for an entry in user-supplied lookup tables, based on a textual match on entries in the
left-hand side column, and uses the user-defined translation when given, or else the default translation. Simple
abbreviations, such as the ellipses (the three dots at the end of the print statement) in the second entry above, are also
supported. In this case every statement that starts with the character string "printf(" is matched and translated to the
fixed target translation on right-hand side of this table entry.

 From the new explicit lookup table, the following model can now be generated mechanically by the MODEX tool:

active proctype main()

{ int step;

 int lower;

 int upper;

 int celsius;

 int fahr;

 lower = 0;

 upper = 300;

 step = 20;

 fahr = lower;

 do

 :: (fahr<=upper);

 celsius = ((fahr-32)*5)/9;

 printf("%d %d\n", fahr, celsius);

 fahr=(fahr+step)

 :: else -> break

 od

}

 The new model uses no embedded C code, so we can use it to generate the approximate integer values for the
temperature conversions with a standard SPIN simulation run, as follows:

$ spin fahr2.pml

 0 -17

 20 -6

 40 4

 60 15

 80 26

 100 37

 120 48

 140 60

 160 71

 180 82

 200 93

 220 104

 240 115

 260 126

 280 137

 300 148

1 process created

 A model extractor, used in combination with user-defined mapping tables, can generate almost any transformation of
a given program, being restricted only to the fixed control flow structure that is specified in the original program. This
can be considered to be both a strength and a weakness of the method. It clearly gives the model extractor all the
power it needs to support arbitrary abstraction methods in applications of software verification. But the method can
also easily be abused to generate meaningless or nonsensical abstractions. By itself, the model extractor is only a tool
that can be used to define abstractions: it cannot determine what proper abstractions are or how they should be
derived. For that we need different mechanisms that we discuss next.

[Team LiB]

[Team LiB]

Sound and Complete Abstraction

 One critical issue that we have not yet discussed is how we can define abstractions and how we can make sure that
they are meaningful. The best abstraction to be used in a given application will depend on the types of correctness
properties that we are interested in proving. The properties alone determine which aspects of the application are
relevant to the verification attempt, and which are not.

 Let P be the original program, and let L be a logical property we want to prove about P. Let further  be an
abstraction function.

 Let us begin by considering the case where abstraction  is defined as a MODEX lookup table. We will denote by
(P) the abstract model that is derived by MODEX from program P for abstraction . That is, (P) is the model in
which every basic statement in P is replaced with its target from the MODEX lookup table, but with the same control
flow structure which is reproduced in the syntax of PROMELA.

 Under a given abstraction , the original property L will generally need to be modified to be usable as a property of
the abstract model (P). Property L may, for instance, refer to program locations in P or refer to data objects that
were deleted or renamed by . L may also refer to data objects for which the type was changed, for instance, from
integer to boolean. We will denote this abstraction of L by (L).

 The inverse of abstraction  can be called a concretization, which we will denote by . A concretization can be used
to translate, or lift, abstract statements from the model back into the concrete domain of the original program. In
general, because of the nature of abstraction, any given abstract statement can map to one or more possible concrete
statements. This means that for a given statements s, (s) defines a single abstract statement, but concretization

defines a set of possible concrete statements, such that

 Similarly, for every abstract execution sequence  in model  (P) we can derive a set of concrete execution
sequences, denoted by , in the original program. Given that an abstraction will almost always remove some
information from a program, it is not necessarily the case that for every feasible execution  of the abstract program
there also exists a corresponding feasible execution within of the concrete program. This brings us to the
definition of two useful types of requirements that we can impose on abstractions: logical soundness and
completeness.

 Definition 10.1 (Logical Soundness)

 Abstraction  is logically sound with respect to program P and property L if for any concrete execution  of P that
violates L there exists a corresponding abstract execution of  (P) in  () that violates  (L).

 Informally, this means that an abstraction is logically sound if it excludes the possibility of false positives. The
correctness of the model always implies the correctness of the program.

 Definition 10.2 (Logical Completeness)

 Abstraction  is logically complete with respect to program P and property L if, for any abstract execution  of (P)
that violates (L), there exists a corresponding concrete execution of P in that violates L.

 Informally, this means that an abstraction is logically complete if it excludes the possibility of false negatives. The
incorrectness of the model always implies the incorrectness of the program.

[Team LiB]

[Team LiB]

Selective Data Hiding

 An example of a fairly conservative and simple abstraction method that guarantees logical soundness and
completeness with respect to any property that can be defined in LTL is selective data hiding. To use this method we
must be able to identify a set of data objects that is provably irrelevant to the correctness properties that we are
interested in proving about a model, and that can therefore be removed from the model, together with all associated
operations.

 This abstraction method can be automated by applying a fairly simple version of a program slicing algorithm. One
such algorithm is built into SPIN. This algorithm computes, based on the given properties, which statements can be
omitted from the model without affecting the soundness and completeness of the verification of those properties. The
algorithm works as follows. First, a set of slice criteria is constructed, initially including only those data objects that are
referred to explicitly in one or more correctness properties (e.g., in basic assertions or in an LTL formula). Through
data and control dependency analysis, the algorithm then determines on which larger set of data objects the slice
criteria depend for their values. All data objects that are independent of the slice criteria, and not contained in the set
of slice criteria themselves, can then be considered irrelevant to the verification and can be removed from the model,
together with all associated operations.

 The data hiding operation can be implemented trivially with the help of a MODEX lookup table, by arranging for all
irrelevant data manipulations to be mapped to either true (for condition statements) or to skip (for other statements).
Note that under this transformation the basic control flow structure of the model is still retained, which means that no
execution cycles can be added to or removed from the model, which is important to the preservation of liveness
properties.

 Although this method can be shown to preserve both logical soundness and logical completeness of the correctness
properties that are used in deriving the abstraction, it does not necessarily have these desirable properties for some
other types of correctness requirements that cannot be expressed in assertions or in LTL formulae. An example of
such a property is absence of deadlock. Note that the introduction of extra behavior in a model can result in the
disappearance of system deadlocks.
[Team LiB]

[Team LiB]

Example

 To illustrate the use of selective data hiding, consider the model of a word count program shown in Figure 10.5. The
program receives characters, encoded as integers, over the channel stdin, and counts the number of newlines,
characters, and white-space separated words, up to an end-of-file marker which is encoded as the number -1.

 Figure 10.5 Word Count Model

 1 chan STDIN;

 2 int c, nl, nw, nc;

 3

 4 init {

 5 bool inword = false;

 6

 7 do

 8 :: STDIN?c ->

 9 if

10 :: c == -1 -> break /* EOF */

11 :: c == '\n' -> nc++; nl++

12 :: else -> nc++

13 fi;

14 if

15 :: c == ' ' || c == '\t' || c == '\n' ->

16 inword = false

17 :: else ->

18 if

19 :: !inword ->

20 nw++; inword = true

21 :: else /* do nothing */

22 fi

23 fi

24 od;

25 assert(nc >= nl);

26 printf("%d\t%d\t%d\n", nl, nw, nc)

27 }

 The assertion checks that at the end of each execution the number of characters counted must always be larger than
or equal to the number of newlines. We want to find a simpler version of the model that would allow us to check this
specific property more efficiently. Variables nc and nl are clearly relevant to this verification, since they appear
explicitly in the assertions. So clearly the statements in which these variables appear cannot be removed from the
model. But which other statements can safely be removed?

 When we invoke SPIN's built-in slicing algorithm it tells us:

$ spin -A wc.pml

spin: redundant in proctype :init: (for given property):

 line 19 ... [(!(inword))]

 line 20 ... [nw = (nw+1)]

 line 20 ... [inword = true]

 line 15 ... [((((c==' ')||(c=='\t'))||(c=='\n)))]

 line 16 ... [inword = false]

spin: redundant vars (for given property):

 int nw 0 <:global:> <variable>

 bit inword 0 <:init:> <variable>

spin: consider using predicate abstraction to replace:

 int c 0 <:global:> <variable>

 From this output we can conclude that the program fragment between lines 14 to 23 is irrelevant, and similarly
variables nw and inword. SPIN also suggests that the declaration of variable c could be improved: it is declared as an
integer variable, but within the model only three or four value ranges of this variable are really relevant. We could do
better by using four symbolic values for those ranges, and declaring c as an mtype variable. This suggestion, though, is
independent of the data hiding abstraction that we can now apply. If we preserve the entire control-flow structure of
the original, the abstraction based on data hiding could now be constructed (manually) as shown in Figure 10.6.

 Figure 10.6 Abstracted Word Count Model

 1 chan STDIN;

 2 int c, nl, nc;

 3

 4 init {

 5

 6

 7 do

 8 :: STDIN?c ->

 9 if

10 :: c == -1 -> break /* EOF */

11 :: c == '\n' -> nc++; nl++

12 :: else -> nc++

13 fi;

14 if

15 :: true ->

16 skip

17 :: true ->

18 if

19 :: true ->

20 skip; skip

21 :: true

22 fi

23 fi

24 od;

25 assert(nc >= nl);

26 printf("%d\t%d\n", nl, nc)

27 }

 We can simplify this model without adding or deleting any control-flow cycles, by collapsing sequences of
consecutive true and skip statements. It is important that we do not add or omit cycles from the model in
simplifications of this type, because this can directly affect the proof of liveness properties. A cycle, for instance, could
only safely be added to or omitted from the model if we separately prove that the cycle always terminates within a
finite number of traversals. The simplified model looks as shown in Figure 10.7.

 Figure 10.7 Simplified Model

 1 chan STDIN;

 2 int c, nl, nc;

 3

 4 init {

 5

 6 do

 7 :: STDIN?c ->

 8 if

 9 :: c == -1 -> break /* EOF */

10 :: c == '\n' -> nc++; nl++

11 :: else -> nc++

12 fi

13 od;

14 assert(nc >= nl);

15 printf("%d\t%d\n", nl, nc)

16 }

 Because the abstraction we have applied is sound and complete, any possible execution that would lead to an
assertion violation in this simplified model implies immediately that a similar violating execution must exist in the original
concrete model. Perhaps surprisingly, there is indeed such an execution. An assertion violation can occur when the
value of variable nc wraps around its maximal value of 232 - 1 before the value of variable nl does, which can happen
for a sufficiently large number of input characters.

[Team LiB]

[Team LiB]

Bolder Abstractions

 Logically sound and complete abstractions are not always sufficient to render large verification problems tractable. In
those cases, one has to resort to abstraction strategies that lack either one or both of these qualities. These abstraction
strategies are often based on human judgement of what the most interesting, or most suspect, system behaviors might
be, and can therefore usually not be automated. Using these strategies also puts a greater burden on the user to rule
out the possibility of false negatives or positives with additional, and often manual, analyses.

 We will discuss two examples of abstraction methods in this class:


 Selective restriction


Data type abstraction

 The first method is neither sound nor complete. The second method is complete, but not necessarily sound.

 Selective restriction is commonly used in applications of model checking tools to limit the scope of a verification to a
subset of the original problem. We can do so, for instance, by limiting the maximum capacity of message buffers
below what would be needed for a full verification, or by limiting the maximum number of active processes. This
method is indubitably useful in an exploratory phase of a verification, to study problem variants with an often
significantly lower computational complexity than the full problem that is to be solved. This type of abstraction, though,
is to be used with care since it can introduce both false negatives and false positives into the verification process. An
example of this type of selective restriction is, for instance, the verification model of a leader election algorithm that
can be found in the standard SPIN distribution. To make finite state model checking possible, the number of
processes that participate in the leader election procedure must be fixed, although clearly the full problem would
require us to perform a verification for every conceivable number of processes. As another example from the same set
of verification models in the SPIN distribution, consider the PROMELA model of a file transfer protocol named pftp.
For exhaustive verification, each channel size should be set to a bound larger than the largest number of messages that
can ever be stored in the channel. By lowering the bound, partial verifications can be done at a lower cost, though
without any guarantee of soundness or completeness.

 Data type abstraction aims to reduce the value range of selected data objects. An example of this type of abstraction
could be to reduce a variable of type integer to an enumeration variable with just three values. The three values can
then be used to represent three ranges of values in the integer domain (e.g., negative, zero, and positive). The change
can be justified if the correctness properties of a model do not depend on detailed values, but only on the chosen
value ranges.

 A data type abstraction applied to one variable will generally also affect other variables within the same model. The
type of, and operations on, all variables that depend on the modified variables, either directly or indirectly, may have
to be adjusted. A data and control dependency analysis can again serve to identify the set of data objects that is
affected in this operation, and can be used to deduce the required changes.

 Denote by V the set of concrete values of an object and by A the associated set of abstract values under type
abstraction . To guarantee logical completeness, a data type abstraction must satisfy the following relation, known as
the Galois connection:[2]

[2] Note that concretization function defines a set.

 Consider, for instance, the property

 Table 10.1. Example of Type Abstraction

Statement Abstraction

(x > 5) (!neg_x)

x = 0 neg_x = false

x + + if

: :neg_x ->

if /* non-deterministic choice */

: :neg_x = true

: :neg_x = false

fi

: :else ->

skip

fi

The property depends only on the sign of variable x, but not on its absolute value. With a data type abstraction we
can try to replace every occurrence of x in the model with a new variable that captures only its sign, and not its value.
For example, if the model contains assignment and condition statements such as

(x > 5); x = 0; x++;

 we can replace all occurrences of x in these statements with a new boolean variable neg_x. The property then
becomes:

 The assignments and conditions are now mapped as shown in Table 10.1. Under this abstraction, precise information
about the value of the integer variable x can be replaced with non-deterministic guesses about the possible new values
of the boolean variable neg_x. Note, for instance, that when neg_x is true, and the value of x is incremented, the new
value of x could be either positive or remain negative. This is reflected in a non-deterministic choice in the assignment
of either true or false to neg_x. If, however, x is known to be non-negative, it will remain so after the increment, and
the value of neg_x remains false. The condition (x > 5) can clearly only be true when x is non-negative, but beyond
that we cannot guess. The Galois connection holds for these abstractions.

[Team LiB]

[Team LiB]

Dealing With False Negatives
 The occurrence of false negatives as a result of a logically unsound abstraction is not as harmful as it might at first
sight seem to be. By analyzing concretizations of counterexample executions it can often quickly be determined what
piece of information was lost in the abstraction that permitted the generation of the false negative. The counterexample
in effect proves to the user that the information that was assumed irrelevant is in fact relevant. Guided by the
counterexample, the abstraction can now be refined to eliminate the false negatives one by one, until either valid
counterexamples are generated, or a proof of correctness is obtained. It is generally much harder to accurately
analyze a false positive result of a model checker, for instance, if selective restrictions were applied: caveat emptor.
[Team LiB]

[Team LiB]

Thorny Issues With Embedded C Code
 The support in SPIN for embedded C code significantly extends the range of applications that can be verified, but it
is also fraught with danger. Like a good set of knifes, this extension can be powerful when used well, but also
disastrous when used badly. As one simple example, it is readily possible to divide a floating pointer number by zero
in an embedded C code fragment, or to dereference a nil-pointer. Since SPIN deliberately does not look inside
embedded C code fragments, it cannot offer any help in diagnosing problems that are caused in this way. To SPIN,
embedded C code fragments are trusted pieces of foreign code that define state transitions and become part of the
model checker. In effect, the PROMELA extensions allow the user to redefine parts of the PROMELA language. It is
ultimately the user's responsibility to make sure that these language extensions make sense.

 We can place our trust in a model extraction tool such as MODEX to generate embedded C code that is
(automatically) guarded with embedded assertions, but there are certainly still cases where also that protection can
prove to be insufficient. Note, for instance, that it is readily possible within embedded C code fragments to unwittingly
modify relevant state information that is beyond the purview of the model checker. External state information could,
for instance, be read from external files, the contents of which can clearly not be tracked by the model checker.
Hidden data could also be created and manipulated with calls to a memory allocator, or even by directly
communicating with external processes through real network connections.

 In cases where the model checker is set to work on a model with relevant state information that is not represented in
the internal state vectors, false negatives and positives become possible. False negatives can again more easily be
dealt with than false positives. Inspecting a counterexample can usually quickly reveal what state information was
missed. False positives are also here the more dangerous flaw of an extended SPIN model. It will often be possible to
incorporate hidden state information explicitly in a PROMELA model. Calls to a memory allocator such as malloc, for
instance, can be replaced with calls to a specially constructed PROMELA model of the allocator, with all state
information explicitly represented in the model. Similarly, information read from files or from network connections can
be replaced with information retrieved from internal PROMELA processes, again making sure that all relevant state
information becomes an explicit part of the verification model.

 There can also be delicate issues in the framework we have sketched for model extraction from ANSI C source
code. While it is true that most of the control-flow structures of a C program can be reproduced faithfully in a
PROMELA verification model, there are some notable exceptions. The invocation of a function via a function pointer
in C, for instance, could be preserved within an embedded C code fragment in PROMELA, but it would be very hard
to intercept such calls and turn them into PROMELA process instantiations. In this case, too, we have to accept that
there are limits to our verification technology. We can occasionally move the limits, but as these examples show, we
cannot altogether remove them. Although much of the verification process can be automated, some barriers remain
that can only be scaled with the help of human skill and judgement.
[Team LiB]

[Team LiB]

The Model Extraction Process
 Using MODEX and SPIN, we can now approach software verification problems with the following general
methodology.



 The first step is to decide what precisely the critical correctness properties of the application are. The
properties of special interest are those that are non-computational in nature. Model checkers are especially
strong in verifying concurrency-related problems.



Next, we identify those parts of the system that contribute most critically to the behavior of primary interest.
The effort here is again to find the smallest sufficient portion of the system to prove that the properties of
interest are satisfied.



The first two decisions can now guide us in the construction of an abstraction table that suppresses irrelevant
detail and highlights the important aspects of the system. In many cases, no special user decisions will be
needed and we can rely on the model extractor to use appropriate default translations. A model extractor like
MODEX can also guide the user in the construction of the abstraction tables to make sure that no cases are
missed.



Verification can now begin. Inevitably, there will be things that need adjusting: mistranslations, or missed
cases. The attempt itself to perform verification helps to identify these cases. If the model with its embedded
C code is incomplete, for instance, either SPIN or the C compiler will reject it, in both cases with detailed
explanations of the underlying reasons.



Once we have a working verifier, we can start seeing counterexamples. Again, there will be a learning cycle,
where false negatives will need to be weeded out and the abstraction tables adjusted based on everything that
is learned in this phase.



Eventually, either we find a valid counterexample, or a clean bill of health from the model checker. A valid
counterexample is in this sense the desired outcome. A clean bill of health (i.e., the absence of
counterexamples) should be treated with suspicion. Were the properties correctly formalized? Are they not
vacuously true? Did the abstraction preserve enough information to prove or disprove them? A few
experiments with properties that are known to be valid or invalid can be very illuminating in this phase, and
can help build confidence in the accuracy of the results.

 The process as it is sketched here still seems far removed from our ideal of developing a fully automated framework
for thoroughly checking large and complex software packages. At the same time, though, it is encouraging that the
approach we have described here offers an unprecedented level of thoroughness in software testing. As yet, there is
no other method known that can verify distributed systems software at the level of accuracy that model extraction
tools allow. The combination of model extraction and model checking enables us to eliminate the two main issues that
hamper traditional testing by providing a reliable mechanism for both controllability and observability of all the
essential elements of a distributed system.

 To close the gap between the current user-driven methodology and a fully automated framework still requires some
work to be done. Given the importance of this problem, and the number of people that are focusing on it today, we
can be fairly confident that this gap can successfully be closed in the not too distant future.
[Team LiB]

[Team LiB]

The Halting Problem Revisited
 In the days when C was still just a letter in the alphabet, and C++ a typo, it was already well established that it would
be folly to search for a computer program that could decide mechanically if some arbitrary other computer program
had an arbitrary given property. Turing's formal proof for the unsolvability of the halting problem was illustrated in
1965 by Strachey with the following basic argument. Suppose we had a program mc(P) that could decide in bounded
time if some other program P would eventually terminate (i.e., halt); we could then write a new program nmc(P) that
again inspects some other program P (e.g., after reading it), and uses mc(P) in the background. We now write nmc(P)
in such a way that it terminates if P does not terminate, and vice-versa. All is well until we decide to run nmc(nmc) to
see if nmc itself is guaranteed to terminate. After all, nmc is just another program, so this would be fair game.

 Strachey's construction is similar to Betrand Russell's famous class paradox, which makes it somewhat dubious to
use as a basis for a logical argument. In fairness, Strachey's construction does not really prove the unsolvability of the
halting problem, but it does prove that it is in general impossible to write a program that can establish arbitrary
properties of itself. This, of course, does not mean that no programs could be written that can establish specific
properties of themselves. A word-count program, for instance, can trivially determine its own length, and a
C-compiler can confirm its own syntactic correctness, and even recompile itself.

 Clearly we cannot write a program that could ever prove its own logical correctness. Note, for instance, that such a
program could easily report its own correctness erroneously.

 So far, this debate about arbitrary programs and arbitrary properties is purely academic, as it has been for pretty
much the last 100 years. Curiously, though, the extensions to SPIN with embedded C code have made it possible to
actually write a very real version of Strachey's construction. First, we write a little script that returns true if SPIN
determines that a given model has at least one invalid end state, and false if it does not.

#!/bin/sh

filename: halts

echo -n "testing $1: "

spin -a $1 # generate model

cc -DSAFETY -o pan pan.c # compile it

./pan | grep "errors: 0" # run it and grep stats

if $? # test exit status of grep

then

 echo "halts"

else

 echo "does not halt"

fi

 We can try this on some little examples to make sure that it does the right thing. For instance, if we apply our script to
the hello world example from Chapter 2, we get reassuringly:

$./halts hello.pml

halts

 If we add a blocking statement to this model

active proctype main()

{

 printf("hello world0);

 false /* block the execution */

}

 and run the script again, we get

$./halts hello_blocking.pml

does not halt

 We can now try to invoke this program in a c_expr statement with SPIN version 4, in the devious manner that was
envisioned by Strachey.

init { /* filename: strachey */

 do

 :: c_expr { system("halts strachey") } /* loop */

 :: else -> break

 od;

 false /* block the execution */

}

 What would happen if we now execute

$./halts strachey

.....

 The halts program ends up going into an infinite descent. Each time the verifier gets to the point where it needs to
establish the executability of the c_expr, it needs to invoke the halts script once more and restart itself. The behavior
of the model is defined in terms of itself, which puts it outside the scope of systems that can be verified with finitary
methods. It would be hard to maintain that the infinite recursion is caused by the method that we used to implement
the halts script. Note that if the halts script only needed to read the program before rendering its verdict, and did not
need to execute it, the same infinite descent would still occur.

 Curiously, the fact that the halts program loops on some inputs could in principle be detected by a higher-level
program. But, as soon as we extend our framework again to give that new program the capability to reason about
itself, we inevitably recreate the problem.

 The example aptly illustrates that by allowing embedded C code inside SPIN models the modeling language becomes
Turing complete, and we lose formal decidability. As yet another corollary of Kurt Gödel's famous incompleteness
theorem: any system that is expressive enough to describe itself cannot be powerful enough to prove every true
property within its domain.

[Team LiB]

[Team LiB]

Bibliographic Notes
 Alan Turing's seminal paper on computable and uncomputable functions appeared in 1936, Turing [1936].
Christopher Strachey's elegant construction to illustrate the unsolvability of the halting problem first appeared in
Strachey [1965]. In this very short note, Strachey refers to an informal conversation he had with Turing many years
earlier about a different version of the proof.

 The class paradox was first described in Russell [1903]. A fascinating glimpse of the correspondence between
Russell and Frege about the discovery of this paradox in 1902 can be found in Heijenoort [2000]. Gödel's original
paper is Gödel [1931].

 General references to abstraction techniques can be found in the Bibliographic Notes to Chapter 5. Here we focus
more on abstraction techniques that are used specifically for application in model extraction and model checking.

 Data type abstractions can in some cases be computed mechanically for restricted types of statements and
conditions, for instance, when operations are restricted to Pressburger arithmetic. In these cases, one can use a
mechanized decision procedure for the necessary computations (see, for instance, Levitt [1998]). A description of an
automated tool for computing program or model slices based on selective data hiding can be found in Dams, Hesse,
and Holzmann [2002].

 In the literature, logical completeness is often defined only for abstraction methods, not for abstract models as we
have done in this chapter. For a more standard discussion of soundness and completeness, see, for instance, Kesten,
Pnueli, and Vardi [2001].

 An excellent overview of general program slicing techniques can be found in Tip [1995].

 The first attempts to extract verification models mechanically from implementation level code targeted the conversion
of Java source code into PROMELA models. Among the first to pursue this, starting in late 1997, were Klaus
Havelund from the NASA Ames Research Center, and Matt Dwyer and John Hatcliff from Kansas State University,
as described in Havelund and Pressburger [2000], Brat, Havelund, Park, and Visser [2000], and Corbett, Dwyer,
Hatcliff, et al. [2000].

 The work at Ames led to the Pathfinder verification tool. The first version of this tool, written by Havelund, converted
Java to PROMELA, using a one-to-one mapping. The current version, called Java Pathfinder-2, was written at Ames
by Willem Visser as a stand-alone model checker, that uses an instrumented virtual machine to perform the
verification.

 The work at Kansas State on the Bandera tool suite targets the conversion from Java to PROMELA, and it includes
direct support for data type abstraction and program slicing. The Bandera tool supports a number of other model
checking tools as alternative verifiers, in addition to the SPIN tool.

 The work at Bell Labs, starting in 1998, was the first attempt to convert ANSI C source code into abstract
PROMELA verification models. It is described in, for instance, Holzmann and Smith [1999,2000,2002], and
Holzmann [2000]. The code for the model extractor MODEX and for the extended version of SPIN is generally
available today (see Appendix D). A more detailed description of the use of this tool, and the recommended way to
develop a test harness definition, can be found in the online user guide for MODEX.

 A related attempt to systematically extract abstract verification models from sequential C source code is pursued at
Microsoft Research in the SLAM project, see Ball, Majumdar, Millstein, and Rajamani [2001]. The Bebop tool
being developed in this project is based on the systematic application of predicate and data type abstractions.

 The problem of detecting whether or not a property is vacuously satisfied was dealt with in the FeaVer system by
implementing an automated check on the number of states that was reached in the never claim automata, see
Holzmann and Smith [2000,2002]. A high fraction of unreachable states was found to correlate well with vacuously
true properties. A more thorough method of vacuity checking is described in Kupferman and Vardi [1999].

[Team LiB]

[Team LiB]

Chapter 11. Using SPIN
 "The difference between theory and practice is a lot bigger in practice than in theory."

 —(Peter van der Linden, Expert C Programming, p. 134)

 Although SPIN verifications are often performed most conveniently with the help of the graphical interface XSPIN,
we will postpone a discussion of that tool for one more chapter and concentrate here on a bare bones use of SPIN
itself. It can be very useful to know how to run short verification jobs manually through SPIN's command line
interface, especially when trying to troubleshoot unexpected results.

 The number of industrial applications of SPIN is steadily increasing. The core intended use of the tool, though, has
always been to support both research and teaching of formal verification. One clear advantage of this primary focus is
that the sources to SPIN remain freely available, also for commercial use.[1] The large number of users of the tool
mean that any flaws that occasionally slip into the software are typically reported and fixed much more rapidly than
would be possible for a commercial tool. A possible disadvantage is that the tool continues to evolve, which means
that whatever version of the software you happen to be using, there is likely to be a more recent and better version
available by the time you figure out how to use it. The basic use of the tool, though, does not change much from
version to version, and it is this basic use that we will discuss in this chapter.

[1] Downloading instructions for SPIN can be found in Appendix D (p. 579).
[Team LiB]

[Team LiB]

SPIN Structure

 The basic structure of SPIN is illustrated in Figure 11.1. The workflow starts with the specification of a high-level
verification model of a concurrent system, or distributed algorithm, optionally using SPIN's graphical front-end
XSPIN. After fixing syntax errors, interactive simulation is performed until the user gains the basic confidence that the
model has the intended properties. Optionally, a PROMELA correctness claim can be generated from an logic
formula specified in linear temporal logic (LTL). Then, in the third main step, SPIN is used to generate an optimized
on-the-fly verification program from the high-level specification. This verification program is compiled, with possible
compile-time choices for the types of reduction algorithms that are to be used, and it is then executed to perform the
verification itself. If any counterexamples to the correctness claims are detected, these can be fed back into the SPIN
simulator. The simulation trail can then be inspected in detail to determine the cause of the correctness violation.[2]

[2] When embedded C code is used, the trail can only be reproduced by the verifier itself. See Chapter 17 for details.

 Figure 11.1. The Structure of SPIN

 In the remainder of this chapter we give some more detailed guideliness of how each of the main steps of
specification, simulation, and verification can be performed.
[Team LiB]

[Team LiB]

Roadmap

 A verification is often performed in an iterative process with increasingly detailed models. Each new model can be
verified under different types of assumptions about the environment and for different types of correctness properties.
If a property is not valid under a given set of assumptions, SPIN can produce a counterexample that shows explicitly
how the property may be violated. The model can then be modified to prevent the property violation.

 Once a property has been shown to hold, it is often possible to then reduce the complexity of that model by using the
now trusted property as a simplifying assumption. The simpler model may then be used to prove other properties.

 A more detailed sequence of steps that the (human) verifier can take in tackling a systems verification problem is as
follows. We will assume that an initial verification model, saved in a file called model, has been built, including an initial
formalization of all relevant correctness properties.

1.

 The first step is to perform a sanity check of the PROMELA code by executing the command:[3]

[3] In the command line examples that follow, the # symbol indicates the start of a comment.

$ spin -A model # perform thorough syntax check

 The output from SPIN will include warnings about syntax errors, possibly dubious constructs that were used,
as well as suggestions on possible improvements of the model. A second, more basic check of the model can
be performed by attempting to generate the source code for a verifier from the model with the command:

$ spin -a model # generate verifier

2.

 Once the first sanity checks are completed, and any flaws that were found have been repaired, a good insight
into the behavior that is captured can be obtained with a series of either random or interactive simulation runs.
If enough information can be gleaned from just the execution of print statements that are contained within the
model, it may suffice to say simply:

$ spin model # non-verbose simulation

 However, especially for the first few runs, or when it is known that the simulation could continue ad infinitum,
it is wise to add a more verbose output option, and to limit the maximum number of steps that may be
executed, for instance, by executing the command:

$ spin -p -u200 model # more verbose simulation

 With these parameters every single step that is executed will produce at least some visible output. Also, the
simulation will reliably stop after at most 200 steps were made, protecting against a runaway execution.

 If the model contains message passing operations, the best information is often obtained from the following
type of run:

$ spin -c -u200 model # bounded simulation

 To obtain better insight into seemingly obscure behavior, it is often very useful to add some extra print
statements or assertions to the model. User-defined print statements can provide additional information about
the evolving state of the model that may not be available from predefined simulation options.

 Unfortunately, if the model contains embedded C code, a direct simulation of the model with SPIN as
suggested above cannot reveal too much information about an execution. In that case we will have to gain
insight into the model's execution from the verifier, as outlined in the next few steps.

3.

 Once all small modeling errors have been fixed, a more thorough verification process can begin by
generating, compiling, and executing the model-specific verifier. In its most basic mode, this is done as
follows:

$ spin -a model # generate verifier

$ cc -o pan pan.c # compile verifier

$./pan # perform verification

 The verifier can be generated and compiled in several different ways, depending on the type of verification
that is desired, as more fully explained later in this chapter, and also in Chapter 18 (p. 513).

4.

 If a counterexample to a correctness property is generated by the verifier, it can be explored in detail with
SPIN's guided simulation options. For models without embedded C code, this is done by executing, for
instance:

$ spin -t -p model # replay error trail

 All options that are available for random and interactive simulations are again available to determine the
precise cause of the property violation that was discovered. For instance, we can skip the first 200 steps in a
long simulation trail by executing:

$ spin -t -p -j200 model # skip first 200 steps

 or we can revert to the mode where message passing details are shown:

$ spin -t -c model # simulation with io details

 If the model contains embedded C code, a guided simulation run with SPIN will only be able to print but not
execute the embedded code fragments. In this case we can execute the error trail with an additional option in
the verifier itself, for instance, as follows:

$./pan -C # replay a trail with embedded C code

 These options are more fully explained in Chapter 17 (p. 495). By analyzing the counterexample, we can
conclude that either the model or the correctness properties were at fault, and the appropriate remedy can be
taken.

5.

 There is a range of options available in the SPIN verifiers to control the complexity of a large verification run,
or to perform various types of approximate verification runs. The details can be found later in this chapter and
also in Chapters 9, 18, and 19 (pgs. 191, 513, and 527, respectively). If, nonetheless, a verification cannot
be completed exhaustively, or if an approximate verification run cannot be completed with sufficient coverage,
it is time to reconsider the PROMELA model itself and remove any potential causes of computational
complexity that can be identified. This approach is discussed in more detail in Chapter 5 (p. 101).

 The main steps in the verification process sketched above are reviewed in a little more detail in the remainder of this
chapter. As a general hint, if you are ever unsure which options SPIN supports, typing

$ spin -- # list available command-line options

 will produce a list, with a brief explanation of each option. The command

$ spin -V # print version number and exit

 prints the number and date of the specific version of SPIN that you are using. The same principle holds for the
verifiers generated by SPIN. Typing

$./pan -- # list available run-time options

 lists all available run-time options, and

$./pan -V # print version number and exit

 prints the number of the version of SPIN that was used to generate the verifier, and lists the precise set of
compile-time directives that was used to compile the pan executable.

[Team LiB]

[Team LiB]

Simulation
 We will now take a closer look at the main options for performing random, interactive, and guided simulations with
SPIN.
[Team LiB]

[Team LiB]

Random Simulation

 Given a model in PROMELA, say, stored in a file called model, the easiest mode of operation is to perform a
random simulation. For instance,

$ spin -p model

 tells SPIN to perform a random simulation while printing the process moves selected for execution at each step. If
invoked without any options, SPIN prints no output other than what is explicitly produced by the model itself with
print statements. Sometimes, simulation runs can go on indefinitely, and the output can quickly become overwhelming.
One simple way of controlling the flow of output would be to pipe the output into a UNIX paging tool, for instance

$ spin -p model | more

 This does not work on all PCs though.[4] We can restrict the output to the first N steps by using the -uN option.
Similarly, it is also possible to skip over an initial sequence of N steps with the -jN option. The two options can be
used in combination, for instance, to see only the detailed output for one hundred execution steps starting at the 100th
statement execution; one would say:

[4] A recommended way to make this work on a PC is to install the (free) cygwin toolset from www.cygwin.com,
which approximates a very usable UNIX environment on Windows PCs.

$ spin -p -j100 -u200 model # print steps 100 to 200

 This type of simulation is random, which means that every new simulation run may produce a different type of
execution. By default, the current time is used to seed the random number generator that SPIN uses in random
simulation mode. To fix a user-defined seed value instead, and to make the simulation run completely reproducible,
we can say, for instance

$ spin -p -j100 -u200 -n123 model # fix seed

 which initializes the random number generator with a user-defined seed of 123 in this case.

 A range of options exists to make the results of a simulation more verbose, for example, by adding printouts of local
variables (add option -l), global variables (option -g), send statements (option -s), or receive statements (option -r).

 Options can be combined in arbitrary order, as in:

$ spin -p -l -g -r -s -n1 -j10 -u20 model

 which can look quite baffling at first, but quickly starts to make sense.

 A quick inspection of the available options with the command

$ spin --

 usually suffices to select the right parameters for a simulation run of this type.

http://www.cygwin.com/default.htm

[Team LiB]

[Team LiB]

Interactive Simulation

 It is not always desirable to have SPIN automatically resolve all non-deterministic choices in the model with calls on a
random number generator. For these cases, there is an interactive simulation mode of SPIN that is selected through
command-line option -i. For instance, when we type:

$ spin -i -p model

 a menu with choices is offered each time that the execution can proceed in more than one way. For instance, for the
leader election model from the standard SPIN distribution, we might see:[5]

[5] We have deleted line numbers and source file references from the output for layout purposes.

$ spin -i -p leader

0: proc - (:root:) creates proc 0 (:init:)

1: proc 0 (:init:) ... (state 10) [proc = 1]

2: proc 0 (:init:) ... (state 8) [.(goto)]

Select stmnt (proc 0 (:init:))

 choice 1: ((proc<=5))

Select [0-2]: 1
3: proc 0 (:init:) ... (state 7) [((proc<=5))]

4: proc 0 (:init:) creates proc 1 (node)

4: proc 0 (:init:) ... (state 3) [(run node(...)]

5: proc 0 (:init:) ... (state 4) [proc = (proc+1)]

6: proc 0 (:init:) ... (state 8) [.(goto)]

Select stmnt (proc 0 (:init:))

 choice 0: other process

 choice 1: ((proc<=5))

Select [0-2]: 0
Selet a statement

 choice 1: proc 1 (node) ... (state 1) [printf(...)]

 choice 2: proc 0 (:init:) ... (state 7) [((proc<=5))]

Select [1-3]: q
$

 Everything typed by the user after SPIN starts executing in response to a Select request from the tool is indicated in
bold. The user is asked to make a choice from one or more non-deterministic alternatives for execution by typing a
number within the range that is indicated by the Select request. In most cases, if there is only one choice, SPIN will
immediately select that option without asking the user for guidance, but this is not always the case, as illustrated by the
first query that the tool issues in the preceding example. The simulation can be stopped at any point by typing the letter
q (for 'quit') at a selection menu.

 If initial steps in the execution are skipped with a -jN option, then SPIN will resolve the non-determinism for those
steps internally with the random number generator, and yield control to the user at the desired point. Again, it is wise
to fix a seed to SPIN's random number generator in this case to make sure that the intial part of the simulation run
proceeds in a reproducible way. An upper limit, specified with option -uN, will stop the simulation after N steps have
been executed.

 Simulations, of course, are intended primarily for the debugging of a model. Only basic assertions are checked in this
mode, but even if none of these assertions are violated in a large battery of random simulation runs, we cannot
conclude that such violations are impossible. To do so requires verification.

[Team LiB]

[Team LiB]

Guided Simulation

 SPIN can also be run in guided simulation mode. To do so, though, requires the existence of a specially encoded trail
file to guide the search. These trail files are generated only in verification mode, when the verifier discovers a
correctness violation. The execution sequence leading up to the error is stored in the trail file, allowing SPIN to replay
the scenario in a guided simulation, with access to all user-defined options that were discussed earlier for random
simulation. We will return to this option on page 258.
[Team LiB]

[Team LiB]

Verification
 Perhaps the most important feature of SPIN is that it can generate optimized verifiers from a user-defined
PROMELA model. SPIN does not attempt to verify properties of a model directly, with any generic built-in code. By
generating a verifier that can be compiled and run separately a significant gain in performance can be realized.
[Team LiB]

[Team LiB]

Generating a Verifier

 When done debugging, we can use SPIN option -a to produce the source code for a model specific verifier, for
instance, as follows:

$ spin -a model

 There are actually two different semantic models that may be used to generate the verifier at this point. The alternative
semantic model is obtained with the command:

$ spin -a -m model

 By default, send operations are considered to be unexecutable when the channel to which the message is sent is full.
With option -m, this semantic changes into one where send operations are always executable, but messages sent to
full channels are lost. The standard semantics of PROMELA correspond to the default model, where option -m is not
used.

 The verifier is generated as a C program that is stored in a number of files with a fixed set of names, all starting with
the three-letter prefix[6] pan. For instance, we may see this result:

[6] The prefix pan is short for protocol analyzer, and a reference to SPIN's earliest predecessor from 1980.

$ spin -a leader

$ ls -l pan.?

-rw-r--r-- 1 gerard user 2633 Aug 18 12:33 pan.b

-rw-r--r-- 1 gerard user 147964 Aug 18 12:33 pan.c

-rw-r--r-- 1 gerard user 9865 Aug 18 12:33 pan.h

-rw-r--r-- 1 gerard user 13280 Aug 18 12:33 pan.m

-rw-r--r-- 1 gerard user 18851 Aug 18 12:33 pan.t

$

 The file named pan.h is a generic header file for the verifier that contains, for instance, the translated declarations of all
global variables, all channels, and all process types. File pan.m defines the executability rules for all PROMELA
statements used in the model, and the effect they have on the system state when successfully executed. File pan.b
defines how the effect of each statement from pan.m can be undone when the direction of the depth-first search is
reversed. File pan.t contains the transition matrix that encodes the labeled transition system for each process type.
Finally, file pan.c contains the algorithms for the computation of the asynchronous and synchronous products of the
labeled transition systems, and the state space maintenance and cycle detection algorithms, encoding optimized
versions of either a depth-first or a breadth-first search.
[Team LiB]

[Team LiB]

Compiling the Verifier

 The best performance of the SPIN-generated verifiers can be obtained if the physical limitations of the computer
system that will be used to run the verifications are known. If it is known, for instance, how much physical (not virtual)
memory the system has available, the verifier can take advantage of that. Initially, the verifier can simply be compiled
for a straight exhaustive verification, which can also deliver the strongest possible verification result, provided that
there is sufficient memory to complete the run. Compile as follows:

$ cc -o pan pan.c # compile for exhaustive search

 The pan.c file includes all other files that are generated by SPIN, so the name of only this file needs to be provided to
the compiler. If this compilation attempt fails, make sure that you have an ANSI compatible C compiler. Almost all C
compilers today conform to this standard. In case of doubt, though, the generally available Gnu C compilers have the
right properties. They are often available as gcc, rather than cc. The result of the compilation on UNIX systems will
be an executable file called pan.

 On a Windows PC system with the Microsoft Visual C++ compiler installed, the compilation would be done as
follows:

$ cl pan.c

 which if all is well also produces an executable verifier named pan.exe.

 If a memory bound is known at the time of compilation, it should be compiled into the verifier so that any paging
behavior can be avoided. If, for instance, the system is known to have no more than 512 Megabytes of physical
RAM memory, the compiler-directive to add would be:

$ cc -DMEMLIM=512 -o pan pan.c

 If the verifier runs out of memory before completing its task, the bound could be increased to see if this brings relief,
but a better strategy is to try some of SPIN's memory compression options. For instance, a good first attempt could
be to compile with the memory collapse option, which retains all the benefits of an exhaustive verification, but uses
less memory:

$ cc -DCOLLAPSE -o pan pan.c # collapse compression

 If the verifier still runs out of memory before it can complete the search, a good strategy is to attempt the
hash-compact option, which uses less memory, at a small risk of incompleteness of the search:

$ cc -DHC4 -o pan pan.c # hash-compact strategy

 If that also fails, the recommended strategy is to use a series of bitstate verifi-cation runs to get a better impression of
the complexity of the problem that is being tackled. Although the bitstate verification mode cannot guarantee
exhaustive coverage, it is often very successful in identifying correctness violations.

$ cc -DBITSTATE -o pan pan.c # bitstate compression

 Whichever type of compilation was selected, an executable version of the verifier should be created in a file called
either pan (on UNIX systems) or pan.exe (on PCs), and we can proceed to the actual verification step.

[Team LiB]

[Team LiB]

Tuning a Verification Run

 A few decisions can be made at this point that can improve the performance of the verifier. It is, for instance, useful,
though not strictly required, if we can provide the verifier with an estimate of the likely number of reachable states, and
the maximum number of unique steps that could be performed along any single non-cyclic execution path (defining the
maximum depth of the execution tree). We will explain in the next few sections how those estimates can be provided.
If no estimates are available, the verifier will use default settings that will be adequate in most cases. The feedback
from the verifier after a first trial run usually provides enough clues to pick better values for these two parameters, if
the defaults do not work well.

 Next, we must choose whether we want the verifier to search for violations of safety properties (assertion violations,
deadlocks, etc.) or for liveness properties (e.g., to show the absence of non-progress cycles or acceptance cycles).
The two types of searches cannot be combined.

 A search for safety properties is the default. This default is changed into a search for acceptance cycles if run-time
option -a is used. To perform a search for non-progress cycles, we have to compile the pan.c source with the
compile-time directive -DNP, and use run-time option -l, instead of -a. We will return to some of these choices on
page 257.
[Team LiB]

[Team LiB]

The Number of Reachable States

 The verifier stores all reachable states in a lookup table. In exhaustive search mode, that table is a conventional hash
table, with a default size of 218 slots. This state storage method works optimally if the table has at least as many slots
as there are reachable states that will have to be stored in it, although nothing disastrous will happen if there are less or
more states than slots in the lookup table. Strictly speaking, if the table has too many slots, the verifier wastes
memory. If the table has too few slots, the verifier wastes CPU cycles. In neither case is the correctness of the
verification process itself in peril.

 The built-in default for the size of the hash table can be changed with run-time option -wN. For instance,

$./pan -w23

 changes the size of the lookup table in exhaustive search mode from 218 to 223 slots.

 The hash table lookup idea works basically the same when the verifier is compiled for bitstate verification, instead of
for the default exhaustive search. For a bitstate run, the size of the hash table in effect equals the number of bits in the
entire memory arena that is available to the verifier. If the verifier is compiled for bitstate verification, the default size of
the hash array is 222 bits, that is, 219 bytes. We can override the built-in default by specifying, for instance,

$./pan -w28

 to use a hash array of 228 bits or 225 bytes. The optimal value to be used depends primarily on the amount of
physical memory that is available to run the verification. For instance, use -w23 if you expect 8 million reachable
states and have access to at least 1 Megabyte of memory (220 bytes). A bitstate run with too small of a setting for the
hash array will get less coverage than possible, but it will also run faster. Sometimes increased speed is desired, and
sometimes greater coverage.

 One way to exploit the greater speed obtained with the small hash arrays is, for instance, to apply an iterative
refinement method. If at least 64 Megabytes of physical memory are available, such an iterative search method could
be performed as follows, assuming a UNIX system running the standard Bourne shell:

$ spin -a model

$ cc -DBITSTATE -DMEMLIM=80 -o pan pan.c

$ for i in 20 21 22 23 24 25 26 27 28 29

 do

 ./pan -w$i

 if [-f model.trail]

 then

 exit

 fi

 done

$

 The search starts with a hash array of just 220 bits (128 Kbytes), which should not take more than a fraction of a
second on most systems. If an error is found, the search stops at this point. If no error is found, the hash array
doubles in size and the search is repeated. This continues until either an error is found or the maximal amount of
memory has been used for the hash array. In this case, that would be with a hash array of 229 bits (64 Megabytes).
The verifier source is compiled with a limit of 80 Megabytes in this case, to allow some room for other data structures
in the verifier, so that also the last step can be run to completion.

[Team LiB]

[Team LiB]

Search Depth

 By default, the verifiers generated by SPIN have a search depth restriction of 10,000 steps. If this isn't enough, the
search will truncate at 9,999 steps (watch for this telltale number in the printout at the end of a run). A different search
depth of N steps can be defined by using run-time option -mN, for instance, by typing

$./pan -m1000000

 to increase the maximum search depth to 1,000,000 steps. A deeper search depth requires more memory for the
search; memory that cannot be used to store reachable states, so it is best not to overestimate here. If this limit is also
exceeded, it is probably good to take some time to consider if the model defines finite behavior. Check, for instance,
if attempts are made to create an unbounded number of processes, or to increment integer variables without bound. If
the model is finite, increase the search depth at least as far as is required to avoid truncation of the search.

 In the rare case that there is not enough memory to allocate a search stack for very deep searches, an alternative is to
use SPIN's stack-cycling algorithm that arranges for the verifier to swap parts of the search stack to disk during a
verification run, retaining only a small portion in memory. Such a search can be set up and executed, for instance, as
follows:

$ spin -a model

$ cc -DSC -o pan pan.c # use stack-cycling

$./pan -m100000

 In this case, the value specified with the -m option defines the size of the search stack that will reside in memory.
There is no preset maximum search depth in this mode: the search can go arbitrarily deep, or at least it will proceed
until also the diskspace that is available to store the temporary stack files is exhausted.

 If a particularly nasty error is found that takes a relatively large number of steps to hit, you can try to find a shorter
error trail by forcing a shorter depth-limit with the -m parameter. If the error disappears with a lower depth-limit,
increase it in steps until it reappears.

 Another, and often more reliable, way to find the shortest possible error sequence is to compile and run the verifier
for iterative depth adjustment. For instance, if we already know that there exists an error sequence of 1,000 steps, we
can try to find a shorter equivalent, as follows:

$ spin -a model

$ cc -DREACH -o pan pan.c

$./pan -i -m1000 # iteratively find shortest error

 Be warned, though, that the use of -DREACH can cause an increase in run time and does not work for bitstate
searches, that is, it cannot be combined with -DBITSTATE.

 Finally, if the property of interest is a safety property (i.e., it does not require a search for cyclic executions), we can
consider compiling the verifier for a breadth-first, instead of the standard depth-first, search:

$ cc -DBFS -o pan pan.c

$./pan

 This type of search tends to be a little slower than the default search mode, and it can consume more memory, but if
these limitations do not prevent it, it is guaranteed to find the shortest path to an error. Combinations with state
compression methods are again possible here. Reasonable attempts to control excessive memory use can, for
instance, be to compile the verifier with the hash-compact option, using the additional compiler directive -DHC4.

[Team LiB]

[Team LiB]

Cycle Detection

 The most important decision to be made in setting up a verification run is to decide if we want to perform a check for
safety or for liveness properties. There are optimized algorithms in the verifier for both types of verification, but only
one type of search can be performed at a time. The three main types of search, with the corresponding compilation
modes, are as follows:

$ spin -a model

$ cc -DSAFETY -o pan pan.c # compilation for safety

$./pan # find safety violations

$ cc -o pan pan.c # default compilation

$./pan -a # find acceptance cycles

$ cc -DNP -o pan pan.c # non-progress cycle detection

$./pan -l # find non-progress cycles

 By default, that is in the absence of option -l and -a, only safety properties are checked: assertion violations, absence
of unreachable code, absence of race conditions, etc. The use of the directive -DSAFETY is optional when a search
for safety properties is performed. But, when the directive is used, the search for safety violations can be performed
somewhat more efficiently.

 If accept labels are present in the model, for instance, as part of a never claim, then a complete verification will
require the use of the -a option. Typically, when a never claim is generated from an LTL formula, it will contain accept
labels.

 Adding run-time option -f restricts a search for liveness properties further by enforcing a weak fairness constraint:

pan -f -l # search for fair non-progress cycles

pan -f -a # search for fair acceptance cycles

 With this constraint, a non-progress cycle or an acceptance cycle is only reported if every running process either
executes an infinite number of steps or is blocked at an unexecutable statement at least once in the execution cycle.
Adding the fairness constraint multiplies the time requirements of a verification by a factor that is linear in the number
of running processes.

 By default, the verifier will always report every statement that is found to be unreachable in the verification model.
This reachability report can be suppressed with run-time option -n, as, for instance, in:

$./pan -n -f -a

 The order in which the options such as these are listed is always irrelevant.
[Team LiB]

[Team LiB]

Inspecting Error Traces

 If the verification run reports an error, SPIN dumps an error trail into a file named model.trail, where model is the
name of the PROMELA specification. To inspect the trail, and to determine the cause of the error, SPIN's guided
simulation option can be used (assuming that the model does not contain embedded C code fragments, cf. p. 495).
The basic use is the command

$ spin -t -p model

 with as many extra or different options as are needed to pin down the error. For instance,

$ spin -t -r -s -l -g model

 The verifier normally stops when a first violation has been found. If the first violation is not particularly interesting,
run-time option -cN can be used to identify others. For instance,

$./pan -c3

 ignores the first two violations and reports only the third one, assuming of course that at least three errors can be
found.

 To eliminate entire classes of errors, two special purpose options may be useful. A search with

$./pan -A

 will ignore all violations of basic assertion statements in the model, and a search with

$./pan -E

 will ignore all invalid end-state errors. For example, to search only acceptance cycles, the search could be initiated
as:

$./pan -a -A -E

 To merely count the number of all violations, without generating error trails, use

$./pan -c0

 To do the same while also generating an error trail for each violation found, use

$./pan -c0 -e

 The error trails now carry a sequence number as part of the file names. To replay a specific numbered trail, say, the
Nth copy, provide the sequence number in the -t parameter, for instance,

$ spin -t3 model

 performs a guided simulation for the third error trail found, using the file model3.trail.

[Team LiB]

[Team LiB]

Internal State Numbers

 Internally, the verifiers produced by SPIN deal with a formalization of a PROMELA model in terms of finite
automata. SPIN therefore assigns state and transition numbers to all control flow points and statements in the model.
The automata state numbers are listed in all the relevant outputs to make it unambiguous (source line references
unfortunately do not always have that property). To reveal the internal state assignments, run-time option -d can be
used. For instance,

$./pan -d

 prints a table with all internal state and transition assignments used by the verifier for each distinct proctype in the
model. The output does not clearly show merged transition sequences. To obtain that output it is best to disable the
transition merging algorithm that is used in SPIN. To do so, proceed as follows:

$ spin -o3 model

$ cc -o pan pan.c

$./pan -d

 To see the unoptimized versions of the internal state assignments, every repetition of the -d argument will arrange for
an earlier version of the internal state tables to be printed, up to the original version that is exported by the SPIN
parser. Try, for instance, the following command for your favorite model:

$./pan -d -d -d

 and compare it with the output that is obtained with a single -d argument.
[Team LiB]

[Team LiB]

Special Cases
 We conclude this chapter with a discussion of some special cases that may arise in the verification of PROMELA
models with SPIN. In special circumstances, the user may, for instance, want to disable the partial order reduction
algorithm. Alternatively, the user may want to spend some extra time to boost the performance of the partial order
reduction by adding some additional declarations that SPIN can exploit. Finally, in most serious applications of
automated verification tools, the user will sooner or later run into complexity bottlenecks. Although it is not possible to
say specifically how complexity can be reduced in each specific case, it is possible to make some general
recommendations.
[Team LiB]

[Team LiB]

Disabling Partial Order Reduction

 Partial order reduction is enabled by default in the SPIN generated verifiers. In special cases, for instance, when the
verifier warns the user that constructions are used that are not compatible with the partial order reduction strategy, the
reduction method can be disabled by compiling the verifier's source code with an extra directive:

$ spin -a model

$ cc -DNOREDUCE -o pan pan.c # disable p.o. reduction

[Team LiB]

[Team LiB]

Boosting Performance

 The performance of the default partial order reduction algorithm can also be boosted substantially if the verifier can
be provided with some extra information about possible and impossible access patterns of processes to message
channels. For this purpose, there are two special types of assertions in PROMELA that allow one to assert that
specific channels are used exclusively by specific processes. For example, the channel assertions

xr q1;

xs q2;

 claim that the process that executes them is the only process that will receive messages from channel q1, and the only
process that will send messages to channel q2.

 If an exclusive usage assertion turns out to be invalid, the verifier will always be able to detect this and report it as a
violation of an implicit correctness requirement.

 Note that every type of access to a message channel can introduce dependencies that may affect the exclusive usage
assertions. If, for instance, a process uses the len(qname) function to check the number of messages stored in a
channel named qname, this counts as a read access to qname, which can invalidate an exclusive access pattern.

 There are two special operators that can be used to poll the size of a channel in a way that is always compatible with
the reduction strategy:

nfull(qname)

 returns true if channel qname is not full, and

nempty(qname)

 returns true if channel qname contains at least one message. The SPIN parser will reject attempts to bypass the
protection offered by these primitives with expressions like

!full(qname),

!empty(qname),

!nfull(qname),or

!nempty(qname).

 In special cases, the user may want to claim that the particular type of access to message channels that is specified in
xr and xs assertions need not be checked. The checks can then be suppressed by compiling the verifier with the extra
directive -DXUSAFE, for instance, as in:

$ cc -DXUSAFE -o pan pan.c

[Team LiB]

[Team LiB]

Separate Compilation

 Often, a verification model is checked for a range of logic properties, and not just a single property. If properties are
specified in LTL, or with the Timeline Editor, we can build a library of properties, each of which must be checked
against the model. The easiest way to do this is to first generate all property automata from the formulae, or from the
visual time line specifications, and store each one in a separately named file. Next we can set up a verification script
that invokes SPIN on the basic model, but for each run picking up a different property automaton file, for instance
with SPIN's run-time option -N.

 If the main verification model is stored in a file called model.pml and the property automata are all stored in file names
with the three-letter extension .prp, we can build a minimal verification script, using the UNIX Bourne shell, for
instance, as follows:

#!/bin/sh

for i in *.prp

do

 echo "property: $i"

 if spin -N $i -a model.pml

 then ;

 else echo "parsing error"

 exit 1

 fi

 if cc -o pan pan.c

 then ;

 else echo "compilation error"

 exit 1

 fi

 ./pan -a

od

exit 0

 In most cases, the time that is required to parse the model, to generate the verifier source text and to compile the
verifier, is small compared to the time that is required to run the actual verification. But, this is not always the case.

 As the model text becomes larger, the time that is needed to compile the verifier source text will also increase. If the
compilation process starts to take a noticeable amount of time, and there is a substantial library of properties that need
to be checked, we may want to optimize this process.

 We can assume that if the compilation time starts to become noticeable, this is typically do to the large size of the
basic verification model itself, not the size of the property. In SPIN model checking it would be very rare for a
property automaton to exceed a size of perhaps ten to twenty control states. A system model, though, can easily
produce an automaton description that spans many thousands of process states. Compiling the automata descriptions
for the main verification model, then, can sometimes require significantly more time than compiling the source code
that is associated with the implementation of a property automaton.

 SPIN supports a method to generate the source code for the model and for the property separately, so that these
two separate parts of the source code can also be compiled separately. The idea is that we only need to generate and
compile the source code for the main system model once (the slow part), and we can repeat the generation and
compilation of the much smaller source code fragments for the property automata separately.

 If we revise the verification script from our first example to exploit this separate compilation option, it would look like
this:

#!/bin/sh

if spin -S1 model.pml # model, without properties

then ;

else echo "parsing error in main model"

 exit 1

fi

if cc -c pan_s.c # compile main part once

then ;

else echo "compilation error in main model"

fi

for i in *.prp

do

 echo "property: $i"

 if spin -N $i -S2 model.pml

 then ;

 else echo "parsing error in property"

 exit 1

 fi

 # next, compile only the code for the

 # property and link it to the previously

 # compiled module

 if cc -c pan_t.c # property code

 then ;

 else echo "compilation error in property"

 exit 1

 fi

 if cc -o pan pan_s.o pan_t.o # link

 then ;

 else echo "link error"

 exit 1

 fi

 ./pan -a

od

exit 0

 To get an idea of how much time the separate compilation strategy can save us, assume that we have a library of one
hundred properties. If the compilation of the complete model code takes seventy-two seconds, and compilation of
just the property related code takes seven seconds, then the first verification script would take

100 * 72 = 7,200 seconds = 2 hours

 The second verification script, using separate compilation, would take:

72 + 100 * 7 = 772 seconds = 11 minutes, 12 seconds

 The time to run each verification would be the same in both scenarios.

 In some cases, when the property automata refer to data that is external to the module that contains the property
related source code, it can be necessary to add some code into the source file. This can be done via the addition at
compile-time of so-called provisioning information, as follows:

$ cc -DPROV=\"extra.c\" -c pan_t.c

$ cc -o pan pan_s.o pan_t.o

 The provisioning information (such as declarations for external variables) is provided in a separate file that is prepared
by the user. It can contain declarations for external variables, and also initialization for selected global variables.

[Team LiB]

[Team LiB]

Lowering Verification Complexity

 If none of SPIN's built-in features for managing the complexity of a verification run seem to be adequate, consider the
following suggestions to lower the inherent complexity of the verification model itself:



 Make the model more general; more abstract. Remove everything from the model that is not directly related
to the correctness property that you are trying to prove. Remove all redundant computations and redundant
data. Use the output from SPIN option -A as a starting point.



Avoid using variables with large value ranges, such as integer counters, clocks, or sequence numbers.


Try to split channels that receive messages from multiple senders into separate channels, one for each source
of messages. Similarly, try to split channels that are read by multiple processes into separate channels, one for
each receiver. The interleaving of independent message streams in a single channel can be a huge source of
avoidable complexity.



Reduce the number of slots in asynchronous channels to as small a number as seems reasonable. See Chapter
5, p. 101, on the effect that channel sizes can have on search complexity.



Group all local computations into atomic sequences, and wherever possible into d_step sequences.


Avoid leaving scratch data around in local or global variables. The number of reachable system states can
often be reduced by resetting local variables that are used only inside atomic or d_step sequences to zero at
the end of those sequences.

There is a special keyword in the language that can be used to hide a scratch variable from the verifier
completely. It is mentioned only in passing here, since the mechanism is easily misused. Nonetheless, if you
declare a global variable, of arbitrary type, as in:

hidden byte var;

then the variable, named var here, is not considered part of the state descriptor. Clearly, values that are stored
in hidden variables cannot be assumed to persist. A typical use could be to flush the contents of a channel, for
instance, as follows:

do

:: nempty(q) -> q?var

:: else -> break

od

If the variable var were not hidden, each new value stored in it would cause the creation of a new global state.
In this case this could needlessly increase the size of the reachable state space. Use with caution. An
alternative method is to use the predefined hidden variable named _ (underscore). This write-only variable
need not be declared and is always available to store scratch values. The last example can therefore also be
written as:

do

:: q?_

:: empty(q) -> break

od



Try to avoid the use of global variables. SPIN's partial order reduction technique can take advantage of the
fact that a local variable can only be accessed by a single process.



Where possible, add the channel assertions xr and xs (see p. 261 in this chapter).


Always use the predefined functions nempty(q) and nfull(q) instead of the equivalent expressions len(q)>0 and
len(q)<MAX, respectively; the partial order reduction algorithm can take advantage of the special cases
where these expressions are needed.



Where possible, combine the behavior of multiple processes in a single one. The larger the number of
asynchronously executing processes, the greater the potential search complexity will be. The principle to be
used here is to generalize the behavior that is captured in a verification model. Focus on properly defining the
interfaces between processes, rather than the computation performed inside processes.

 In any case: Don't give up. A model checker is a powerful tool that can assist us in proving interesting facts of
distributed systems. But, in the end, it is still only a tool. Our own powers of abstraction in formulating problems that
the model checker can effectively solve will always outstrip the power of the model checker itself. Fortunately, the
ability to predict what types of models can be verified most efficiently grows with experience: you will get better at it
each time you use the tool.

 "The road to wisdom is plain and simple to express: Err and err and err again, but less and less and less."

 —(Piet Hein, 1905–1996)

[Team LiB]

[Team LiB]

Chapter 12. Notes on XSPIN
 "The ability to simplify means to eliminate the unnecessary so that the necessary may speak."

 —(Hans Hofmann, 1880–1966)

 XSPIN is the graphical interface to SPIN that for many users is the first introduction to the tool. It can be a
considerable benefit, though, if the user is familiar with the basic operation of SPIN before switching to XSPIN,
especially when more subtle design problems are encountered.

 The interface operates independently from SPIN itself. It synthesizes and executes SPIN commands in the
background, in response to user selections and button clicks. Nonetheless, this front-end tool supplies a significant
added value by providing graphical displays of, for instance, message flows and time sequence diagrams. XSPIN also
provides a clean overview of the many options in SPIN that are available for performing simulations and verifications.

 To run XSPIN, you first of all need to be able to run SPIN itself, which means that you minimally will need access to
an ANSI compatible C preprocessor and compiler. XSPIN is written in Tcl/Tk, so if you have a local installation of
the Tcl/Tk toolset,[1] you can run it directly from its source. You do not need to install Tcl/Tk to run the tool, though.
It is also available as a stand-alone binary executable that is available as part of the standard SPIN distribution (see
Appendix D).

[1] Tcl/Tk can be downloaded free of charge from www.tcl.tk.

 This chapter gives a brief overview of the main options that are available through XSPIN. The interface is intuitive
enough that most questions can be answered by simply running the tool and by exploring its options and help menus
interactively.
[Team LiB]

http://www.tcl.tk/default.htm

[Team LiB]

Starting a Session With XSPIN

 Assuming all the software has been installed properly, XSPIN can be started on both UNIX systems and Windows
PC systems from the shell command line with the name of a file containing a PROMELA specification as an argument,
for instance, as follows:

$ xspin leader

 On a Windows system the program can also be selected from the start menu, or by double-clicking the source file
named xspin.tcl.

 When XSPIN starts, it first checks that good versions of SPIN and Tcl/Tk are available. It prints the version
numbers in a command-log window, and optionally opens and loads an initial PROMELA file.

 Throughout the use of XSPIN, a log of all actions performed is maintained in a special command-log window that
appears at the bottom of the XSPIN display. Syntax errors, unexpected events, time-consuming actions such as
background compilations and verification runs, can be tracked in the log.

 The main display of XSPIN is a text window that displays the file being used, just like a graphical text editor would
do. The file name, if any, is shown in the title bar. The view in the text window can be changed in four different ways:



 With the scroll bar on the left-hand side of the text window.


By typing a line number (followed by a <return>) in the box in the title bar marked Line#:.


By typing a regular expression pattern (followed by a <return>) in the box marked Find:.


By moving a three-button mouse with the middle mouse button down, or a two-button mouse with both
buttons down.

 Moving around in the text with the mouse buttons down (the last method above) is the most convenient, and it works
in most of the text displays that are provided by XSPIN.

 There are four other buttons in the title bar of the XSPIN display: File.., Edit.., Run.., and Help, as shown in Figure
12.1. We will discuss each of these separately in the following sections.

 Figure 12.1. XSPIN Main Window

[Team LiB]

[Team LiB]

The File Menu
 The file menu gives a choice of seven actions: New, UnSelect, ReOpen, Open, Save As, Save, and Quit.

 New clears the contents of the main window, but does not reset the file name or affect any other parameter.

 UnSelect removes any selection highlights that the user or a background program may have placed in the main
window.

 ReOpen reloads the contents of the current file in the main text window, discarding any changes made since the last
Save operation.

 Open prompts the user with a standard file dialogue, listing all files in the current directory. Double-clicking any of the
files will cause XSPIN to open it and place it in its text window. Of course, this only makes sense for PROMELA
specifications. Double-clicking a directory name will cause the browse window to descend into that directory and
display the files listed there. Double-clicking the up-arrow icon will cause the browse window to move up to the
parent directory, and display the files listed there.

 Save As.. provides a file browse dialogue, allowing the user to select a file name in which the current contents of the
text window should be saved. During each session, XSPIN always maintains a private copy of the current contents of
the text window in a file called pan_in to avoid unintentional changes in the original source of the PROMELA
specification. The source file itself is only (re)written with an explicit Save command.

 Quit terminates the session of XSPIN, removing any temporary files that were created during simulation or
verification runs. No warning is issued if the file being edited was changed since the last time it was saved.
[Team LiB]

[Team LiB]

The Edit Menu
 The edit menu contains the three standard entries for performing Cut, Copy, and Paste operations on selected text in
the main window. Text can be selected as usual, by sweeping with the left mouse button down, or by double-clicking
text strings. Cut, copy, and paste operations are also available with control-key combinations: control-X for cut,
control-C for copy, and control-V for paste. Be careful though, there is no undo operation implemented in XSPIN.
[Team LiB]

[Team LiB]

The Help Menu
 The help menu gives a quick online review of the main usage options of SPIN and XSPIN, and contains an
explanation of the proper setting of the main parameters for verification and simulation runs. The menu also provide
hints for reducing search complexity. The entries in this menu will be self-explanatory.
[Team LiB]

[Team LiB]

The Run Menu
 The run menu has eight entries for performing syntax checks, property-based slicing, setting simulation or verification
parameters, running simulations or verifications, and viewing the internal automata structures computed by SPIN. We
discuss each of these menu choices next.
[Team LiB]

[Team LiB]

Syntax Check

 XSPIN runs a syntax check by asking SPIN to execute the command:

$ spin -a -v pan_in

 in the background, using its private file copy of the PROMELA text in the main window. Results, if any, are
displayed in the standard command log window and in a separate popup window that can be closed again with a
mouse-click on its Ok button. Wherever possible, error text is highlighted in the main XSPIN window for ease of
reference.
[Team LiB]

[Team LiB]

Property-Based Slicing

 To run the slicing algorithm, which also provides a thorough syntax check of the PROMELA source, XSPIN
executes the following command:

$ spin -A pan_in

 The slicing algorithm tries to locate all logical properties that are part of the model, for instance, as expressed in
assertions and in a never claim, and it uses this information to identify those parts of the model that cannot possibly
affect the correctness or incorrectness of those properties. In the absence of properties, the algorithm can still do
useful things, by identifying portions of the model that are redundant no matter which properties are specified.

 The results that are produced are displayed both in the command log window and in a separate popup window.
Included in the output are also any warnings about potentially wasteful constructs, such as variables that were
declared as integers but that assume only boolean values. If no redundancies can be found in the model, SPIN will
report this as well, so this option is also generally useful as a somewhat more thorough check of the model.
[Team LiB]

[Team LiB]

Set Simulation Parameters

 The simulation options panel allows the user to select the types of displays that will be generated during simulation
runs. In the upper right-hand corner of the panel the choice between random, guided, and interactive simulation can
be made. When XSPIN is used, random simulation is by default done with a predefined seed value of one. This seed
value can be changed freely to obtain different types of runs, but once the seed value is fixed, all experiments are fully
reproducible. If the entry box for the seed value is left blank, the current system time is used as a seed value, which of
course does not guarantee reproducibility. The guided simulation option requires the presence of a file named
pan.trail, which is normally produced in a verification run when SPIN finds a counterexample to a correctness
property. The number of steps that should be skipped before the display of the sequence is initiated can be specified,
the default value being zero.

 Two further options are selectable in the right-hand side column of the simulation options panel. For send statements,
the user has a choice of semantics. Either a send operation that targets a full message channel (queue) blocks, or can
be defined to be non-blocking. If non-blocking, messages sent to a full channel are lost. Up to three channel numbers
(queue numbers) can be specified in the three entry boxes at the bottom of the right-hand column. If channel numbers
are entered, send and receive operations that target the corresponding channels will not be displayed in graphical
MSC (message sequence chart) displays.

 On the left-hand side of the panel four types of outputs can be requested. By default, only two of these will be
selected. A most useful type of display is the MSC (message sequence chart) panel. Normally, the execution steps in
this display are tagged with identifying numbers. By moving the mouse cursor over one of the steps, the source text
will show and the main text window will scroll to the corresponding statement. Alternatively, the user can also choose
to have the source text shown for each step in the display. For very long runs, the message sequence chart can be
compacted somewhat by selecting the condensed spacing option.

 Normally, the message sequence chart will display only send and receive actions, connecting matching pairs with
arrows. The output from print statements can be added to a message sequence chart by starting any newline
terminated string to be printed with the prefix "MSC:" followed by a space, for instance, as in:

printf("MSC: this will appear in the MSC\n");

 The default background color for text boxes that are created in this manner is yellow. The color of the box can also
be changed by starting the text string to be printed with a special two-character control sequence. For instance,

printf("MSC: ~W uses a white box\n");

printf("MSC: ~G uses a green box\n");

printf("MSC: ~R uses a red box\n");

printf("MSC: ~B uses a blue box\n");

 The prefix MSC: and an optional two-character control codes for setting colors do not appear in the output itself.

 As a special feature of print statements, if the statement

printf("MSC: BREAK\n");

 causes XSPIN to suspend the simulation run temporarily, simulating a breakpoint in the run. The run can be restarted
from the main simulation output panel.

 The time-sequence panel can show verbose output of the simulation run. Normally, the output is shown in the
interleaving order from the execution, but it can also be split out into separate windows so that a separate trace for
each executing process can be obtained. If the number of running processes is large, this option can require a lot of
real estate on the screen, so it is not always helpful. The main window can also be replicated, by selecting the "One
Trace per Process" option, so that each text window can track the execution of one specific process. There are
actually two ways to track individual process executions: as an basic listing of all steps performed, and with a moving
highlight in the source text that moves from step to step. The latter mode is selected with the "One Window per
Process" option.

 The data values panel shows the most recently assigned values for variables in the model. By default, only global
variable values are shown. The output for local variable values can be added by selecting the corresponding box on
the options panel. Note that only variables that change value appear here, not variables that still retain their initial value
from a declaration. If the amount of output produced for larger models becomes too large, an alternative option is
available to display only the values of selected variables. To select such variables, the keyword show can be added in
the PROMELA model before the variable declaration, for instance, as in:

show byte nr_leaders = 0;

 By selecting the box marked Display vars marked 'show', the output in the Message Sequence Chart panel will now
include an entry for each value change of (only) these specially marked variables.

 The execution bar panel, selectable at the bottom of the left-hand column in the simulation options panel (see Figure
12.2), gives a dynamically updated bar-chart of the number of statement executions in each running process.

 Figure 12.2. The Simulations Options Panel

 Selecting the Start button will bring up the initial contents of the display panels that were selected, such as the
message sequence chart display shown in Figure 12.3, and executes a first single step in the simulation. By selecting
Single Step we can now step through a simulation, one statement execution at a time. By selecting Run, SPIN will
take over and run the simulation. The label on this button then changes to Suspend as shown in Figure 12.4. The
button toggles back and forth between these two modes each time it is clicked.

 Figure 12.3. Message Sequence Chart Display (portion)

 Figure 12.4. Main Simulation Output Panel

[Team LiB]

[Team LiB]

(Re)Run Simulation

 When the simulation parameters have been set once, they persist for the remainder of the session, or until the setting
is changed. New simulation runs can now be initiated directly with these settings by selecting this menu option from the
Run menu. The option is grayed out, and remains unselectable, until the simulation parameters panel has been
displayed at least once.
[Team LiB]

[Team LiB]

Set Verification Parameters

 The verification parameters panel gives visual control over most of the options that SPIN provides for performing
automated verifications. The initial settings of all parameters are chosen in such a way that they provide a reasonable
starting point for most applications. A first verification run, therefore, can in most cases safely be performed by hitting
the Run button in the lower right corner of the panel, without altering the default settings.

 When a verification run completes, XSPIN attempts to provide hints about ways to proceed, based on the results
obtained. No hints are provided when a clean run is performed, that is, a complete exhaustive search that did not
reveal any errors. The default hint in cases like these would be to consider whether or not the properties that were
proven are the correct ones, and whether or not other properties still remain to be proven.

 The default settings define a search for safety properties only. Proving liveness properties (properties of infinite
behaviors as manifested by execution cycles) requires a separate verification run with the appropriate options selected
in the Correctness Properties section of the verification parameters panel, shown in Figure 12.5.

 Figure 12.5. Basic Verification Options

 Note that if the PROMELA specification contains syntax errors, these errors will show up in the XSPIN log when
the Run button is selected. The run itself is canceled in that case. It is useful to keep an eye on such error reports, and
to be aware of the types of things that XSPIN or SPIN perform in the background.

 Three main search modes are selectable in the upper right-hand corner of the panel: exhaustive verification, bitstate
approximation, or hash-compact. Some of the more rarely used settings for performing verifications are delegated to a
special Advanced Options panel, shown in Figure 12.6, that can be selected in the lower right-hand corner of the
basic verification options panel. Especially in the beginning, this panel can safely be ignored.

 Figure 12.6. Advanced Verification Options

 Also selectable via the basic verification options panel is the LTL Property panel, which we will discuss in more detail
shortly. Finally, if a never claim is present in a file, but not already included within the PROMELA model itself, it can
be picked up by the verifier for a single verification run by selecting the Add Never Claim from File option. This
option is, for instance, the simplest method for including never claims that are generated with the Timeline editing tool
that is discussed in Chapter 13 (p. 283).

[Team LiB]

[Team LiB]

(Re)Run Verification

 When the verification parameters panel has been displayed at least once, this menu entry becomes selectable. It will
initiate a new verification run, preserving all parameter settings that were chosen earlier. This can be useful, for
instance, when small changes in the PROMELA model are made to remedy problems uncovered in earlier verification
runs.
[Team LiB]

[Team LiB]

LTL Property Manager

 Selecting this entry from the Run menu brings up a panel for entering an LTL formula to be used in a verification
attempt, shown in Figure 12.7. By clicking on the button labeled Generate, or by typing a return character in the
formula entry box, the formula is converted into a never claim. Both this claim and the main PROMELA specification
are now submitted to SPIN when the Run Verification button is selected.

 Figure 12.7. The LTL Property Manager

 Templates of standard forms of LTL formulae can be loaded into the LTL property window with the Load option in
the upper right corner of the display. Four templates are predefined for invariance properties, response properties,
precedence properties, and objective properties. They have the following general form:

[] p # invariance

p -> <> q # response

p -> (q U r) # precendence

p -> <> (q || r) # objective

 Each of these generic types of properties can (and will generally have to) be prefixed by temporal operators such as
[], <>, []<>, or <>[]. The property type named objective can be read to mean that p (a state property) is an enabling
condition that determines when the requirement becomes applicable. Once enabled, the truth of state property q can
signify the fullfillment of the requirement, while the truth of r can be treated as a discharging condition that voids the
requirement.

 LTL properties consist of temporal and logical operators and user-defined propositional symbols. For propositional
symbols any name that starts with a lowercase character can be used. It is customary to use single character names,
such as the p, q, and r that we used in the template formulae.

 The LTL property can be cast as either a positive (desired) or a negative (undesired) property of the model by
selecting the corresponding field below the formula entry box.

 A positive property is negated by the convertor to convert it into a never claim. A negative property is not negated.

 Each propositional symbol that is used in the formula must be defined as a boolean expression in the Symbol
Definitions panel.

 These definitions will be remembered as part of the property definition, together with any annotations and verification
results if the formula is saved as a template with the Save As option in the lower right-hand corner of the display.
Always make sure to enclose symbol definitions in round braces to secure a proper interpretation of operator
precedence rules. For instance:

#define p (a > b)

#define q (len(q) < 5)

 where a and b are global variables in the PROMELA model, and q is a global channel.

 Valid temporal operators are:

[] always (with no space between [and])

<> eventually (no space between < and >)

U (strong) until, and

V the dual of the until operator: (p V q) == !(!p U !q)

 All operators are left-associative, including U and V. The V operator is rarely used in user-defined formulae, but it is
often used internally by SPIN when it normalizes formulae.

 Boolean operators can also be used inside LTL formulae, using standard PROMELA syntax.

&& logical and

! logical negation

|| logical or

 Arithmetic operators are not allowed within an LTL formula, but can be used within the macro definitions of the
propositional symbols.

 Two shorthands are available for defining logical implication and equivalence.

-> logical implication

<-> logical equivalence

 The formula (p -> q) is short for (!p || q) and (p <-> q) is short for (p -> q) && (q -> p).

 Recall that logical implication and logical equivalence are boolean and not temporal operators, and that therefore no
passage of time is implied by the use of a subformula such as (p -> q). (On this point, see also the section on Using
Temporal Logic in Chapter 6.)

 The names of operands in an LTL formula must be alphanumeric names, always beginning with a lowercase letter.
The preferred style is to use only single-character names, such as p, q, and r. Prudence, further, dictates that the
right-hand side of each of the corresponding symbol definitions is enclosed in round braces, to protect against
unintended effects of operator precedence rules. For instance, instead of defining

#define p a < b

 the preferred style us to use

#define p (a < b)

 Remote reference operations can also only be used indirectly, via a symbol definition, which again are normally
enclosed in round braces for security, as in, for instance:

#define q (main[5]@label)

[Team LiB]

[Team LiB]

The Automaton View Option

 The automaton view option, finally, allows for the selection of one of the proctypes that are part of the PROMELA
specification, so that it can be displayed in automaton form.

 When this option is selected, XSPIN first generates and compiles an executable verifier. It then use the output from
PAN's run-time option -d to synthesize the automaton view. It is highly recommended to have a copy of the graph
layout tool dot installed on the system.[2] If it is present, XSPIN will use it to compute the layout for the automaton
graph, as illustrated in Figure 12.8. If absent, a cruder approximation of the layout will be used.

[2] Dot can be downloaded from http://www.research.att.com/sw/tools/graphviz/.

 Figure 12.8. The Automata View

 The view in Figure 12.8 shows all states in proctype node from the leader election protocol example. For simplicity,
we have turned off the display of the statement labels in this display. They can be restored by selecting the button
labeled Add Labels at the bottom of the display.

 Each state in the graph by default shows the line number in the source file that correspond to that state. Moving the
cursor over a state causes the corresponding line to be highlighted in the main text window, and changes the line
number text for the internally assigned state number. The display of the line number is restored when the cursor is
moved away from the state. The graphical display that is generated is for information only; it cannot be edited.

http://www.research.att.com/sw/tools/graphviz/default.htm
http://www.research.att.com/sw/tools/graphviz/

[Team LiB]

[Team LiB]

In Summary

 XSPIN synthesizes commands that are issued to the SPIN model checker based on user selections and preferences.
For each run performed by SPIN in the background, XSPIN also intercepts the output and presents it in a slightly
more pleasing visual way through its graphical interface.

 An arbitrary number of assertions, progress, accept, and end state labels can be defined in a model, but at all times
there can be only one never claim. If never claims are derived from LTL formulae, the LTL property manager makes
it easy to build a library of formulae, each of which can be stored in a separate file and checked against the model.
The results of each run are stored automatically in the file that contains the corresponding LTL property. These files
have the default extension .ltl.
[Team LiB]

[Team LiB]

Chapter 13. The Timeline Editor
 A design without requirements cannot be incorrect. It can only be surprising.

 —(Willem L. van der Poel, 1926–)

 Although SPIN provides direct support for the formalization of correctness requirements in terms of linear temporal
logic formulae, the use of this logic is not always as intuitive as one would like. The precise meaning of a temporal
logic formula is sometimes counterintuitive, and can confound even the experts.

 An alternative method, that we will explore in this chapter, is to express properties visually, with the help of a
graphical tool. The tool we discuss here is called the timeline editor, created by Margaret Smith at Bell Labs. The
inspiration for this tool came directly from lengthy discussions on the semantics of temporal logic, which led us to draw
many small pictures of timelines on the whiteboard to illustrate sample execution sequences that were either intended
to satisfy or to violate a given property. The timeline pictures were so useful that we decided to provide direct tool
support for them. The tool was originally envisioned to generate only linear temporal logic formula as its output, but
we later found it more effective to generate never claim automata in PROMELA syntax that can be used directly by
SPIN in verifications.

 Technically, the types of properties that can be expressed with the timeline editor tool do not cover everything that
can be verified by SPIN, that is, they cover only a small subset of the set of all -regular properties. The tool is not
even expressive enough to let us specify everything that can be expressed with linear temporal logic, which itself also
covers only a subset of the -regular properties. Yet, the types of properties that can be expressed seems rich
enough to specify many of the types of properties that one needs in system verification in practice. Users of model
checking tools often tend to shy away from the use of truly complex temporal properties and restrict themselves
wisely to a smaller subset of formulae for which it is easier to develop an accurate intuition. The timeline tool appears
to capture just that subset and not much more.

 The timeline tool allows us to define a causal relation on the events that can occur in a distributed system. It also
allows us to restrict the set of sequences that contain the specified events to smaller sets that satisfy additional
constraints on specific, user-defined intervals on the timeline. That is, the timeline allows us to select the set of
execution sequences that is of interest to us, and then define some correctness criteria for them. The correctness
criteria are expressed in the form of events that either must or may not be present at specific points in the execution.
[Team LiB]

[Team LiB]

An Example
 A first example of a timeline specification is shown in Figure 13.1. It defines two events and one constraint on a
system execution. At the top of the drawing canvas is a grey horizontal bar that represents the timeline. Time
progresses from left to right along the bar. At regular intervals, there are vertical blue lines, called marks, that intersect
the timeline. The first mark, numbered 0, is colored grey and for reference only. The remaining marks indicate points
on the timeline where events and constraints can be attached. Marks do not represent clock ticks, but are simply used
to indicate points of interest during a possibly long system execution. In between two marks any number of execution
steps could pass.

 Figure 13.1. Simple Example of a Timeline Specification

 Events are attached directly to marks, and placed on the timeline itself. In Figure 13.1 there are two events: offhook
and onhook. Constraints are placed underneath the timeline, spanning intervals between marks. One constraint,
named !dialtone, is also shown. During verification the model checker attempts to match each system execution to the
events that are placed on the timeline, provided that all corresponding constraints are satisfied. In Figure 13.1, no
constraint applies to the occurrence of the first event, offhook, but as soon as it has occurred (immediately in the next
state), the constraint !dialtone must be satisfied for the execution sequence to continue to match the timeline. If
eventually, with the constraint still satisfied, the event onhook is seen, the timeline is completely matched. Reaching the
end of a timeline by itself does not constitute an error condition. In this case, though, an error can be reported
because the final event matched on the timeline is a fail event.

 The requirement specified with the timeline in Figure 13.1 states that it is an error if an offhook event can be followed
by an onhook event without a dialtone event occurring first.

 For the purposes of property specification, the term event is somewhat of a misnomer. Both events and constraints
are really conditions (state properties) that must be satisfied (i.e., that must hold) at specific points in an execution. In
a PROMELA model, a state property is simply a boolean condition on global state variables that is said to be
satisfied when it evaluates to true. This means that within the context of SPIN, an event occurrence is not necessarily
an instantaneous phenomenon, but can persist for any amount of time. As a simple, though contrived, example, we
could define the meaning of event offhook in Figure 13.1 to be true. This would mean that the event can be detected
in any system state, and the event occurrence, as it were, persists forever. If the event persists forever, this merely
means that it can be matched at any time during a system execution, so wherever we would place such an event on
the timeline, it could always be matched. An event defined as false, on the other hand, could never be matched. If we
define onhook as false in Figure 13.1, for instance, then the timeline specification could never be violated, not even if
we also define the constraint !dialtone as true.
[Team LiB]

[Team LiB]

Types of Events
 There are three different types of events that can be placed on a timeline.



 Regular events are labeled with the letter e. If a regular event occurs at a point in a system execution where
its occurrence is specified, the execution matches the timeline. If it does not occur, the execution does not
match. This does not mean that the execution is in error; it only means that the timeline property does not
apply to the non-matching execution.



Required events are labeled with the letter r. A required event can be matched in a system execution just like
a regular event. This time, though, it is considered an error if the required event does not appear in the system
execution at the point where it is specified, assuming of course that all earlier events on the timeline were
matched, and all applicable constraints are satisfied.



Failure events are labeled with the letter f. Failure events record conditions that should never be true at the
point in a system execution where they are specified. It is considered to be an error if a failure event is
matched. It is not an error if a failure event does not occur (i.e., is skipped).

 Constraints are specified underneath a timeline. Each constraint persists over specific intervals of the timeline.
Constraints are denoted by horizontal lines below the main timeline. The start and the end point of each constraint is
always associated with a specific timeline mark. Optionally, the constraint can include or exclude the events that are
attached to the begin and end marks on the timeline.

 There can be any number of events and any number of constraints in a timeline specification, but only one event can
be attached to any single timeline mark.
[Team LiB]

[Team LiB]

Defining Events
 Events and constraints are represented by user-defined names on the timeline. The name can contain special
characters, such as the negation symbols that we used in the name of the constraint in Figure 13.1. The names can be
used directly to generate PROMELA never claims, but more typically one will want to define them more precisely to
reflect the exact, perhaps more complex, conditions that must be satisfied for the corresponding event or constraint to
apply. For the example in Figure 13.1, we can provide definitions for the events offhook, onhook, and !dialtone. The
details of these definitions depend on the specifics of the verification model that is used to verify the timeline property.
The timeline properties themselves are intended to be definable in a format that is largely model independent. For the
final version of the model of a phone system that we develop in Chapter 14, the definitions of the events and the
constraint used in Figure 13.1 could be as follows:

#define offhook (last_sent == offhook)

#define onhook (last_sent == onhook)

#define !dialtone !(session_ss7@Dial)

 where the dialtone constraint is specified with the help of a remote reference to the process of type session_ss7.
There is no real difference in the way that events or constraints are defined. Both events and constraints define state
properties: boolean conditions on the system state that can be evaluated to true or false in any reachable system state
of the model. Only their relative placement on a timeline determine their precise semantics, that is, whether they are
used to act as events to guide the matching of system executions, or as constraints to restrict the types of executions
that can match.
[Team LiB]

[Team LiB]

Matching a Timeline
 The verification of a timeline proceeds as follows. In the initial system state, the first mark on the timeline is designated
as the current mark. At each execution step of the system, the verifier evaluates the event condition attached to the
current mark on the timeline, and it evaluates all constraint conditions attached to intervals that intersect the blue
vertical line for this mark. If the next event to be matched is a failure event, then the event that follows it on the
timeline, if any, will also be evaluated. If a condition evaluates to true, the corresponding event or constraint is said to
be matched; otherwise, it is not matched. The context now determines what happens next. There are several
possibilities.



 The current execution sequence no longer matches the timeline specification because a constraint condition is
now violated. The verification attempt for this sequence can be abandoned.



If all constraint conditions are satisfied and the event condition at the current mark is matched and that event is
a failure event, an error can be reported.

If under the same conditions the event at the current mark is not a failure event, the current mark is advanced
to the next mark on the timeline, and the verification is repeated after the next system execution step is
performed.



If all constraint conditions are matched, but the event condition is not matched and the current event is not a
failure event, then the current mark remains where it is, and the verification is repeated after the next system
execution step is performed.

If under the same conditions the current event is a failure event, and the next event on the timeline, if any, is
matched, the current mark moves to the event that follows that next event, and the verification is repeated
after the next system execution step is performed. The timeline tool does not permit two adjacent failure
events on a timeline, so an event that follows a failure event is either a regular or a required event.



If the end of an execution sequence is reached, but the end of the timeline has not been reached and the event
at the current mark of the timeline is a required event, an error can be reported for this execution sequence.

 If the end of a timeline is reached before the end of an execution, the verification effort can also be abandoned, since
no further errors are possible.
[Team LiB]

[Team LiB]

Automata Definitions
 The Büchi automaton that corresponds to the timeline specification from Figure 13.1 is shown in Figure 13.2. The
automaton has three states, one of which, state s2, is accepting. The initial state of the automaton is s0.

 Figure 13.2. Büchi Automaton for the Timeline in Figure 13.1

 The automaton can be generated automatically by the timeline editor either in graphical form, as shown in Figure 13.2
, or in PROMELA syntax as a never claim. The PROMELA version of the automaton is shown in Figure 13.3.

 The second state of the automaton can only be reached if an offhook event occurs, which is followed by an interval in
which dialtone remains false and no onhook event is detected. Then the transition to the accepting can be made if an
onhook event occurs, still in the absence of a dialtone event. Once the accepting state is reached, the remainder of the
run is automatically accepted due to the self-loop on true in state s2: the violation has already occured and can no
longer be undone by any future event.

 Figure 13.3 Never Claim for the Timeline in Figure 13.1

#define p1 (last_sent == offhook) /* offhook */

#define p2 (last_sent == onhook) /* onhook */

#define p3 !(session_ss7@Dial) /* !dialtone */

never {

S0: do

 :: p1 -> goto S1

 :: true

 od;

acceptF0:

 assert(0);

 0;

S1:

 do

 :: p2 && p3 -> goto acceptF0

 :: !p2 && p3

 od;

}

[Team LiB]

[Team LiB]

Constraints
 A constraint interval always has one of four possible forms, depending on whether the start and the end points of the
interval are included or excluded from the constraint. By adding constraints, we never really modify the structure of
the Büchi automaton, or of the PROMELA never claim, that corresponds to a timeline. Added constraints can only
restrict the number of sequences that can be matched at each step of the timeline, by adding conditionals to the
transitions of an existing automaton structure.
[Team LiB]

[Team LiB]

Variations on a Theme
 We have not said much about the rationale for the property that is expressed by the timeline specification from Figure
13.1. Informally, the property states that it would be an error if there can exist execution sequences in which an
offhook event can be followed by an onhook event, without dialtone being generated in the interim. It may of course
be possible for a telephone subscriber to generate a fast offhook–onhook sequence, but we may want to use the
timeline specification to inspect precisely what happens under these circumstances by generating the matching
execution scenarios.

 We can also attempt to express this property in a different way. There can be small differences in semantics,
depending on whether conditions are used as events or as constraints. As a small example, consider the variant of this
property that is shown in Figure 13.4. We have switched the roles of dialtone and onhook as event and constraint
here, compared to Figure 13.1.

 Figure 13.4. Variation on the Timeline from Figure 13.1

 At first blush, this timeline appears to express the same property, this time labeling the appearance of dialtone after an
offhook as a required event, and the absence of onhook as a constraint.

 We can see more clearly what is required to match this timeline by inspecting the corresponding automaton structure,
as shown in Figure 13.5.

 Figure 13.5. Büchi Automaton for the Timeline in Figure 13.4

 This time, state s1 is the Büchi accepting state. The only way for an execution-sequence to trigger an error would be
if it contained an offhook event that is never followed by either an onhook or a dialtone event. When state s2 is
reached instead, the requirement expressed by the timeline specification is satisfied, and no further errors can result.
This means that, technically, state s2, and the transition that leads to it, is redundant and could be omitted from the
automaton without changing its meaning.

 Assume now that there were an execution of the switch system we intended to verify that would occasionally fail to
give dialtone after an offhook. Very likely, both in a verification model and in real life, the unlucky subscriber who
encounters this behavior will not remain offhook forever, but eventually return the phone onhook. This means that the
error, if present, would not be caught by this specific variant of the specification, unless we explicitly model behavior
where the subscriber can permanently keep the phone off-hook.

 In reality, the dialtone property for a telephone switch has both a functional and a real-time performance requirement.
Dialtone should not only be generated after an offhook event, but on average also follow that event in 0.6 seconds. In
98.5% of the cases, further, dialtone should appear within 3 seconds after an offhook. Since timelines and SPIN
models target the verification of only functional system requirements, the real-time performance aspects of
requirements cannot be captured or checked in this way.

[Team LiB]

[Team LiB]

Timelines With One Event
 There are only two useful types of timelines that contain one single event. A timeline with a single regular event is not
of use, since it does not express any requirement on an execution. That is, the timeline might match an execution that
contains the event that is specified, but no matching execution can ever be flagged as erroneous in this way. The two
smallest timelines of interest are the ones that contain either a single required or a single fail event, as illustrated in
Figures 13.6 and 13.7.

 Figure 13.6. Timeline and Automaton for a Single Required Event

 Figure 13.7. Timeline and Automaton for a Single Fail Event

 The timeline specification from Figure 13.6 traps a system execution error in the same cases as the LTL formula that
we would use to express the violation of a system invariant property

 The timeline specification in Figure 13.7, similarly, traps a system execution error in the same cases as the property

 These first two properties can be seen as duals: one requires the absence of an event, and the other requires at least
one occurrence.
[Team LiB]

[Team LiB]

Timelines With Multiple Events
 With two events, we can form five different types of timelines. Each of the two events can be one of three different
types, but clearly four of the nine possible combinations are not meaningful. A timeline with two regular events, for
instance, cannot fail any system execution to which it is applied. Further, if the last event of the timeline is a regular
event, then that event would always be redundant. And, finally, a timeline with two fail events that are placed on
adjacent marks has no reasonable semantics, and is therefore rejected by the timeline tool. (In this case the conditions
for the two fail events should probably be combined into a single condition.)

 One of the five remaining meaningful combinations of two events is reproduced, with the corresponding automaton,
in Figure 13.8.

 Figure 13.8. Timeline and Automaton for a Regular and a Required Event

 The timeline property from Figure 13.8 is similar, though not identical, to the LTL response property:

 Note that the LTL property requires condition a to hold at the start of each sequence, since it is not preceded by a
temporal operator. The timeline specification does not have that requirement. The LTL formula that precisely captures
the timeline property from Figure 13.8 is somewhat more complex, namely:

 The example timeline in Figure 13.9 contains three of the five possible combinations of two events.

 Figure 13.9. A More Complex Timeline Specification

 We have labeled the four events on this timeline with letters from a to d, and added a constraint named z. A
specification of this type could be used to check one of the requirements for the implementation of call waiting on
telephone lines. Event a could then represent the occurrence of an incoming call on a line that is currently involved in a
stable two-party call. The requirements state that with the call waiting feature in effect, the subscriber should at this
point receive a call waiting alert tone, which would correspond to event b. Provided that none of the parties involved
abandon their call attempts, or take any other action (which can be captured in constraint z), the first alert tone must
be followed by a second such tone, but there may not be more than these two alerts. So, events b, c, and d would in
this application of the timeline all represent the appearance of a call waiting alert tone, which is required twice, but
erroneous if issued three or more times. The Büchi automaton that corresponds to the timeline from Figure 13.9 is
shown in Figure 13.10. There are three accepting states corresponding to the three different ways in which this
timeline specification could be violated: either one of the two required events could fail to show up, or the failure event
could appear when it should not.

 Figure 13.10. Büchi Automaton for the Timeline in Figure 13.9

 Another type of timeline, with the remaining two possible event combinations, is shown in Figure 13.11. This time, a
failure event precedes a required event, indicating that after the optional occurrence of the event named a, the
occurrence of c is required, and the occurrence of b forbidden.

 Figure 13.11. Timeline Specification with Three Events

 A timeline specification of this type may be used to check the property that offhook and onhook events must always
alternate. We can achieve this by defining events a and b both as offhook events, and event c as an onhook event.
Constraint z then can restrict the executions that are considered for compliance with this requirement to those where
no onhook event appears in the interval between a and b.

 The Büchi automaton corresponding to the timeline from Figure 13.11 is shown in Figure 13.12. The automaton has
four states, two of which are accepting. Note again that the automaton is not necessarily completely specified. There
is, for instance, no transition out of state s1 if simultaneously (¬z ¬c). In this case, we have just passed the first step
of the timeline, and wait for either c or b to occur while z remains true. If neither event c nor event b occurs in a given
run and constraint z is no longer satisfied, the automaton can stop tracking the run, since no violation matching the
timeline is possible in the remainder of this execution.

 Figure 13.12. Büchi Automaton for the Timeline in Figure 13.11

[Team LiB]

[Team LiB]

The Link With LTL
 It is not hard to show that for every timeline specification there exists a formalization in LTL, but the reverse is not
necessarily true. Timelines are strictly less expressive than linear temporal logic, and therefore they are also less
expressive than -automata (which includes PROMELA never claims).

 Consider, for instance, the LTL formula: !(a U b). The positive version of this requirement would match any run in
which a remains true at least until the first moment that b becomes true. If b is already true in the initial state, the
requirement is immediately satisfied. The negation of the requirement matches any run where the positive version is
violated. This means that in such a run b cannot be true in the initial state, and a must become false before b becomes
true.

 This seems like a requirement that we should be able to express in a timeline specification. The timeline we may draw
to capture it is shown, together with the corresponding Büchi automaton, in Figure 13.13. We are slightly pushing the
paradigm of timeline events here, by putting a negation sign before the name of a timeline event. Doing so, we exploit
the fact that at least in the context of SPIN an event is really a state property that can be evaluated to true or false in
every reachable system state.

 Figure 13.13. Attempt to Express the LTL property !(a U b)

 Unfortunately, the automaton that is generated does not precisely capture the LTL semantics. The correct Büchi
automaton, generated with SPIN's built-in LTL converter, is shown in Figure 13.14. It closely resembles the timeline
automaton from Figure 13.13, but it is not identical. In the correct version, the self-loop on state s0 requires only b to
be false, but makes no requirement on the value of a.

 Figure 13.14. The Correct Büchi Automaton for LTL property !(a U b)

 In the timeline from Figure 13.13 we used a negation sign in front of an event symbol, in an attempt to capture the
semantics of the LTL until property. If we go a little further and use arbitrary boolean expressions as place holders for
events, we can create many more types of timelines. As just one example, consider the timeline that is shown in Figure
13.15. Although it looks very different from the timeline from Figure 13.13, it turns out to define precisely the same
property.

 Figure 13.15. A Variant of the Timeline in Figure 13.13

 Fortunately it is not hard to check and compare the semantics of timeline descriptions by using the timeline editing
tool to generate the corresponding Büchi automata. The automaton that corresponds to the timeline from Figure 13.15
, for instance, is identical to the one shown in Figure 13.13. It can be very hard, though, to reason backwards, and to
find the proper timeline specification for a given Büchi automaton, such as the one from Figure 13.14, assuming, of
course, that one exists.

 Timelines can easily be used to express system safety properties, but they can only express a small class of liveness
properties. The only mechanism from timeline specification that we can use to express liveness properties is the
notation for a required event. The relatively simple visual formalism from a timeline specification, though, appears to
suffice for handeling most cases of practical interest in systems verification.

 An often heard criticism of LTL is, for instance, that the true meaning of formulae with more than two or three
temporal operators can be very difficult to understand, even by experts. Similarly, accurately capturing the correct
semantics of a complex temporal property in an LTL formula can be a daunting task. Some interpret this to mean that
we should shy away from the complex formulae in systems verification. In this respect, the lack of expressiveness of
the timeline editing tool may well be regarded a strength.

 "Mathematicians are like Frenchmen: whenever you say something to them they translate it into their own language,
and at once it is something entirely different."

 —J.W. von Goethe (1749–1832)

[Team LiB]

[Team LiB]

Bibliographic Notes
 Several other visual formalisms for specifying systems and properties have been proposed over the years. The best
known such proposals include Harel [1987] for systems specifications, and Schlor and Damm [1993] or Dillon,
Kutty, Moser, et al. [1994] for property specication.

 An alternative method to make it easier to capture complex logic properties as formulae in temporal logic is pursued
by Matt Dwyer and colleagues at Kansas State University. Dwyer, Avrunin, and Corbett [1999] describe the design
and construction of a comprehensive patterns database with formula templates for the most commonly occuring types
of correctness properties.

 Information for downloading the timeline editor, which is freely available from Bell Labs, can be found in Appendix D
.
[Team LiB]

[Team LiB]

Chapter 14. A Verification Model of a Telephone
Switch
 "For when the actual facts show a thing to be impossible we are instantly convinced that it is so."

 —(Polybius, The Histories, Book XII)

 When faced with a software verification problem, it is often tempting to build a model that is as close to reality as
possible. If an implementation exists, the temptation is to duplicate its functionality as faithfully as possible within the
language of the model checker used. If only a design exists, the attempt can be to build a trial implementation for
verification purposes. The purpose of this chapter is to show that this is not the best approach. The proper
management of computational complexity is a key issue in all but the simplest applications of formal verification, and
more often than not determines the success or failure of the attempt.
[Team LiB]

[Team LiB]

General Approach
 The intuitive approach to software verification sketched here should be contrasted with the standard approach that
one routinely takes in physics or mathematics. When one wants to analyze, say, the structural integrity of a bridge or a
building, one does not start with a description of the structure that is as close to reality as possible. The best approach
is to start with the simplest possible description of the structure that can capture the essential characteristics that must
be analyzed. The reason is proper management of complexity. Even when mathematics is sufficiently expressive to
describe reality in its minutest details, doing so would not only be a laborious task, it would not help in the least to
simplify analytical chores. Computations on highly detailed descriptions, by man or by machine, can become so
complex and time-consuming that the end results, if obtainable at all, become subject to doubt.
[Team LiB]

[Team LiB]

Keep it Simple

 The purpose of a model checking exercise is not to build and analyze verification models that are as detailed as
possible: it is the opposite. The best we can do is to find and build the smallest sufficient model to describe the
essential elements of a system design. To construct that model, we attempt to simplify the problem, eliminating
elements that have no direct bearing on the characteristics we want to verify. There is no universal recipe for how this
can be accomplished. What works best is almost always problem dependent. Sometimes the smallest sufficient model
can be constructed by generalizing a problem, and sometimes it requires specializing a problem.

 The hardest problem of a verification project is to get started. The best advice that can be given here is to make a
deliberate effort to start simple, perhaps even with a coarser abstraction than may seem justified. Then slowly evolve
the verification model, and the corresponding correctness requirements, until sufficient confidence in the correctness of
the design has been established. It is only reasonable to invest considerable resources into a verification at the very
last phase of a project—to perform a final and thorough check to make sure that nothing of importance was missed in
the earlier steps.

 Throughout most of a verification effort, a tool like SPIN should be used in a mode where one can get instantaneous
feedback about relatively simple descriptions of the design problem. Slowly, the description can become more
refined, and as our confidence in its accuracy grows, our willingness to spend a little more time on each verification
task can grow.
[Team LiB]

[Team LiB]

Managing Complexity

 On a reasonably modern machine SPIN verifications should not consume more than a few seconds during the initial
development of a verification model, and no more than a few minutes during the latter stages of verification. In very
rare cases it may be necessary to spend up to a portion of an hour on a thorough verification in a final check, but this
should be a very rare exception indeed.

 To summarize this approach:[1]

[1] This approach to verification was first articulated by Prof. Jay Strother Moore from the University of Texas at
Austin, when describing the proper use of interactive theorem provers.



 Start simple. Try to find the smallest sufficient model that can express something interesting about the problem
you are trying to solve.

Check the initial model thoroughly. More often than not you will be surprised that what you believed to be
trivially true in the simplified world is not true at all. The typical reasons are small misjudgements in the
development of the model, or subtle misunderstanding in the formulation of the properties checked for.



Evolve the model and, if possible, its correctness properties step by step. Keep each incremental step small,
and repeat the checks at each step. Stop when the complexity grows too rapidly and rethink the last change
made. Try to find alternatives that can reduce the complexity. The numbers of asynchronously executing
processes and the size of message buffers are the two most important sources of complexity in SPIN models,
so try to keep these as small as possible at first.



Keep the verification tool on a short leash. Do not spend more than a few seconds on initial verifications until
you have developed sufficient confidence that what you ask the tool to verify is actually what you are
interested in.

 To illustrate this approach, we will discuss the development of a SPIN verification model for a significant fragment of
an important and very well-known type of distributed system: a telephone switch. The problem context is familiar
enough that many have attempted to build models like the ones we will discuss. Many of these attempts have ended in
either a lost battle with the fundamental complexity of the underlying problem, or the adoption of simplifying but rather
unrealistic assumptions about how a phone system actually works. We will try to do better here.
[Team LiB]

[Team LiB]

Modeling a Switch
 The telephone system is so familiar to us that few of us realize that the underlying behavior can be phenomenally
complex. Much of this complexity is due to the addition of feature behavior. Features such as three-way calling, call
waiting, and call forwarding can interact in often unforeseen ways. Making sure that all such possible interactions
comply with the relevant standards is a non-trivial task, even for experts. The problem is still quite non-trivial if we
trim it down to its bare essence: providing support for only basic POTS (Plain Old Telephone Service) calls.

 The normal dialogue for a POTS call looks simple. After taking the receiver off-hook, the subscriber hears a dial
tone. This is the signal for the subscriber to dial a number. If that number is valid, the subscriber can expect to hear
either a ring tone or a busy tone. If the number is invalid, an error tone or a busy tone will be the result. After a while,
a ring tone can disappear when the call is answered, or it can turn into a busy tone when the maximum ring-time is
exceeded. At any time during this sequence, the subscriber can abort the call and return the phone on-hook. This
scenario is illustrated in Figure 14.1.

 Figure 14.1. Typical Scenario for a POTS Call

 Before reading on, put this book aside and attempt to build a small SPIN model that captures the interactions
between a subscriber and a switch, as just sketched, restricting to outgoing calls for simplicity. Then do some
verifications with SPIN to discover all the things that can go wrong with your model.
[Team LiB]

[Team LiB]

Subscriber Model

 To develop a model that can reproduce the behavior from Figure 14.1, we will minimally have to model two entities:
subscribers and switches. Because our focus will be on verifying properties of switch behavior, we should try to keep
the number of assumptions we make about the behavior of subscribers as small as possible. We do not need to
know, for instance, when or why subscribers place calls, why they hang up or why they sometimes fail to hang up. All
we need to know about subscribers is what they can do that is visible to the switch. The set of things that a subscriber
can do that is visible to the switch is blissfully small: the subscriber can lift the receiver off-hook, or return it on-hook.
In between those two actions the subscriber can dial digits and flash the hook [2], and that is all we need to know.

[2] A flash-hook signal can have special significance for certain call features, such as, for instance, three-way calling.
We will discuss this feature later in the chapter.

 Let us first consider the sample subscriber model from Figure 14.2. It tries to capture the behavior of a fairly
reasonable subscriber, responding to the tones that may be generated by the switch. Some of these tones are
generated in response to subscriber actions and some can be generated seemingly spontaneously by the switch, for
instance, to alert the subscriber to incoming calls.

 Figure 14.2. Initial Behavior Model of a POTS Subscriber (Solid arrows refer to events triggered by the
subscriber, and dashed arrows refer to signals that are generated by the switch.)

 It is important to realize at this point that the subscriber model from Figure 14.2, though quite persuasive, is
inadequate for our verification task. For our current purpose, the subscriber model is meant to capture the minimal set
of assumptions that the switch can make about subscriber actions. In this context, then, it is unnecessary and even
unwarranted to assume that the subscriber will always behave reasonably. Fortunately, many potentially unreasonable
behaviors of the subscriber are in fact physically impossible. The subscriber cannot, for instance, generate two
off-hook signals in a row without an intervening on-hook, and the subscriber cannot dial digits with the phone
on-hook. There is, however, no reason to assume that the subscriber will always wait for a dial tone before aborting a
call attempt, as Figure 14.2 seems to indicate. In fact, a subscriber may well ignore all tones from the switch in
deciding what to do next.

 We can modify the model from Figure 14.2 to reflect these assumptions by combining all states that are connected by
transitions that correspond to the generation of audible tones in the switch (i.e., all dashed arrows). This produces the
three-state model shown on the left in Figure 14.3.

 Figure 14.3. Two Alternative Subscriber Models

 The subscriber can either go off-hook without dialing digits (e.g., to accept an incoming call), or the subscriber can
go off-hook with the intent to dial digits (e.g., to initiate an outgoing call). But in the new model the difference between
incoming and outgoing calls is no longer visible. We can therefore go one step further and combine also the two states
that can be reached by the subscriber going off-hook into one single state. This leads to the two-state model shown
on the right in Figure 14.3.

 This last model clearly admits more behaviors than the earlier two models. It allows, for instance, for the scenario in
which the subscriber keeps dialing digits while off-hook, as indeed a real subscriber might do. In the first two models
this behavior was not represented, as a result of the assumptions about reasonable behavior that was made in the
creation of the first model in Figure 14.2. There are several other such assumptions in Figure 14.2 that are not present
in the two-state model from Figure 14.3.

 We will use the two-state subscriber model as the simplest sufficient model of subscriber behavior. This model is
readily expressed in PROMELA. To do so, however, we need to decide how to model the exchange of signals
between subscriber and switch. In the simple model, the information flows only from the subscriber to the switch in
the form of off-hook, on-hook, and digit signals. The telephone switch is designed to be much faster than a human
subscriber, so it is safe to assume that the switch will always be ready to receive any signal sent by its subscribers.
The simplest way to formalize this in PROMELA is with the use of a global rendezvous port. We will call the port
over which a subscriber can reach the switch tpc, as a shorthand for the phone company. This resulting subscriber
model expressed in PROMELA is shown in Figure 14.4.

 Figure 14.4 Two-State Model of Subscriber

mtype = { offhook, digits, onhook };

chan tpc = [0] of { mtype };

active proctype subscriber()

{

Idle: tpc!offhook;

Busy: if

 :: tpc!digits -> goto Busy

 :: tpc!onhook -> goto Idle

 fi

}

 In constructing the model we will initially restrict our attention to modeling the interactions of a single subscriber with a
single local switch. At this stage, nothing of interest is gained by adding multiple subscribers into the model: the switch
looks at each subscriber line independently. We can significantly reduce the complexity of verification by representing
the possible interactions of subscribers in a slightly more abstract way. An outgoing call attempt of our subscriber of
interest may succeed or fail, for instance, depending on the state of the network and the state of other subscribers. All
we are interested in is the effects of success or failure, not in the precise circumstances of success or failure. We will
illustrate these notions in more detail shortly.

[Team LiB]

[Team LiB]

Switch Model

 The real complexity inevitably comes in the definition of the switch behavior, so it is again important to keep things as
simple as possible at first. We will develop a switch model here for the handling of outgoing calls only, reducing the
number of issues that we will have to confront somewhat. The interplay of incoming and outgoing calls can be subtle,
but it can be studied separately once we have confidence in the basic model we are developing here.

 A first-cut model of the switch behavior can then be formalized in PROMELA, in a simple state-oriented format, as
shown in Figure 14.5. Because the audible tones are generated more for information than to restrict the subscriber
actions, they appear in this model as print statements only. In particular, these signals need not be recorded in state
variables.

 Figure 14.5 Simple Switch Model for Outgoing Calls

active proctype switch() /* outgoing calls only */

{

Idle: if

 :: tpc?offhook ->

 printf("dial tone\n"); goto Dial

 fi;

Dial:

 if

 :: tpc?digits ->

 printf("no tone\n"); goto Wait

 :: tpc?onhook ->

 printf("no tone\n"); goto Idle

 fi;

Wait:

 if

 :: printf("ring tone\n") -> goto Connect;

 :: printf("busy tone\n") -> goto Busy

 fi;

Connect:

 if

 :: printf("busy tone\n") -> goto Busy

 :: printf("no tone\n") -> goto Busy

 fi;

Busy:

 if

 :: tpc?onhook ->

 printf("no tone\n"); goto Idle

 fi

}

 In this model, the success or failure of an outgoing call is represented as a non-deterministic choice between the
generation of a ring tone or a busy tone signal in state named Wait. The state named Connect represents the situation
where call setup is completed. The call can now end either by the remote subscriber (which is not explicitly present in
the model here) hanging up first, or the local subscriber hanging up first. In the first case, a busy tone will be
generated; in the latter case no tone is generated. The two possibilities are again formalized with the help of a
non-deterministic choice, indicating that both scenarios are possible.

 There is no interaction with remote switches in the network represented in this model just yet. We will add that
shortly, after we can convince ourselves that the simpler model is on track. As a first check, we can perform some
short simulation runs, limiting the run to twenty steps. Such simulations show sensible call scenarios for this model, for
instance, as follows:

$ spin -c -u20 version1

proc 0 = subscriber

proc 1 = switch

q\p 0 1

 1 tpc!offhook

 1 . tpc?offhook

 dialtone

 1 tpc!digits

 1 . tpc?digits

 notone

 ringtone

 notone

 1 tpc!onhook

 1 . tpc?onhook

 notone

 1 tpc!offhook

 1 . tpc?offhook

 dialtone

 1 tpc!digits

 1 . tpc?digits

 notone

 ringtone

depth-limit (-u20 steps) reached

final state:

#processes: 2

 20: proc 1 (switch) line 29 "version1" (state 12)

 20: proc 0 (subscriber) line 11 "version1" (state 6)

2 processes created

 Next, we perform a verification. The verification run confirms that there are no major problems and that the behavior
is still exceedingly simple, with just nine reachable, and no unreachable states. The results are as follows:

$ spin -a version1

$ cc -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 24 byte, depth reached 11, errors: 0

 9 states, stored

 6 states, matched

 15 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype subscriber

 line 15, state 8, "-end-"

 (1 of 8 states)

unreached in proctype switch

 line 40, state 29, "-end-"

 (1 of 29 states)

 This puts us in a good position to extend our first model to a slightly more realistic one by adding the possible
interactions with remote switches.

[Team LiB]

[Team LiB]

Remote Switches

 So far, our switch model decides internally whether or not a call attempt failed or succeeded by making a
non-deterministic decision on the generation of either a ring tone or a busy tone. We will now add a little more of the
dialogue that can actually take place inside the switch during the setup of an outgoing call. In most cases the switch
will have to interact with remote switches in the network to determine if the called number and the network resources
that are needed to connect to it are available. The protocol for that is known as Signaling System 7, SS7 for short. A
typical SS7 dialogue is shown in Figure 14.6.

 Figure 14.6. SS7 Scenario for Call Setup

 The first message sent by the local switch to a remote switch is called the initial address message, iam. The message
triggers an address complete message, acm, in response. When the call is answered, an answer message, anm,
follows. The teardown phase is started with a release, rel, request, which is acknowledged with a release
confirmation, rlc.

 To model this interaction we have to add a model of a remote switch. Note that we do not need to model the
behavior of remote subscribers directly, because their behavior is not directly visible to the local switch. The remote
subscribers are hidden behind remote switches and all negotiations about the setup and teardown of calls happen only
through the intermediation of the remote switches. Also note that even though every switch acts both as a local switch
to its local subscribers and as a remote switch to the rest of the network, it would be overkill to clone the local switch
behavior to derive remote switch behavior. Doing so has the unintended consequence of making the detailed internal
behavior of remote switches and remote subscribers visible to the verifier, which can significantly increase verification
complexity.

 Let us first extend the model of the local switch with the new SS7 message exchanges. This leads to the extended
switch model shown in Figure 14.7.

 Figure 14.7 Extended Local Switch Model

mtype = { iam, acm, anm, rel, rlc }; /* ss7 messages */

chan rms = [1] of { mtype }; /* channel to remote switch */

active proctype switch_ss7()

{

Idle:

 if

 :: tpc?offhook -> printf("dial tone\n"); goto Dial

 fi;

Dial:

 if

 :: tpc?digits -> printf("no tone\n"); rms!iam;

 goto Wait

 :: tpc?onhook -> printf("no tone\n"); goto Idle

 fi;

Wait:

 if

 :: tpc?acm -> printf("ring tone\n"); goto Wait

 :: tpc?anm -> printf("no tone\n"); goto Connect

 :: tpc?rel -> rms!rlc; printf("busy tone\n");

 goto Busy

 :: tpc?onhook -> rms!rel; goto Zombie1

 fi;

Connect:

 if

 :: tpc?rel -> rms!rlc; printf("busy tone\n"); goto Busy

 :: tpc?onhook -> rms!rel; goto Zombie1

 fi;

Busy: /* off-hook, waiting for on-hook */

 if

 :: tpc?onhook -> printf("no tone\n"); goto Idle

 fi;

Zombie1: /* on-hook, waiting for rlc */

 if

 :: tpc?rel -> rms!rlc; goto Zombie1

 :: tpc?rlc -> goto Idle

 :: tpc?offhook -> goto Zombie2

 fi;

Zombie2: /* off-hook, waiting for rlc */

 if

 :: tpc?rel -> rms!rlc; goto Zombie2

 :: tpc?rlc -> goto Busy

 :: tpc?onhook -> goto Zombie1

 fi

}

 We have introduced two new states, called Zombie1 and Zombie2, to represent different intermediate phases of a
call teardown which now requires interaction with the remote switch.

 The next step is to add a matching model for a remote switch, handling incoming request for connections. The switch
can reject calls by immediately sending the rel message in response to the initial iam message, to signify that it is busy
or otherwise unable to handle the request. The rel message is always acknowledged with an rlc confirmation.

 An outline for the behavior of a remote switch is shown in Figure 14.8. Message names in bold indicate incoming
messages; the remaining messages are the responses. Note that there can be a race between the two subscribers for
the teardown of the call. Messages between local and remote switches travel over the network and will generally incur
some latency, so rather than a rendezvous port we have used a buffered message channel, though with a very small
buffer capacity of one message to keep things simple.

 Figure 14.8. POTS Interface Model for a Remote Switch

 The outline from Figure 14.8 is represented in PROMELA in Figure 14.9.

 Figure 14.9 PROMELA Model of Visible Behavior of Remote Switch

active proctype remote_ss7()

{

Idle:

 if

 :: rms?iam -> goto Dialing

 fi;

 Dialing:

 if

 :: tpc!acm -> goto Ringing

 :: tpc!rel -> goto Hangup

 :: rms?rel -> goto Busy

 fi;

Ringing:

 if

 :: tpc!anm -> goto Talking

 :: tpc!rel -> goto Hangup

 :: rms?rel -> goto Busy

 fi;

Talking:

 if

 :: tpc!rel -> goto Hangup

 :: rms?rel -> goto Busy

 fi;

Hangup:

 if

 :: rms?rlc -> goto Idle

 :: rms?rel -> goto Race

 fi;

Busy:

 if

 :: rms?rlc -> goto Idle

 fi;

Race:

 if

 :: tpc!rlc -> goto Busy

 fi

}

 The verifier is content with these extensions, reporting the following result:

$ spin -a version2

$ cc -o pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 32 byte, depth reached 30, errors: 0

 52 states, stored

 36 states, matched

 88 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype subscriber

 line 15, state 8, "-end-"

 (1 of 8 states)

unreached in proctype switch_ss7

 line 87, state 62, "-end-"

 (1 of 62 states)

unreached in proctype remote_ss7

 line 125, state 41, "-end-"

 (1 of 41 states)

 The number of reachable states has increased, but we have succeeded in keeping the model small. We may also be
curious to see what the effect is of a more generous allotment of buffer capacity in the message channel between local
and remote switches. If we change the number of slots in the buffer from one to two, the number of reachable system
states increases to 60, implying that this change does indeed allow for some new behaviors. A further increase to
three slots increases the number of states to 64, which remains unaffected by any further increases.

[Team LiB]

[Team LiB]

Adding Features
 At this point we can improve the model by adding a treatment for incoming calls that originate at remote switches.
We could also consider extending the model to handle multiple subscribers or end-to-end connections. Instead, we
will try extend the switch behavior in a slightly more interesting way—by adding a call processing feature.
[Team LiB]

[Team LiB]

Three-Way Calling

 We would like to add the capability for a subscriber to flash the hook after a call has been set up (i.e., quickly going
on-hook and back off-hook) to place the currently connected party on hold and get a new dial tone. The subscriber
should then be able to dial a new call, and establish a three-way connection by flashing the hook a second time. A
third flash of the hook should terminate the three-way connection by dropping the last dialed party. We will assume
that an on-hook from the originating subscriber during the call terminates all connections, independent of the current
state of the call.

 The addition of feature behavior like this to an existing call model often introduces unexpected types of interaction
between the existing, trusted behavior and the newly added behavior. Being able to check these types of extensions
with small verification models can therefore be of considerable value.

 The switch must now be able to manage two connections for the same subscriber, so we will need to extend the
model to have at least two instantiations of the model for a remote switch. We want to keep the control of the
different connections separate, to make sure that we do not unnecessarily complicate the behavior of the switch. We
can accomplish this by introducing a subscriber line session manager process that can interact with multiple session
handlers. The manager keeps track of which session is active and shuttles the messages between sessions and
subscriber. The various sessions are unaware of each other's existence and can behave just like in the single
connection model from before.

 A first change that we have to make to accomplish all this in the last model is to change the role of the switch process
into that of a session manager. Before making any other changes to support the three-way calling feature directly, we
will make and check this change. Figure 14.10 shows the new version of the switch process.

 Figure 14.10 Switch Session Management Structure

chan sess = [0] of { mtype };

mtype = { idle, busy }; /* call states */

mtype s_state = idle;

active proctype switch()

{ mtype x;

 atomic

 { run session_ss7(sess, rms);

 run remote_ss7(rms, sess)

 };

end: do

 :: tpc?x ->

 if

 :: x == offhook ->

 assert(s_state == idle);

 s_state = busy

 :: x == onhook ->

 assert(s_state == busy);

 s_state = idle

 :: else

 fi;

 sess!x /* forward message */

 od

}

 In this version of the switch process we have used a slightly different approach to the representation of the call states.
Instead of using labeled control-flow points (as in Figure 14.9), we use mtype variables to store the state information.

 The switch process now creates instantiations for a single session handler process and a remote switch, passing the
proper message channels for input and output as parameters to these processes. We have added a channel named
sess to be used by the switch process to pass call control messages from the subscriber to the local session handler.
Since this is a local interaction within the switch, we can safely make this a rendezvous port again. We have also
added a global variable s_state to record the call state of the session process, in so far as it is known by the session
manager.

 The remote switch process remains as it was in Figure 14.9, except that it is now instantiated dynamically by the
switch process and sends to and receives from message channels that are passed to it by the switch process via
parameters. Similarly, the session handler process remains as it was in Figure 14.7, except for the the name change
from switch to session_ss7 and the use of message channels that are passed via parameters.

 In checking this version of the model, we would expect the number of reachable states to increase somewhat,
because of the addition of the session management process, but there should be no change in functionality. Some
initial simulation runs appear to confirm the latter. Running the verification produces the following result:

$ spin -a version3

$ cc -o pan pan.c

$./pan

pan: invalid end state (at depth 41)

pan: wrote version3.trail

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 52 byte, depth reached 42, errors: 1

 30 states, stored

 0 states, matched

 30 transitions (= stored+matched)

 1 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

 The error reported here reveals one of a series of problems with the new model. Seven of these problems are cases
of incompleteness. We find that in the new session handler, based on the version in Figure 14.7, the digits message
can be received in states Wait, Connect, Busy, and Zombie2, where the message is currently not expected. Similarly,
the acm and anm messages can arrive in state Zombie1. Further, we now also detect an incompleteness in the remote
switch process, which we based on Figure 14.9. Here the message rlc can now arrive in the Race state.

 The sample executions that are generated by SPIN leave little room for doubt that these errors are real and must be
corrected. Why is it that these errors did not show up before we introduced the session manager process? The reason
is simple, but only in retrospect. In the earlier version of the model, there was a direct communication channel
between switch and subscriber, based on rendezvous. The subscriber could offer to perform a rendezvous handshake
on a digits message while the switch process was in state Wait, but because the switch process had no matching
receive operation at that state, the offer could be declined without causing an error. In the new model the
communication is in two steps, introducing an asynchronous decoupling of behaviors. Offers from the subscriber on
any messages are now always accepted by the session management process, independent of the session state, and
they must now be passed on successfully to the new session handler. We could have found the same problems in the
earlier model if we switched from rendezvous communication to a buffered communication channel between
subscriber and switch.

 If we repair the newly found omissions in the session handler process we obtain the new model in Figure 14.11.
Similarly, the corrected model for the remote switch is shown in Figure 14.12.

 Figure 14.11 New Model for the Session Handler

proctype session_ss7(chan inp; chan out)

{

Idle:

 if

 :: inp?offhook -> printf("dial tone\n"); goto Dial

 fi;

Dial:

 if

 :: inp?digits -> printf("no tone\n");

 out!iam; goto Wait

 :: inp?onhook -> printf("no tone\n"); goto Idle

 fi;

 Wait:

 if

 :: inp?acm -> printf("ring tone\n"); goto Wait

 :: inp?anm -> printf("no tone\n"); goto Connect

 :: inp?rel -> out!rlc; printf("busy tone\n"); goto Busy

 :: inp?onhook -> out!rel; goto Zombie1

 :: inp?digits -> goto Wait /* added */

 fi;

Connect:

 if

 :: inp?rel -> out!rlc; printf("busy tone\n"); goto Busy

 :: inp?onhook -> out!rel; goto Zombie1

 :: inp?digits -> goto Connect /* added */

 fi;

Busy: /* off-hook, waiting for on-hook */

 if

 :: inp?onhook -> printf("no tone\n"); goto Idle

 :: inp?digits -> goto Busy /* added */

 fi;

Zombie1: /* on-hook, waiting for rlc */

 if

 :: inp?rel -> out!rlc; goto Zombie1

 :: inp?rlc -> goto Idle

 :: inp?offhook -> goto Zombie2

 :: inp?acm -> goto Zombie1 /* added */

 :: inp?anm -> goto Zombie1 /* added */

 fi;

Zombie2: /* off-hook, waiting for rlc */

 if

 :: inp?rel -> out!rlc; goto Zombie2

 :: inp?rlc -> goto Busy

 :: inp?onhook -> goto Zombie1

 :: inp?digits -> goto Zombie2 /* added */

 fi

}

 Figure 14.12 New Model for the Remote Switch

proctype remote_ss7(chan inp; chan out)

{

Idle:

 if

 :: inp?iam -> goto Dialing

 fi;

Dialing:

 if

 :: out!acm -> goto Ringing

 :: out!rel -> goto Hangup

 :: inp?rel -> goto Busy

 fi;

Ringing:

 if

 :: out!anm -> goto Talking

 :: out!rel -> goto Hangup

 :: inp?rel -> goto Busy

 fi;

Talking:

 if

 :: out!rel -> goto Hangup

 :: inp?rel -> goto Busy

 fi;

Hangup:

 if

 :: inp?rlc -> goto Idle

 :: inp?rel -> goto Race

 fi;

Busy:

 if

 :: inp?rlc -> goto Idle

 fi;

Race:

 if

 :: out!rlc -> goto Busy

 :: inp?rlc -> /* added */

 out!rlc; goto Idle

 fi

}

 If we repeat the verification with this model, all error reports disappear. As expected, the number of reachable states
increases a little further, to 263 states, due to the addition of the session management process. We are now set to add
support for handling an extra call session to support the three-way calling feature. First, we add the flash message,
and some extra call states, with the following declarations:

/* Revised Declarations for Three-Way Calling */

#define NS 2 /* nr of sessions in 3way call */

mtype = { offhook, digits, flash, onhook }

mtype = { iam, acm, anm, rel, rlc };

mtype = { idle, busy, setup, threeway };

chan tpc = [0] of { mtype };

chan rms[NS] = [1] of { mtype }; /* added */

chan sess[NS] = [0] of { mtype }; /* added */

mtype s_state = idle;

 The new switch process is shown in Figure 14.13. It has to handle the additional scenarios, but it is still fairly close to
the last version.

 Figure 14.13 New Version of the Session Manager

active proctype switch()

{ mtype x;

 atomic

 { run session_ss7(sess[0], rms[0]);

 run session_ss7(sess[1], rms[1]);

 run remote_ss7(rms[0], sess[0]);

 run remote_ss7(rms[1], sess[1])

 };

 end: do

 :: tpc?x ->

 if

 :: x == offhook ->

 assert(s_state == idle);

 s_state = busy;

 sess[0]!x

 :: x == onhook ->

 assert(s_state != idle);

 if

 :: s_state == busy ->

 sess[0]!x

 :: else ->

 sess[0]!x; sess[1]!x

 fi;

 s_state = idle

 :: x == flash ->

 assert(s_state != idle);

 if

 :: s_state == busy ->

 sess[1]!offhook;

 s_state = setup

 :: s_state == setup ->

 s_state = threeway

 :: s_state == threeway ->

 sess[1]!onhook;

 s_state = busy

 fi

 :: else ->

 if

 :: s_state == idle

 /* ignored */

 :: s_state == busy ->

 sess[0]!x

 :: else ->

 sess[1]!x

 fi

 fi

 od

}

 The handling of the messages arriving at the session manager now depends on the state of the call, in a fairly
straightforward way. Running a verification of this extended model produces the following result:

 $ spin -a version4

 $ cc -o pan pan.c

 $./pan (Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

 Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

 State-vector 80 byte, depth reached 5531, errors: 0

 30479 states, stored

 55947 states, matched

 86426 transitions (= stored+matched)

 3 atomic steps

 hash conflicts: 1836 (resolved)

 (max size 2^18 states)

 Stats on memory usage (in Megabytes):

 2.682 equivalent memory usage for states ...

 1.827 actual memory usage for states (compression: 68.13%)

 State-vector as stored = 52 byte + 8 byte overhead

 1.049 memory used for hash table (-w18)

 0.320 memory used for DFS stack (-m10000)

 3.109 total actual memory usage

 unreached in proctype subscriber

 line 22, state 10, "-end-"

 (1 of 10 states)

 unreached in proctype session_ss7

 line 106, state 74, "-end-"

 (1 of 74 states)

 unreached in proctype switch

 line 156, state 46, "-end-"

 (1 of 46 states)

 unreached in proctype remote_ss7

 line 196, state 44, "-end-"

 (1 of 44 states)

 The number of reachable states has now increased from 263 to 30,479, but no new errors, and no unreachable
states, are reported.

[Team LiB]

[Team LiB]

A Three-Way Calling Scenario

 Did we actually succeed in reproducing the three-way calling behavior we had in mind? We can make sure of this by
formalizing and checking some properties that can together establish compliance with the required feature behavior.
As one of those checks, we can check that the intended three-way calling behavior is at least possible, simply by
claiming that it cannot occur and allowing SPIN to generate a counterexample. We can, for instance, check the
behavior that results if the subscriber generates the sequence of off-hook, digit, and flash signals that corresponds to
the correct setup of a three-way call. The problem we have to solve now is to detect the occurrence of these events
with a system state property. The interaction between subscriber and the switch currently takes place via a
rendezvous port, which cannot be polled for the presence of messages. We can get around this problem in two
different ways. The more obvious method is perhaps to change the rendezvous port named tpc into a one-slot
buffered message channel, so that the contents of the single slot can be polled. This change is effective, but it also
increases the complexity of the verification, and it may introduce new behaviors. A quick check with SPIN tells us
that the number of system states roughly triples (reaching 97,791 states), but no error behaviors are introduced.

 Another method, which in this case incurs lower overhead, is to add a global state variable called last_sent, and to
change the subscriber process in such a way that it always assigns the value of the last sent message to that variable,
where it can be checked with a simple state property. The updated version of the subscriber process would then look
as shown in Figure 14.14.

 Figure 14.14 Revised Subscriber Process

mtype last_sent;

active proctype subscriber()

{

Idle: tpc!offhook;

 last_sent = offhook;

Busy: if

 :: atomic { tpc!digits ->

 last_sent = digits;

 goto Busy

 }

 :: atomic { tpc!flash ->

 last_sent = flash;

 goto Busy

 }

 :: atomic { tpc!onhook ->

 last_sent = onhook;

 goto Idle

 }

 fi

}

 With this change, the number of reachable states increases from 30,479 to 35,449 system states, a far smaller
penalty.

 The claim we are interested in can be formalized as shown in Figure 14.15. In this claim, we need to refer to the
process instantiation numbers of the processes of type remote_ss7 and session_ss7. A simple way to find out what
these pid numbers are is to print them in a verbose simulation run of the system.

 Figure 14.15 Never Claim to Trigger Three-Way Calling Scenario

#define Final \

 subscriber@Idle && switch@end \

 && remote_ss7[4]@Idle && remote_ss7[5]@Idle \

 && session_ss7[2]@Idle && session_ss7[3]@Idle

#define Event(x) \

 do \

 :: last_sent == x -> break \

 :: else \

 od

never { /* sample of a 3way call: */

 Event(offhook);

 Event(digits);

 Event(flash);

 Event(digits);

 Event(flash);

 Event(digits);

 Event(flash);

 Event(onhook);

 do

 :: Final -> break

 :: else

 od

}

 A sample three-way calling scenario is now quickly generated. We first compile and run the model checker in a
mode that allows us to generate the shortest possible scenario that matches the claim. Because the claim expresses a
safety property (there are no accept-state or progress-state labels), we can find such a scenario with a breadth-first
search.

$ spin -a version6

$ cc -DBFS -o pan pan.c

$./pan

...

pan: claim violated! (at depth 79)

pan: wrote version6.trail

...

 We can reproduce the scenario with SPIN's guided simulation option, as follows. Because the claim successfully
matched the scenario we are interested in, we do not need to scrutinize it too much further. If, however, no matching
execution would have been found, we would have had to consider more carefully if, for instance, the claim structure is
compatible with the requirements of SPIN's partial order reduction algorithm, i.e., that it expresses a stutter-invariant
property (it does), and if not, we would have repeated the check with partial order reduction disabled.

$ spin -t -c version6

proc 0 = subscriber

proc 1 = switch

proc 2 = session_ss7

proc 3 = session_ss7

proc 4 = remote_ss7

proc 5 = remote_ss7

q\p 0 1 2 3 4 5

 5 tpc!offhook

 5 . tpc?offhook

 1 . sess[0]!offhook

 1 . . . inp?offhook

 MSC: dial tone

 5 tpc!digits

 5 . tpc?digits

 1 . sess[0]!digits

 1 . . . inp?digits

 MSC: no tone

 3 . . . out!iam

 3 inp?iam

 1 out!rel

 1 . . . inp?rel

 3 . . . out!rlc

 MSC: busy tone

 3 inp?rlc

 5 tpc!flash

 5 . tpc?flash

 2 . sess[1]!offhook

 2 inp?offhook

 MSC: dial tone

 5 tpc!digits

 5 . tpc?digits

 2 . sess[1]!digits

 2 inp?digits

 MSC: no tone

 4 out!iam

 4 inp?iam

 2 out!rel

 2 inp?rel

 4 out!rlc

 MSC: busy tone

 4 inp?rlc

 5 tpc!flash

 5 . tpc?flash

 5 tpc!digits

 5 . tpc?digits

 2 . sess[1]!digits

 2 inp?digits

 5 tpc!flash

 5 . tpc?flash

 2 . sess[1]!onhook

 2 inp?onhook

 MSC: no tone

 5 tpc!onhook

 5 . tpc?onhook

 1 . sess[0]!onhook

 1 . . . inp?onhook

 MSC: no tone

 spin: trail ends after 79 steps

 final state:

 #processes: 7

 queue 3 (rms[0]):

 queue 4 (rms[1]):

 s_state = idle

 last_sent = onhook

 79: proc 5 (remote_ss7) line 172 "vertsion6" (state 3)

 79: proc 4 (remote_ss7) line 172 "vertsion6" (state 3)

 79: proc 3 (session_ss7) line 38 "vertsion6" (state 4)

 79: proc 2 (session_ss7) line 38 "vertsion6" (state 4)

 79: proc 1 (switch) line 128 "vertsion6" (state 43) ...

 79: proc 0 (subscriber) line 16 "vertsion6" (state 1)

 79: proc - (:never:) line 227 "vertsion6" (state 52)

 7 processes created

[Team LiB]

[Team LiB]

In Summary
 In this chapter we have developed a relatively simple model of a telephone switch that represents an interesting
fragment of its behavior for handling outgoing calls.

 By starting with a very simple model that was revised in small and easily understood increments, we can catch errors
at an early stage and avoid large blowups in the complexity of verification. After each small incremental step, we can
check our intuition about the behavior of the model with short simulation and verification runs. Despite a few obvious
limitations (e.g., the absence of a treatment for incoming calls), the model already includes some feature behavior that
can be very challenging to implement correctly. The hard part of an exercise like this is to keep the model and its state
space small, so that we can continue to verify it rigorously. This is an exercise in restriction and judicious abstraction.
The target of this exercise is always to find the smallest sufficient model that allows us to verify all properties of
interest.

 Perhaps one of the nicer things about the use of a model checker such as SPIN is that the tool does not expect us to
get things right on the first attempt. The tool can help us find both sources of complexity and sources of error. A
model checking tool is often conveniently used as an exploratory tool: allowing the user to answer quick what-if
questions about possible directions that might be taken to solve complex software design problems.
[Team LiB]

[Team LiB]

Chapter 15. Sample SPIN Models
 "Few things are harder to put up with than the annoyance of a good example."

 —(Mark Twain, 1835–1910)

 In this chapter we will discuss a few small PROMELA models that exploit some interesting and possibly useful
features of the specification language. We will focus mostly on language and modeling issues here. More examples of
PROMELA models can be found in the standard SPIN distribution.
[Team LiB]

[Team LiB]

Eratosthenes

 Our first example is a PROMELA version of an ancient algorithm for finding primes by counting off numbers and
systematically intercepting the non-primes among them. The algorithm, a favorite programming exercise today, is due
to the Greek philosopher and mathematician Eratosthenes of Cyrene (a city in modern day Libya which is today
called Shahhat). Figure 15.1 shows a version in PROMELA that makes use of the fact that we can use dynamic
process creation and pass channel identifiers between running processes.

 Figure 15.1 The Sieve of Eratosthenes

 1 /*

 2 The Sieve of Eratosthenes (c. 276-196 BC)

 3 Prints all prime numbers up to MAX

 4 */

 5 #define MAX 25

 6

 7 mtype = { number, eof };

 8

 9 chan root = [0] of { mtype, int };

10

11 proctype sieve(chan c; int prime)

12 { chan child = [0] of { mtype, int };

13 bool haschild;

14 int n;

15

16 printf("MSC: %d is prime\n", prime);

17 end: do

18 :: c?number(n) ->

19 if

20 :: (n%prime) == 0 ->

21 printf("MSC: %d = %d*%d\n", n, prime, n/prime)

22 :: else ->

23 if

24 :: !haschild -> /* new prime */

25 haschild = true;

26 runsieve(child, n);

27 :: else ->

28 child!number(n)

29 fi;

30 fi

31 :: c?eof(0) ->

32 break

33 od;

34 if

35 :: haschild ->

36 child!eof(0)

37 :: else

38 fi

39 }

40

41 init

42 { int n = 2;

43

44 run sieve(root, n);

45 do

46 :: (n < MAX) -> n++; root!number(n)

47 :: (n >= MAX) -> root!eof(0); break

48 od

49 }

 Because a PROMELA model must always be finite, we have to place an upper-bound on the largest integer value
that we will test for primality. SPIN is not designed to handle computational problems, so do not expect to get away
with a very large bound here. The bound is defined in Figure 15.1 in a macro definition named MAX. We have used
the value 25. Only two types of messages are used, defined in an mtype declaration, and named number and eof. The
latter type of message is used to trigger an orderly termination of the system of processes when the test for primality of
the number with the maximal value allowed has been completed.

 Our system of processes starts off with just a single running process: init. The principle of operation of the algorithm is
that we test integer numbers one by one, in ascending order. We will start off assuming that we know only that two is
a prime. Clearly, for any higher number to be prime, it should minimally not be divisible by two, so the first thing that
the initial process will do is to start up a tester for that value. The initial process does so by creating a first process of
type sieve, and passing it in an argument the value two as a first prime number to use in the tests. Also passed is an
argument is the name of the channel that the initial process will use to communicate further information to the sieve
process. For the first process this is a globally declared rendezvous channel named root.

 Once the first test process is set up, the initial process will simply pass all integer numbers greater than two, up to the
preset maximum, to its newly created child. It is the child's job now to figure out if the numbers passed to it are prime,
and it is free to create its own children to help do the job.

 When a process of type sieve starts up, the first thing it will do is to acknowledge the fact that it was passed, what it
trusts is, a prime number as an argument. It does so by printing the number (line 16 in Figure 15.1), using the prefix
MSC: to make sure that this line of output will be picked up in the message sequence charts that can be created by
XSPIN. Next, it stops and waits for input to arrive on the channel that was passed to it by its parent.

 One of only two types of messages can arrive, as shown on line 18 and line 31 in Figure 15.1.

 A message of type number carries an integer number that is to be tested for primality. Every single instantiation of the
sieve process will test if the number is divisible by the prime number it was passed by its parent. If divisible, the
number is not prime, and that fact is printed. Otherwise, the number is passed to the next process to test for possibly
more known primes. If no next process exists yet, the value of local boolean variable haschild will still be false (the
default initial value). The sieve process will now clone itself and start up a new copy of sieve, passing the newly
discovered prime number as an argument, as well as the name of the local channel child that it will use to pass new
numbers.

 If a child process already exists, that means that more tests for primality have yet to be done before this new number
can be declared prime. The number is simply sent to the child process over the local channel, and the test process is
repeated.

 Meanwhile, the initial process can be sending a new number into the pipeline of primality testers, and in principle all
processes can be active simultaneously, each testing the divisibility of a different number against the prime number they
each hold. A simulation run might proceed as follows:

$ spin eratosthenes

 MSC: 2 is prime

 MSC: 3 is prime

 MSC: 4 = 2*2

 MSC: 5 is prime

 MSC: 6 = 2*3

 MSC: 8 = 2*4

 MSC: 9 = 3*3

 MSC: 7 is prime

 MSC: 10 = 2*5

 MSC: 12 = 2*6

 MSC: 14 = 2*7

 MSC: 11 is prime

 MSC: 16 = 2*8

 MSC: 15 = 3*5

 MSC: 13 is prime

 MSC: 18 = 2*9

 MSC: 20 = 2*10

 MSC: 21 = 3*7

 MSC: 17 is prime

 MSC: 22 = 2*11

 MSC: 24 = 2*12

 MSC: 25 = 5*5

 MSC: 19 is prime

 MSC: 23 is prime

10 processes created

 Although the algorithm itself is deterministic, the process scheduling is not, and in different runs this can cause print
statements to appear in slightly different orders. Ten processes were created, one of which is the initial process. This
means that the algorithm accurately found the nine prime numbers between one and 25. When the maximal number is
reached, the eof messages is passed down the chain all the way from the initial process to the most recently created
sieve process, and all processes will make an orderly exit.

 A verification run with the model as specified is uneventful:

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 284 byte, depth reached 288, errors: 0

 2093 states, stored

 478 states, matched

 2571 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 1 (resolved)

(max size 2^18 states)

Stats on memory usage (in Megabytes):

0.611 equivalent memory usage for states ...

0.508 actual memory usage for states (compression: 83.13%)

 State-vector as stored = 235 byte + 8 byte overhead

1.049 memory used for hash table (-w18)

0.240 memory used for DFS stack (-m10000)

1.698 total actual memory usage

unreached in proctype sieve

 (0 of 25 states)

unreached in proctype :init:

 (0 of 11 states)

 There are no deadlocks and there is no unreachable code, as we would expect. The partial order reduction algorithm
could in principle work better, though, if we can provide some extra information about the way that the initial and the
sieve processes access the message channels. In principle, this is not too hard in this case. On line 15, for instance, we
can try to add the channel assertions

15 xr c; xs child;

 because the sieve process is guaranteed to be the only process to read from the channel that was passed to it as an
argument, and the only one to send messages to the channel it will use to communicate with a possible child process.
Similarly, the assertion

43 xs root;

 could be included on line 43 in the init process to assert that the initial process is the only process to send messages
to channel root. If we do so, however, the verifier will warn us sternly that channel assertions are not allowed on
rendezvous channels.

$ spin -a eratosthenes

$ cc -o pan pan.c

$./pan

chan root (0), sndr proc :init: (0)

pan: xs chans cannot be used for rv (at depth 0)

pan: wrote eratosthenes.trail

...

 We can correct this by turning the two rendezvous channels declared on lines 9 and 12 in Figure 15.1 into buffered
message channels with the minimum storage capacity of one message. Line 9 in Figure 15.1 then becomes:

9 chan root = [1] of { mtype, int };

 Similarly, line 12 is now written:

12 { chan child = [1] of { mtype, int };

 This of course in itself will increase the number of potentially reachable states, since it decouples the process
executions a little more. Repeating the verification confirms this. If the channel assertions are not included, the number
of reachable states now increases tenfold (to 24,548). With the channel assertions, however, the size of the state
space decreases tenfold to a mere 289 reachable states, which provides a compelling illustration of the effectiveness
of channel assertions.

 In this first model we are using one process for each prime number that is found. Because there cannot be more than
255 running processes in a SPIN model, we cannot use this model to find more than only the first 254 prime numbers
greater than one. This means that a value for MAX greater than 1,609 (the 254th prime) would be of little use, unless
we can somehow rearrange the code to avoid the dynamic creation of processes. This is not too hard, as shown in
Figure 15.2, though the resulting model is not quite as elegant.

 Figure 15.2 Alternative Structure for Sieve

 1 mtype = { number, eof };

 2

 3 chan found = [MAX] of { int };

 4

 5 active proctype sieve()

 6 { int n = 3;

 7 int prime = 2;

 8 int i;

 9

10 found!prime;

11 printf("MSC: %d is prime\n", prime);

12 do

13 :: n < MAX ->

14 i = len(found);

15 assert(i > 0);

16 do

17 :: i > 0 ->

18 found?prime;

19 found!prime; /* put back at end */

20 if

21 :: (n%prime) == 0 ->

22 /* printf("MSC: %d = %d*%d\n",

23 n, prime, n/prime); */

24 break

25 :: else ->

26 i--

27 fi

28 :: else ->

29 break

30 od;

31 if

32 :: i == 0 ->

33 found!n;

34 printf("MSC: %d is prime number %d\n",

35 n, len(found))

36 :: else

37 fi;

38 n++

39 :: else ->

40 break

41 od

42 }

 This time we store prime numbers in a channel, and retrieve them from there for primality testing. We have set the
capacity of the channel generously to the value of MAX, although a much smaller value would also suffice. Only a
number that is not divisible by any of the previously discovered primes is itself prime and can then be added into the
channel. In this version of the sieve process we have left the macro MAX undefined, which means that we can now
pass a value in via a command-line argument to SPIN. We can now surpass the old limit of 254 primes easily, for
instance, as follows:

$ spin -DMAX=10000 eratosthenes2

 MSC: 2 is prime

 MSC: 3 is prime nr 2

 ...

 MSC: 9941 is prime nr 1226

 MSC: 9949 is prime nr 1227

 MSC: 9967 is prime nr 1228

 MSC: 9973 is prime nr 1229

1 process created

 If we repeat the verification attempt for the alternative model, using the same value for MAX as before, we see that
the number of states has increased a little compared to the best attempt from before using channel assertions.

$ spin -DMAX=25 -a eratosthenes2

$ cc -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 132 byte, depth reached 479, errors: 0

 480 states, stored

 0 states, matched

 480 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.493 memory usage (Mbyte)

unreached in proctype sieve

 (0 of 32 states)

 However, we can also note that the size of the state vector has decreased from 284 bytes in the first model, which
increases with MAX, to a fixed size of just 132 bytes in the new model. This means that the 289 states from before
will actually take up more memory than the 480 states from the new model. The simpler model usually wins in a battle
for complexity control.

[Team LiB]

[Team LiB]

Process Scheduling

 The next problem concerns the design of a reasonably efficient method for scheduling process execution in a
multiprocessor system. The processes compete for access to shared resources, and they may have to be suspended
when a resource is temporarily unavailable. The process suspension is done with a system call named sleep, which
also records the particular resource that the process is waiting to access. When a process releases a resource, it calls
the routine wakeup, which checks if any processes are currently suspended, waiting for the resource being released,
and if so resumes execution of those processes. The data structures that record the state of the resource, and the data
structures that record the state of the processes, are themselves also shared resources in the system, and access to
them has to be protected with locks. In a uniprocessor system simply masking interrupts can suffice to lock out
competing processes while operations on shared data structures are performed, but in a multiprocessor system this is
not sufficient and we need to rely on higher-level locks.

 In most systems, the availability of a global, indivisible test and set instruction can be assumed to solve this problem.
If, for instance, we have a lock variable named lk, the indivisible test and set instruction, which is called spinlock in the
UTS system, can be modeled in PROMELA as

#define spinlock(lk) atomic { (lk == 0) -> lk = 1 }

 and the matching lock release operation as

#define freelock(lk) lk = 0

 The scheduling problem is easy to solve if we would allow a process to simply set the spinlock for the duration of all
access to the resource: it would effectively lock out all other processes. Such a solution would be very inefficient,
though, forcing other processes to continue executing while competing to set the lock variable. The real challenge is to
minimize the use of global locks, suspending process executions where possible, while securing that no process can
accidentally be suspended forever. The latter problem is called a "missed wakeup."

 The algorithm that was adopted for the Plan9 operating system was discussed in Pike et al. [1991], including a
verification with and early version of SPIN. Another solution was proposed in Ruane [1990] for use in Amdahl's
UNIX time sharing system, UTS®. We will consider Ruane's method here. An earlier discussion of this method
appeared in Holzmann [1997b] with a commentary, exposing some flaws in that discussion, appearing in Bang
[2001].

 For our current purpose it is sufficient to restrict the number of shared resources in the system to just one single
resource. This resource can be represented in the C implementation by a data structure of the following type:

typedef struct R {

 int lock; /* locks access to resource */

 int wanted; /* processes waiting */

 ... /* other fields */

} R;

R *r; /* pointer to resource structure */

 A process that gains access to the resource will set the lock field in the resource data structure to record that the
resource is in use. If a process finds the resource locked, it suspends itself after setting the wanted flag to one, to
record that at least one process is waiting for the resource to be released. A process that releases the resource first
checks the wanted flag to see if any processes are waiting, and if so it will restart those processes one by one. Each
such process then retests the resource lock field to try again to gain access to the resource.

 In the UTS solution, a process can be suspended while holding the global lock variable with a variant of the sleep
routine, called sleepl. The implementation of sleepl then has to make sure that the global lock is released while the
process is suspended and reacquired when it is resumed.

 To acquire access to the resource, the code that was used would first set the spinlock on lk, and then test the value
of the lock variable from the resource, as follows:

spinlock(&lk);

while (r->lock) {

 r->wanted = 1;

 sleepl(r, &lk);

}

r->lock = 1;

freelock(&lk);

 As a minor detail, note that in the C code a pointer to lock variable lk is passed to the routines spinlock and freelock,
where in the PROMELA version we passed the variable name itself.

 To release the resource, a process executes the following piece of code:

r->lock = 0;

waitlock(&lk);

if (r->wanted) {

 r->wanted = 0;

 wakeup(r);

}

 If the wanted flag indicates that at least one process is waiting to access the resource, the waiting processes are
restarted through a call to the wakeup routine. A waitlock is used here instead of a spinlock. The waitlock primitive
can be modeled in PROMELA as follows:

#define waitlock(lk) (lk == 0)

 Ruane reported that some time after these routines had been implemented a race condition was discovered that could
lead to a process being suspended without ever being resumed. After analyzing the problem, the designers of the code
proposed a change in the wakeup routine that looked as follows:

r->lock = 0;

waitlock(&lk);

if (r->wanted) {

 r->wanted = 0;

 waitlock(&lk);

 wakeup(r);

}

 For a while, no further problems were detected, but the designers had a lingering doubt about the adequacy of their
fix. They asked two specific questions:



 Could a SPIN verification have found the problem?


Is the modified version free from other race conditions?

 To answer these questions, we will build a basic SPIN model without resort to embedded C code. This means that
we cannot use pointers, and we will have to make some changes in the way that the resource flags are specified. All
changes are relatively minor.

 We begin by modeling the effect of the system routines sleepl and wakeup with two inline definitions. To do so, we
have to decide how to represent the process states. We use a one-dimensional array to record process states,
indexed by the process instantiation numbers, as follows:

mtype = { Wakeme, Running }; /* process states */

mtype pstate[N] = Running;

 The initial state of each process is Running. Access to the process states has to be protected by a special lock, which
we call sq. The wakeup routine, shown in Figure 15.3, acquires this lock and checks if any processes are suspended
on access to the resource. If it finds any, it moves them back into the Running state.

 Figure 15.3 Sleep-Wakeup Routines

1 #define N 3 /* nr of processes */

2

3 mtype = { Wakeme, Running }; /* process states */

4

5 mtype pstate[N] = Running;

6

7 bit r_lock;

8 bit r_wanted; /* resource state */

9 bit lk, sq; /* locks */

10

11 #define freelock(x) x = 0

12 #define waitlock(x) (x == 0)

13 #define spinlock(x) atomic { waitlock(x) -> x = 1 }

14

15 inline wakeup(x) {

16 spinlock(sq);

17 i = 0;

18 do :: i < N ->

19 if

20 :: pstate[i] == Wakeme ->

21 pstate[i] = Running

22 :: else -> i++

23 fi

24 :: else -> break

25 od;

26 freelock(sq)

27 }

28 inline sleepl(y, x) {

29 spinlock(sq);

30 freelock(x);

31 pstate[_pid] = Wakeme;

32 freelock(sq);

33 (pstate[_pid] == Running);

34 spinlock(x)

35 }

36

 The sleepl routine changes the process state, again under protection of the sq lock, and it releases the global lock.
The lock is reacquired when the process is moved back into the Running state. The first argument to sleepl, which
points to the resource data structure in the original code, can be ignored here since we consider access to only a
single resource.

 In the verification model from Figure 15.4, a user process alternately tries to gain access to the resource and then
release it, following the proposed UTS code for the calls on sleepl and wakeup.

 Figure 15.4 Remainder of Verification Model for UTS

37 active [N] proctype user()

38 { pid i;

39 do :: spinlock(lk); /* spinlock(&lk); */

40 do :: r_lock -> /* while (r->lock) { */

41 r_wanted = 1; /* r->wanted = 1; */

42 sleepl(_, lk) /* sleepl(r, &lk); */

43 :: else -> break

44 od; /* } */

45 r_lock = 1; /* r->lock = 1; */

46 freelock(lk); /* freelock(&lk); */

47

48 R: /* use resource r */

49

50 r_lock = 0; /* r->lock = 0; */

51 waitlock(lk); /* waitlock(&lk); */

52 if

53 :: r_wanted -> /* if (r->wanted) { */

54 r_wanted = 0; /* r->wanted = 0; */

55 #ifdef FIX

56 waitlock(lk); /* waitlock(&lk); */

57 #endif

58 wakeup(_); /* wakeup(r); */

59 :: else

60 fi /* } */

61 od

62 }

 The proposed fix can be included into, or excluded from, the model by defining or undefining the preprocessor
directive named FIX. The original C code is placed next to the PROMELA code in comments to show the
correspondence. Apart from syntax, there is a fairly close match.

 To verify the model we must now formulate a correctness property. To show that there can be no missed wakeups,
we should be able to show, for instance, that it is impossible for any process to remain in the Wakeme state forever. If
we define the propositional symbol p as:

#define p (pstate[0] == Wakeme)

 it should be impossible for p to remain true infinitely long in an execution of the system. The corresponding LTL
formula is <>[]p. The claim that can now be appended to the model is generated with SPIN as follows:

$ spin -f '<>[]p'

never { /* <>[]p */

T0_init:

 if

 :: ((p)) -> goto accept_S4

 :: (1) -> goto T0_init

 fi;

accept_S4:

 if

 :: ((p)) -> goto accept_S4

 fi;

}

 The process instantiation numbers are 0, 1, and 2 in this model. Because the system is symmetrical, it should not
matter which process we select for the check in property p.

 The verifier is now first generated and compiled without enabling the fix, as follows:

$ spin -a uts_model # no FIX

$ cc -o pan pan.c

 The verifier quickly finds a counterexample. We can produce a relatively

 short error trail by restricting the search depth to 60 steps.

$./pan -a -m60

...

pan: acceptance cycle (at depth 42)

pan: wrote uts_model.trail

...

 The error sequence can be reproduced with SPIN's guided simulation option, for instance, as in:

$ spin -t -p uts_model

...

 For clarity, we will edit the output a little here to indicate the sequence of steps taken by each of the three processes,
using macro and inline names from the model to shorten the trail some more. We list the actions of the user processes
in three columns, in the order of their process instantiation numbers. The first step is taken by the user process with
pid number 2, which appears in the third column.

 /* pid 2 */

1 spinlock(lk)

2 else

3 r_lock = 1

4 freelock(lk)

5 /* use resource */

6 r_lock = 0

 /* pid 1 */

7 spinlock(lk)

8 else

9 rlock = 1

10 freelock(lk)

11 /* use resource */

 /* pid 2 */

12 waitlock(lk)

 /* pid 0 */

13 spinlock(lk)

14 (r_lock)

15 r_wanted = 1

 /* pid 2 */

16 (r_wanted)

17 r_wanted = 0

 /* pid 0 */

18 sleepl(r,lk)

 /* pid 2 */

19 waitlock(lk)

20 wakeup(r)

 /* pid 1 */

21 <<<CYCLE>>>

22 r_lock = 0

23 waitlock(lk)

24 else

25 spinlock(lk)

26 else

27 r_lock = 1

28 freelock(lk)

29 /* use resource */

 In this scenario, the user process with pid 0, executing at steps 13, 14, 15, and 18, is indeed indefinitely held in its
Wakeme state, but the scenario also shows that the processes with pid 2 is assumed to be delayed indefinitely in its
call of the wakeup routine, trying to acquire the spinlock inside this call in step 20.

 The spinlock on lk is repeatedly set and released by the remaining process in steps 25 and 28.

 This is a valid but not an interesting counterexample because it assumes unfair process scheduling decisions. To home
in on the more interesting cases, we have to add fairness constraints to the property. Our verification model already
contains the label R at the point where access to the resource is obtained. We can extend the property to state that it
should be impossible for one of the processes to remain in its Wakeme state, only while the other two processes
continue to access the resource. The system is symmetrical, so it should not matter which process we pick for the
check. The new property can be expressed in LTL formula

<>[]p && []<>q && []<>r

 with the propositional symbol definitions:

#define p (pstate[0] == Wakeme)

#define q (user[1]@R)

#define r (user[2]@R)

 If we repeat the verification, again for the model without the fix enabled, we can obtain another error scenario, now
slightly longer. The essence of this scenario can be summarized in the following steps:

1 spinlock(lk)

2 else

3 r_lock = 1

4 /* use resource */

5 freelock(lk)

6 r_lock = 0

7 waitlock(lk)

8 spinlock(lk)

9 else

10 r_lock = 1

11 freelock(lk)

12 /* use resource */

13 spinlock(lk)

14 (r_lock)

15 r_lock = 0

16 r_wanted = 1

17 (r_wanted)

18 r_wanted = 0

19 wakeup(_)

20 sleepl(_,lk)

 The process with pid 1 accesses the resource and releases the resource lock in step 6. It is about to check, in step
17, if any processes are suspended, waiting to access the resource. Meanwhile, the process with pid 2 acquires
access in steps 8-12, and causes the process with pid 1 to prepare for a call on sleepl, after finding the lock set, in
step 14. The process sets the wanted flag, which is immediately detected and cleared by the process with pid 1. This
process now proceeds with the execution of the wakeup routine, but process 0 has not actually been suspended yet.
As a result, when process 0 finally suspends itself, the wanted flag is zero, which means that it can no longer be
detected.

 The process can now remain suspended indefinitely, while the other processes continue to acquire and release the
resource.

 We can now repeat the verification with the proposed fix enabled. The relevant part of the output is as follows:

$ spin -a -DFIX uts_model # include the FIX

$ cc -o pan pan.c

$./pan -a

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim +

 assertion violations + (if within scope of claim)

 acceptance cycles + (fairness disabled)

 invalid end states - (disabled by never claim)

State-vector 44 byte, depth reached 5619, errors: 0

 47835 states, stored (49399 visited)

 56388 states, matched

 105787 transitions (= visited+matched)

 0 atomic steps

 The state space for this three-process model is still relatively small, with under 50,000 reachable states. The
verification run shows that the fix does indeed secure that the correctness property can no longer be violated.

 Out of curiosity, we can also repeat the last run, but this time leave out the LTL property, to see how much
complexity the verification of the claim added above the complexity of a basic reachability analysis for safety
properties. We proceed as follows.

$ cc -DNOCLAIM -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (not selected)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 40 byte, depth reached 2809, errors: 0

 42983 states, stored

 43494 states, matched

 86477 transitions (= stored+matched)

 0 atomic steps

 Note that the inclusion of the LTL property increased the state space by just 4,852 reachable states, or just under
11.3%. Note also that the use of the nested depth-first search algorithm causes the depth reached in the state space
to double in this case.

[Team LiB]

[Team LiB]

A Client-Server Model

 It is relatively simple to create SPIN models with a dynamically changing number of active processes. Each newly
created process can declare and instantiate its own set of local variables, so through the creation of a new process we
can also create additional message channels. It may be somewhat confusing at first that message channel identifiers
can have a process local scope, if declared within a proctype body, but that the message channels themselves are
always global objects. The decision to define channels in this way makes it possible to restrict the access to a message
channel to only specifically identified processes: message channels can be passed from one process to another. We
will use this feature in the design of a simple, and fairly generic client-server model.

 We will design a system with a single, fixed server that can receive requests from clients over a known global
channel. When the server accepts a request for service, it assigns that request to an agent and provides a private
channel name to the client that the client can use to communicate with the agent. The remainder of the transaction can
now place between agent and client, communicating across a private channel without further requiring the
intermediacy of the server process. Once the transaction is complete, the agent returns the identifier for the private
channel to the server and exits.

 Figure 15.5 shows the design of the agent and server processes. The fixed global channel on which the server
process listens is declared as a rendezvous port called server. The server process has a private, locally declared, set
of instantiated channels in reserve. We have given the server process a separate local channel, named pool, in which it
can queue the channels that have not yet been assigned to an agent. The first few lines in the server process
declaration fill up this queue with all available channels.

 Figure 15.5 Agent and Server Processes

#define N 2

mtype = { request, deny, hold, grant, return };

chan server = [0] of { mtype, chan };

proctype Agent(chan listen, talk)

{

 do

 :: talk!hold(listen)

 :: talk!deny(listen) -> break

 :: talk!grant(listen) ->

wait: listen?return; break

 od;

 server!return(listen)

}

active proctype Server()

{ chan agents[N] = [0] of { mtype };

 chan pool = [N] of { chan };

 chan client, agent;

 byte i;

 do

 :: i < N -> pool!agents[i]; i++

 :: else -> break

 od;

end: do

 :: server?request(client) ->

 if

 :: empty(pool) ->

 client!deny(0)

 :: nempty(pool) ->

 pool?agent;

 run Agent(agent,client)

 fi

 :: server?return(agent) ->

 pool!agent

 od

}

 A client sending a request to the server attaches the name of the channel where it will listen for responses from the
server or the server's agent. If the channel pool is empty at this point, the server has no choice but to deny the request
immediately. If a channel is available, an agent process is started and the name of the new private channel is passed to
that agent, together with the channel through which the client can be reached. The server now goes back to its main
loop, waiting for new client requests. Eventually, when the client transaction is complete, the server's agent will return
the now freed up private channel, so that the server can add it back into its pool of free channels.

 We have set up the agent to randomly decide to either grant or deny a request, or to inform the client that the request
is on hold. (Think of a library system, where a user can request books. In some cases a book can be on loan, and the
user may be informed that the book was placed on hold.) If the request is granted, the agent will move to a wait state
where it expects the client to eventually send a return response, signifying that the transaction is now complete. The
agent process will now notify the server that the private channel can be freed up again, and it terminates.

 Figure 15.6 shows the structure of the client process for this system. The client has its own private channel that it
reserves for communications with the server. It initiates the communication, after a timeout in this case, by sending a
first request to the server on the known global channel, with its own channel identifier attached. It will now wait for the
response from either the server or the server's agent. A denial from the server brings the client back to its initial state,
where it can repeat the attempt to get a request granted. A hold message is simply ignored by this client, although in
an extended model we could consider giving the client the option of canceling its request in this case. When the
request is granted, the client will faithfully respond with a return message, to allow the server's agent to conclude the
transaction.

 Figure 15.6 The Client Processes

#define M 2

active [M] proctype Client()

{ chan me = [0] of { mtype, chan };

 chan agent;

end: do

 :: timeout ->

 server!request(me);

 do

 :: me?hold(agent)

 :: me?deny(agent) ->

 break

 :: me?grant(agent) ->

 agent!return;

 break

 od

 od

}

 In this model, we have both dynamic process creation and the passing of channel identifiers from one process to the
next. Dynamic process creation in a model such as this one can sometimes hold some surprises, so it will be worth our
while to try some basic verification runs with this model. Clearly, the complexity of the model will depend on the
number of client processes and the maximum number of agents that the server can employ. We will start simple, with
just two client processes and maximally two agents. The verifi-cation then proceeds as follows:

$ spin -a client_server.pml

$ cc -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 72 byte, depth reached 124, errors: 0

 190 states, stored

 74 states, matched

 264 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype Agent

 (0 of 11 states)

unreached in proctype Server

 line 33, state 11, "client!deny,0"

 line 41, state 22, "-end-"

 (2 of 22 states)

unreached in proctype Client

 line 61, state 15, "-end-"

 (1 of 15 states)

 Perhaps the one surprising detail in this result is that the statement on line 33, where the server summarily has to deny
the request because its pool of available private channels is found to be empty, is not reachable. Given that the
number of private channels in the server was defined to be equal to the number of clients, this result is easily
understood. We can try to confirm our initial understanding of this phenomenon by increasing the number of client
processes to three, without changing the number of channels declared in the server. Our expectation is now that the
one unreachable statement in the server should disappear. This is the result:

$ spin -a client_server3.pml

$ cc -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 84 byte, depth reached 331, errors: 0

 935 states, stored

 393 states, matched

 1328 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype Agent

 (0 of 11 states)

unreached in proctype Server

 line 33, state 11, "client!deny,0"

 line 41, state 22, "-end-"

 (2 of 22 states)

unreached in proctype Client

 line 62, state 15, "-end-"

 (1 of 15 states)

 We can see that the number of reachable states increased, as expected given that we have more processes running in
this system. But the statement on line 33 is still unreachable. What is going on?

 Now we look more closely at the way in which we have defined the client processes. Note that a client process can
only initiate a new request when timeout is true. This only happens if no other process in the entire system can make a
step. This means that effectively only one of the three client processes will be executing in this system at a time.
(Exercise: try to find a way to prove by model checking that this is true.) The three clients have different process
identifiers, so each of the clients generates a different set of system states when it executes. The symmetry in this
system is not automatically exploited by SPIN.

 As an experiment, we can replace the timeout condition with true, and see if this helps to exercise the rogue
statement. This is most easily done by adding a macro definition to the model, for instance, as follows:

#define timeout true

 Repeating the verification run now produces the following surprising result:

$./pan

error: max search depth too small

pan: out of memory

 2.68428e+008 bytes used

 102400 bytes more needed

 2.68435e+008 bytes limit

hint: to reduce memory, recompile with

 -DCOLLAPSE # good, fast compression, or

 -DMA=652 # better/slower compression, or

 -DHC # hash-compaction, approximation

 -DBITSTATE # supertrace, approximation

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

...

 The search ran out of memory. What happened?

 By making it possible for the client processes to initiate requests at any time, we made it possible for a client to
resubmit a request for service before the agent process that handled its last request has terminated. Consider, for
instance, a request that was granted. After the client concludes the transaction by sending its return message, the agent
process still has a number of steps to take before it can terminate. It must, for instance, first return the identifier of the
now freed up private channel back to the server. If the client is fast enough, it can initiate a new transaction before the
agent has completed the handling of its last transaction. This means that the process identificatio number of the last
agent process cannot be recycled and reassigned for the new tranaction: the number of running agent processes can
increase arbitrarily far. Most of these agent processes will eventually reach their termination state, where they could
die. Because process death can only happen in stack order, the newly created agent processes now prevent the older
processes from dying.

 Though annoying, this potentially infinite increase in resource consumption does reflect a real hazard scenario that
could also happen in a real system execution, so it is not without value. Our job as system designers is to find a way to
make sure that this scenario cannot happen, by modifying the system design.

 The best way to prevent the potential for runaway resource consumption is at the source: in the client processes.
Sadly, there is no general rule for how this is best done: it will depend on the specifics of the model that one is using.
In this case, we can easily make sure that no new client request can be submitted until the agent process for prior
requests have terminated by replacing the timeout with a slightly more restrictive condition than true. The condition we
will use in this model is as follows:

#define timeout (_nr_pr <= N+M)

 The variable _nr_pr is a predefined system variable (see the manual pages) that gives the precise number of active
processes in the model. How many processes should we maximally have in this model? There are M client processes,
one server process, and maximally N agent processes. This gives an upper limit of (N+M+1) active processes. When
a client is about to submit a new request, though, it should have no active agent process associated with itself
anymore, so the maximum number of active processes in the system at the time that a new request is made should not
be larger than (N+M).

 If we add this condition to the model and repeat the verification we see the following result:

$./pan -m30000

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 108 byte, depth reached 26939, errors: 0

 133932 states, stored

 306997 states, matched

 440929 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 47515 (resolved)

(max size 2^18 states)

Stats on memory usage (in Megabytes):

15.536 equivalent memory usage for states

7.194 actual memory usage for states (compression: 46.30%)

 State-vector as stored = 46 byte + 8 byte overhead

1.049 memory used for hash table (-w18)

0.960 memory used for DFS stack (-m30000)

9.177 total actual memory usage

unreached in proctype Agent

 (0 of 11 states)

unreached in proctype Server

 line 41, state 22, "-end-"

 (1 of 22 states)

unreached in proctype Client

 line 63, state 15, "-end-"

 (1 of 15 states)

 This is the result we were expecting when we tried to change timeout into true: all statements in the model, including
the pesky statement on line 33, are now reachable, though at the expense of a considerable increase of the reachable
state space.

 As a general rule, when you see apparently infinite growth of the state space, signified by an apparently uncontrollable
growth of either the state vector or the search depth, it is worth looking carefully at all the run statements in the model,
to see if a scenario like the one we have discussed here is possible.

[Team LiB]

[Team LiB]

Square Roots?

 We began our introduction to PROMELA in Chapter 2 almost inevitably with the PROMELA version of hello
world. In retrospect, we can see that this example stretches the meaning of the term verification model. It defines only
one single process, so clearly not much process interaction or synchronization could be happening. A model checker
may be used to demonstrate that this little system cannot deadlock or get entangled into non-progress cycles, but the
results that are obtained from such experiments will not be much of a revelation. Of course, PROMELA does not
prevent us from writing such models, although it does try to deprive us from the tools we would need to put too much
emphasis on non-concurrency aspects. This shows up specifically in the rudimentary support in the language for
specifying pure computations. There are, for instance, no data types for float, double, or real in PROMELA. There is
also no direct support for function calls or for recursion. These omissions are not accidental. It is deliberately hard to
specify anything other than rudimentary computations in PROMELA, and deliberately easy to specify the
infrastructure and the mutual dependency of concurrently executing processes.

 This is not to say that no computation whatsoever can be done in PROMELA. It can. As a small example, consider
the following PROMELA program that computes the integer square root of a given integer number. [1]

[1] The algorithm is due to Mark Borgerding. It appeared first at http://www.azillionmonkeys.com/qed/sqroot.htm.

proctype sqroot(int N)

{ int x, y;

 y = 1<<15;

 do

 :: y > 0 ->

 x = x^y; /* set bit */

 if

 :: x*x > N -> /* too large */

 x = x^y /* clear bit */

 :: else /* leave set */

 fi;

 y = y>>1 /* next bit */

 :: else ->

 break /* done */

 od;

 printf("integer sqrt(%d) = %d\n", N, x)

}

 A few constructs are used here that will look familiar to C programmers. The proctype named sqroot is declared
non-active, which means that no instance of it is assumed to be started by default. An instance can be initiated by
another process, and at the same time that process can then pass an integer parameter, N, to the newly instantiated
process, specifying the number for which the integer square root is to be computed. That instantiation can look, for
instance, as follows:

active proctype main()

{

 run sqroot(3601)

}

 which uses the second mechanism in PROMELA to instantiate processes: through the use of the run operator.

 Another, perhaps more convenient, way of defining the instantiation would be with a parameter, as in:

active proctype main()

{

 run sqroot(NR)

}

 This allows us to experiment more easily with different inputs by invoking SPIN as follows:

$ spin -DNR=1024 sqroot.pml

integer sqrt(3601) = 55

2 processes created

 SPIN reminds us that it created two process instances to execute this model: one called main and the other sqroot.

 The body of proctype sqroot begins with the declaration of two integers. Since we do not have a floating point data
type, using integers is the best we can do here. Unlike in C, the default initial value of all variables is zero in
PROMELA, so both variables have a known initial value at this point. The variable y is assigned the value of an
expression with one operator and two operands. The operator is the left-shift operator from C. This is a bit-operator
that left-shifts the bit-pattern of the left operand the number of positions indicated by the right operand. If the left
operand is one, as in this case, this amounts to computing the value of the expression 2n, where n is the value of the
right operand.

 The next statement in the program is a loop. If the variable y is larger than zero, which upon first entry to the loop it
will be, the first option sequence is executed. Once y reaches zero, the second option sequence will break from the
loop, which causes the execution of the printf statement.

 After the expression y>0, we see an assignment to variable x. The assignment computes the binary exclusive or of x
and y and assigns it to x. The desired effect in this case is to set the bit position given by variable y (initially bit position
15, corresponding to a power of two).

 The algorithm attempts to compute the value of the square root of N in variable x. It approaches the value from
below, first looking for the highest power of two that can be included, without exceeding the target value. If the target
value is exceeded, the bit position indicated by y is cleared again, by repeating the exclusive or operation; otherwise
nothing needs to be done. The latter happens when the else in the selection statement becomes executable. Since
nothing needs to be done, no statements need to be listed here. Some SPIN users feel uncomfortable about this, and
would prefer to write the selection statements as follows, inserting a dummy skip statement after the lonely else, but it
is not required.

if

:: x*x > N -> /* too large */

 x = x^y /* clear bit */

:: else -> /* leave set */

 skip

fi;

 After the selection statement, the single bit in variable y is right-shifted by one position to derive the next lower power
of two to be tested. When y reaches zero, the algorithm terminates and prints the computed integer value of the
square root of N, as desired.

 Because the entire computation is deterministic, there are many optimizations we could make in this little program to
help SPIN execute it faster (e.g., by embedding the entire computation within an atomic or d_step statement), but we
will leave well enough alone. The same observation that we made in the hello world example holds for this one,
though: it would be a stretch to call this specification a verification model, since it defines no system design properties
that could be verified with a model checker.

http://www.azillionmonkeys.com/qed/sqroot.htm
http://www.azillionmonkeys.com/qed/sqroot.htm

[Team LiB]

[Team LiB]

Adding Interaction

 The main objection we can levy against the last example is that it really defines only sequential, not concurrent,
behavior, with no synchronizations or interactions. With a few small changes we can turn the example into a slightly
more interesting, though still rather minimal, distributed system model. We will set up the integer square root routine as
a little square root server process that can perform its computations at the request of client processes. We will
rearrange the code somewhat to accomplish this.

 The first thing that we need to do is to declare a message channel for communication between clients and server, for
instance, as follows:

#define NC 4

chan server = [NC] of { chan, int };

 The first line defines a constant named NC. The constant is used in the declaration to set the capacity of the channel
named server. The messages that can be passed through this channel are declared to have two fields: one of type chan
that can hold a channel identifier, and one of type int that can hold an integer value.

 Next, we rewrite the square root server process, so that it will read requests from this channel and respond to the
client with the computed value, via a channel that the client provides in the request. The new version looks as follows:

active proctype sqroot()

{ chan who;

 int val, n;

 do

 :: server?who,n ->

 compute(n, val);

 who!val

 od

}

 First, the server process declares a channel identifier named who, which this time is not initialized in the declaration. It
also declares an integer variable n. These two variables are used to store the parameter values for the communication
with a client, as provided by that client. A second integer variable val will be used to retrieve the result value that is to
be communicated back to the client. The body of the square root server consists of a do loop with just one option,
guarded by a message receive operation.

 We have moved the actual computation into an inline definition, named compute. The variable name n, recording the
value received from the client, is passed to the inline, as is the name of the variable val in which the result is to be
computed.

 After the call to compute completes, the value is returned to the client process in a send operation.

 Before we fill in the details of the inline call, recall that an inline is merely a structured piece of macro text where the
names of variables that are passed in as parameters textually substitute their placeholders inside the inline definition.
Therefore, inlines are not the same as procedures: they cannot return results, and they do not have their own variable
scope. All variables that are visible at the point of call of an inline are also visible inside the inline body, and, perhaps
more noteworthy, all variables declared inside the inline are also visible outside it, after the point of call.

 The inlined code for compute can now be written as follows:

inline compute(N, x)

{ int y;

 y = 1<<15;

 do

 :: y > 0 ->

 x = x^y; /* set bit */

 if

 :: x*x > N -> /* too large */

 x = x^y /* clear bit */

 :: else /* leave set */

 fi;

 y = y>>1 /* next bit */

 :: else ->

 break /* done */

 od;

}

 All we need to complete the model is the code for the client process(es). The following declaration instantiates four
distinct processes. Each has its own copy of a channel through which it can be reached by the server process.

active [NC] proctype client()

{ chan me = [0] of { int };

 int val;

 server!me,10*_pid ->

 me?val;

 printf("integer sqrt(%d) = %d\n", 10*_pid, val)

}

 Each process multiplies its own process identifier, available in the predefined variable _pid, by ten and asks the
square root server to compute the square root of the resulting number. It does so by sending this value, together with
the value of the channel variable over which it can be reached through a send operation. Again, the types of the
variables that make up the message sent must match the corresponding fields in the channel declaration for the channel
addressed. In this case, it is a channel type, followed by an integer. The send operation is executable when the
channel is non-full.

 The private channel of the client process is declared in a slightly different way from the global channel named server.
First, it has only one field, of type int. Next, the number of slots in this channel is declared to be zero to identify the
channel as a rendezvous port that can pass messages in an atomic operation but cannot store or buffer messages. The
receive operation on the client's rendezvous port is executable only if and when the server process reaches the send
statement in its code. The client is blocked until this happens, but once it happens the client can print the value and
terminate.

 The complete model we have discussed is shown in Figure 15.7. Executing this model, using SPIN's default
simulation mode, produces the following

 Figure 15.7 Square Root Server Model

#define NC 4

chan server = [NC] of { chan, int };

inline compute(N, x)

{ int y;

 y = 1<<15;

 x = 0; /* reset x */

 do

 :: y > 0 ->

 x = x^y; /* set bit */

 if

 :: x*x > N -> /* too large */

 x = x^y /* clear bit */

 :: else /* leave set */

 fi;

 y = y>>1 /* next bit */

 :: else ->

 break /* done */

 od;

}

active proctype sqroot()

{ chan who;

 int n, val;

 do

 :: server?who,n ->

 compute(n,val);

 who!val

 od

}

active [NC] proctype client()

{ chan me = [0] of { int };

 int val;

 server!me(10*_pid) ->

 me?val;

 printf("integer sqrt(%d) = %d\n", 10*_pid, val)

}

 output:

$ spin sqroot_server

 integer sqrt(30) = 5

 integer sqrt(10) = 3

 integer sqrt(40) = 6

 integer sqrt(20) = 4

timeout

#processes: 1

 queue 5 (server):

481: proc 0 (sqroot) line 27 "srs" (state 19)

5 processes created

 The output is somewhat more interesting this time. Each of the four client processes prints one line of output. To
make it easier to keep track of consecutive output from individual processes, SPIN arranges for the output from each
process to appear in a different column. Next, the system execution comes to a halt without all processes having been
terminated. SPIN tries in this case to enable a timeout mechanism that can trigger further actions from the halted
processes (we will see later how this is done). In this case, the timeout event triggers no further executions, and to
wrap up the simulation SPIN reports for each non-terminated process at which line number and internal state is
blocked. Only the square root server process is blocked, patiently waiting for further requests from clients, which in
this model can no longer come.

 If we wanted the server process to exit when the system comes to a halt, we could give it a timeout option as follows:

active proctype sqroot()

{ chan who;

 int n, val;

 do

 :: server?who,n ->

 compute(n,val);

 who!x

 :: timeout ->

 break

 od

}

 With this extension, the final wrapup of the execution will reduce to just the note about the number of processes that
was executed.

 To see the communication inside this little process model, we can use some other SPIN options, for instance, as
follows:

$ spin -b -c sqroot_server

proc 0 = sqroot

proc 1-4 = client

q\p 0 1 2 3 4

 5 . . . server!3,30

 5 server?3,30

 5 . . server!2,20

 5 . server!1,10

 5 server!4,40

 3 who!5

 3 . . . me?5

 5 server?2,20

 2 who!4

 2 . . me?4

 5 server?1,10

 1 who!3

 1 . me?3

 5 server?4,40

 4 who!6

 4 me?6

5 processes created

 The left hand column prints the channel number on which communication takes place, if any, and the top row gives
the process pid numbers. Still more verbose output is also possible, for instance, by printing every single statement
executed, or only specific types of statements. We will review the full range of simulation and verification options later
in the book.

[Team LiB]

[Team LiB]

Adding Assertions

 In the last version of the model we captured the behavior of a system of at least a few concurrent processes, and
there was some interaction to boot. It is still not quite a verification model, though. The only thing we could prove
about this system, for instance, is that it cannot deadlock and has no unreachable code segments. SPIN does not
allow us to prove any mathematical properties of this (or any) square root algorithm. The reason is that SPIN was
designed to prove properties of process interactions in a distributed system, not of process of computations.

 To prove some minor additional facts about the process behaviors in this example, we can nonetheless consider
adding some assertions. We may, for instance, want to show that on the specific execution of the square root
computations that we execute, the result will be in the expected range. We could do so in the client processes, for
instance, by modifying the code as follows:

active [NC] proctype client()

{ chan me = [0] of { int };

 int v;

 server!me(10*_pid) -> me?v;

 assert(v*v <= 10*_pid && (v+1)*(v+1) > 10*_pid)

}

 Another thing we can do is to select a more interesting set of values on which to run the computation. A good choice
would be to select a value in the middle of the range of integer values, and a few more that try to probe boundary
cases. Since we cannot directly prove the mathematical properties of the code, the best we can do is to use one
approach that resembles testing here. To illustrate this, we now change the client processes into a single tester process
that is defined as follows:

active proctype tester()

{ chan me = [0] of { int };

 int n, v;

 if

 :: n = -1 /* fails */

 :: n = 0 /* ok */

 :: n = 1023 /* ok */

 :: n = 1<<29 /* ok */

 :: n = 1<<30 /* fails */

 fi;

 server!me(n) -> me?v;

 assert(v*v <= n && (v+1)*(v+1) > n)

}

 Executing this model in SPIN's simulation mode as before may now succeed or fail, depending on the specific value
for n that is chosen in the non-deterministic selection at the start of the tester. Along the way, it is worth observing that
the five option sequences in this selection structure all consist of a single guard, and the guards are all assignments, not
conditional expressions. The PROMELA semantics state that assignments are always executable, independent of the
value that is assigned. If we execute the little model often enough, for example, five or more times, we will likely see all
possible behaviors.

 Not surprisingly, the algorithm is not equipped to handle negative numbers as input; the choice of -1 leads to an
assertion failure. All other values, except for the last, work fine. When the value 1<<30 is chosen, though, the result is:

$ spin -c sqroot_tester

proc 0 = sqroot

proc 1 = tester

q 0 1

 2 . server!1,1073741824

 2 server?1,1073741824

 1 who!65535

 1 . me?65535

spin: line 45 "srs2", Error: assertion violated

spin: text of failed assertion:

 assert((((v*v)<=n)&&(((v+1)*(v+1))>n)))

final state:

#processes: 2

 queue 2 (server):

108: proc 1 (tester) line 45 "srs2" (state 9)

108: proc 0 (sqroot) line 27 "srs2" (state 19)

2 processes created

 It would be erroneous to conclude anything about the correctness of the algorithm other than for the specific values
used here. For instance, it would not be safe to conclude that the algorithm would work correctly for all positive
values up to (1<<30)-1.

 Executing the simulation repeatedly by hand, until all cases in non-deterministic selection structures were hit, would of
course be a tiresome procedure. The errors will come out more easily by simply running the verifier, for instance, as
follows:

$ spin -a sqroot_tester

$ cl -DPC pan.c

$ pan

(Spin Version 4.0.7 -- 1 August 2003)

Warning: Search not completed

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 92 byte, depth reached 39, errors: 1

 39 states, stored

 0 states, matched

 39 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

 The trail reveals the cause of the error. It is generated as follows:

$ spin -t -c sqroot_tester

proc 0 = sqroot

proc 1 = tester

q 0 1

 2 . server!1,-1

 2 server?1,-1

 1 who!0

 1 . me?0

spin: line 72 "sqroot_tester", Error: assertion violated

spin: trail ends after 40 steps

final state:

#processes: 2

 queue 2 (server):

 40: proc 1 (tester) line 73 "sqroot_tester" (state 11)

 40: proc 0 (sqroot) line 28 "sqroot_tester" (state 21)

2 processes created

[Team LiB]

[Team LiB]

A Comment Filter

 In Chapter 3 (p. 69) we briefly discussed a seldom used feature in PROMELA that allows us to read input from the
user terminal in simulation experiments. The use of STDIN immediately implies that we are not dealing with a closed
system, which makes verification impossible. Still, the feature makes for nice demos, and we will use it in this last
example to illustrate the use of PROMELA inlines.

 The problem we will use as an excuse to write this model is to strip C-style comments from text files. Figure 15.8
shows the general outline of a deterministic automaton for stripping comment strings from C programs. According to
the rules of C, the character pair /* starts a comment and the first subsequent occurrence of the pair */ ends it. There
are some exceptions to this rule though. If the combination /* appears inside a quoted string, for instance, it does not
start a comment, so the automaton must be able to recognize not just comments but also quoted strings. To make
things more interesting still, the quote character that starts or ends a string can itself be quoted (as in '"') or escaped
with a backslash (as in "\""). In the automaton from Figure 15.8, states s1 and s2 deal with strings, and states s6, s7,
and s8 deal with quoted characters.

 Figure 15.8. A Sample Automaton to Check C-Style Comment Conventions

 The transition labels that we have used in Figure 15.8 represent classes of input characters that must be matched for
the transition to be executable. The meaning is as follows. A transition label that consists of a single symbol, represents
a match in the input stream of the corresponding ASCII character. A dot symbol, for example, on the transition from
s2 to s1, represents a match of any single character in the input stream. The symbol ¬ (pronounced not) represents a
match on any character other than all those that are listed behind the ¬ symbol in the transition label. This symbol is
not itself an ASCII character, so there can be no confusion about its meaning. The label ¬ * on the transition from s3
to s4, for instance, represents the match of any character other than *, and the label ¬ /"on the self-loop at state s0
means any character other than the forward slash character / or the quote character".

 If the input sequence provided to this automaton conforms to the C comment conventions that are captured here, the
automaton should terminate in its initial (and final) state s0.

 Part of the complexity of this automaton comes from the fact that characters can be escaped with backslashes, and
can appear inside single or double quote marks. The comment delimiters could also appear inside text strings, making
it hard to accurately recognize where a comment begins and ends in cases such as these:

/* the comment begins here

 * printf("but it doesn't end */ here yet\n");

 */

if (s == '"') /* not the start of a string */

 printf("/* not a comment */\n");

 To simplify things a little, and to allow us to concentrate on the use of inlines in the example, we will cheat and not
implement the full automaton but just a portion of it that implements the most basic functionality.

 The basic model shown in Figure 15.9 can strip standard comments from text files, but does not make any
exceptions for quoted or escaped characters, and it does not skip over text that is embedded in strings, as it formally
should.

 Figure 15.9 A Simple C-Style Comment Filter

1 /* strip C-style comments -- simple version */

2

3 chan STDIN;

4

5 #define FlipState in_comment = (in_comment -> false : true)

6

7 inline Print() {

8 if

9 :: !in_comment -> printf("%c", c)

10 :: else /* inside a comment string */

11 fi;

12 }

13 inline Getc(prev) {

14 do

15 :: STDIN?c ->

16 if

17 :: c == -1 -> goto done

18 :: c != prev -> break

19 :: c == prev -> Print()

20 fi

21 od

22 }

23 inline Handle(have, expect) {

24 oc = have;

25 Getc(have);

26 nc = c;

27 if

28 :: c == expect -> FlipState; goto again

29 :: else -> c = oc; Print(); c = nc

30 fi

31 }

32 init {

33 int c, oc, nc;

34 bool in_comment;

35

36 again: do

37 :: Getc(0) ->

38 if

39 :: !in_comment && c == '/' ->

40 Handle('/', '*')

41 :: in_comment && c == '*' ->

42 Handle('*', '/')

43 :: else

44 fi;

45 Print()

46 od;

47 done: skip /* saw the -1 end-of-file marker */

48 }

 As a quick test, if we run this program on itself, it nicely reproduces its own code, but without the comments. To
avoid automatic indentation of the output, we can use SPIN's option -T. The command we execute is then:

$ spin -T strip < strip

 which, in part, produces as output:

chan STDIN;

#define FlipState in_comment = (in_comment -> false : true)

inline Print() {

 if

 :: !in_comment -> printf("%c", c)

 :: else

 fi;

}

...

init {

 int c, oc, nc;

 bool in_comment;

again: do

 :: Getc(0) ->

 if

 :: !in_comment && c == '/' ->

 Handle('/', '*')

 :: in_comment && c == '*' ->

 Handle('*', '/')

 :: else

 fi;

 Print()

 od;

done: skip

}

1 process created

$

 We use SPIN's -T option here to make sure that the printed characters are produced without indentation.

 The main execution loop of the strip model appears in the init process. The boolean variable in_comment is initially
false. It changes its value each time that the macro FlipState is called, which uses PROMELA's syntax for a
conditional expression to do so. An equally effective method would be to use the following definition:

#define FlipState in_comment = 1 - in_comment

 but this relies perhaps a bit too much on the fact the SPIN normally does very little type checking.

 The main execution loop in the initial process starts with an an inline call, using the parameter value zero. The inline
reads a character from the magic STDIN channel, and checks whether it equals the predefined value for end-of-file:
-1. Note that for this reason it is important to read the value into a signed integer here: using an unsigned byte variable
would not work. If not the end-of-file marker, the value is compared with the parameter value that was passed in and
if it does not match it, the read loop ends. In this case, the value read cannot be zero, so the loop will end on its first
termination, leaving the value read in the integer variable c.

 The next thing to do is to check for either the start or the end of a comment string, depending on the current state of
variable in_comment. The one tricky part here is to correctly recognize the comment string in cases such as the
following:

c//**** a strange comment ***/c

 which, after stripping the embedded comment, should produce:

c/c

 The inline function Handle checks for the expected character, but also passes the current character to Getc where it
can now check for repetitions. Once the expected value is seen, the state of in_comment can change. If the character
sequence turns out not to be a comment delimiter, though, we must be able to reproduce the actual text that was seen.
For this reason, the Handle function uses the local variables oc and nc. Note that even though these two variables are
only used inside the Handle function, the scope of all local variables is the same, no matter where in a process the
declaration appears. Also, since the Handle function is called twice, we want to avoid inserting the declaration of
these two variables twice into the body of the proctype init, which would happen if we moved the declaration into the
Handle function itself.

 The calls to inline function Print can appear up to three levels deep in an inlining sequence. For instance, Handle calls
Getc, which can call Print. The calling sequence is valid, as long as it is not cyclic, since that would cause an infinite
regression of inlining attempts. The SPIN parser can readily reject attempts to create a cyclic inlining sequences, as it
requires that every inline function is declared before it is used.

 We leave the extension of the model from Figure 15.9 to match the complete automaton structure from Figure 15.8
as an exercise.

[Team LiB]

[Team LiB]

Chapter 16. PROMELA Language Reference
 "The infinite multitude of things is incomprehensible, and more than a man may be able to contemplate."

 —(Giambattista della Porta, 1535–1615, Natural Magick)

 The PROMELA manual pages that are included in this book can be grouped into seven main sections. The first five
of these sections, plus the grammar description given here, describe the language proper. The entries from the sixth
section cover those things that are deliberately not in the language, and contain a brief explanation of why they were
left out. The entries from the seventh and last section cover the more recent extensions to the PROMELA language to
support the use of embedded C code statements and data declarations. The main sections are:

1.

 Meta Terms (translated by preprocessors into vanilla PROMELA)
2.

Declarators (for defining process, channel, and data objects)
3.

Control Flow Constructors (separators, compound statements, jumps, labels, etc.)
4.

Basic Statements (such as send, receive, assignment, etc.)
5.

Predefined Functions and Operators (such as len, run, nempty, etc.)
6.

Omissions (such as floating point, probabilities, etc.)
7.

Extensions (for embedded C code)

 This chapter contains the manual pages for the first six of these sections, listed in alphabetical order with the section
name indicated at the top of each page. Chapter 17 separately introduces the extensions for embedded C code and
contains the corresponding manual pages from the last section in our list.

 In the tradition of the classic UNIX manuals, each manual page contains some or all of the following eight defining
elements.
[Team LiB]

[Team LiB]

Name
 A one sentence synopsis of the language construct and its main purpose.
[Team LiB]

[Team LiB]

Syntax
 The syntax rules for the language construct. Optional terms are enclosed in (non-quoted) square brackets. The
Kleene star * is used to indicate zero or more repetitions of an optional term. When the special symbols '[', ']', or '*',
appear as literals, they are quoted. For instance, in

chan name = '['const']' of { typename [, typename] * }

 the first two square brackets are literals, and the last two enclose an optional part of the definition that can be
repeated zero or more times. The terms set in italic, such as name, const, and typename, refer to the grammar rules
that follow.
[Team LiB]

[Team LiB]

EXECUTABILITY
 Defines all conditions that must be satisfied for a basic statement from the fourth section to be eligible for execution.
Some standard parts of these conditions are assumed and not repeated throughout. One such implied condition is, for
instance, that the executing process has reached the point in its code where the basic statement is defined. Implied
conditions of this type are defined in the description of PROMELA semantics in Chapter 7. If the executability clause
is described as true, no conditions other than the implied conditions apply.
[Team LiB]

[Team LiB]

EFFECT
 Defines the effect that the execution of a basic statement from the fourth section will cause on the system state. One
standard part of the effect is again always implied and not repeated everywhere: the execution of the statement may
change the local state of the executing process. If the effect clause is described as none, no effect other than the
implicit change in local state is defined. See also the PROMELA semantics description in Chapter 7.
[Team LiB]

[Team LiB]

DESCRIPTION
 Describes in informal terms the purpose and use of the language construct that is defined.
[Team LiB]

[Team LiB]

Examples
 Gives some typical applications of the construct.
[Team LiB]

[Team LiB]

Notes
 Adds some additional notes about special circumstances or cautions.
[Team LiB]

[Team LiB]

See Also
 Gives references to other manual pages that may provide additional explanations.
[Team LiB]

[Team LiB]

Grammar Rules
 The following list defines the basic grammar of PROMELA. Choices are separated by vertical bars; optional parts
are included in square brackets; a Kleene star indicates zero or more repetitions of the immediately preceding
grammar fragment; literals are enclosed in single quotes; uppercase names are keywords; lowercase names refer to
the grammar rules from this list. The name any_ascii_char appears once, and is used to refer to any printable ASCII
character except '"'. PROMELA keywords are spelled like the token-names in the grammar, but in lowercase instead
of uppercase.

 The statement separator used in this list is the semicolon ';'. In all cases, the semicolon can be replaced with the
two-character arrow symbol: '->' without change of meaning.

 We will not attempt to include a full grammar description for the language C, as it can appear inside the embedded C
code statements. Where it appears, we have abbreviated this as ... C ... in the grammar rules that follow.

spec : module [module] *

module : utype /* user defined types */

 | mtype /* mtype declaration */

 | decl_lst /* global vars, chans */

 | proctype /* proctype declaration */

 | init /* init process - max 1 per model */

 | never /* never claim - max 1 per model */

 | trace /* event trace - max 1 per model */

 | c_code '{' ... C ... '}'

 | c_decl '{' ... C ... '}'

 | c_state string string [string]

 | c_track string string

proctype: [active] PROCTYPE name '(' [decl_lst]')'

 [priority] [enabler] '{' sequence '}'

init : INIT [priority] '{' sequence '}'

never : NEVER '{' sequence '}'

trace : TRACE '{' sequence '}'

 | NOTRACE '{' sequence '}'

utype : TYPEDEF name '{' decl_lst '}'

mtype : MTYPE ['='] '{' name [',' name] * '}'

decl_lst: one_decl [';' one_decl] *

one_decl: [visible] typename ivar [',' ivar] *

typename: BIT | BOOL | BYTE | PID

 | SHORT | INT | MTYPE | CHAN

 | uname /* user defined typenames (see utype) */

active : ACTIVE ['[' const ']'] /* instantiation */

priority: PRIORITY const /* simulation only */

enabler : PROVIDED '(' expr ')' /* constraint */

visible : HIDDEN

 | SHOW

sequence: step [';' step] *

step : decl_lst

 | stmnt [UNLESS stmnt]

 | XR varref [',' varref] *

 | XS varref [',' varref] *

ivar : name ['[' const ']']

 ['=' any_expr | '=' ch_init]

ch_init : '[' const ']' OF

 '{' typename [',' typename] * '}'

varref : name ['[' any_expr ']'] ['.' varref]

send : varref '!' send_args /* fifo send */

 | varref '!' '!' send_args /* sorted send */

receive : varref '?' recv_args /* fifo receive */

 | varref '?' '?' recv_args /* random receive */

 | varref '?' '<' recv_args '>' /* poll */

 | varref '?' '?' '<' recv_args '>'

recv_poll: varref '?' '[' recv_args ']' /* test */

 | varref '?' '?' '[' recv_args ']'

send_args: arg_lst

 | any_expr '(' arg_lst ')'

arg_lst : any_expr [',' any_expr] *

recv_args: recv_arg [',' recv_arg] *

 | recv_arg '(' recv_args ')'

recv_arg : varref

 | EVAL '(' varref ')'

 | ['-'] const

assign : varref '=' any_expr /* assignment */

 | varref '+' '+' /* increment */

 | varref '-' '-' /* decrement */

stmnt : IF options FI /* selection */

 | DO options OD /* iteration */

 | ATOMIC '{' sequence '}'

 | D_STEP '{' sequence '}'

 | '{' sequence '}'

 | send

 | receive

 | assign

 | ELSE /* guard statement */

 | BREAK /* only inside loops */

 | GOTO name /* anywhere */

 | name ':' stmnt /* labeled statement */

 | PRINT '(' string [',' arg_lst] ')'

 | ASSERT expr

 | expr /* condition */

 | c_code [c_assert] '{' ... C ... '}'

 | c_expr [c_assert] '{' ... C ... '}'

c_assert: '[' ... C ... ']' /* see p. 505 */

options : ':' ':' sequence [':' ':' sequence] *

andor : '&' '&' | '|' '|'

binarop : '+' | '-' | '*' | '/' | '%' | '&' | '^' | '|'

 | '>' | '<' | '>' '=' | '<' '=' | '=' '=' | '!' '='

 | '<' '<' | '>' '>' | andor

unarop : '~' | '-' | '!'

any_expr: '(' any_expr ')'

 | any_expr binarop any_expr

 | unarop any_expr

 | '(' any_expr '-' '>' any_expr ':' any_expr ')'

 | LEN '(' varref ')' /* nr of messages in chan */

 | recv_poll

 | varref

 | const

 | TIMEOUT /* hang system state */

 | NP_ /* non-progress system state */

 | ENABLED '(' any_expr ')'

 | PC_VALUE '(' any_expr ')'

 | name '[' any_expr ']' '@' name

 | RUN name '(' [arg_lst] ')' [priority]

expr : any_expr

 | '(' expr ')'

 | expr andor expr

 | chanop '(' varref ')'

chanop : FULL | EMPTY | NFULL | NEMPTY

string : '"' [any_ascii_char] * '"'

uname : name

name : alpha [alpha | const | '_'] *

const : TRUE | FALSE | SKIP | number [number] *

alpha : 'a' | 'b' | 'c' | 'd' | 'e' | 'f'

 | 'g' | 'h' | 'i' | 'j' | 'k' | 'l'

 | 'm' | 'n' | 'o' | 'p' | 'q' | 'r'

 | 's' | 't' | 'u' | 'v' | 'w' | 'x'

 | 'y' | 'z'

 | 'A' | 'B' | 'C' | 'D' | 'E' | 'F'

 | 'G' | 'H' | 'I' | 'J' | 'K' | 'L'

 | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R'

 | 'S' | 'T' | 'U' | 'V' | 'W' | 'X'

 | 'Y' | 'Z'

number : '0' | '1' | '2' | '3' | '4' | '5'

 | '6' | '7' | '8' | '9'

[Team LiB]

[Team LiB]

Main Sections
 The manual pages that follow are in alphabetical order, with the section name indicated. The pages can be grouped
per section as follows:

 Meta Terms

 comments (p. 396), false (p. 416), inline (p. 428), ltl (p. 434), macros (p. 436), skip (p. 478), true (p. 486).

 Declarators

 accept (p. 379), active (p. 381), arrays (p. 383), bit (p. 403), bool (p. 403), byte (p. 403), chan (p. 394),
D_proctype (p. 458), datatypes (p. 403), end (p. 413), hidden (p. 422), init (p. 426), int (p. 403), local (p. 433),
mtype (p. 438), never (p. 441), notrace (p. 483), pid (p. 403), priority (p. 453), proctype (p. 458), progress (p.
459), provided (p. 461), short (p. 403), show (p. 477), trace (p. 483), typedef (p. 487), unsigned (p. 403), xr (p.
493), xs (p. 493).

 Control Flow

 atomic (p. 390), break (p. 393), d_step (p. 401), do (p. 406), fi (p. 424), goto (p. 420), if (p. 424), labels (p. 430),
od (p. 406), separators (p. 475), sequence (p. 476), unless (p. 490).

 Basic Statements

 assert (p. 385), assign (p. 388), condition (p. 400), printf (p. 451), printm (p. 451), receive (p. 466), send (p. 473).

 Predefined

 _ (p. 373), _last (p. 373last), _nr_pr (p. 373nr_pr), _pid (p. 377), cond_expr (p. 398), else (p. 408), empty (p.
410), enabled (p. 412), eval (p. 415), full (p. 419), len (p. 432), nempty (p. 440), nfull (p. 446), np_ (p. 447),
pc_value (p. 448), poll (p. 450), remoterefs (p. 468), run (p. 470), STDIN (p. 480), timeout (p. 481).

 Embedded C Code

 c_expr (p. 511), c_code (p. 505), c_decl (p. 508), c_state (p. 508), c_track (p. 508).

 Omissions

 float (p. 417), hierarchy (p. 423), pointers (p. 449), probabilities (p. 454), procedures (p. 455), rand (p. 462),
realtime (p. 464), scanf (p. 472).
[Team LiB]

[Team LiB]

Reference
 Table 16.1 gives an overview of all the manual pages that describe the PROMELA language, together with the
corresponding page numbers. Five of the primitives are discussed in Chapter 17, with the corresponding manual
pages following on pages 505 to 511.
[Team LiB]

[Team LiB]

Special Cases
 Several language features apply only in special cases. Two types of special cases include those features that only
affect the specific way in which either a simulation or a verification run is performed. Other types of special case
include features that are either incompatible with the enforcement of SPIN's partial order reduction method or with the
breadth-first search option, and features that are mutually incompatible. We summarize all these special cases next.

 Table 16.1. Index of All Manual Pages

Name Page Name Page Name Page Name Page

_ 373 condition 400 len 432 provided 461

_last 374 D_proctype 458 local 433 rand 462

_nr_pr 376 d_step 401 ltl 434 realtime 464

_pid 377 datatypes 403 macros 436 receive 466

accept 379 do 406 mtype 438 remoterefs 468

active 381 else 408 nempty 440 run 470

arrays 383 empty 410 never 441 scanf 472

assert 385 enabled 412 nfull 446 send 473

assign 388 end 413 notrace 483 separators 475

atomic 390 eval 415 np_ 447 sequence 476

bit 403 false 416 od 406 short 403

bool 403 fi 424 pc_value 448 show 477

break 393 float 417 pid 403 skip 478

byte 403 full 419 pointers 449 STDIN 480

c_code 505 goto 420 poll 450 timeout 481

c_decl 508 hidden 422 printf 451 trace 483

c_expr 511 hierarchy 423 printm 451 true 486

c_state 508 if 424 priority 453 typedef 487

c_track 508 init 426 probabilities 454 unless 490

chan 394 inline 428 procedures 455 unsigned 403

comments 396 int 403 proctype 458 xr 493

cond_expr 398 labels 430 progress 459 xs 493

Simulation Only

 A small number of language features apply only to simulations, and are ignored in verification runs. They are:

 priority (p. 453), show (p. 477), and STDIN (p. 480).

 The use of some special keywords inside print statements, such as MSC: and BREAK are only interpreted by the
graphical user interface XSPIN. An explanation of these special keywords can be found in the manpage for the print
statement on p. 451, and in Chapter 12 on p.272.

 Verification Only

 Some language features apply only to verifications, and are ignored in simulation runs. They include the special labels:

 accept (p. 379), progress (p. 459), and end (p. 413),

 as well as the verification related features:

 ltl (434), never (p. 441), trace (p. 483), notrace (p, 483), xr (p. 493), and xs (p. 493).

 Partial Order Reduction

 Two PROMELA language features are incompatible with the enforcement of SPIN's partial order reduction
algorithm. They are:

 _last (p. 374), enabled (p. 412), and provided (p. 461).

 This means that if these constructs appear in a verification model, the use of the partial order reduction algorithm
cannot be considered safe and may cause an incompleteness of the search. If an error is found, the error report
remains valid, but if no error is found this no longer implies that errors are impossible. The verifier will issue a warning
when it detects the presence of one or both of the above two constructs, and the user did not disable the partial order
reduction algorithm. To avoid the warning, and the problem, it suffices to compile the pan.c source with the extra
directive -DNOREDUCE. As a result, the time and memory requirements may increase, but the accuracy of the
search process will be secure.

 Rendezvous: Rendezvous communication is incompatible with partial order reduction in a small number of cases. The
partial order reduction algorithm can produce an invalid reduction when rendezvous send operations can appear in the
guard of an escape clause of a PROMELA unless statement. When the verifier detects that a model contains both
unless statements and rendezvous message passing operations, it will therefore always issue a warning, recommending
the use of directive -DNOREDUCE to disable partial order reduction. If the warning is ignored and an error trace is
found, it will nonetheless be accurate, so this mode of search may still be of some use.

 Breadth-First Search: The situation is less favorable when a breadth-first search is performed for the same type of
model. In this case false error reports would become possible, even in the absence of partial order reduction. If,
therefore, the verifier detects the use of a rendezvous send operation as the guard statement of the escape clause of an
unless statement, the verifier will abort the run in breadth-first search mode with an error message. The use of a
rendezvous receive operation in the escape clause of an unless statement can be considered safe in both cases.

 The LTL Next Operator: If SPIN is compiled from its sources with the additional compiler directive -DNXT, the use
of the LTL 'next' operator, which is written X, is enabled. The use of this operator can conflict with SPIN's partial
order reduction if the LTL formula that is specified is not stutter invariant. If you are not sure about stutter invariance,
it is always best to disable partial order reduction whenever the X operator is used.

 Fairness: In models that use rendezvous message passing, the weak fairness option is also not compatible with the
use of partial order reduction. If this case is detected, the verifier will issue a warning. To suppress it, either omit the
weak fairness option, or disable partial order reduction with compile-time directive -DNOREDUCE.

 Remote References: Partial order reduction is incompatible with the use of remote referencing operations. The verifier
will issue a warning if this is detected.

 There are a few other types of incompatibility.

 Channel Assertions and Buffered Channels: The channel assertions xr and xs can only be applied to buffered
message channels; they cannot be used on rendezvous ports (i.e., on channels with a zero capacity).

 Breadth-First Search and Rendezvous: The breadth-first search algorithm cannot be used on models that contain
rendezvous statements in the escape clause of an unless statement. The verifier will issue a warning when it encounters
this case.

 Breadth-First Search and _last: Breadth-first search, finally, is incompatible with the use of the predefined variable
_last. The verifier will issue a warning also in this case.

[Team LiB]

[Team LiB]

_

 Name

 _ - a predefined, global, write-only, integer variable.

 Syntax

 _

 Description

 The underscore symbol _ refers to a global, predefined, write-only, integer variable that can be used to store scratch
values. It is an error to attempt to use or reference the value of this variable in any context.

 Examples

 The following example uses a do-loop to flush the contents of a channel with two message fields of arbitrary type,
while ignoring the values of the retrieved messages:

do

:: q?_,_

:: empty(q) -> break

od

 See Also

 _nr_pr, _last, _pid, np_, hidden
[Team LiB]

[Team LiB]

_last

 Name

 _last - a predefined, global, read-only variable of type pid.

 Syntax

 _last

 Description

 _last is a predefined, global, read-only variable of type pid that holds the instantiation number of the process that
performed the last step in the current execution sequence. The initial value of _last is zero.

 The _last variable can only be used inside never claims. It is an error to assign a value to this variable in any context.

 Examples

 The following sample never claim attempts to match an infinite run in which the process with process initialization
number one executes every other step, once it starts executing.

never {

 do

 :: (_last != 1)

 :: else -> break

 od;

accept:

 do

 :: (_last != 1) -> (_last == 1)

 od

}

 Because the initial value of variable _last is zero, the first guard in the first do loop is always true in the initial state.
This first loop is designed to allow the claim automaton to execute dummy steps (passing through its else clause) until
the process with instantiation number one executes its first step, and the value of _last becomes one. Immediately after
this happens, the claim automaton moves from into its second state, which is accepting. The remainder of the run can
only be accepted, and reported through SPIN's acceptance cycle detection method, if the process with instantiation
number one continues to execute every other step. The system as a whole may very well allow other executions, of
course. The never claim is designed, though, to intercept just those runs that match the property of interest.

 Notes

 During verifications, this variable is not part of the state descriptor unless it is referred to at least once. The additional
state information that is recorded in this variable will generally cause an increase of the number of reachable states.
The most serious side effect of the use of the variable _last in a model is, though, that it prevents the use of both partial
order reduction and of the breadth-first search option.

 See Also

 _, _nr_pr, _pid, never, np_

[Team LiB]

[Team LiB]

_nr_pr

 Name

 _nr_pr - a predefined, global, read-only, integer variable.

 Syntax

 _nr_pr

 Description

 The predefined, global, read-only variable _nr_pr records the number of processes that are currently running (i.e.,
active processes). It is an error to attempt to assign a value to this variable in any context.

 Examples

 The variable can be used to delay a parent process until all of the child processes that it created have terminated. The
following example illustrates this type of use:

proctype child()

{

 printf("child %d\n", _pid)

}

active proctype parent()

{

 do

 :: (_nr_pr == 1) ->

 run child()

 od

}

 The use of the precondition on the creation of a new child process in the parent process guarantees that each child
process will have process instantiation number one: one higher than the parent process. There can never be more than
two processes running simultaneously in this system. Without the condition, a new child process could be created
before the last one terminates and dies. This means that, in principle, an infinite number of processes could result. The
verifier puts the limit on the number of processes that can effectively be created at 256, so in practice, if this was
attempted, the 256th attempt to create a child process would fail, and the run statement from this example would then
block.

 See Also

 _, _last, _pid, active, procedures, run
[Team LiB]

[Team LiB]

_pid

 Name

 _pid - a predefined, local, read-only variable of type pid that stores the instantiation number of the executing process.

 Syntax

 _pid

 Description

 Process instantiation numbers begin at zero for the first process created and count up for every new process added.
The first process, with instantiation number zero, is always created by the system. Processes are created in order of
declaration in the model. In the initial system state only process are created for active proctype declarations, and for
an init declaration, if present. There must be at least one active proctype or init declaration in the model.

 When a process terminates, it can only die and make its _pid number available for the creation of another process, if
and when it has the highest _pid number in the system. This means that processes can only die in the reverse order of
their creation (in stack order).

 The value of the process instantiation number for a process that is created with the run operator is returned by that
operator.

 Instantiation numbers can be referred to locally by the executing process, through the predefined local _pid variable,
and globally in never claims through remote references.

 It is an error to attempt to assign a new value to this variable.

 Examples

 The following example shows a way to discover the _pid number of a process, and gives a possible use for a process
instantiation number in a remote reference inside a never claim.

active [3] proctype A()

{

 printf("this is process: %d\n", _pid);

L: printf("it terminates after two steps\n")

}

never {

 do

 :: A[0]@L -> break

 od

}

 The remote reference in the claim automaton checks whether the process with instantiation number zero has reached
the statement that was marked with the label L. As soon as it does, the claim automaton reaches its end state by
executing the break statement, and reports a match. The three processes that are instantiated in the active proctype
declaration can execute in any order, so it is quite possible for the processes with instantiation numbers one and two
to terminate before the first process reaches label L.

 Notes

 A never claim, if present, is internally also represented by the verifier as a running process. This claim process has no
visible instantiation number, and therefore cannot be referred to from within the model. From the user's point of view,
the process instantiation numbers are independent of the use of a never claim.

 See Also

 _, _last, _nr_pr, active, init, never, proctype, remoterefs, run

[Team LiB]

[Team LiB]

accept

 Name

 accept - label-name prefix used for specifying liveness properties.

 Syntax

 accept [a-zA-Z0-9_] *: stmnt

 Description

 An accept label is any label name that starts with the six-character sequence accept. It can appear anywhere a label
can appear as a prefix to a PROMELA statement.

 Accept labels are used to formalize Büchi acceptance conditions. They are most often used inside never claims, but
their special meaning is also recognized when they are used inside trace assertions, or in the body of a proctype
declaration. There can be any number of accept labels in a model, subject to the naming restrictions that apply to all
labels (i.e., a given label name cannot appear more than once within the same defining scope).

 A local process statement that is marked with an accept label can also mark a set of global system states. This set
includes all states where the marked statement has been reached in the process considered, but where the statement
has not yet been executed. The SPIN generated verifiers can prove either the absence or presence of infinite runs that
traverse at least one accept state in the global system state space infinitely often. The mechanism can be used, for
instance, to prove LTL liveness properties.

 Examples

 The following proctype declaration translates into an automaton with precisely three local states: the initial state, the
state in between the send and the receive, and the (unreachable) final state at the closing curly brace of the
declaration.

 The accept label in this model formalizes the requirement that the second state cannot persist forever, and cannot be
revisited infinitely often either. In the given program this would imply that the execution should eventually always stop
at the initial state, just before the execution of sema!p.

active proctype dijkstra()

{ do

 :: sema!p ->

accept: sema?v

 od

}

 Notes

 When a never claim is generated from an LTL formula, it already includes all required accept labels. As an example,
consider the following SPIN generated never claim:

dell: spin -f '[]<>(p U q)'

never { /* []<>(p U q) */

T0_init:

 if

 :: (q) -> goto accept_S9

 :: (1) -> goto T0_init

 fi;

accept_S9:

 if

 :: (1) -> goto T0_init

 fi;

}

 In this example, the second state of the claim automaton was marked as an accepting state.

 Since in most cases the accept labels are automatically generated from LTL formula, it should rarely be needed to
manually add additional labels of this type elswhere in a verification model.

 See Also

 end, labels, ltl, never, progress, trace

[Team LiB]

[Team LiB]

active

 Name

 active - prefix for proctype declarations to instantiate an initial set of processes.

 Syntax

 active proctype name ([decl_lst]) { sequence}

 active '[' const ']' proctype name ([decl_lst]) { sequence }

 Description

 The keyword active can be prefixed to any proctype declaration to define a set of processes that are required to be
active (i.e., running) in the initial system state. At least one active process must always exist in the initial system state.
Such a process can also be declared with the help of the keyword init.

 Multiple instantiations of the same proctype can be specified with an optional array suffix of the active prefix. The
instantiation of a proctype requires the allocation of a process state and the instantiation of all associated local
variables. At the time of instantiation, a unique process instantiation number is assigned. The maximum number of
simultaneously running processes is 255. Specifying a constant greater than 255 in the suffix of an active keyword
would result in a warning from the SPIN parser, and the creation of only the first 255 processes.

 Processes that are instantiated through an active prefix cannot be passed arguments. It is, nonetheless, legal to
declare a list of formal parameters for such processes to allow for argument passing in additional instantiations with a
run operator. In this case, copies of the processes instantiated through the active prefix have all formal parameters
initialized to zero. Each active process is guaranteed to have a unique _pid within the system.

 Examples

active proctype A(int a) { ... }

active [4] proctype B() { run A(_pid) }

 One instance of proctype A is created in the initial system state with a parameter value for a of zero. In this case, the
variable a is indistinguishable from a locally declared variable. Four instances of proctype B are also created. Each of
these four instances will create one additional copy of proctype A, and each of these has a parameter value equal to
the process instantiation number of the executing process of type B. If the process of type A is assigned _pid zero,
then the four process of type B will be assigned _pid numbers one to three. All five processes that are declared
through the use of the two active prefixes are guaranteed to be created and instantiated before any of these processes
starts executing.

 Notes

 In many PROMELA models, the init process is used exclusively to initialize other processes with the run operator.
By using active prefixes instead, the init process becomes superfluous and can be omitted, which reduces the amount
of memory needed to store global states.

 If the total number of active processes specified with active prefixes is larger than 255, only the first 255 processes
(in the order of declaration) will be created.

 See Also

 _pid, init, proctype, remoterefs, run

[Team LiB]

[Team LiB]

arrays

 Name

 arrays - syntax for declaring and initializing a one-dimensional array of variables.

 Syntax

 typename name '[' const ']' [= any_expr]

 Description

 An object of any predefined or user-defined datatype can be declared either as a scalar or as an array. The array
elements are distinguished from one another by their array index. As in the C language, the first element in an array
always has index zero. The number of elements in an array must be specified in the array declaration with an integer
constant (i.e., it cannot be specified with an expression). If an initializer is present, the initializing expression is
evaluated once, and all array elements are initialized to the same resulting value.

 In the absence of an explicit initializer, all array elements are initialized to zero.

 Data initialization for global variables happens in the initial system state. All process local variables are initialized at
process instantiation. The moment of creation and initialization of a local variable is independent of the precise place
within the proctype body where the variable declaration is placed.

 Examples

 The declaration

byte state[N]

 with N a constant declares an array of N bytes, all initialized to zero by default. The array elements can be assigned
to and referred to in statements such as

state[0] = state[3] + 5 * state[3*2/n]

 where n is a constant or a variable declared elsewhere. An array index in a variable reference can be any valid (i.e.,
side-effect free) PROMELA expression. The valid range of indices for the array state, as declared here, is 0..N-1.

 Notes

 Scalar objects are treated as shorthands for array objects with just one element. This means that references to scalar
objects can always be suffixed with [0] without triggering a complaint from the SPIN parser. Be warned, therefore,
that if two arrays are declared as

byte a[N], b[N];

 then the assignment

a = b;

 will have the same effect as

a[0] = b[0];

 and will not copy all the elements of the arrays.

 An array of bit or bool variables is stored by the verifier as an array of unsigned char variable, and therefore saves no
memory over a byte array. It can be better, therefore, to use integers in combination with bit-masking operations to
simulate operations on a bit-array when memory is tight. The same rules apply here as would apply for the use of
bit-arrays in C programs.

 Multidimensional arrays can be constructed indirectly with the use of typedef definitions.

 The use of an array index value outside the declared range triggers a run-time error in SPIN. This default array-index
bound checking can be turned off during verifications, if desired, for increased performance. This can be done by
compiling the pan.c source with the additional directive -DNOBOUNDCHECK.

 See Also

 chan, datatypes, mtype, typedef

[Team LiB]

[Team LiB]

assert

 Name

 assert - for stating simple safety properties.

 Syntax

 assert (expr)

 Executability

 true

 EFFECT

 none

 Description

 An assert statement is similar to skip in the sense that it is always executable and has no other effect on the state of
the system than to change the local control state of the process that executes it. A very desirable side effect of the
execution of this statement is, however, that it can trap violations of simple safety properties during verification and
simulation runs with SPIN.

 The assert statement takes any valid PROMELA expression as its argument. The expression is evaluated each time
the statement is executed. If the expression evaluates to false (or, equivalently, to the integer value zero), an assertion
violation is reported.

 Assertion violations can be ignored in a verification run, by invoking the SPIN generated verifier with run-time option
-A, as in:

$./pan -A

 Examples

 The most common type of assertion statement is one that contains just a simple boolean expression on global or local
variable values, for instance, as in:

assert(a > b)

 A second common use of the assertion is to mark locations in a proctype body that are required, or assumed, to be
unreachable, as in:

assert(false)

 If the statement is reached nonetheless, it will be reported as an assertion violation. A statement of this type is
comparable to the infamous

printf("this cannot happen\n");

 from C programs.

 If more than one such assertion is needed, tracking can be made easier by using slight variations of expressions that
necessarily will evaluate to false, such as:

assert(1+1 != 2)

assert(1>2)

assert(2>3)

 The assert statement can also be used to formalize general system invariants, that is, boolean conditions that are
required to be invariantly true in all reachable system states. To express this, we can place the system invariant in an
independently executed process, as in:

active proctype monitor()

{

 assert(invariant)

}

 where the name of the proctype is immaterial. Since the process instance is executed independently from the rest of
the system, the assertion may be evaluated at any time: immediately after process instantiation in the initial system
state, or at any time later in the system execution.

 Several observations can be made about this example. First note that the process of type monitor has two states, and
that the transition from the first to the second state is always unconditionally executable. This means that during
verifications the addition of this specific form of the monitor process will double the size of the reachable state space.
We can avoid this doubling by restricting the execution of the assertion to only those cases where it could actually lead
to the detection of an assertion violation, for instance, as follows:

active proctype monitor()

{

 atomic { !invariant -> assert(false) }

}

 This also solves another problem with the first version. Note that if our model contains a timeout condition, then the
first monitor process would always be forced to execute the assertion before the system variable timeout variable
could be set to true. This would mean that the assertion could never be checked beyond the first firing of a timeout.
The second version of the monitor does not have this problem.

 Notes

 A simulation, instead of a verification, will not necessarily prove that a safety property expressed with an assert
statement is valid, because it will check its validity on just a randomly chosen execution. Note that placing a system
invariant assertion inside a loop, as in

active proctype wrong()

{

 do

 :: assert(invariant)

 od

}

 still cannot guarantee that a simulation would check the assertion at every step. Recall that the fact that a statement
can be executed at every step does not guarantee that it also will be executed in that way. One way to accomplish a
tighter connection between program steps and assertion checks is to use a one-state never claim, for instance, as in:

never {

 do

 :: assert(invariant)

 od

}

 This is an acceptable alternative in verifications, but since never claims are ignored in simulation runs, it would make it
impossible to detect the assertion violation during simulations.

 See Also

 ltl, never, timeout, trace

[Team LiB]

[Team LiB]

assignment

 Name

 assignment - for assigning a new value to a variable.

 Syntax

 varref = any_expr

 varref++ as shorthand for varref = varref +1

 varref-- as shorthand for varref = varref -1

 Executability

 true

 Effect

 Replaces the value of varref with the value of any_expr, where necessary truncating the latter value to the range of the
datatype of varref.

 Description

 The assignment statement has the standard semantics from most programming languages: replacing the value stored in
a data object with the value returned by the evaluation of an expression. Other than in the C language, the assignment
as a whole returns no value and can therefore itself not be part of an expression.

 The variable reference that appears on the left-hand side of the assignment operator can be a scalar variable, an array
element, or a structure element.

 Examples

a = 12 /* scalar */

r.b[a] = a * 4 + 7 /* array element in structure */

 Note that it is not valid to write:

a = b++

 because the right-hand side of this assignment is not a side effect free expression in PROMELA, but it is shorthand
for another assignment statement. The effect of this statement can be obtained, though, by writing:

atomic { a = b; b++ }

 or even more efficiently:

d_step { a = b; b++ }

 Similarly, there are no shorthands for other C shorthands, such as ++b, --b, b *= 2, b += a, etc. Where needed,
their effect can be reproduced by using the non-shortened equivalents, or in some cases with atomic or d_step
sequences.

 Notes

 There are no compound assignments in PROMELA, e.g., assignments of structures to structures or arrays to arrays
in a single operation. If x and y are structures, though, the effect of a compound assignment could be approximated by
passing the structure through a message channel, for instance as in:

typedef D {

 short f;

 byte g

};

chan m = [1] of { D };

init {

 D x, y;

 m!x; /* send structure x to channel m */

 m?y /* receive and assign to structure y */

}

 All variables must be declared before they can be referenced or assigned to. The default initial value of all variables is
zero.

 See Also

 arrays, condition, datatypes, typedef

[Team LiB]

[Team LiB]

atomic

 Name

 atomic - for defining a fragment of code that is to be executed indivisibly.

 Syntax

 atomic { sequence }

 Effect

 Within the semantics model, as defined in Chapter 7, a side effect of the execution of any statement, except the last,
from an atomic sequence is to set global system variable exclusive to the instantiation number of the executing
process, thus preserving the exclusive privilige to execute.

 Description

 If a sequence of statements is enclosed in parentheses and prefixed with the keyword atomic, this indicates that the
sequence is to be executed as one indivisible unit, non-interleaved with other processes. In the interleaving of process
executions, no other process can execute statements from the moment that the first statement of an atomic sequence is
executed until the last one has completed. The sequence can contain arbitrary PROMELA statements, and may be
non-deterministic.

 If any statement within the atomic sequence blocks, atomicity is lost, and other processes are then allowed to start
executing statements. When the blocked statement becomes executable again, the execution of the atomic sequence
can be resumed at any time, but not necessarily immediately. Before the process can resume the atomic execution of
the remainder of the sequence, the process must first compete with all other active processes in the system to regain
control, that is, it must first be scheduled for execution.

 If an atomic sequence contains a rendezvous send statement, control passes from sender to receiver when the
rendezvous handshake completes. Control can return to the sender at a later time, under the normal rules of
non-deterministic process interleaving, to allow it to continue the atomic execution of the remainder of the sequence.
In the special case where the recepient of the rendezvous handshake is also inside an atomic sequence, atomicity will
be passed through the rendezvous handshake from sender to receiver and is not interrupted (except that another
process now holds the exclusive privilige to execute).

 An atomic sequence can be used wherever a PROMELA statement can be used. The first statement of the sequence
is called its guard, because it determines when the sequence can be started. It is allowed, though not good style, to
jump into the middle of an atomic sequence with a goto statement, or to jump out of it in the same way. After jumping
into the sequence, atomic execution may begin when the process gains control, provided that the statement jumped to
is executable. After jumping out of an atomic sequence, atomicity is lost, unless the target of the jump is also contained
in an atomic sequence.

 Examples

atomic { /* swap the values of a and b */

 tmp = b;

 b = a;

 a = tmp

}

 In the example, the values of two variables a and b are swapped in an uninterruptable sequence of statement
executions. The execution of this sequence cannot be blocked, since all the statements it contains are always
unconditionally executable.

 An example of a non-deterministic atomic sequence is the following:

atomic {

 if

 :: a = 1

 :: a = 2

 fi;

 if

 :: b = 1

 :: b = 2

 fi

}

 In this example, the variables a and b are assigned a single value, with no possible intervening statement from any
other process. There are four possible ways to execute this atomic sequence.

 It is possible to create a global atomic chain of executions, with two or more processes alternately executing, by
passing control back and forth with rendezvous operations.

chan q = [0] of { bool };

active proctype X() { atomic { A; q!0; B } }

active proctype Y() { atomic { q?0 -> C } }

 In this example, for instance, execution could start in process X with the program block named A. When the
rendezvous handshake is executed, atomicity would pass to process Y, which now starts executing the block named
C. When it terminates, control can pass back to X, which can then atomically execute the block named B.

 It is often useful to use atomic sequences to start a series of processes in such a way that none of them can start
executing statements until all of them have been initialized:

atomic {

 run A(1,2);

 run B(2,3);

 run C(3,1)

}

 Notes

 Atomic sequences can be used to reduce the complexity of a verification.

 If an infinite loop is accidentily included in an atomic sequence, the verifier cannot always recognize the cycle. In the
default depth-first search mode, the occurrence of such an infinite cycle will ultimately lead to the depth limit being
exceeded, which will truncate the loop. In breadth-first search mode, though, this type of an infinite cycle will be
detected. Note that it is an error if an infinite cycle appears inside an atomic sequence, since in that case the atomic
sequence could not possibly be executed atomically in any real implementation.

 PROMELA d_step sequences can be executed significantly more efficiently by the verifier than atomic sequences,
but do not allow non-determinism.

 See Also

 d_step, goto, receive, send

[Team LiB]

[Team LiB]

break

 Name

 break - jump to the end of the innermostn do loop.

 Syntax

 break

 Description

 The keyword break does not indicate an executable statement, but it instead acts like a special type of semicolon:
merely indicating the next statement to be executed. The search for the next statement to execute continues at the
point that immediately follows the innermost do loop.

 When the keyword break does not follow a statement, but appears as a guard in an option of a selection structure or
do loop, then the execution of this statement takes one execution step to reach the target state, as if it were a skip. In
all other cases, the execution of a break statement requires no separate step; the move to the target state then occurs
after the execution of the preceding statement is completed.

 If the repetition structure in which the break statement occurs is the last statement in a proctype body or never claim,
then the target state for the break is the process's or claim's normal termination state, where the process or claim
remains until it dies and is removed from the system.

 Examples

L1: do

 :: t1 -> t2

 :: t3 -> break

 :: break

 od;

L2: ...

 In this example, control reaches the label L1 immediately after statement t2 is executed. Control can also reach label
L2 immediately after statement t3 is executed, and optionally, in one execution step, control can also move from label
L1 to label L2.

 Notes

 It is an error to place a break statement where there is no surrounding repetition structure. The effect of a break
statement can always be replicated with the use of a goto statement and a label.

 See Also

 do, goto, if, labels, skip
[Team LiB]

[Team LiB]

chan

 Name

 chan - syntax for declaring and initializing message passing channels.

 Syntax

 chan name

 chan name = '[' const ']' of { typename [, typename] * }

 Description

 Channels are used to transfer messages between active processes. Channels are declared using the keyword chan,
either locally or globally, much like integer variables. Channels by default store messages in first-in first-out order (but
see also the sorted send option in the manual page for send and the random receive option in the manual page for
receive).

 The keyword chan can be followed by one or more names, in a comma-separated list, each optionally followed by a
channel initializer. The syntax

chan a, b, c[3]

 declares the names a, b, and c as uninitialized channels, the last one as an array of three elements.

 A channel variable must be initialized before it can be used to transfer messages. It is rare to declare just a channel
name without initialization, but it occurs in, for instance, proctype parameter lists, where the initialized version of a
channel is not passed to the process until a process is instantiated with a run operator.

 The channel initializer specifies a channel capacity, as a constant, and the structure of the messages that can be stored
in the channel, as a comma-separated list of type names. If the channel capacity is larger than zero, a buffered channel
is initialized, with the given number of slots to store messages. If the capacity is specified to be zero, a rendezvous
port, also called a synchronous channel, is created. Rendezvous ports can pass messages only through synchronous
handshakes between sender and receiver, but they cannot store messages.

 All data types can be used inside a channel initializer, including typedef structure names, but not including the
typename unsigned.

 Examples

 The following channel declaration contains an initializer:

chan a = [16] of { short }

 The initializer says that channel a can store up to 16 messages. Each message is defined to have only one single field,
which must be of type short. Similarly,

chan c[3] = [0] of { mtype }

 initializes an array of three rendezvous channels for messages that contain just one message field, of type mtype.

 The following is an example of the declaration of a channel that can pass messages with multiple field:

chan qname = [8] of { mtype, int, chan, byte }

 This time the channel can store up to eight messages, each consisting of four fields of the types listed. The chan field
can be used to pass a channel identifier from one process to another. In this way, a channel that is declared locally
within one process, can be made accessible to other processes. A locally declared and instantiated channel
disappears, though, when the process that contain the declaration dies.

 Notes

 The first field in a channel type declaration is conventionally of type mtype, and is used to store a message type
indicator in symbolic form.

 In verification, buffered channels contribute significantly to verification complexity. For an initial verification run,
choose a small channel capacity, of, say, two or three slots. If the verification completes swiftly, consider increasing
the capacity to a larger size.

 See Also

 arrays, datatypes, empty, full, len, mtype, nempty, nfull, poll, receive, send

[Team LiB]

[Team LiB]

comments

 Name

 comments - default preprocessing rules for comments.

 Syntax

 /'*' [any_ascii_char] * '*'/

 Description

 A comment starts with the two character sequence /* and ends at the first occurrence of the two character sequence
*/. In between these two delimiters, any text, including newlines and control characters, is allowed. None of the text
has semantic meaning in PROMELA.

 A comment can be placed at any point in a verification model where white space (spaces, tabs, newlines) can
appear.

 Examples

/* comment */ init /* comment */ {

 int /* an integer */ v /* variable */;

 v /* this / * is * / okay */ ++;

}

 This PROMELA fragment is indistinguishable to the parser to the following PROMELA text, written without
comments:

init {

 int v;

 v++;

}

 Notes

 Comments are removed from the PROMELA source before any other operation is performed. The comments are
removed by invoking the standard C preprocessor cpp (or any equivalent program, such as gcc -E), which then runs
as an external program in the background. This means that the precise rules for comments are determined by the
specific C preprocessor that is used. Some preprocessors, for instance, accept the C++ commenting style, where
comments can start with two forward slashes and end at the first newline. The specific preprocessor that is used can
be set by the user. For more details on this, see the manual page for macros.

 With the default preprocessor, conform ANSI-C conventions, comments do not nest. Be careful, therefore, that if a
closing comment delimiter is accidentily deleted, all text up to and including the end of the next comment may be
stripped.

 On a PC, SPIN first tries to use a small, built-in macro preprocessor. When this fails, for instance, when macros with
multiple parameters are used or when additional preprocessor directives are provided on the command line, the
standard external C preprocessor is called. The use of the built-in preprocessor can, with older PC operating
systems, avoid the the awkward brief appearance of an external shell window in the parsing phase.

 See Also

 macros

[Team LiB]

[Team LiB]

cond_expr

 Name

 conditional expression - shorthand for a conditional evaluation.

 Syntax

 (any_expr -> any_expr :any_expr)

 Description

 The conditional expression in PROMELA is based on the version from the C programming language. To avoid
parsing conflicts, though, the syntax differs slightly from C. Where in C one would write

p?q:r

 the corresponding expression in PROMELA is

(p -> q : r)

 The question mark from the C version is replaced with an arrow symbol, to avoid confusion with the PROMELA
receive operator. The round braces around the conditional expression are required, in this case to avoid the
misinterpretation of the arrow symbol as a statement separator.

 When the first expression (p in the example) evaluates to non-zero, the conditional expression as a whole obtains the
value of the second expression (q), and else it obtains the value of the last expression (r).

 Examples

 The following example shows a simple way to implement conditional rendezvous operations.

chan q[3] = [0] of { mtype };

sender: q[(P -> 1 : 2)]!msg -> ...

receiver: q[(Q -> 1 : 0)]?msg -> ...

 Two dummy rendezvous channels (q[0] and q[2]) are used here to deflect handshake attempts that should fail. The
handshake can only successfully complete (on channel q[1]) if both the boolean expression P at the receiver side and
the boolean expression Q at the sender side evaluate to true simultaneously. The dummy rendezvous channels q[0]
and q[2] that are used here do not contribute any measurable overhead in a verification, since rendezvous channels
take up no memory in the state vector.

 An alternative way of specifying a conditional rendezvous operation is to add an extra message field to the channel
and to use the predefined eval function in the receive statement, as follows.

global: chan port = [0] of { mtype, byte, byte };

sender: port!mesg(12, (P -> 1 : 0))

receiver: port?mesg(data, eval(Q -> 1 : 2))

 The handshake can again only happen if both P and Q evaluate to true. Unfortunately, the message field cannot be
declared as a boolean, since we need a third value to make sure no match occurs when both P and Q evaluate to
false.

 See Also

 condition, do, eval, if, unless

[Team LiB]

[Team LiB]

condition

 Name

 condition statement - for conditional execution and synchronization.

 Syntax

 expr

 Executability

 (expr != 0)

 Effect

 none

 Description

 In PROMELA, a standalone expression is a valid statement. A condition statement is often used as a guard at the
start of an option sequence in a selection or repetition structure. Execution of a condition statement is blocked until the
expression evaluates to a non-zero value (or, equivalently, to the boolean value true). All PROMELA expressions are
required to be side effect free.

 Examples

(1) /* always executable */

(0) /* never executable */

skip /* always executable, same as (1) */

true /* always executable, same as skip */

false /* always blocks, same as (0) */

a == b /* executable only when a equals b */

 A condition statement can only be executed (passed) if it holds. This means that the statement from the first example
can always be passed, the second can never be passed, and the last cannot be passed as long as the values of
variables a and b differ. If the variables a and b are local, the result of the evaluation cannot be influenced by other
processes, and this statement will work as either true or false, depending on the values of the variables. If at least one
of the variables is global, the statement can act as a synchronizer between processes.

 See Also

 do, else, false, if, skip, true, timeout, unless
[Team LiB]

[Team LiB]

d_step

 Name

 d_step - introduces a deterministic code fragment that is executed indivisibly.

 Syntax

 d_step { sequence }

 Description

 A d_step sequence is executed as if it were one single indivisible statement. It is comparable to an atomic sequence,
but it differs from such sequences on the following three points:



 No goto jumps into or out of a d_step sequence are allowed.


The sequence is executed deterministically. If non-determinism is present, it is resolved in a fixed and
deterministic way, for instance, by always selecting the first true guard in every selection and repetition
structure.



It is an error if the execution of any statement inside the sequence can block. This means, for instance, that in
most cases send and receive statements cannot be used inside d_step sequences.

 Examples

 The following example uses a d_step sequence to swap the value of all elements in two arrays:

#define N 16

byte a[N], B[N];

init {

 d_step { /* swap elements */

 byte i, tmp;

 i = 0;

 do

 :: i < N ->

 tmp = b[i];

 b[i] = a[i];

 a[i] = tmp; i++

 :: else ->

 break

 od;

 skip /* add target for break */

 }

 ...

}

 A number of points should be noted in this example. First, the scope of variables i and tmp is independent of the
precise point of declaration within the init body. In particular, by placing the declaration inside the d_step sequence
we do not limit the scope of these variables to the d_step sequence: they remain visible also after the sequence.

 Second, we have to be careful that the loop that is contained within this d_step sequence terminates. No system
states are saved, restored, or checked during the execution of a d_step sequence. If an infinite loop is accidentily
included in such a sequence, it can cause the verifier to hang.

 Third and last, because one cannot jump into or out of a d_step sequence, a break from a do loop which appears as
the last construct in a d_step sequence will trigger a parse error from SPIN. Note that this type of break statement
creates an hidden jump out of the d_step, to the statement that immediately follows the do loop, which is outside the
d_step itself in this case. The problem can be avoided by inserting a dummy skip after the loop, as shown in the
example. There is no run-time penalty for this skip statement.

 Notes

 A d_step sequence can be executed much more efficiently during verifications than an atomic sequence. The
difference in performance can be significant, especially in large-scale verifications.

 The d_step sequence also provides a mechanism in PROMELA to add new types of statements to the language,
translating into new types of transitions in the underlying automata. A c_code statement has similar properties.

 See Also

 atomic, c_code, goto, sequence

[Team LiB]

[Team LiB]

datatypes

 Name

 bit, bool, byte, pid, short, int, unsigned - predefined data types.

 Syntax

 typename name [= anyexpr]

 unsigned name : constant [= anyexpr]

 Description

 There are seven predefined integer data types: bit, bool, byte, pid, short, int, and unsigned. There are also
constructors for user-defined data types (see the manual pages for mtype, and typedef), and there is a separate
predefined data type for message passing channels (see the manual page for chan).

 Variables of the predefined types can be declared in C-like style, with a declaration that consists of a typename
followed by a comma-separated list of one or more identifiers. Each variable can optionally be followed by an
initializer. Each variable can also optionally be declared as an array, rather than as a scalar (see the manual page for
arrays).

 The predefined data types differ only in the domain of integer values that they provide. The precise domain may be
system dependent in the same way that the corresponding data types in the C language can be system dependent.

 Variables of type bit and bool are stored in a single bit of memory, which means that they can hold only binary, or
boolean values.

 ISO compliant implementations of C define the domains of all integer data types in a system header file named
limits.h, which is accessible by the C compiler. Table 16.2 summarizes these definitions for a typical system.

 Variables of type unsigned are stored in the number of bits that is specified in the (required) constant field from the
declaration. For instance,

unsigned x : 5 = 15;

 declares a variable named x that is stored in five bits of memory. This declaration also states that the variable is to be
initialized to the value 15. As with all variable declarations, an explicit initialization field is optional. The default initial
value for all variables is zero. This applies both to scalar variables and to array variables, and it applies to both global
and to local variables.

 If an attempt is made to assign a value outside the domain of the variable type, the actual value assigned is obtained
by a type cast operation that truncates the value to the domain. Information is lost if such a truncation is applied. SPIN
will warn if this happens only during random or guided simulation runs.

 Table 16.2. Typical Data Ranges

Type C-Equivalent limits.h Typical Range

bit bit-field - 0..1

bool bit-field - 0..1

byte unsigned char CHAR_BIT 0..255

pid unsigned char CHAR_BIT 0..255

short short int SHRT_MIN..SHRT_MA
X

-215. . 215 - 1

int int INT_MIN..INT_MAX -231. . 231 - 1

Scope: The scope of a variable declaration is global if it appears outside all proctype or init declarations. The scope of
a local variable includes the complete body of a proctype. The declaration itself can be placed anywhere within the
proctype or init declaration, provided only that it appears before the first use of the variable. Each separate process
has a private copy of all variables that are declared locally within the corresponding proctype or init declaration.

 The formal parameters of a proctype are indistinguishable from local variables. These formal parameters are initialized
to the values that are specified in a run statement, or they are initialized to zero when the process is instantiated
through an active prefix on a proctype declaration.

 Examples

 The code fragment

byte a, b = 2; short c[3] = 3;

 declares the names a and b as variables of type byte, and c as an array of three variables of type short. Variable a
has the default initial value zero. Variable b is initialized to the value 2, and all three elements of array c are initialized
to 3.

 A variable may also be initialized with an expression, but this is generally not recommended. Note that if global
variables are referenced in such initializations, the precise value of such globals may be uncertain. If local variables
from the same proctype declaration are referenced in one of the variable declarations, there are some additional
dangers that can be caused by the fact the variable declarations can physically appear anywhere in a proctype
declaration, but functionally they always act as if they are all moved to the start of the proctype body.

 In the following model fragment, for instance, the value that is assigned to variable b in the declaration is 2, and not 4,
as might be expected.

init {

 byte a = 2;

 a = 4;

 byte b = a;

 printf("b: %d\n", b)

}

 When a process is instantiated, SPIN first collects all variable declarations from the corresponding proctype
declaration, and it then creates and initializes each of these variables, in order of declaration in the proctype, but
otherwise before the process itself starts executing. The example code above, therefore, is evaluated as if the
declaration of variable b was moved to the start of the proctype declaration, immediately following that of a. Use with
caution.

 Notes

 Each process has a predefined local variable _pid of type pid that holds the process instantiation number. Each
model also has a predefined, write-only, global variable _ (underscore) of type int that can be used as a scratch
variable, and predefined, read-only, global variables _nr_pr (of type int) and _last (of type pid). See the
corresponding manual pages for further details on these variables.

 An array of bit, bool, or unsigned variables is stored internally as an array of byte variables. This may affect the
behavior of the model if, for instance, the user relies on automatic truncation effects during a verification (an unwise
strategy). When the verifier source is generated in verbose mode, SPIN will warn if it encounters such cases.

 In the C language, the keywords short and unsigned can be used as a prefix of int. This is not valid in PROMELA.

 See Also

 _, _last, _pid, arrays, chan, mtype, run, typedef

[Team LiB]

[Team LiB]

do

 Name

 do - repetition construct.

 Syntax

 do :: sequence [:: sequence] * od

 Description

 The repetition construct, like all other control-flow constructs, is strictly seen not a statement, but a convenient
method to define the structure of the underlying automaton.

 A repetition construct has a single start and stop state. Each option sequence within the construct defines outgoing
transitions for the start state. The end of each option sequence transfers control back to the start state of the
construct, allowing for repeated execution. The stop state of the construct is only reachable via a break statement
from within one of its option sequences.

 There must be at least one option sequence in each repetition construct. Each option sequence starts with a
double-colon. The first statement in each sequence is called its guard. An option can be selected for execution only
when its guard statement is executable. If more than one guard statement is executable, one of them will be selected
non-deterministically. If none of the guards are executable, the repetition construct as a whole blocks.

 A repetition construct as a whole is executable if and only if at least one of its guards is executable.

 Examples

 The following example defines a cyclic process that non-deterministically increments or decrements a variable named
count:

byte count;

active proctype counter()

{

 do

 :: count++

 :: count-

 :: (count == 0) ->

 break

 od

}

 In this example the loop can be broken only when count reaches zero. It need not terminate, though, because the
other two options always remain unconditionally executable. To force termination, we can modify the program as
follows:

active proctype counter()

{

 do

 :: count != 0 ->

 if

 :: count++

 :: count--

 fi

 :: else ->

 break

 od

}

 Notes

 The semantics of a PROMELA repetition construct differ from a similar control flow construct tha was included in
Dijkstra's seminal proposal for a non-deterministic guarded command language. In Dijkstra's language, the repetition
construct is aborted when none of the guards are executable; in PROMELA, execution is merely blocked in this case.
In PROMELA, executability is used as the basic mechanism for enforcing process synchronization, and it is not
considered to be an error if statements occasionally block. The PROMELA repetition construct also differs from a
similar control flow construct in Hoare's classic language CSP. In CSP, send and receive statements cannot appear as
guards of an option sequence. In PROMELA, there is no such restriction.

 The guard statements in option sequences cannot individually be prefixed by a label, since all option sequences start
from the same state (the start state of the construct). If a label is required, it should be placed before the keyword do.

 See Also

 break, else, goto, if, timeout, unless

[Team LiB]

[Team LiB]

else

 Name

 else - a system defined condition statement.

 Syntax

 else

 Description

 The predefined condition statement else is intended to be used as a guard (i.e., the first statement) of an option
sequence inside selection or repetition constructs.

 An else condition statement is executable if and only if no other statement within the same process is executable at the
same local control state (i.e., process state).

 It is an error to define control flow constructs in which more than one else may need to be evaluated in a single
process state.

 Examples

 In the first example, the condition statement else is equivalent to the regular expression statement (a < b).

if

:: a > b -> ...

:: a == b -> ...

:: else -> ... /* evaluates to: a < b */

fi

 Note also that round braces are optional around expression statements.

 In this example:

A: do

 :: if

 :: x > 0 -> x-

 :: else -> break

 fi

 :: else -> x = 10

od

 both else statements apply to the same control state, which is marked with the label A here. To show the ambiguity
more clearly, we can rewrite this example also as:

A: do

 :: x > 0 -> x--

 :: else -> break

 :: else -> x = 10

 od

 It is unclear what should happen when (x < 0), and therefore the SPIN parser will reject constructions such as these.

 Another construction that the parser will reject is the use of an else in combination with an operation on a channel, for
instance, as follows:

A: if

 :: q?a -> ...

 :: else -> ...

 fi

 Note that a race condition is built-in to this type of code. How long should the process wait, for instance, before
deciding that the message receive operation will not be executable? The problem can be avoided by using message
poll operations, for instance, as follows:

A: if

 :: atomic { q?[a] -> q?a }

 :: else -> ...

 fi

 Now the meaning is clear, if the message a is present in channel q when control reaches the statement that was
marked with the label A, then that message will be retrieved, otherwise the else clause will be selected.

 Notes

 The semantics as given would in principle also allow for an else to be used outside selection or repetition constructs,
in a non-branching sequence of statements. The else would then be equivalent to a skip statement, since it would have
no alternatives within the local context. The PROMELA parser, however, will flag such use as an error.

 The executability of the else statement depends only on local context within a process. The PROMELA semantics for
timeout can be seen as a global version of else. A timeout is executable only when no alternative statement within the
global context of the system is executable. A timeout may not be combined with an else in the same selection
construct.

 See Also

 condition, do, false, if, skip, true, timeout, unless

[Team LiB]

[Team LiB]

empty

 Name

 empty - predefined, boolean function to test emptiness of a buffered channel.

 Syntax

 empty (name)

 Description

 Empty is a predefined function that takes the name of a channel as an argument and returns true if the number of
messages that it currently holds is zero; otherwise it returns false. The expression

empty(q)

 where q is a channel name, is equivalent to the expression

(len(q) == 0)

 Examples

chan q = [8] of { mtype };

d_step {

 do

 :: q?_

 :: empty(q) -> break

 od;

 skip

}

 This example shows how the contents of a message channel can be flushed in one indivisible step, without knowing,
or storing, the detailed contents of the channel. Note that execution of this code is deterministic. The reason for the
skip statement at the end is explained in the manual page for d_step.

 Notes

 A call on empty can be used as a guard, or it can be used in combination with other conditionals in a boolean
expression. The expression in which it appears, though, may not be negated. (The SPIN parser will intercept this.)
Another predefined function, nempty, can be used when the negated version is needed. The reason for the use of
empty and nempty is to assist SPIN's partial order reduction strategy during verification.

 If predefined functions such as empty and nempty are used in the symbol definitions of an LTL formula, they may
unintentionally appear under a negation sign in the generated automaton, which can then trigger a surprising syntax
error from SPIN. The easiest way to remedy such a problem, if it occurs, is to revise the generated never claim
automaton directly, and replace every occurrence of !empty() with nempty() and every occurrence of !nempty() with
empty().

 See Also

 _, condition, full, ltl len, nempty, nfull

[Team LiB]

[Team LiB]

enabled

 Name

 enabled - predefined boolean function for testing the enabledness of a process from within a never claim.

 Syntax

 enabled (any_expr)

 Description

 This predefined function can only be used inside a never claim, or equivalently in the symbol definition for an LTL
formula.

 Given the instantiation number of an active process, the function returns true if the process has at least one executable
statement in its current control state, and false otherwise. When given the instantiation number of a non-existing
process, the function always returns false.

 In every global state where enabled(p) returns true, the process with instantiation number p has at least one
executable statement. Of course, the executability status of that process can change after the next execution step is
taken in the system, which may or may not be from process p.

 Examples

 The following never claim attempts to match executions in which the process with instantiation number one remains
enabled infinitely long without ever executing.

never {

accept:

 do

 :: _last != 1 && enabled(1)

 od

}

 Notes

 The use of this function is incompatible with SPIN's partial order reduction strategy, and can therefore increase the
computational requirements of a verification.

 See Also

 _last, _pid, ltl, never, pc_value, run
[Team LiB]

[Team LiB]

end

 Name

 end - label-name prefix for marking valid termination states.

 Syntax

 end [a-zA-Z0-9_] *: stmnt

 Description

 An end-state label is any label name that starts with the three-character sequence end. End-state labels can be used
in proctype, trace, and notrace declarations.

 When used in a proctype declaration, the end-state label marks a local control state that is acceptable as a valid
termination point for all instantiations of that proctype.

 If used in an event trace definition, the end-state label marks a global control state that corresponds to a valid
termination point for the system as a whole.

 If used in an event notrace definition, though, the normal meaning reverses: the event trace is now considered to have
been completely matched when the end state is reached, thus signifying an error condition, rather than normal system
termination.

 End-state labels have no special meaning when used in never claims.

 Examples

 In the following example the end-state label defines that the expected termination point of the process is at the start of
the loop.

active proctype dijkstra()

{

end: do

 :: sema!p -> sema?v

 od

}

 It will now be flagged as an invalid end-state error if the system that contains this proctype declaration can terminate
in a state where the process of type dijkstra remains at the control state that exists just after the arrow symbol.

 Notes

 It is considered an invalid end-state error if a system can terminate in a state where not all active processes are either
at the end of their code (i.e., at the closing curly brace of their proctype declarations) or at a local state that is marked
with and end-state label.

 If the run-time option -q is used with the compiled verifier, an additional constraint is applied for a state to be
considered a valid end state: all message channels must then also be empty.

 See Also

 accept, labels, notrace, progress, trace

[Team LiB]

[Team LiB]

eval

 Name

 eval - predefined unary function to turn an expression into a constant.

 Syntax

 eval (any_expr)

 Description

 The intended use of eval is in receive statements to force a match of a message field with the current value of a local
or global variable. Normally, such a match can only be forced by specifying a constant. If a variable name is used
directly, without the eval function, the variable would be assigned the value from the corresponding message field,
instead of serving as a match of values.

 Examples

 In the following example the two receive operations are only executable if the precise values specified were sent to
channel q: first an ack and then a msg.

mtype = { msg, ack, other };

chan q = [4] of { mtype };

mtype x;

x = ack; q?eval(x) /* same as: q?ack */

x = msg; q?eval(x) /* same as: q?msg */

 Without the eval function, writing simply

q?x

 would mean that whatever value was sent to the channel (e.g., the value other) would be assigned to x when the
receive operation is executed.

 Notes

 Any expression can be used as an argument to the eval function. The result of the evaluation of the expression is then
used as if it were a constant value.

 This mechanism can also be used to specify a conditional rendezvous operation, for instance by using the value true in
the sender and using a conditional expression with an eval function at the receiver; see also the manual page for
conditional expressions.

 See Also

 cond_expr, condition, poll, receive

[Team LiB]

[Team LiB]

false

 Name

 false - predefined boolean constant.

 Syntax

 false

 Description

 The keyword false is a synonym of the constant value zero (0), and can be used in any context. If it is used as a
stand-alone condition statement, it will block system execution as if it were a halt instruction.

 Notes

 Because they are intercepted in the lexical analyzer as meta terms, false, true, and skip do not show up as such in
error traces. They will appear as their numeric equivalents (0) or (1).

 See

 condition, skip, true
[Team LiB]

[Team LiB]

float

 Name

 float - floating point numbers.

 Description

 There are no floating point numbers in basic PROMELA because the purpose the language is to encourage
abstraction from the computational aspects of a distributed application while focusing on the verification of process
interaction, synchronization, and coordination.

 Consider, for instance, the verification of a sequential C procedure that computes square roots. Exhaustive
state-based verification would not be the best approach to verify this procedure. In a verification model, it often
suffices to abstract this type of procedure into a simple two-state demon that non-deterministically decides to give
either a correct or incorrect answer. The following example illustrates this approach.

mtype = { number, correct, incorrect };

chan sqrt = [0] of { mtype, chan };

active proctype sqrt_server()

{

 do

 :: sqrt?number(answer) ->

 /* abstract from local computations */

 if

 :: answer!correct

 :: answer!incorrect

 fi

 od

}

active proctype user()

{ chan me = [0] of { mtype };

 do

 :: sqrt!number(me);

 if

 :: me?correct -> break

 :: me?incorrect ->

 ...

 fi;

 od;

 ...

}

 The predefined data types from PROMELA are a compromise between notational convenience and modest
constraints that can facilitate the construction of tractable verification models. The largest numeric quantity that can be
manipulated is, for instance, a 32-bit integer number. The number of different values that even one single integer
variable can record, for instance, when used as a simple counter, is already well beyond the scope of a state-based
model checker. Even integer quantities, therefore, are to be treated with some suspicion in verification models, and
can very often be replaced advantageously with byte or bit variables.

 Notes

 In the newer versions of SPIN, there is an indirect way to use external data types, such as float, via embedded code
and embedded declarations. The burden on the user to find abstractions can thus be lightened, in return for a potential
increase in verification complexity. When using embedded C code, the user can decide separately if some or all of the
embedded data objects should be treated as part of the state descriptor in the verification model, with the use of
c_state or c_track declarators. See Chapter 17 for a detailed description.

 See Also

 c_code, c_decl, c_expr, datatypes

[Team LiB]

[Team LiB]

full

 Name

 full - predefined, boolean function to test fullness of a channel.

 Syntax

 full (varref)

 Description

 Full is a predefined function that takes the name of a channel as an argument and returns true if that channel currently
contains its maximum number of messages, and otherwise it returns false. It is equivalent to the expression

(len(q) == QSZ)

 where q is the channel name, and QSZ is the message capacity of the channel.

 This function can only be applied to buffered channels. The value returned for rendezvous channels would always be
false, since a rendezvous channel cannot store messages.

 Examples

chan q = [8] of { byte };

byte one_more = 0;

do

:: q!one_more; one_more++ /* send messages */

:: full(q) -> break /* until full */

od;

assert(len(q) == 8)

 Notes

 Full can be used as a guard, by itself, or it can be used as a general boolean function in expressions. It can, however,
not be negated (for an explanation see also the manual page for empty).

 If predefined functions such as full, or nfull are used in the symbol definitions of an LTL formula, they may
unintentionally appear under a negation sign in the generated automaton, which can then trigger a surprising syntax
error from SPIN.

 See Also

 condition, empty, len, ltl, nempty, nfull

[Team LiB]

[Team LiB]

goto

 Name

 goto - unconditional jump to a labeled statement.

 Syntax

 goto name

 Description

 The goto is normally not executed, but is used by the parser to determine the target control state for the immediately
preceding statement; see also the manual page for break. The target state is identified by the label name and must be
unique within the surrounding proctype declaration or never claim.

 In cases where there is no immediately preceding statement, for instance, when the goto appears as a guard in an
option of a selection or repetition structure, the goto is executed as if it were a skip, taking one execution step to
reach the labeled state.

 Examples

 The following program fragment defines two control states, labeled by L1 and L2:

L1: if

 :: a != b -> goto L1

 :: a == b -> goto L2

 fi;

L2: ...

 If the values of variables a and b are equal, control moves from L1 to L2 immediately following the execution of
condition statement a == b. If the values are unequal, control returns to L1 immediately following the execution
(evaluation) of a != b. The statement is therefore equivalent to

L1: do

 :: a != b

 :: a == b -> break

 od;

L2:

 and could also be written more efficiently in PROMELA as simply:

L1: a == b;

L2:

 Note that the last version makes use of the capability of PROMELA to synchronize on a standalone condition
statement.

 Notes

 It is an error if no target for the goto is defined within the surrounding proctype or never claim declaration.

 See Also

 break, condition, labels

[Team LiB]

[Team LiB]

hidden

 Name

 hidden - for excluding data from the state descriptor during verification.

 Syntax

 hidden typename ivar

 Description

 The keyword hidden can be used to prefix the declaration of any variable to exclude the value of that variable from
the definition of the global system state. The addition of this prefix can affect only the verification process, by
potentially changing the outcome of state matching operations.

 Examples

hidden byte a;

hidden short p[3];

 Notes

 The prefix should only be used for write-only scratch variables. Alternatively, the predefined write-only scratch
variable _ (underscore) can always be used instead of a hidden integer variable.

 It is safe to use hidden variables as pseudo-local variables inside d_step sequences, provided that they are not
referenced anywhere outside that sequence.

 See Also

 _, datatypes, local, show
[Team LiB]

[Team LiB]

hierarchy

 Name

 hierarchy - for defining layered systems.

 Description

 There is no mechanism for defining a hierarchically layered system in PROMELA, nor is there a good excuse to
justify this omission. At present, the only structuring principles supported in PROMELA are proctypes, inlines, and
macros.

 See Also

 inline, macros, proctype, procedures
[Team LiB]

[Team LiB]

if

 Name

 if - selection construct.

 Syntax

 if :: sequence [:: sequence] * fi

 Description

 The selection construct, like all other control-flow constructs, is strictly seen not a statement, but a convenient method
to define the structure of the underlying automaton. Each selection construct has a unique start and stop state. Each
option sequence within the construct defines outgoing transitions for the start state, leading to the stop state. There can
be one or more option sequences. By default, the end of each option sequence leads to the control state that follows
the construct.

 There must be at least one option sequence in each selection construct. Each option sequence starts with a
double-colon. The first statement in each sequence is called its guard. An option can be selected for execution only
when its guard statement is executable. If more than one guard statement is executable, one of them will be selected
non-deterministically. If none of the guards are executable, the selection construct as a whole blocks.

 The selection construct as a whole is executable if and only if at least one of its guards is executable.

 Examples

 Using the relative values of two variables a and b to choose between two options, we can write

if

:: (a != b) -> ...

:: (a == b) -> ...

fi

 This selection structure contains two option sequences, each preceded by a double colon. Only one sequence from
the list will be executed. A sequence can be selected only if its guard statement is executable (the first statement). In
the example the two guards are mutually exclusive, but this is not required.

 The guards from a selection structure cannot be prefixed by labels individually. These guards really define the
outgoing transitions of a single control state, and therefore any label on one guard is really a label on the source state
for all guards belonging on the selection construct itself (cf.label L0 in the next example). It is tempting to circumvent
this rule and try to label a guard by inserting a skip in front of it, for instance, as follows:

L0: if

 :: skip;

L1: (a != b) -> ...

 :: (a == b) -> ...

 fi;

 But note that this modification alters the meaning of the selection from a choice between (a != b) and (a == b), to a
choice between skip (which is the same as (1) or true) and (a == b). The addition of the skip statement also adds an
extra intermediate state, immediately followin the skip statement itself.

 Notes

 The semantics of a PROMELA selection construct differ from similar control flow constructs in Hoare's language
CSP, and in Dijkstra's earlier definition of a non-deterministic guarded command language. In Dijkstra's definition, the
selection construct is aborted when none of the guards is executable. In PROMELA, execution blocks in this case. In
PROMELA, executability is used as the basic means to enforce process synchronization, and it is not considered to
be an error if statements block temporarily. Another difference with CSP is that in PROMELA there is no restriction
on the type of statement that can be used as a guard of an option sequence. Any type of statement can be used as a
guard, including assignments, and send or receive operations.

 See Also

 do, else, goto, timeout

[Team LiB]

[Team LiB]

init

 Name

 init - for declaring an initial process.

 Syntax

 init { sequence }

 Description

 The init keyword is used to declare the behavior of a process that is active in the initial system state.

 An init process has no parameters, and no additional copies of the process can be created (that is, the keyword
cannot be used as an argument to the run operator).

 Active processes can be differentiated from each other by the value of their process instantiation number, which is
available in the predefined local variable _pid. Active processes are always instantiated in the order in which they
appear in the model, so that the first such process (whether it is declared as an active process or as an init process)
will receive the lowest instantiation number, which is zero.

 Examples

 The smallest possible PROMELA model is:

init { skip }

 where skip is PROMELA's null statement, or perhaps more usefully

init { printf("hello world\n") }

 The init process is most commonly used to initialize global variables, and to instantiate other processes, through the
use of the run operator, before system execution starts. Any process, not just the init process, can do so, though.

 It is convention to instantiate groups of processes within atomic sequences, to make sure that their execution begins
at the same instant. For instance, in the leader election example, included as a test case in the SPIN distribution, the
initial process is used to start up N copies of the proctype node. Each new instance of the proctype is given different
parameters, which in this case consist of two channel names and an indentifying number. The node proctype is then of
the form:

proctype node(chan in, chan out, byte mynumber)

{ ...

}

 and the init process is structured as follows.

init {

 byte proc;

 atomic {

 proc = 1;

 do

 :: proc <= N ->

 run node (q[proc-1],q[proc%N],(N+I-proc)%N+1);

 proc++

 :: proc > N ->

 break

 od

 }

}

 After the instantiation, the initial process terminates.

 A process in PROMELA, however, cannot die and be removed from the system until all its children have died first.
That is, PROMELA processes can only die in reverse order of creation (in stack order). This means that if an init
process is used to create all other processes in the system, the init process itself will continue to exist, and take up
memory, as long as the system exists. Systems in which all processes can be instantiated with active prefixes, instead
of through the intermediacy of an init process, can therefore often be verified more efficiently. The following code
fragment illustrates an alternative initialization for the leader election protocol, avoiding the use of an init process:

active [N] proctype node ()

{ chan in = q[_pid];

 chan out = q[(_pid+1)%N];

 byte mynumber = (N+I-(_pid+1))%N+1;

 ...

}

 Because no parameter values can be passed to an active process declaration, the parameters are now replaced with
local variables.

 Notes

 The init keyword has become largely redundant with the addition of the active prefix for proctype declarations.

 See Also

 _pid, active, proctype, run, skip

[Team LiB]

[Team LiB]

inline

 Name

 inline - a stylized version of a macro.

 Syntax

 inline name ([arg_lst]) { sequence }

 Description

 An inline definition must appear before its first use, and must always be defined globally, that is, at the same level as a
proctype declaration. An inline definition works much like a preprocessor macro, in the sense that it just defines a
replacement text for a symbolic name, possibly with parameters. It does not define a new variable scope. The body of
an inline is directly pasted into the body of a proctype at each point of invocation. An invocation (an inline call) is
performed with a syntax that is similar to a procedure call in C, but, like a macro, a PROMELA inline cannot return a
value to the caller.

 An inline call may appear anywhere a stand-alone PROMELA statement can appear. This means that, unlike a
macro call, an inline call cannot appear in a parameter list of the run operator, and it cannot be used as an operand in
an expression. It also cannot be used on the left- or right-hand side of an assignment statement.

 The parameters to an inline definition are typically names of variables.

 An inline definition may itself contain other inline calls, but it may not call itself recursively.

 Examples

 The following example illustrates the use of inline definitions in a version of the alternating bit protocol.

mtype = { msg0, msg1, ack0, ack1 };

chan sender = [1] of { mtype };

chan receiver = [1] of { mtype };

inline recv(cur_msg, cur_ack, lst_msg, lst_ack)

{

 do

 :: receiver?cur_msg ->

 sender!cur_ack; break /* accept */

 :: receiver?lst_msg ->

 sender!lst_ack

 od;

}

inline phase(msg, good_ack, bad_ack)

{

 do

 :: sender?good_ack -> break

 :: sender?bad_ack

 :: timeout ->

 if

 :: receiver!msg;

 :: skip /* lose message */

 fi;

 od

}

active proctype Sender()

{

 do

 :: phase(msg1, ack1, ack0);

 phase(msg0, ack0, ack1)

 od

}

active proctype Receiver()

{

 do

 :: recv(msg1, ack1, msg0, ack0);

 recv(msg0, ack0, msg1, ack1)

 od

}

 In simulations, line number references are preserved and will point to the source line inside the inline definition where
possible. In some cases, in the example for instance at the start of the Sender and the Receiver process, the control
point is inside the proctype body and not yet inside the inline.

 Notes

 The PROMELA scope rules for variables are not affected by inline definitions. If, for instance, the body of an inline
contains variable declarations, their scope would be the same as if they were declared outside the inline, at the point
of invocation. The scope of such variables is the entire body of the proctype in which the invocation appears. If such
an inline would be invoked in two different places within the same proctype, the declaration would also appear twice,
and a syntax error would result.

 See Also

 comments, macros

[Team LiB]

[Team LiB]

labels

 Name

 label - to identify a unique control state in a proctype declaration.

 Syntax

 name : stmnt

 Description

 Any statement or control-flow construct can be preceded by a label. The label can, but need not, be used as a
destination of a goto or can be used in a remote reference inside a never claim. Label names must be unique within the
surrounding proctype, trace, notrace, or never claim declaration.

 A label always prefixes a statement, and thereby uniquely identifies a control state in a transition system, that is, the
source state of the transition that corresponds to the labeled statement.

 Any number of labels can be attached to a single statement.

 Examples

 The following proctype declaration translates into a transition system with precisely three local process states: initial
state S1, state S2 in between the send and the receive, and the (unreachable) final state S3, immediately following the
repetition construct.

active proctype dijkstra()

{

S0:

S1: do

 :: q!p ->

S2: q?v

 :: true

 od

/* S3 */

}

 The first state has two labels: S0 and S1. This state has two outgoing transitions: one corresponding to the send
statement q!p, and one corresponding to the condition statement true. Observe carefully that there is no separate
control state at the start of each guard in a selection or repetition construct. Both guards share the same start state S1.

 Notes

 A label name can be any alphanumeric character string, with the exception that the first character in the label name
may not be a digit or an underscore symbol.

 The guard statement in a selection or repetition construct cannot be prefixed by a label individually; see the manual
page for if and do for details.

 There are three types of labels with special meaning, see the manual pages named accept, end, and progress.

 See Also

 accept, do, end, if, goto, progress, remoterefs

[Team LiB]

[Team LiB]

len

 Name

 len - predefined, integer function to determine the number of messages that is stored in a buffered channel.

 Syntax

 len (varref)

 Description

 A predefined function that takes the name of a channel as an argument and returns the number of messages that it
currently holds.

 Examples

#define QSZ 4

chan q = [QSZ] of { mtype, short };

len(q) > 0 /* same as nempty(q) */

len(q) == 0 /* same as empty(q) */

len(q) == QSZ /* same as full(q) */

len(q) < QSZ /* same as nfull(q) */

 Notes

 When possible, it is always better to use the predefined, boolean functions empty, nempty, full, and nfull, since these
define special cases that can be exploited in SPIN's partial order reduction algorithm during verification.

 If len is used stand-alone as a condition statement, it will block execution until the channel is non-empty.

 See Also

 chan, condition, empty, full, nempty, nfull, xr, xs
[Team LiB]

[Team LiB]

local

 Name

 local - prefix on global variable declarations to assert exclusive use by a single process.

 Syntax

 local typename ivar

 Description

 The keyword local can be used to prefix the declaration of any global variable. It persuades the partial order
reduction algorithm in the model checker to treat the variable as if it were declared local to a single process, yet by
being declared global it can freely be used in LTL formulae and in never claims.

 The addition of this prefix can increase the effect of partial order reduction during verification, and lower verification
complexity.

 Examples

local byte a;

local short p[3];

 Notes

 If a variable marked as local is in fact accessed by more than one process, the partial order reduction may become
invalid and the result of a verification incomplete. Such violations are not detected by the verifier.

 See Also

 _, datatypes, hidden, ltl, never, show
[Team LiB]

[Team LiB]

ltl

 Name

 ltl - linear time temporal logic formulae for specifying correctness requirements.

 Syntax

 Grammar:

 ltl ::= opd | (ltl) | ltl binop ltl | unop ltl

 Operands (opd):

 true, false, and user-defined names starting with a lower-case letter

 Unary Operators (unop):

[] (the temporal operator always)

<> (the temporal operator eventually)

! (the boolean operator for negation)

Binary Operators (binop):

U (the temporal operator strong until)

V (the dual of U): (p V q) means !(!p U !q))

&& (the boolean operator for logical and)

|| (the boolean operator for logical or)

/\ (alternative form of &&)

\/ (alternative form of ||)

-> (the boolean operator for logical implication)

<-> (the boolean operator for logical equivalence)

Description

 SPIN can translate LTL formulae into PROMELA never claims with command line option -f. The never claim that is
generated encodes the Büuchi acceptance conditions from the LTL formula. Formally, any -run that satisfies the
LTL formula is guaranteed to correspond to an accepting run of the never claim.

 The operands of an LTL formula are often one-character symbols, such as p, q, r, but they can also be symbolic
names, provided that they start with a lowercase character, to avoid confusion with some of the temporal operators
which are in uppercase. The names or symbols must be defined to represent boolean expressions on global variables
from the model. The names or symbols are normally defined with macro definitions.

 All binary operators are left-associative. Parentheses can be used to override this default. Note that implication and
equivalence are not temporal but logical operators (see Chapter 6).

 Examples

 Some examples of valid LTL formulae follow, as they would be passed in command-line arguments to SPIN for
translation into never claims. Each formula passed to SPIN has to be quoted. We use single quotes in all examples in
this book, which will work correctly on most systems (including UNIX systems and Windows systems with the
cygwin toolset). On some systems double quotes can also be used.

spin -f '[] p'

spin -f '!(<> !q)'

spin -f 'p U q'

spin -f 'p U ([] (q U r))'

 The conditions p, q, and r can be defined with macros, for instance as:

#define p (a > b)

#define q (len(q) < 5)

#define r (root@Label)

 elsewhere in the PROMELA model. It is prudent to always enclose these macro definitions in round braces to avoid
misinterpretation of the precedence rules on any operators in the context where the names end up being used in the
final never claim. The variables a and b, the channel name q, and the proctype name root from the preceding example,
must be globally declared.

 Notes

 If the SPIN sources are compiled with the preprocessor directive -DNXT, the set of temporal operators is extended
with one additional unary operator: X (next). The X operator asserts the truth of the subformula that follows it for the
next system state that is reached. The use of this operator can void the validity of the partial order reduction algorithm
that is used in SPIN, if it changes the stutter invariance of an LTL formula. For the partial order reduction strategy to
be valid, only LTL properties that are stutter invariant can be used. Every LTL property that does not contain the X
operator is guaranteed to satisfy the required property. A property that is not stutter invariant can still be checked, but
only without the application of partial order reduction.

 An alternative converter for LTL formulae, that can often produce smaller automata, is the tool ltl2ba, see p. 145.

 See Also

 condition, macros, never, notrace, remoterefs, trace

[Team LiB]

[Team LiB]

macros

 Name

 macros and include files - preprocessing support.

 Syntax

#define name token-string

#define name (arg, ..., arg) token-string

#ifdef name

#ifndef name

#if constant-expression

#else

#endif

#undef name

#include "filename"

 Description

 PROMELA source text is always processed by the C preprocessor, conventionally named cpp, before being parsed
by SPIN. When properly compiled, SPIN has a link to the C preprocessor built-in, so that this first processing step
becomes invisible to the user. If a problem arises, though, or if a different preprocessor should be used, SPIN
recognizes an option -Pxxx that allows one to define a full pathname for an alternative preprocessor. The only
requirement is that this preprocessor should read standard input and write its result on standard output.

 Examples

#include "promela_model"

#define p (a>b)

never { /* <>!p */

 do

 :: !p -> assert(false)

 :: else /* else ignore */

 od

}

 It is always wise to put braces around the replacement text in the macro-definitions to make sure the precedence of
operator evaluation is preserved when a macro name is used in a different context, for example, within a composite
boolean expression.

 Notes

 The details of the working of the preprocessor can be system dependent. For the specifics, consult the manual pages
for cpp that came with the C compiler that is installed on your system.

 On PCs, if no macros with more than one parameter appear in the model, and no extra compiler directives are
defined on the command line, SPIN will use a simple built-in version of the C preprocessor to bypass the call on the
external program. When needed, this call can be suppressed by adding a dummy compiler directive to the command
line, as in:

$ spin -DDUMMY -a model

 The call could also be suppressed by adding a dummy macro definition with more than one parameter to the model
itself, as in:

#define dummy(a,b) (a+b)

 The preprocessor that is used can be modified in several ways. The default preprocessor, for instance, can be set to
m4 by recompiling SPIN itself with the compiler directive -DCPP=/bin/m4. The choice of preprocessor can also be
changed on the command line, for instance, by invoking SPIN as:

$ spin -P/bin/m4 model

 Extra definitions can be passed to the preprocessor from the command line, as in:

$ spin -E-I/usr/greg -DMAX=5 -UXAM model

 which has the same effect as adding the following two definitions at the start of the model:

#define MAX 5

#undef XAM

 as well as passing the additional directive -I/usr/greg to the preprocessor, which results in the addition of directory
/usr/greg to the list of directories that the preprocessor will search for include files.

 See Also

 comments, never

[Team LiB]

[Team LiB]

mtype

 Name

 mtype - for defining symbolic names of numeric constants.

 Syntax

 mtype [=] { name [, name]* }

 mtype name [= mtype_name]

 mtype name '[' const ']' [= mtype_name]

 Description

 An mtype declaration allows for the introduction of symbolic names for constant values. There can be multiple mtype
declarations in a verification model. If multiple declarations are given, they are equivalent to a single mtype declaration
that contains the concatenation of all separate lists of symbolic names.

 If one or more mtype declarations are present, the keyword mtype can be used as a data type, to introduce variables
that obtain their values from the range of symbolic names that was declared. This data type can also be used inside
chan declarations, for specifying the type of message fields.

 Examples

 The declaration

mtype = { ack, nak, err, next, accept }

 is functionally equivalent to the sequence of macro definitions:

#define ack 5

#define nak 4

#define err 3

#define next 2

#define accept 1

 Note that the symbols are numbered in the reverse order of their definition in the mtype declarations, and that the
lowest number assigned is one, not zero.

 If multiple mtype declarations appear in the model, each new set of symbols is prepended to the previously defined
set, which can make the final internal numbering of the symbols somewhat less predictable.

 The convention is to place an assignment operator in between the keyword mtype and the list of symbolic names that
follows, but this is not required.

 The symbolic names are preserved in tracebacks and error reports for all data that is explicitly declared with data
type mtype.

 In this example:

mtype a; mtype p[4] = nak;

chan q = [4] of { mtype, byte, short, mtype };

 the mtype variable a is not initialized. It will by default be initialized to zero, which is outside the range of possible
mtype values (identifying the variable as uninitialized). All four elements of array p are initialized to the symbolic name
nak. Channel q, finally, has a channel initializer that declares the type of the first and last field in each message to be of
type mtype.

 Notes

 Variables of type mtype are stored in a variable of type unsigned char in their C equivalent. Therefore, there can be
at most 255 distinct symbolic names in an mtype declaration.

 The utility function printm can be used to print the symbolic name of a single mtype variable. Alternatively, in random
or guided simulations with SPIN, the name can be printed with the special printf conversion character sequence %e.
The following two lines, for instance, both print the name nak (without spaces, linefeeds, or any other decoration):

mtype = { ack, nak, err, next, accept }

init {

 mtype x = nak;

 printm(x);

 printf("%e", x)

}

 The printm form is prefered, since it will also work when error traces are reproduced with the verifier, for models
with embedded C code.

 See Also

 datatypes, printf, printm

[Team LiB]

[Team LiB]

nempty

 Name

 nempty - predefined, boolean function to test emptiness of a channel.

 Syntax

 nempty (varref)

 Description

 The expression nempty(q), with q a channel name, is equivalent to the expression

(len(q) != 0)

 where q is a channel name. The PROMELA grammar prohibits this from being written as !empty(q).

 Using nempty instead of its equivalents can preserve the validity of reductions that are applied during verifications,
especially in combination with the use of xr and xs channel assertions.

 Notes

 Note that if predefined functions such as empty, nempty, full, and nfull are used in macro definitions used for
propositional symbols in LTL formulae, they may well unintentionally appear under a negation sign, which will trigger
syntax errors from SPIN.

 See Also

 condition, empty, full, len, ltl, nfull, xr, xs
[Team LiB]

[Team LiB]

never

 Name

 never - declaration of a temporal claim.

 Syntax

 never { sequence }

 Description

 A never claim can be used to define system behavior that, for whatever reason, is of special interest. It is most
commonly used to specify behavior that should never happen. The claim is defined as a series of propositions, or
boolean expressions, on the system state that must become true in the sequence specified for the behavior of interest
to be matched.

 A never claim can be used to match either finite or infinite behaviors. Finite behavior is matched if the claim can reach
its final state (that is, its closing curly brace). Infinite behavior is matched if the claim permits an -acceptance cycle.
Never claims, therefore, can be used to verify both safety and liveness properties of a system.

 Almost all PROMELA language constructs can be used inside a claim declaration. The only exceptions are those
statements that can have a side effect on the system state. This means that a never claim may not contain assignment
or message passing statements. Side effect free channel poll operations, and arbitrary condition statements are
allowed.

 Never claims can either be written by hand or they can be generated mechanically from LTL formula, see the manual
page for ltl.

 There is a small number of predefined variables and functions that may only be used inside never claims. They are
defined in separate manual pages, named _last, enabled, np_, pc_value, and remoterefs.

 Examples

 In effect, when a never claim is present, the system and the claim execute in lockstep. That is, we can think of system
execution as always consisting of a pair of transitions: one in the claim and one in the system, with the second
transition coming from any one of the active processes. The claim automaton always executes first. If the claim
automaton does not have any executable transitions, no further move is possible, and the search along this path stops.
The search will then backtrack so that other executions can be explored.

 This means that we can easily use a never claim to define a search restriction; we do not necessarily have to use the
claim only for the specification of correctness properties. For example, the claim

never /* [] p */

{

 do

 :: p

 od

}

 would restrict system behavior to those states where property p holds.

 We can also use a search restriction in combination with an LTL property. To prove, for instance, that the model
satisfies LTL property <>q, we can use the never claim that is generated with the SPIN command (using the negation
of the property):

$ spin -f '!<> q'

 Using the generated claim in a verification run can help us find counterexamples to the property. If we want to
exclude non-progress behaviors from the search for errors, we can extend the LTL formula with the corresponding
restriction, as follows:

$ spin -f '([]<> !np_) -> (!<> q)'

 Alternatively, if we wanted to restrict the search to only non -progress behaviors, we can negate the precondition and
write:

$ spin -f '(<>[] np_) -> (!<> q)'

 The claim automaton must be able to make its first transition, starting in its initial claim state, from the global initial
system state of the model. This rule can sometimes have unexpected consequences, especially when remote
referencing operations are used. Consider, for instance, the following model:[1]

 [1] The example is from Rob Gerth.

byte aap;

proctype noot()

{

mies: skip

}

init {

 aap = run noot()

}

 with the never claim defined as follows:

never {

 do

 :: noot[aap]@mies -> break

 :: else

 od

}

 The intent of this claim is to say that the process of type noot, with pid aap, cannot ever reach its state labeled mies.
If this happened, the claim would reach its final state, and a violation would be flagged by the verifier. We can predict
that this property is not satisfied, and when we run the verifier it will indeed report a counterexample, but the
counterexample is created for a different reason.

 In the initial system state the never claim is evaluated for the first time. In that state only the init process exists. To
evaluate expression noot[aap]@mies the value of variable aap is determined, and it is found to be zero (since the
variable was not assigned to yet, and still has its default initial value). The process with pid zero is the init process,
which happens to be in its first state. The label mies also points to the first state, but of a process that has not been
created yet. Accidentally, therefore, the evaluation of the remote reference expression yields true, and the claim
terminates, triggering an error report. The simulator, finally, on replaying the error trail, will reveal the true nature of
this error in the evaluation of the remote reference.

 A correct version of the claim can be written as follows:

never {

 true;

 do

 :: noot[aap]@mies -> break

 :: else

 od

}

 In this version we made sure that the remote reference expression is not evaluated until the process that is referred to
exists (that is, after the first execution step in the init process is completed).

 Note that it is not possible to shortcut this method by attempting the global declaration:

byte aap = run noot(); /* an invalid initializer */

 In this case, with only one process of type noot, we can also avoid using variable aap by using the shorter remote
reference:

noot@mies

 To translate an LTL formula into a never claim, we have to consider first whether the formula expresses a positive or
a negative property. A positive property expresses a good behavior that we would like our system to have. A
negative property expresses a bad behavior that we claim the system does not have. A never claim is normally only
used to formalize negative properties (behaviors that should never happen), which means that positive properties must
be negated before they are translated into a claim.

 Suppose that the LTL formula <>[]p, with p a boolean expression, expresses a negative claim (that is, it is
considered a correctness violation if there exists any execution sequence in which eventually p can remain true
infinitely long). This can be written in a never claim as:

never { /* <>[]p */

 do

 :: true /* after an arbitrarily long prefix */

 :: p -> break /* p becomes true */

 od;

accept: do

 :: p /* and remains true forever after */

 od

}

 Note that in this case the claim does not terminate and also does not necessarily match all system behaviors. It is
sufficient if it precisely captures all violations of our correctness requirement, and no more.

 If the LTL formula expressed a positive property, we first have to invert it to the corresponding negative property.
For instance, if we claim that immediately from the initial state forward the value of p remains true, the negation of that
property is: ![]p which can be translated into a never claim. The requirement says that it is a violation if p does not
always remain true.

never { /* ![]p = <>!p*/

 do

 :: true

 :: !p -> break

 od

}

 In this specification, we have used the implicit match of a claim upon reaching the final state of the automaton. Since
the first violation of the property suffices to disprove it, we could also have written:

never {

 do

 :: !p -> break

 :: else

 od

}

 or, if we abandon the correspondence with LTL and Büchi automata for a moment, even more tersely as:

never { do :: assert(p) od }

 Notes

 It is good practice to confine the use of accept labels to never claims. SPIN automatically generates the accept labels
within the claim when it generates claims from LTL formulae on run-time option -f.

 The behavior specified in a never claim is matched if the claim can terminate, that is, if execution can reach the closing
curly brace of the claim body. In terms of Büchi acceptance, this means that in a search for liveness properties, the
final state of the claim is interpreted as the implicit acceptance cycle:

accept_all: do :: true od

 The dummy claim

never {

 true

}

 therefore always matches, and reports a violation, after precisely one execution step of the system. If a never claim
contains no accept labels, then a search for cycles with run-time option -a is unnecessary and the claim can be proven
or disproven with a simple search for safety properties. When the verifier is used in breadth-first search mode, only
safety properties can be proven, including those expressed by never claims.

 See Also

 last, accept, assert, enabled, ltl, notrace, np, pc_value, poll, progress, remoterefs, trace

[Team LiB]

[Team LiB]

nfull

 Name

 nfull - predefined, boolean function to test fullness of a channel.

 Syntax

 nfull (varref)

 Description

 The expression nfull(q) is equivalent to the expression

(len(q) < QSZ)

 where q is a channel name, and QSZ the capacity of this channel. The PROMELA grammar prohibits the same from
being written as !full(q).

 Using nfull instead of its equivalents can preserve the validity of reductions that are applied during verifications,
especially in combination with the use of xr and xs channel assertions.

 Notes

 Note that if predefined functions such as empty, nempty, full, and nfull are used in macro definitions used for
propositional symbols in LTL formulae, they may well unintentionally appear under a negation sign, which will trigger
syntax errors from SPIN.

 See Also

 condition, empty, full, len, ltl, nempty, xr, xs
[Team LiB]

[Team LiB]

np_

 Name

 np_ - a global, predefined, read-only boolean variable.

 Syntax

 np_

 Description

 This global predefined, read-only variable is defined to be true in all global system states that are not explicitly
marked as progress states, and is false in all other states. The system is in a progress state if at least one active
process is at a local control state that was marked with a user-defined progress label, or if the current global system
state is marked by a progress label in an event trace definition.

 The np_ variable is meant to be used exclusively inside never claims, to define system properties.

 Examples

 The following non-deterministic never claim accepts all non-progress cycles:

never { /* <>[] np_ */

 do

 :: true

 :: np_ -> break

 od;

accept: do

 :: np_

 od

}

 This claim is identical to the one that the verifier generates, and automatically adds to the model, when the verifier
source is compiled with the directive -DNP, as in:

$ cc -DNP -o pan pan.c

 Note that the claim automaton allows for an arbitrary, finite-length prefix of the computation where either progress or
non-progress states can occur. The claim automaton can move to its accepting state only when the system is in a
non-progress state, and it can only stay there infinitely long if the system can indefinitely remain in non-progress states
only.

 See Also

 condition, ltl, never, progress

[Team LiB]

[Team LiB]

pc_value

 Name

 pc_value - a predefined, integer function for use in never claims.

 Syntax

 pc_value (any_expr)

 Description

 The call pc_value(x) returns the current control state (an integer) of the process with instantiation number x. The
correspondence between the state numbers reported by pc_value and statements or line numbers in the PROMELA
source can be checked with run-time option -d on the verifiers generated by SPIN, as in:

$ spin -a model.pml

$ cc -o pan pan.c

$./pan -d

...

 The use of this function is restricted to never claims.

 Examples

never {

 do

 :: pc_value(1) <= pc_value(2)

 && pc_value(2) <= pc_value(3)

 && pc_value(3) <= pc_value(4)

 && pc_value(4) <= pc_value(5)

 od

}

 This claim is a flawed attempt to enforce a symmetry reduction among five processes. This particular attempt is
flawed in that it does not necessarily preserve the correctness properties of the system being verified. See also the
discussion in Chapter 4, p. 94.)

 Notes

 As the example indicates, this function is primarily supported for experimental use, and may not survive in future
revisions of the language.

 See Also

 condition, never

[Team LiB]

[Team LiB]

pointers

 Name

 pointers - indirect memory addressing.

 Description

 There are no pointers in the basic PROMELA language, although there is a way to circumvent this restriction through
the use of embedded C code.

 The two main reasons for leaving pointers out of the basic language are efficiency and tractability. To make
verification possible, the verifier needs to be able to track all data that are part of reachable system states. SPIN
maintains all such data, that is, local process states, local and global variables, and channel contents, in a single data
structure called the system "state vector." The efficiency of the SPIN verifiers is in large part due to the availability of
all state data within the simple, flat state vector structure, which allows each state comparison and state copying
operation to be performed with a single system call.

 The performance of a SPIN verifier can be measured in the number of reachable system states per second that can
be generated and analyzed. In the current system, this performance is determined exclusively by the length of the state
vector: a vector twice as long requires twice as much time to verify per state, and vice versa; every reduction in the
length of a state vector translates into an increase of the verifier's efficiency. The cost per state is in most cases a small
constant factor times the time needed to copy the bits in the state vector from one place to another (that is, the cost of
an invocation of the system routine memcpy()).

 The use of data that are only accessible through pointers during verification runs requires the verifier to collect the
relevant data from all memory locations that could be pointed to at any one time and copy such information into the
state vector. The associated overhead immediately translates in reduced verification efficiency.

 See Chapter 17 for a discussion of the indirect support for pointers through the use of embedded C code fragments.

 See Also

 c_code, c_decl, c_expr
[Team LiB]

[Team LiB]

poll

 Name

 poll - a side effect free test for the executability of a non-rendezvous receive statements.

 Syntax

 name ? '[' recv_args ']'

 name ?? '[' recv_args ']'

 Description

 A channel poll operation looks just like a receive statement, but with the list of message fields enclosed in square
brackets. It returns either true or false, depending on the executability of the corresponding receive (i.e., the same
operation written without the square brackets). Because its evaluation is side effect free, this form can be used freely
in expressions or even assignments where a standard receive operation cannot be used.

 The state of the channel, and all variables used, is guaranteed not to change as a result of the evaluation of this
condition statement.

 Examples

 In the following example we use a channel poll operation to place an additional constraint on a timeout condition:

qname?[ack, var] && timeout

 Notes

 Channel poll operations do not work on rendezvous channels because synchronous channels never store messages
that a poll operation could refer to. Messages are always passed instantly from sender to receiver in a rendezvous
handshake.

 It is relatively simple to create a conditional receive operation, with the help of a channel poll operation. For instance,
if we want to define an extra boolean condition P that must hold before a given receive operation may be executed,
we can write simply:

atomic { P && qname?[ack, var] -> qname[ack,var] }

 This is harder to do for rendezvous channels; see the manual page for cond_expr for some examples.

 See Also

 cond_expr, condition, eval, receive
[Team LiB]

[Team LiB]

printf

 Name

 printf - for printing text during random or guided simulation runs.

 Syntax

 printf (string [, arg_lst])

 printm (expression)

 Executability

 true

 Effect

 none

 Description

 A printf statement is similar to a skip statement in the sense that it is always executable and has no other effect on the
state of the system than to change the control state of the process that executes it. A useful side effect of the statement
is that it can print a string on the standard output stream during simulation runs. The PROMELA printf statement
supports a subset of the options from its namesake in the programming language C. The first argument is an arbitrary
string, in double quotes.

 Six conversion specifications are recognized within the string. Upon printing, each subsequent conversion
specification is replaced with the value of the next argument from the list that follows the string.

%c a single character,

%d a decimal value,

%e an mtype constant,

%o an unsigned octal value,

%u an unsigned integer value,

%x a hexadecimal value.

In addition, the white-space escape sequences \t (for a tab character) and \n (for a newline) are also recognized.
Unlike the C version, optional width and precision fields are not supported.

 The alternative form printm can be used to print just the symbolic name of an mtype constant. The two print
commands in the following sequence, for instance, would both print the string pear:

mtype = { apple, pear, orange };

mtype x = pear;

printf("%e", x);

printm(x);

 The method using printf works only when SPIN runs in simulation mode though, it does not work when an error trail
is reproduced with the verifier (e.g., when embedded C code fragments are used). The alternative, using printm,
always works.

 Examples

printf("numbers: %d\t%d\n", (-10)%(-9), (-10)<<(-2))

 Notes

 Printf statements are useful during simulation and debugging of a verification model. In verification, however, they are
of no value, and therefore not normally enabled. The order in which printfs are executed during verification is
determined by the depth-first search traversal of the reachability graph, which does not necessarily make sense if
interpreted as part of a straight execution. When SPIN generates the verifier's source text, therefore, it replaces every
call to printf with a special one that is called Printf. The latter function is only allowed to produce output during the
replay of an error trace. This function can also be called from within embedded C code fragments, to suppress
unwanted output during verification runs.

Special Notes on XSPIN: The text printed by a printf statement that begins with the five characters: "MSC:" (three
letters followed by a colon and a space) is automatically included in message sequence charts. For instance, when the
statement

printf("MSC: State Idle\n")

 is used, the string State Idle will included in the message sequence chart when this statement is reached. A more
detailed description of this feature can also be found in Chapter 12, p. 272.

 It is also possible to set breakpoints for a random simulation run, when XSPIN is used. To do so, the text that
follows the MSC: prefix must match the five characters: BREAK, as in:

printf("MSC: BREAK\n")

 These simulation breakpoints can be made conditional by embedding them into selection constructs. For instance:

if

:: P -> printf("MSC: BREAK\n")

:: else /* no breakpoint */

fi

 See Also

 do, if, skip

[Team LiB]

[Team LiB]

priority

 Name

 priority - for setting a numeric simulation priority for a process.

 Syntax

 active ['[' const ']'] proctype name ([decl_lst]) priority const { sequence }

 run name ([arg_lst]) priority const

 Description

 Process priorities can be used in random simulations to change the probability that specific processes are scheduled
for execution.

 An execution priority is specified either as an optional parameter to a run operator, or as a suffix to an active
proctype declaration. The optional priority field follows the closing brace of the parameter list in a proctype
declaration.

 The default execution priority for a process is one. Higher numbers indicate higher priorities, in such a way that a
priority ten process is ten times more likely to execute than a priority one process.

 The priority specified in an active proctype declaration affects all processes that are initiated through the active prefix,
but no others. A process instantiated with a run statement is always assigned the priority that is explicitly or implicitly
specified there (overriding the priority that may be specified in the proctype declaration for that process).

 Examples

run name(...) priority 3

active proctype name() priority 12 { sequence }

 If both a priority clause and a provided clause are specified, the priority clause should appear first.

active proctype name() priority 5 provided (a<b) {...}

 Notes

 Priority annotations only affect random simulation runs. They have no effect during verification, or in guided and
interactive simulation runs. A priority designation on a proctype declaration that contains no active prefix is ignored.

 See Also

 active, proctype, provided
[Team LiB]

[Team LiB]

probabilities

 Name

 probabilities - for distinguishing between high and low probability actions.

 Description

 There is no mechanism in PROMELA for indicating the probability of a statement execution, other than during
random simulations with priority tags.

 SPIN is designed to check the unconditional correctness of a system. High probability executions are easily
intercepted with standard testing and debugging techniques, but only model checking techniques are able to
reproducibly detect the remaining classes of errors.

 Disastrous error scenarios often have a low probability of occurrence that only model checkers can catch reliably.
The use of probability tags on statement executions would remove the independence of probability, which seems
counter to the premise of logic model checking. Phrased differently, verification in SPIN is concerned with possible
behavior, not with probable behavior. In a well-designed system, erroneous behavior should be impossible, not just
improbable.

 To exclude known low probability event scenarios from consideration during model checking, a variety of other
techniques may be used, including the use of model restriction, LTL properties, and the use of progress-state,
end-state, and accept-state labels.

 See Also

 if, do, priority, progress, unless
[Team LiB]

[Team LiB]

procedures

 Name

 procedures - for structuring a program text.

 Description

 There is no explicit support in the basic PROMELA language for defining procedures or functions. This restrction can
be circumvented in some cases through the use of either inline primitives, or embedded C code fragments.

 The reason for this restriction to the basic language is that SPIN targets the verification of process interaction and
process coordination structures, and not internal process computations. Abstraction is then best done at the process
and system level, not at a computational level. It is possible to approximate a procedure call mechanism with
PROMELA process instantiations, but this is rarely a good idea. Consider, for instance, the following model:

#ifndef N

#define N 12

#endif

int f = 1;

proctype fact(int v)

{

 if

 :: v > 1 -> f = v*f; run fact(v-1)

 :: else

 fi

}

init {

 run fact(N);

 (_nr_pr == 1) ->

 printf("%d! = %d\n", N, f)

}

 Initially, there is just one process in this system, the init process. It instantiates a process of type fact passing it the
value of constant N, which is defined in a macro. If the parameter passed to the process of type fact is greater than
one, the value of global integer f is multiplied by v, and another copy of fact is instantiated with a lower value of the
parameter.

 The procedure of course closely mimics a recursive procedure to compute the factorial of N. If we store the model in
a file called badidea and execute the model, we get

$ spin badidea

12! = 479001600

13 processes created

 which indeed is the correct value for the factorial. But, there are a few potential gotcha's here. First, the processes
that are instantiated will execute asynchronously with the already running processes. Specifically, we cannot assume
that the process that is instantiated in a run statement terminates its execution before the process that executed the run
reaches its next statement. Generally, the newly created process will start executing concurrently with its creator.
Nothing can be assumed about the speed of execution of a running process. If a particular order of execution is
important, this must be enforced explicitly through process synchronization. In the initially running init process from the
example, synchronization is achieved in one place with the expression

(_nr_pr == 1)

 The variable _nr_pr is a predefined, global system variable that records the number of current executing processes,
see the corresponding manual page. Because there is initially just one executing process (the process of type main
itself), we know in this case that all newly instantiated processes must have terminated once the evaluation of this
expression yields true. Recall that a condition statement can only be executed in PROMELA if it evaluates to true,
which gives us the required synchronization, and guarantees that the final value of f is not printed before it is fully
computed.

 A more obvious gotcha is that the maximum useful value we can choose for the constant N is limited by the maximum
number of processes that can simultaneously be instantiated. The maximum value that can be represented in a variable
of type int is more restrictive in this case, though. The size of an int is the same in PROMELA as it is in the underlying
programming language C, which at the time of writing means only 32 bits on most machines. The maximum signed
value that can be represented in a 32 bit word is 231 - 1 = 2, 147, 483, 648, which means that the largest factorial
we can compute with our model is an unimpressive 13! = 1,932,053,504. To do better, we would need a data type
double or float, but PROMELA deliberately does not have them. The only way we could get these would be through
the use of embedded C code fragments. The more fundamental reason why these data types are not part of native
PROMELA is that any need to represent data quantities of this size almost certainly means that the user is trying to
model a computational problem, and not a process synchronization problem. The omission of the larger data types
from the language serves as a gentle warning to the user that the language is meant for design verification, and not for
design implementation.

 If a procedural mechanism is to be used, the most efficient method would be to use a macro or an inline definition.
This amounts to an automatic inlining of the text of a procedure call into the body of each process that invokes it. A
disadvantage of a macro is that line-number references will be restricted to the location of the macro call, not a line
number within a macro definition itself. This problem does not exist with an inline definition.

 If a separate process is used to model the procedure, the best way to do so is to declare it as a permanent server by
declaring it as an active proctype: receiving requests from user processes via a special globally defined channel, and
responding to these requests via a user-provided local channel.

 The least attractive method is to instantiate a new copy of a process once for each procedure call and wait for that
process to return a result (via a global variable or a message channel) and then disappear from the system before
proceeding. This is less attractive because it produces the overhead of process creation and deletion, and can add the
complication of determining reliably when precisely a process has disappeared from the system.

 See Also

 _nr_pr, active, c_code, c_expr, hierarchy, inline, macros, proctype

[Team LiB]

[Team LiB]

proctype

 Name

 proctype - for declaring new process behavior.

 Syntax

 proctype name ([decl_lst]) { sequence }

 D_proctype name ([decl_lst]) { sequence }

 Description

 All process behavior must be declared before it can be instantiated. The proctype construct is used for the
declaration. Instantiation can be done either with the run operator, or with the prefix active that can be used at the
time of declaration.

 Declarations for local variables and message channels may be placed anywhere inside the proctype body. In all
cases, though, these declarations are treated as if they were all placed at the start of the proctype declaration. The
scope of local variables cannot be restricted to only part of the proctype body.

 The keyword D_proctype can be used to declare process behavior that is to be executed completely
deterministically. If non-determinism is nonetheless present in this type of process definition, it is resolved in
simulations in a deterministic, though otherwise undefined, manner. During verifications an error is reported if
non-determinism is encountered in a D_proctype process.

 Examples

 The following program declares a proctype with one local variable named state:

proctype A(mtype x) { mtype state; state = x }

 The process type is named A, and has one formal parameter named x.

 Notes

 Within a proctype body, formal parameters are indistinguishable from local variables. Their only distinguishing feature
is that their initial values can be determined by an instantiating process, at the moment when a new copy of the
process is created.

 See Also

 _pid, active, init, priority, provided, remoterefs, run
[Team LiB]

[Team LiB]

progress

 Name

 progress - label-name prefix for specifying liveness properties.

 Syntax

 progress [a-zA-Z0-9_]* : stmnt

 Description

 A progress label is any label name that starts with the eight-character sequence progress. It can appear anywhere a
label can appear.

 A label always prefixes a statement, and thereby uniquely identifies a local process state (i.e., the source state of the
transition that corresponds to the labeled statement). A progress label marks a state that is required to be traversed in
any infinite execution sequence.

 A progress label can appear in a proctype, or trace declaration, but has no special semantics when used in a never
claim or in notrace declarations. Because a global system state is a composite of local component states (e.g.,
proctype instantiations, and an optional trace component), a progress label indirectly also marks global system states
where one or more of the component systems is labeled with a progress label.

 Progress labels are used to define correctness claims. A progress label states the requirement that the labeled global
state must be visited infinitely often in any infinite system execution. Any violation of this requirement can be reported
by the verifier as a non-progress cycle.

 Examples

active proctype dijkstra()

{

 do

 :: sema!p ->

progress: sema?v

 od

}

 The requirement expressed here is that any infinite system execution contains infinitely many executions of the
statement sema?v.

 Notes

 Progress labels are typically used to mark a state where effective progress is being made in an execution, such as a
sequence number being incremented or valid data being accepted by a receiver in a data transfer protocol. They can,
however, also be used during verifications to eliminate harmless variations of liveness violations. One such application,
for instance, can be to mark message loss events with a pseudo progress label, to indicate that sequences that contain
infinitely many message loss events are of secondary interest. If we now search for non-progress executions, we will
no longer see any executions that involve infinitely many message loss events.

 SPIN has a special mode to prove absence of non-progress cycles. It does so with the predefined LTL formula:

(<>[] np_)

 which formalizes non-progress as a standard Büchi acceptance property.

 The standard stutter-extension, to extend finite execution sequences into infinite ones by stuttering (repeating) the final
state of the sequence, is applied in the detection of all acceptance properties, including non-progress cycles.

 The manual page for never claims describes how the predefined variable np_ can also be used to restrict a
verification to precisely the set of either progress or non-progress cycles.

 See Also

 accept, end, labels, ltl, never, np_, trace

[Team LiB]

[Team LiB]

provided

 Name

 provided - for setting a global constraint on process execution.

 Syntax

 proctype name ([decl_lst]) provided (expr) { sequence }

 Description

 Any proctype declaration can be suffixed by an optional provided clause to constrain its execution to those global
system states for which the corresponding expression evaluates to true. The provided clause has the effect of labeling
all statements in the proctype declaration with an additional, user-defined executability constraint.

 Examples

 The declaration:

byte a, b;

active proctype A() provided (a > b)

{

 ...

}

 makes the execution of all instances of proctype A conditional on the truth of the expression (a>b), which is, for
instance, not true in the initial system state. The expression can contain global references, or references to the
process's _pid, but no references to any local variables or parameters.

 If both a priority clause and a provided clause are specified, the priority clause should come first.

active proctype name() priority 2 provided (a > b)

{

 ...

}

 Notes

 Provided clauses are incompatible with partial order reduction. They can be useful during random simulations, or in
rare cases to control and reduce the complexity of verifications.

 See Also

 _pid, active, hidden, priority, proctype

[Team LiB]

[Team LiB]

rand

 Name

 rand - for random number generation.

 Description

 There is no predefined random number generation function in PROMELA. The reason is that during a verification we
effectively check for all possible executions of a system. Having even a single occurrence of a call on the random
number generator would increase the number of cases to inspect by the full range of the random numbers that could
be generated: usually a huge number. Random number generators can be useful on a simulation, but they can be
disastrous when allowed in verification.

 In almost all cases, PROMELA's notion of non-determinism can replace the need for a random number generator.
Note that to make a random choice between N alternatives, it suffices to place these N alternatives in a selection
structure with N options. The verifier will interpret the non-determinism accurately, and is not bound to the restrictions
of a pseudo-random number generation algorithm.

 During random simulations, SPIN will internally make calls on a (pseudo) random number generator to resolve all
cases of non-determinism. During verifications no such calls are made, because effectively all options for behavior will
be explored in this mode, one at a time.

 PROMELA's equivalent of a "random number generator" is the following program:

active proctype randnr()

{ /*

 * don't call this rand()...

 * to avoid a clash with the C library routine

 */

 byte nr; /* pick random value */

 do

 :: nr++ /* randomly increment */

 :: nr-- /* or decrement */

 :: break /* or stop */

 do;

 printf("nr: %d\n") /* nr: 0..255 */

}

 Note that the verifier would generate at least 256 distinct reachable states for this model. The simulator, on the other
hand, would traverse the model only once, but it could execute a sequence of any length (from one to infinitely many
execution steps). A simulation run will only terminate if the simulator eventually selects the break option (which is
guaranteed only in a statistical sense).

 Notes

 Through the use of embedded C code, a user can surreptitiously include calls on an external C library rand() function
into a model. To avoid problems with irreproducible behavior, the SPIN-generated verifiers intercept such calls and
redefine them in such a way that the depth-first search process at the very least remains deterministic. SPIN
accomplishes this by pre-allocating an integer array of the maximum search depth maxdepth, and filling that array with
the first maxdepth random numbers that are generated. Those numbers are then reused each time the search returns to
a previously visited point in the search, to secure the sanity of the search process.

 The seed for this pre-computation of random numbers is fixed, so that subsequent runs will always give the same
result, and to allow for the faithful replay of error scenarios. Even though this provides some safeguards, the use of
random number generation is best avoided, also in embedded C code.

 See Also

 c_code, c_expr, if, do

[Team LiB]

[Team LiB]

real-time

 Name

 real time - for relating properties to real-time bounds.

 Description

 In the basic PROMELA language there is no mechanism for expressing properties of clocks or of time related
properties or events. There are good algorithms for integrating real-time constraints into the model checking process,
but most attention has so far been given to real-time verification problems in hardware circuit design, rather than the
real-time verification of asynchronous software, which is the domain of the SPIN model checker.

 The best known of these algorithms incur significant performance penalties compared with untimed verification. Each
clock variable added to a model can increase the time and memory requirements of verification by an order of
magnitude. Considering that one needs at least two or three such clock variables to define meaningful constraints, this
seems to imply, for the time being, that a real-time capability requires at least three to four orders of magnitude more
time and memory than the verification of the same system without time constraints.

 The good news is that if a correctness property can be proven for an untimed PROMELA model, it is guaranteed to
preserve its correctness under all possible real-time constraints. The result is therefore robust, it can be obtained
efficiently, and it encourages good design practice. In concurrent software design it is usually unwise to link logical
correctness with real-time performance.

 PROMELA is a language for specifying systems of asynchronous processes. For the definition of such a system we
abstract from the behavior of the process scheduler and from any assumption about the relative speed of execution of
the various processes. These assumptions are safe, and the minimal assumptions required to allow us to construct
proofs of correctness. The assumptions differ fundamentally from those that can be made for hardware systems,
which are often driven by a single known clock, with relative speeds of execution precisely known. What often is just
and safe in hardware verification is, therefore, not necessarily just and safe in software verification.

 SPIN guarantees that all verification results remain valid independent of where and how processes are executed,
timeshared on a single CPU, in true concurrency on a multiprocessor, or with different processes running on CPUs of
different makes and varying speeds. Two points are worth considering in this context: first, such a guarantee can no
longer be given if real-time constraints are introduced, and secondly, most of the existing real-time verification
methods assume a true concurrency model, which inadvertently excludes the more common method of concurrent
process execution by timesharing.

 It can be hard to define realistic time bounds for an abstract software system. Typically, little can be firmly known
about the real-time performance of an implementation. It is generally unwise to rely on speculative information, when
attempting to establish a system's critical correctness properties.

 See Also

 priorities, probabilities
[Team LiB]

[Team LiB]

receive

 Name

 receive statement - for receiving messages from channels.

 Syntax

 name ? recv_args

 name ?? recv_args

 name ?< recv_args >

 name ??< recv_args >

 Executability

 The first and the third form of the statement, written with a single question mark, are executable if the first message in
the channel matches the pattern from the receive statement.

 The second and fourth form of the statement, written with a double question mark, are executable if there exists at
least one message anywhere in the channel that matches the pattern from the receive statement. The first such message
is then used.

 A match of a message is obtained if all message fields that contain constant values in the receive statement equal the
values of the corresponding message fields in the message.

 Effect

 If a variable appears in the list of arguments to the receive statement, the value from the corresponding field in the
message that is matched is copied into that variable upon reception of the message. If no angle brackets are used, the
message is removed from the channel buffer after the values are copied. If angle brackets are used, the message is not
removed and remains in the channel.

 Description

 The number of message fields that is specified in the receive statement must always match the number of fields that is
declared in the channel declaration for the channel addressed. The types of the variables used in the message fields
must be compatible with the corresponding fields from the channel declaration. For integer data types, an equal or
larger value range for the variable is considered to be compatible (e.g., a byte field may be received in a short
variable, etc.). Message fields that were declared to contain a user-defined data type or a chan must always match
precisely.

 The first form of the receive statement is most commonly used. The remaining forms serve only special purposes, and
can only be used on buffered message channels.

 The second form of the receive statement, written with two question marks, is called a random receive statement.
The variants with angle brackets have no special name.

 Because all four types of receive statements discussed here can have side effects, they cannot be used inside
expressions (see the manual page poll for some alternatives).

 Examples

chan set = [8] of { byte };

byte x;

set!!3; set!!5; set!!2; /* sorted send operations */

set?x; /* get first element */

if

:: set?<x> /* copy first element */

:: set??5 /* is there a 5 in the set? */

:: empty(set)

fi

 In this example we first send three values into a channel that can contain up to eight messages with one single field of
type byte. The values are within the range that is expected, so no value truncations will occur. The use of the sorted
send operator (the double exclamation) causes the three values to be stored in numerical order. A regular receive
operation is now used to retrieve the first element from the channel, which should be the value two.

 The selection statement that follows has three options for execution. If the channel is empty at this point, only the third
statement will be executable. If the channel is non-empty, and contains at least one message with the value five, the
second option will be executable. Because of the use of the random receive operator (the double question mark), the
target message may appear anywhere in the channel buffer and need not be the first message. It is removed from the
channel when matched. The first option in the selection structure is executable if the channel contains any message at
all. Its effect when executed will be to copy the value of the first message that is in the channel at this point into
variable x. If all is well, this should be the value three. If this option is executed, the message will remain in the channel
buffer, due to the use of the angle brackets.

 See Also

 chan, empty, eval, full, len, nempty, nfull, poll, send

[Team LiB]

[Team LiB]

remoterefs

 Name

 remote references - a mechanism for testing the local control state of an active process, or the value of a local
variable in an active process from within a never claim.

 Syntax

 name ['[' any_expr ']'] @labelname

 name ['[' any_expr '] '] : varname

 Description

 The remote reference operators take either two or three arguments: the first, required, argument is the name of a
previously declared proctype, a second, optional, argument is an expression enclosed in square brackets, which
provides the process instantiation number of an active process. With the first form of remote reference, the third
argument is the name of a control-flow label that must exist within the named proctype. With the second form, the
third argument is the name of a local variable from the named proctype.

 The second argument can be omitted, together with the square brackets, if there is known to be only one instantiated
process of the type that is named.

 A remote reference expression returns a non-zero value if and only if the process referred to is currently in the local
control state that was marked by the label name given.

 Examples

active proctype main () {

 byte x;

L: (x < 3) ->

 x++

}

never { /* process main cannot remain at L forever */

accept: do

 :: main@L

 od

}

 Notes

 Because init, never, trace, and notrace are not valid proctype names but keywords, it is not possible to refer to the
state of these special processes with a remote reference:

init@label /* invalid */

never[0]@label /* invalid */

 Note that the use of init, can always be avoided, by replacing it with an active proctype.

 A remote variable reference, the second form of a remote reference, bypasses the standard scope rules of
PROMELA by making it possible for the never claim to refer to the current value of local variables inside a running
process.

 For instance, if we wanted to refer to the variable count in the process of type Dijkstra in the example on page 77,
we could do so with the syntax Dijkstra[0] : count, or if there is only one such process, we can use the shorter form
Dijkstra : count.

 The use of remote variable references is not compatible with SPIN's partial order reduction strategy. A wiser
strategy is therefore usually to turn local variables whose values are relevant to a global correctness property into
global variables, so that they can be referenced as such. See especially the manual page for hidden for an efficient way
of doing this that preserves the benefits of partial order reduction.

 See Also

 _pid, active, condition, hidden, proctype, run

[Team LiB]

[Team LiB]

run

 Name

 run - predefined, unary operator for creating new processes.

 Syntax

 run name ([arg_lst])

 Description

 The run operator takes as arguments the name of a previously declared proctype, and a possibly empty list of actual
parameters that must match the number and types of the formal parameters of that proctype. The operator returns
zero if the maximum number of processes is already running, otherwise it returns the process instantiation number of a
new process that is created. The new process executes asynchronously with the existing active processes from this
point on. When the run operator completes, the new process need not have executed any statements.

 The run operator must pass actual parameter values to the new process, if the proctype declaration specified a
non-empty formal parameter list. Only message channels and instances of the basic data types can be passed as
parameters. Arrays of variables cannot be passed.

 Run can be used in any process to spawn new processes, not just in the initial process. An active process need not
disappear from the system immediately when it terminates (i.e., reaches the end of the body of its process type
declaration). It can only truly disappear if all younger processes have terminated first. That is, processes can only
disappear from the system in reverse order of their creation.

 Examples

proctype A(byte state; short set)

{

 (state == 1) -> state = set

}

init {

 run A(1, 3)

}

 Notes

 Because PROMELA defines finite state systems, the number of processes and message channels is required to be
bounded. SPIN limits the number of active processes to 255.

 Because run is an operator, run A() is an expression that can be embedded in other expressions. It is the only
operator allowed inside expressions that can have a side effect, and therefore there are some special restrictions that
are imposed on expressions that contain run operators.

 Note, for instance, that if the condition statement

(run A() && run B())

 were allowed, in the evaluation of this expression it would be possible that the first application of the run operator
succeeds, and the second fails when the maximum number of runnable processes is reached. This would produce the
value false for the expression, and the condition statement would then block, yet a side effect of the evaluation has
occurred. Each time the evaluation of the expression is repeated, one more process could then be created.

 Therefore, the SPIN parser imposes the restriction that an expression cannot contain more than one run operator,
and this operator cannot be combined in a compound expression with other conditionals. Also, as a further
precaution, an attempt to create a 256th process is always flagged as an error by the verifier, although technically it
would suffice to allow the run operator to return a zero value.

 See Also

 _pid, active, priority, proctype, provided, remoterefs

[Team LiB]

[Team LiB]

scanf

 Name

 scanf - to read input from the standard input stream.

 Description

 There is no routine in PROMELA comparable to the C library function scanf to read input from the standard input
stream or from a file or device. The reason is that PROMELA models must be closed to be verifiable. That is, all
input sources must be part of the model. It is relatively easy to build a little process that acts as if it were the scanf
routine, and that sends to user processes that request its services a non-deterministically chosen response from the set
of anticipated responses.

 As a small compromise, PROMELA does include a special predefined channel named STDIN that can be used to
read characters from the standard input during simulation experiments. The use of STDIN is not supported in
verification runs.

 See Also

 c_code, printf, STDIN
[Team LiB]

[Team LiB]

send

 Name

 send statement - for sending messages to channels.

 Syntax

 name ! send_args

 name !! send_args

 Executability

 A send statement on a buffered channel is executable in every global system state where the target channel is non-full.
SPIN supports a mechanism to override this default with option -m. When this option is used, a send statement on a
buffered channel is always executable, and the message is lost if the target channel is full.

 The execution of a send statement on a rendezvous channel consists, conceptually, of two steps: a rendezvous offer
and a rendezvous accept. The rendezvous offer can be made at any time (see Chapter 7). The offer can be accepted
only if another active process can perform the matching receive operation immediately (i.e., with no intervening steps
by any process). The rendezvous send operation can only take place if the offer made is accepted by a matching
receive operation in another process.

 Effect

 For buffered channels, assuming no message loss occurs (see above), the message is added to the channel. In the
first form of the send statement, with a single exclamation mark, the message is appended to the tail of the channel,
maintaining fifo (first in, first out) order. In the second form, with a double exclamation mark, the message is inserted
into the channel immediately ahead of the first message in the channel that succeeds it in numerical order. To
determine the numerical order, all message fields are significant.

 Within the semantics model, the effect of issuing the rendezvous offer is to set global system variable handshake to
the channel identity of the target channel (see Chapter 7).

 Description

 The number of message fields that is specified in the send statement must always match the number of fields that is
declared in the channel declaration for the target channel, and the values of the expressions specified in the message
fields must be compatible with the datatype that was declared for the corresponding field. If the type of a message
field is either a user-defined type or chan, then the types must match precisely.

 The first form of the send statement is the standard fifo send. The second form, with the double exclamation mark, is
called a sorted send operation. The sorted send operation can be exploited by, for instance, listing an appropriate
message field (e.g., a sequence number) as the first field of each message, thus forcing a message ordering in the
target channel.

 Examples

 In the following example our test process uses sorted send operations to send three messages into a buffered channel
named x. Then it adds one more message with the value four.

chan x = [4] of { short };

active proctype tester()

{

 x!!3; x!!2; x!!1; x!4;

 x?1; x?2; x?3; x?4

}

 All four values are now receivable in numerical order; the last message only coincidentally, but the first three due to
the ordering discipline that is enforced by the sorted send operators. A simulation confirms this:

$ spin -c tester.pml

proc 0 = tester

q 0

 1 x!3

 1 x!2

 1 x!1

 1 x!4

 1 x?1

 1 x?2

 1 x?3

 1 x?4

final state:

1 process created

 Notes

 By convention, the first field in a message is used to specify the message type, and is defined as an mtype.

 Sorted send operations and fifo send operations can safely be mixed.

 See Also

 chan, empty, full, len, nempty, nfull, poll, receive

[Team LiB]

[Team LiB]

separators

 Name

 separators - for sequential composition of statements and declarations.

 Syntax

 step ; step

 step -> step

 Description

 The semicolon and the arrow are equivalent statement separators in PROMELA; they are not statement terminators,
although the parser has been taught to be forgiving for occasional lapses. The last statement in a sequence need not be
followed by a statement separator, unlike, for instance, in the C programming language.

 Examples

x = 3;

atomic {

 x = y;

 y = x /* no separator is required here */

}; /* but it is required here... */

y = 3

 Notes

 The convention is to reserve the use of the arrow separator to follow condition statements, such as guards in selection
or repetition structures. The arrow symbol can thus be used to visually identify those points in the code where
execution could block.

 See Also

 break, labels, goto
[Team LiB]

[Team LiB]

sequence

 Name

 sequence - curly braces, used to enclose a block of code.

 Syntax

 { sequence }

 Description

 Any sequence of PROMELA statements may be enclosed in curly braces and treated syntactically as if it were a
statement. This facility is most useful for defining unless constructs, but can also generally be used to structure a
model.

 Examples

if

:: a < b -> { tmp = a; a = b; b = a }

:: else ->

 { printf("unexpected case\n");

 assert(false)

 }

fi

 The more common use is for structuring unless statements, as in:

{ tmp = a; a = b; b = a; }

unless

{ a >= b }

 Note the differences between these two examples. In the first example, the value of the expression a < b is checked
once, just before the bracketed sequence is executed. In the second example, the value of the negated expression is
checked before each statement execution in the main sequence, and execution is interrupted when that expression
becomes true.

 Notes

 The last statement in a sequence need not be followed by a statement separator, but if the sequence is followed by
another statement, the sequence as a whole should be separated from that next statement with a statement separator.

 See Also

 atomic, d_step, unless

[Team LiB]

[Team LiB]

show

 Name

 show - to allow for tracking of the access to specific variables in message sequence charts.

 Syntax

 show typename name

 Description

 This keyword has no semantic content. It only serves to determine which variables should be tracked and included in
message sequence chart displays in the XSPIN tool. Updates of the value of all variables that are declared with this
prefix are maintained visually, in a separate process line, in these message sequence charts.

 Notes

 The use of this prefix only affects the information that XSPIN includes in message sequence charts, and the
information that SPIN includes in Postscript versions of message sequence charts under SPIN option -M.

 See Also

 datatypes, hidden, local, show
[Team LiB]

[Team LiB]

skip

 Name

 skip - shorthand for a dummy, nil statement.

 Syntax

 skip

 Description

 The keyword skip is a meta term that is translated by the SPIN lexical analyzer into the constant value one (1), just
like the predefined boolean constant true. The intended use of the shorthand is stand-alone, as a dummy statement.
When used as a statement, the skip is interpreted as a special case of a condition statement. This condition statement
is always executable, and has no effect when executed, other than a possible change of the control-state of the
executing process.

 There are few cases where a skip statement is needed to satisfy syntax requirements. A common use is to make it
possible to place a label at the end of a statement sequence, to allow for a goto jump to that point. Because only
statements can be prefixed by a label, we must use a dummy skip statement as a placeholder in those cases.

 Examples

proctype A()

{

L0: if

 :: cond1 -> goto L1 /* jump to end */

 :: else -> skip /* skip redundant */

 fi;

 ...

L1: skip

}

 The skip statement that follows label L1 is required in this example. The use of the skip statement following the else
guard in the selection structure above is redundant. The above selection can be written more tersely as:

L0: if

 :: cond1 -> goto L1

 :: else

 fi;

 Because PROMELA is an asynchronous language, the skip is never needed, nor effective, to introduce delay in
process executions. In PROMELA, by definition, there can always be an arbitrary, and unknowable, delay between
any two subsequent statement executions in a proctype body. This semantics correspond to the golden rule of
concurrent systems design that forbids assumptions about the relative execution speed of asynchronous processes in a
concurrent system. When SPIN's weak fairness constraint is enforced we can tighten this semantics a little, to
conform to, what is known as, Dijkstra's finite progress assumption. In this case, when control reaches a statement,
and that statement is and remains executable, we can are allowed to assume that the statement will be executed within
a finite period of time (i.e., we can exclude the case where the delay would be infinite).

 Notes

 The opposite of skip is the zero condition statement (0), which is never executable. In cases where such a blocking
statement might be needed, often an assertion statement is more effective. Note that assert(false) and assert(0) are
equivalent. Similarly, assert(true) and assert(1) are equivalent and indistinguishable from both assert(skip) and skip.

 Because skip is intercepted in the lexical analyzer as a meta term, it does not appear literally in error traces. It will
only show up as its numeric equivalent (1).

 See Also

 assert, condition, else, false, true

[Team LiB]

[Team LiB]

STDIN

 Name

 STDIN - predefined read-only channel, for use in simulation.

 Syntax

 chan STDIN; STDIN?var

 Description

 During simulation runs, it is sometimes useful to be able to connect SPIN to other programs that can produce useful
input, or directly to the standard input stream to read input from the terminal or from a file.

 Examples

 A sample use of this feature is this model of a word count program:

chan STDIN; /* no channel initialization */

init {

 int c, nl, nw, nc;

 bool inword = false;

 do

 :: STDIN?c ->

 if

 :: c == -1 -> break /* EOF */

 :: c == '\n' -> nc++; nl++

 :: else -> nc++

 fi;

 if

 :: c == ' ' || c == '\t' || c == '\n' ->

 inword = false

 :: else ->

 if

 :: !inword ->

 nw++; inword = true

 :: else /* do nothing */

 fi fi

 od;

 printf("%d\t%d\t%d\n", nl, nw, nc)

}

 Notes

 The STDIN channel can be used only in simulations. The name has no special meaning in verification. A verification
for the example model would report an attempt to receive data from an unitialized channel.

 See Also

 chan, poll, printf, receive
[Team LiB]

[Team LiB]

timeout

 Name

 timeout - a predefined, global, read-only, boolean variable.

 Syntax

 timeout

 Description

 Timeout is a predefined, global, read-only, boolean variable that is true in all global system states where no statement
is executable in any active process, and otherwise is false (see also Chapter 7).

 A timeout used as a guard in a selection or repetition construct provides an escape from a system hang state. It
allows a process to abort waiting for a condition that can no longer become true.

 Examples

 The first example shows how timeout can be used to implement a watchdog process that sends a reset message to a
channel named guard each time the system enters a hang state.

active proctype watchdog()

{ do

 :: timeout -> guard!reset

 od

}

 A more traditional use is to place a timeout as an alternative to a potentially blocking statement, to guard against a
system deadlock if the statement becomes permanently blocked.

do

:: q?message -> ...

:: timeout -> break

od

 Notes

 The timeout statement can not specify a timeout interval. Timeouts are used to model only possible system behaviors,
not detailed real-time behavior. To model premature expiration of timers, consider replacing the timeout variable with
the constant value true, for instance, as in:

#define timeout true

 A timeout can be combined with other expressions to form more complex wait conditions, but can not be combined
with else. Note that timeout, if used as a condition statement, can be considered to be a system level else statement.
Where the else statement becomes executable only when no other statements within the executing process can be
executed, a timeout statement becomes executable only when no other statements anywhere in the system can be
executed.

 See Also

 condition, do, else, if, unless

[Team LiB]

[Team LiB]

trace

 Name

 trace, notrace - for defining event sequences as properties.

 Syntax

 trace { sequence }

 notrace { sequence }

 Description

 Much like a never claim declaration, a trace or notrace declaration does not specify new behavior, but instead states
a correctness requirement on existing behavior in the remainder of the system. All channel names referenced in a trace
or notrace declaration must be globally declared message channels, and all message fields must either be globally
known (possibly symbolic) constants, or the predefined global variable _, which can be used in this context to specify
don't care conditions. The structure and place of a trace event declaration within a PROMELA model is similar to that
of a never claim: it must be declared globally.

 An event trace declaration defines a correctness claim with the following properties:


 Each channel name that is used in an event trace declaration is monitored for compliance with the structure
and context of the trace declaration.



If only send operations on a channel appear in the trace, then only send operations on that channel are subject
to the check. The same is true for receive operations. If both types appear, both are subject to the check, and
they must occur in the relative order that the trace declaration gives.



An event trace declaration may contain only send and receive operations (that is, events), but it can contain
any control flow construct. This means that no global or local variables can be declared or referred to. This
excludes the use of assignments and conditions. Send and receive operations are restricted to simple sends or
receives; they cannot be variations such as random receive, sorted send, receive test, etc.



Message fields that must be matched in sends or receives must be specified either with the help of symbolic
mtype names, or with constants. Message fields that have don't care values can be matched with the
predefined write-only variable _ (underscore).



Sends and receives that appear in an event trace are called monitored events. These events do not generate
new behavior, but they are required to match send or receive events on the same channels in the model with
matching message parameters. A send or receive event occurs whenever a send or a receive statement is
executed, that is, an event occurs during a state transition.



An event trace can capture the occurrence of receive events on rendezvous channels.


An event trace causes a correctness violation if a send or receive action is executed in the system that is within
the scope of the event trace, but that cannot be matched by a monitored event within that declaration.



One can use accept, progress, and end-state labels in event trace declarations, with the usual interpretation.

 An event trace declaration must always be deterministic.

 A trace declaration specifies behavior that must be matched by the remainder of the specification, and a notrace
declares behavior that may not be matched.

 A notrace definition is subject to the same requirements as a trace definition, but acts as its logical negation. A
notrace definition is violated if the event sequence that is specified can be matched completely, that is, if either a
user-defined end state in the trace definition is reached, or the closing curly brace of the declaration.

 Examples

 An event trace declaration that specifies the correctness requirement that send operations on channel q1 alternate
with receive operations on channel q2, and furthermore that all send operations on q1 are (claimed to be) exclusively
messages of type a, and all receive operations on channel q2 are exclusively messages of type b, is written as follows:

mtype = { a, b };

trace {

 do

 :: q1!a; q2?b

 od

}

 Notes

 There are two significant differences between an event trace and a never claim declaration: First, an event trace
matches event occurrences that can occur in the transitions between system states, whereas a never claim matches
boolean propositions on system states.

 A system state, for the purposes of verification, is a stable value assignment to all variables, process states, and
message channels. The transitions of a never claim are labeled with boolean propositions (expressions) that must
evaluate to true in system states. The transitions of an event trace are labeled directly with monitored events that must
occur in system transitions in the order that is given in the trace declaration.

 The second difference is that an event trace monitors only a subset of the events in a system: only those of the types
that are mentioned in the trace (i.e., the monitored events). A never claim, on the other hand, looks at all global
systems states that are reached, and must be able to match the state assignments in the system at every state.

 An event trace automaton, just like a never claim automaton, has a current state, but it only executes transitions if one
of the monitored events occurs. That is, unlike a never claim, it does not execute synchronously with the system.

 It is relatively easy to monitor receive events on rendezvous channels with an event trace assertion, but very hard to
do so with a never claim. Monitoring the send event on a rendezvous channel is also possible, but it would also have
to match all rendezvous send offers that are made, including those that do not lead to an accepting receive event.

 See Also

 _, accept, assert, end, ltl, never, progress

[Team LiB]

[Team LiB]

true

 Name

 true - predefined boolean constant.

 Syntax

 true

 Description

 The keyword true is a synonym of the constant value one (1), and can be used in any context. Because of the
mapping to (1), true is also a synonym of skip. It supports a more natural syntax for manipulating boolean values.

 Notes

 Because it is intercepted in the lexical analyzer as a meta term, true is always replaced by its numeric equivalent in
error traces.

 Semantically, true, skip, and (1) are indistinguishable. Which term is best used depends on context and convention.

 See

 condition, false, skip
[Team LiB]

[Team LiB]

typedef

 Name

 typedef - to declare a user-defined structured data type.

 Syntax

 typedef name { decl_lst }

 Description

 Typedef declarations can be used to introduce user-defined data types. User-defined types can be used anywhere
predefined integer data types can be used. Specifically, they can be used as formal and actual parameters for
proctype declarations and instantiations, as fields in message channels, and as arguments in message send and receive
statements.

 A typedef declaration can refer to other, previously declared typedef structures, but it may not be self-referential. A
typedef definition must always be global, but it can be used to declare both local and global data objects of the new
type.

 Examples

 The first example shows how to declare a two-dimensional array of elements of type byte with a typedef.

typedef array { /* typedefs must be global */

 byte aa[4]

};

init {

 array a[8]; /* 8x4 = 32 bytes total */

 a[3] .aa[1] = 5

}

 The following example introduces two user-defined types named D and Msg, and declares an array of two objects of
type Msg, named top:

typedef D {

 short f;

 byte g

};

typedef Msg {

 byte a[3];

 int fld1;

 D fld2;

 chan p[3];

 bit b

};

Msg top[2];

 The elements of top can be referenced as, for instance:

top[1].fld2.g = top[0].a[2]

 Objects of type Msg can be passed through a channel, provided that they do not contain any field of type unsigned.

chan q = [2] of { Msg };

q!top[0]; q?top[1]

 If we delete the arrays from the declaration of type Msg we can also use objects of this type in a run parameter, for
instance, as follows:

typedef D {

 short f;

 byte g

};

typedef Msg {

 int fld1;

 D fld2;

 bit b

};

Msg top[2];

proctype boo(Msg m)

{

 printf("fld1=%d\n", m.fld1);

}

init {

 chan q = [2] of { Msg };

 top[0].fld1 = 12;

 q!top[0]; q?top[1];

 run boo(top[1])

}

 Notes

 The current SPIN implementation imposes the following restrictions on the use of typedef objects. It is not possible
to assign the value of a complete typedef object directly to another such object of the same type in a single
assignment. A typedef object may be sent through a message channel as a unit provided that it contains no fields of
type unsigned. A typedef object can also be used as a parameter in a run statement, but in this case it may not contain
arrays.

 Beware that the use of this keyword differs from its namesake in the C programming language. The working of the C
version of a typedef statement is best approximated with a macro definition.

 See Also

 arrays, datatypes, macros, mtype

[Team LiB]

[Team LiB]

unless

 Name

 unless - to define exception handling routines.

 Syntax

 stmnt unless stmnt

 Description

 Similar to the repetition and selection constructs, the unless construct is not really a statement, but a method to define
the structure of the underlying automaton and to distinguish between higher and lower priority of transitions within a
single process. The construct can appear anywhere a basic PROMELA statement can appear.

 The first statement, generally defined as a block or sequence of basic statements, is called the main sequence. The
second statement is called the escape sequence. The guard of either sequence can be either a single statement, or it
can be an if, do, or lower level unless construct with multiple guards and options for execution.

 The executability of all basic statements in the main sequence is constrained to the non-executability of all guard
statements of the escape sequence. If and when one of the guard statements of the escape sequence becomes
executable, execution proceeds with the remainder of the escape sequence and does not return to the main sequence.
If all guards of the escape sequence remain unexecutable throughout the execution of the main sequence, the escape
sequence as a whole is skipped.

 The effect of the escape sequence is distributed to all the basic statements inside the main sequence, including those
that are contained inside atomic sequences. If a d_step sequence is included, though, the escape affects only its guard
statement (that is, the first statement) of the sequence, and not the remaining statements inside the d_step. A d_step is
always equivalent to a single statement that can only be executed in its entirety from start to finish.

 As noted, the guard statement of an unless construct can itself be a selection or a repetition construct, allowing for a
non-deterministic selection of a specific executable escape. Following the semantics model from Chapter 7, the guard
statements of an escape sequence are assigned a higher priority than the basic statements from the main sequence.

 Unless constructs may be nested. In that case, the guard statements from each unless statement take higher priority
than those from the statements that are enclosed. This priority rule can be reversed, giving the highest priority to the
most deeply nested unless escapes, by using SPIN run-time option -J. This option is called -J because it enforces a
priority rule that matches the evaluation order of nested catch statements in Java programs.

 PROMELA unless statements are meant to facilitate the modeling of error handling methods in implementation level
languages.

 Examples

 Consider the following unless statement:

{ B1; B2; B3 } unless { C1; C2 }

 where the parts inside the curly braces are arbitrary PROMELA fragments. Execution of this unless statement begins
with the execution of B1. Before each statement execution in the sequence B1;B2;B3, the executability of the first
statement, or guard, of fragment C1 is checked using the normal PROMELA semantics of executability. Execution of
statements from B1;B2;B3 proceeds only while the guard statement of C1 remains unexecutable. The first instant that
this guard of the escape sequence is found to be executable, control changes to it, and execution continues as defined
for C1;C2. Individual statement executions remain indivisible, so control can only change from inside B1;B2;B3 to the
start of C1 in between individual statement executions. If the guard of the escape sequence does not become
executable during the execution of B1;B2;B3, it is skipped when B3 terminates.

 Another example of the use of unless is:

A;

do

:: b1 -> B1

:: b2 -> B2

...

od unless { c -> C };

D

 The curly braces around the main or the escape sequence may be deleted if there can be no confusion about which
statements belong to those sequences. In the example, condition c acts as a watchdog on the repetition construct from
the main sequence. Note that this is not necessarily equivalent to the construct:

A;

do

:: b1 -> B1

:: b2 -> B2

...

:: c -> break

od;

C; D

 if B1 or B2 are non-empty. In the first version of the example, execution of the iteration can be interrupted at any
point inside each option sequence. In the second version, execution can only be interrupted at the start of the option
sequences.

 Notes

 In the presence of rendezvous operations, the precise effect of an unless construct can be hard to assess. See the
discussion in Chapter 7 for details on resolving apparent semantic conflicts.

 See Also

 atomic, do, if, sequence

[Team LiB]

[Team LiB]

xr

 Name

 xr, xs - for defining channel assertions.

 Syntax

 xr name [, name] *

 xs name [, name] *

 Description

 Channel assertions such as

xr q1;

xs q2;

 can only appear within a proctype declaration. The channel assertions are only valid if there can be at most one single
instantiation of the proctype in which they appear.

 The first type of assertion, xr, states that the executing process has exclusive read-access to the channel that is
specified. That is, it is asserted to be the only process in the system (determined by its process instantiation number)
that can receive messages from the channel.

 The second type of assertion, xs, states that the process has exclusive write-access to the channel that is specified.
That is, it is asserted to be the only process that can send messages to the channel.

 Channel assertions have no effect in simulation runs. With the information that is provided in channel assertions, the
partial order reduction algorithm that is normally used during verification, though, can optimize the search and achieve
significantly greater reductions.

 Any test on the contents or length of a channel referenced in a channel assertion, including receive poll operations,
counts as both a read and a write access of that channel. If such access conflicts with a channel assertion, it is flagged
as an error during the verification. If the error is reported, this means that the additional reductions that were applied
may be invalid.

 The only channel poll operations that are consistent with the use of channel assertions are nempty and nfull. Their
predefined negations empty and full have no similar benefit, but are included for symmetry. The grammar prevents
circumvention of the type rules by attempting constructions such as !nempty(q), or !full(q).

 Summarizing: If a channel-name appears in an xs(xr) channel assertion, messages may be sent to (received from) the
corresponding channel by only the process that contains the assertion, and that process can only use send (receive)
operations, or one of the predefined operators nempty or nfull. All other types of access will generate run-time errors
from the verifier.

 Examples

chan q = [2] of { byte };

chan r = [2] of { byte };

active proctype S()

{ xs q;

 xr r;

 do

 :: q!12

 :: r?0 -> break

 od

}

active proctype R()

{

 xr q;

 xs r;

 do

 :: q?12

 :: r!0 -> break

 od

}

 Notes

 Channel assertions do not work for rendezvous channels.

 For channel arrays, a channel assertion on any element of the array is applied to all elements.

 In some cases, the check for compliance with the declared access patterns is too strict. This can happen, for
instance, when a channel name is used as a parameter in a run statement, which is counted as both a read and a write
access.

 Another example of an unintended violation of a channel assertion can occur when a single process can be
instantiated with different process instantiation numbers, depending on the precise moment that the process is
instantiated in a run. In cases such as these, the checks on the validity of the channel assertions can be suppressed,
while maintaining the reductions they allow. To do so, the verifier pan.c can be compiled with directive -DXUSAFE.
Use with caution.

 See Also

 chan, len, nempty, nfull, send, receive

[Team LiB]

[Team LiB]

Chapter 17. Embedded C Code
 "The purpose of analysis is not to compel belief but rather to suggest doubt."

 —(Imre Lakatos, Proofs and Refutations)

 SPIN, versions 4.0 and later, support the inclusion of embedded C code into PROMELA models through the
following five new primitives:

c_expr, c_code, c_decl, c_state, c_track

 The purpose of these new primitives is primarily to provide support for automatic model extraction from C code. This
means that it is not the intent of these extensions to be used in manually constructed models. The primitives provide a
powerful extension, opening SPIN models to the full power of, and all the dangers of, arbitrary C code. The contents
of the embedded code fragments cannot be checked by SPIN, neither in the parsing phase nor in the verification
phase. They are trusted blindly and copied through from the text of the model into the code of the verifier that SPIN
generates. In particular, if a piece of embedded C code contains an illegal operation, like a divide by zero operation
or a nil-pointer dereference, the result can be a crash of the verifier while it performs the model checking. Later in this
chapter we will provide some guidance on locating the precise cause of such errors if you accidentally run into them.

 The verifiers that are generated by SPIN version 4.0 and higher use the embedded code fragments to define state
transitions as part of a PROMELA model. As far as SPIN is concerned, a c_code statement is an uninterpreted state
transformer, defined in an external language, and a c_expr statement is a user-defined boolean guard, similarly defined
in an external language. Since this "external" language (C) cannot be interpreted by SPIN itself, simulation runs now
have to be performed in a different way, as we will discuss. All verifications can be performed as before, though, with
the standard C compiler providing the required interpretation of all embedded code.

 The primitives c_decl and c_state deal with various ways of declaring data types and data objects in C that either
become part of the state vector, or that are deliberately hidden from it. The c_track primitive is used to instrument the
code of the verifier to track the value of data objects holding state information that are declared elsewhere, perhaps
even in in separately compiled code that is linked with the SPIN-generated verifier.

 Because the SPIN parser does not attempt to interpret embedded C code fragments, random and guided simulation
can no longer be done directly by SPIN itself. To account for this, the SPIN-generated verifiers are now provided
with their own built-in error trail playback capability if the presence of embedded C code is detected.
[Team LiB]

[Team LiB]

An Example
 We will illustrate the use of these features with the example shown in Figure 17.1. The c_decl primitive introduces a
new data type named Coord. To avoid name clashes, the new data type name should not match any of the existing
type names that are already used inside the SPIN-generated verifiers. The C compiler will complain if this accidentally
happens; SPIN itself cannot detect these conflicts.

 Figure 17.1 Example of Embedded C Code

c_decl {

 typedef struct Coord {

 int x, y;

 } Coord;

}

c_state "Coord pt" "Global" /* goes inside state vector */

int z = 3; /* standard global declaration */

active proctype example()

{

 c_code { now.pt.x = now.pt.y = 0; };

 do

 :: c_expr { now.pt.x == now.pt.y } ->

 c_code { now.pt.y++; }

 :: else ->

 break

 od;

 c_code {

 printf("values %d: %d, %d,%d\n",

 Pexample->_pid, now.z, now.pt.x, now.pt.y);

 };

 assert(false) /* trigger an error trail */

}

 Because the new data type name may need to be referenced in other statements, we must secure that its definition is
placed high up in the generated code for the verifiers. The c_decl statement accomplishes precisely that. The c_decl
statement, then, is only meant to be used for the definition of new C data types, that may be referred to elsewhere in
the model.

 The c_state primitive introduces a new global data object pt of type Coord into the state vector. The object is
initialized to zero.

 There is only one active process in this model. It reinitializes the global variable pt to zero (in this case this is
redundant), and then executes a loop. The loop continues until the elements of structure pt differ, which will, of
course, happen after a single iteration. When the loop terminates, the elements of the C data object pt are printed. To
make sure an error trail is generated, the next statement is a false assertion.

 Arbitrary C syntax can be used in any c_code and c_expr statement. The difference between these two types of
statements is that a c_code statement is always executed unconditionally and atomically, while a c_expr statement can
only be executed (passed) if it returns non-zero when its body is evaluated as a C expression. If the evaluation returns
zero, execution is blocked. The evaluation of a c_expr is again indivisible (i.e., atomic). Because SPIN may have to
evaluate c_expr statements repeatedly until one of them becomes executable, a c_expr is required to be free from
side effects: it may only evaluate data, not modify it.

[Team LiB]

[Team LiB]

Data References
 A global data object that is declared with the normal PROMELA declaration syntax in the model (i.e., not with the
help of c_code or c_state) can be referenced from within c_code and c_expr statements, but the reference has to be
prefixed in this case with the string now followed by a period. In the example, for instance, the global z can be
referenced within a c_code or c_expr statement as now.z. (The name now refers to the internal state vector, where all
global data is stored during verification.) Outside embedded C code fragments, the same variable can be referenced
simply as z.

 A process local data object can also be referenced from within c_code and c_expr statements within the same
process (i.e., if the object is declared within the current scope), but the syntax is different. The extended syntax again
adds a special prefix that locates the data object in the state vector. The prefix starts with an uppercase letter P which
is followed by the name of the proctype in which the reference occurs, followed by the pointer arrow. For the data
objects declared locally in proctype example, for instance, the prefix to be used is Pexample->.

 In the example, this is illustrated by the reference to the predefined local variable _pid from within the c_code
statement as Pexample->_pid.

 The _pid variable of the process can be referenced, within the init process itself, as Pinit->_pid.

 Another way to write this particular model is shown in Figure 17.2. In this version we have avoided the need for the
prefixes on the variable names, by making use of the c_track primitive. The differences with the version in Figure 17.1
are small, but important.

 Figure 17.2 Replacing c_state with c_track Primitives

c_decl {

 typedef struct Coord {

 int x, y;

 } Coord;

}

c_code { Coord pt; } /* embedded declaration */

c_track "&pt" "sizeof(Coord)" /* track value of pt */

int z = 3; /* standard global declaration */

active proctype example()

{

 c_code { pt.x = pt.y = 0; }; /* no 'now.' prefixes */

 do

 :: c_expr { pt.x == pt.y } ->

 c_code { pt.y++; }

 :: else ->

 break

 od;

 c_code {

 printf("values %d: %d, %d,%d\n",

 Pexample->_pid, now.z, pt.x, pt.y);

 };

 assert(false) /* trigger an error trail */

}

 We have declared the variable pt in a global c_code statement, which means that it gets included this time as a
regular global variable that remains outside the state vector. Since this object holds state information, we add a
c_track statement, specifying a pointer to the object and its size. SPIN will now arrange for the value of the object to
be copied into (or out of) a specially reserved part of the state vector on each step. This is obviously less efficient than
the method using c_state, but it avoids the need for the sometimes clumsy now. prefixes that are required for
references to objects that are placed directly into the state vector. Note that the reference to variable z still requires
this prefix, since it was declared as a normal global PROMELA variable, and similarly for the predefined local
variable _pid. If we lifted the printf statement outside the enclosure of the c_code primitive, we could refer to
variables z and _pid without a prefix, as regular PROMELA variables, but we could not refer to the C variable pt at
all; these external objects are only visible inside c_code, c_expr, and c_track statements.

[Team LiB]

[Team LiB]

Execution
 When a PROMELA model contains embedded C code, SPIN cannot simulate its execution in the normal way
because it cannot directly interpret the embedded code fragments. If we try to run a simulation anyway, SPIN will
make a best effort to comply, but it will only print the text of the c_expr and c_code fragments that it encounters,
without actually executing them.

 To faithfully execute all embedded C code fragments, we must first generate the pan.[chmbt] files and compile them.
We now rely on the standard C compiler to interpret the contents of all embedded code as part of the normal
compilation process. For the first example, we proceed as follows:

$ spin -a example

$ cc -o pan pan.c # compile

$./pan # and run

values 0: 3, 0,1

pan: error: assertion violated 0 (at depth 5)

pan: wrote coord.trail

 The assertion violation was reported, as expected, but note that the embedded printf statement was also executed,
which shows that it works differently from a PROMELA print statement. We can get around this by calling an internal
SPIN routine named Printf instead of the standard library routine printf within embedded c_code fragments. This
causes the verifier to enable the execution of the print statement only when reproducing an error trail, but not during
the verification process itself.

 The counterexample is stored in a trail file as usual, but SPIN itself cannot interpret the trail file completely because of
the embedded C code statements that it contains. If we try anyway, SPIN produces something like this, printing out
the embedded fragments of code without actually executing them:

$ spin -t -p example

c_code2: { now.pt.x = now.pt.y = 0; }

 1: proc 0 (example) line 11 ... (state 1) [{c_code2}]

c_code3: now.pt.x == now.pt.y

 2: proc 0 (example) line 14 ... (state 2) [({c_code3})]

c_code4: { now.pt.y++; }

 3: proc 0 (example) line 15 ... (state 3) [{c_code4}]

 4: proc 0 (example) line 16 ... (state 4) [else]

c_code5: { printf("values %d: %d %d,%d\n", \

 Pexample->_pid, now.z now.pt.x, now.pt.y); }

 5: proc 0 (example) line 19 ... (state 9) [{c_code5}]

spin: line 20 ..., Error: assertion violated

spin: text of failed assertion: assert(0)

 6: proc 0 (example) line 20 ... (state 10) [assert(0)]

spin: trail ends after 6 steps

#processes: 1

 6: proc 0 (example) line 21 ... (state 11)

1 process created

 The assertion is violated at the end, but this is merely because it was hardwired to fail. None of the C data objects
referenced were ever created during this run, and thus none of them had any values that were effectively assigned to
them at the end. Note also that the text of the c_code fragment that is numbered c_code5 here is printed out, but that
the print statement that it contains is not itself executed, or else the values printed would have shown up in the output
near this line.

 It is better to use the trail replay option that is now available inside the generated pan verifier. The additional options
are:

$./pan --

 ...

 -C read and execute trail - columnated output

 -PN read and execute trail - restrict output to proc N

 -r read and execute trail - default output

 ...

 With the first of these options, the verifier produces the following information on the execution of the trail:

$./pan -C

1: example(0):[now.pt.x = now.pt.y = 0;]

2: example(0):[(now.pt.x == now.pt.y)]

3: example(0):[now.pt.y++;]

4: example(0):[else]

values 0: 3, 0,1

5: example(0):[printf("values: %d,%d\n", \

 now.pt.x, now.pt.y);]

pan: error: assertion violated 0 (at depth 6)

spin: trail ends after 6 steps

#processes 1:

 6: proc 0 (example) line 20 (state 10)

 assert(0)

global vars:

 int z: 3

local vars proc 0 (example):

 (none)

 Note that in this run, the print statement was not just reproduced but also executed. Similarly, the data object pt was
created, and its value is updated in the c_code statements so that the final values of its elements pt accurately reflect
the execution. There is only one process here, with _pid value zero, so the columnation feature of this format is not
evident.

 More information can be added to the output by adding option -v. Alternatively, all output except the ones that are
generated by explicit print statements in the model can be suppressed by adding option -n.

 In long and complex error trails with multiple process executions, it can be helpful to restrict the trail output to just
one of the executing processes. This can be done with the help of option -P, which should be followed by the pid
number of the process of interest.

 For a more detailed explanation of the special declarators c_decl and c_track, we point to the manual pages that
follow at the end of this chapter.

[Team LiB]

[Team LiB]

Issues to Consider
 The capability to embed arbitrary fragments of C code into a PROMELA model is powerful and therefore easily
misused. The intent of these features is to support mechanized model extractors that can automatically extract an
accurate, possibly abstract, representation of application level C code into a SPIN verification model. The model
extractor (see Appendix D) can include all the right safeguards that cannot easily be included in SPIN without
extending it into a full ANSI-C compiler and analyzer. Most of the errors that can be made with the new primitives
will be caught, but not necessarily directly by SPIN. The C compiler, when attempting to compile a model that
contains embedded fragments of code, may object to ill-defined structures, or the verifier may crash on faults that can
be traced back to coding errors in the embedded code fragments.

 If data that is manipulated inside the embedded C code fragments contains relevant state information, but is not
declared as such with c_state or c_track primitives, then the search process itself can get confused, and error trails
may be produced by the verifier that do not correspond to feasible executions of the modeled system. With some
experience, these types of errors are relatively easy to diagnose. Formally, they correspond to invalid "abstractions" of
the model. The unintended "abstractions" are caused by missing c_state or c_track primitives.

 To see what happens when we forget to treat externally declared data objects as carrying state information, consider
the following simple model:

c_code { int x; }

active proctype simple()

{

 c_code { x = 2; };

 if

 :: c_code { x = x+2; }; assert(c_expr { x==4 })

 :: c_code { x = x*3; }; assert(c_expr { x==6 })

 fi

}

 We have declared the variable x in a c_code statement, but omitted to track its value. The verifier will therefore
ignore value changes in this variable when it stores and compares states, although it will faithfully perform every
assignment or test of this variable in the execution of the model.

 At first sight, it would seem obvious that neither one of the two could possibly fail, but when we perform the
verification we see:

$ spin -a simple1.pr

$ cc -o pan pan.c

$./pan

pan: assertion violated (x == 6)

pan: wrote simple.pr.trail

...

 To understand the reason for this error, consider for a moment how the depth-first search process proceeds in this
case. The verifier starts by executing the assignment

c_code { x = 2; };

 Next, it has the choice between two executable statements. It can either increment the value of x by two, or it can
multiply it by three. As it happens, it will choose to try the first alternative first. It executes

c_code { x = x+2; }; assert(c_expr { x==4 })

 Not surprisingly, the assertion holds. The search now reaches the end of the execution: there are no further
statements to execute in this model. So, the depth-first search reverses and backs up to the point where it had to
make a choice between two possible ways to proceed: at the start of the if statement. The verifier restores the state of
the system to the control flow point at the start of the if statement, but since the variable x is not treated as a state
variable, its value remains unchanged at this point. The search now proceeds, with x having the value four. The
multiplication that is now executed to explore the second option sequence

c_code { x = x*3; }; assert(c_expr { x==6 })

 which results in the unexpected value of twelve for x. As a result, the second assertion fails. The counterexample that
is generated will clearly show that there is confusion about the true value of x, which is the hint we can use to correct
the model by supplying the missing c_track statement.

c_code { int x; }

c_track "&x" "sizeof(int)"

active proctype simple()

{

 c_code { x = 2; };

 if

 :: c_code { x = x+2; }; assert(c_expr { x==4 })

 :: c_code { x = x*3; }; assert(c_expr { x==6 })

 fi

}

 Verification now produces the expected result:

$ spin -a simple2.pr

$ cc -o pan pan.c

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 16 byte, depth reached 4, errors: 0

 8 states, stored

 0 states, matched

 8 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(max size 2^18 states)

1.573 memory usage (Mbyte)

unreached in proctype simple

 (0 of 8 states)

 How does one determine which external data objects from an application contain state information and which do
not? This is ultimately a matter of judgement, and lacking proper judgement, a process of discovery. The
determination can be automated, to some extent, for a given set of logic properties. A data dependency analysis may
be used to determine what is relevant and what is not. A more detailed discussion of this issue, though important, is
beyond the scope of this book.

[Team LiB]

[Team LiB]

Deferring File Inclusion
 It is often convenient to include a collection of C code into a model with a preprocessor include directive, for
instance, as follows:

#include "promela.h" /* Promela data definitions */

c_decl {

#include "c_types.h" /* C data type definitions */

}

c_code {

#include "functions.c" /* C function definitions */

}

#include "model.pr" /* the Promela model itself */

 When SPIN invokes the C preprocessor on this model, the contents of the included files are inserted into the text
before the model text is parsed by the SPIN parser. This works well if the files that are included are relatively small,
but since there is a limit on the maximum size of a c_code or c_decl statement, this can fail if the files exceed that limit.
(At the time of writing, this limit is set at 64Kbytes.)

 There is an easy way to avoid hitting this limit. Because C code fragments are not interpreted until the verifier code is
parsed by the C compiler, there is no need to actually have the body of a c_code or c_decl statement inserted into the
text of the model before it is passed to the SPIN parser. We can achieve this by prefixing the pound sign of the
corresponding include directives with a backslash, as follows:

c_decl {

\#include "c_types.h" /* C data type definitions */

}

c_code {

\#include "functions.c" /* C function definitions */

}

 The SPIN parser will now simply copy the include directive itself into the generated C code, without expanding it
first. The backslash can only be used in this way inside c_decl and c_code statements, and it is the recommended way
to handle included files in these cases.
[Team LiB]

[Team LiB]

c_code

 Name

 c_code – embedded C code fragments.

 Syntax

c_code { /* c code */ }
c_code '[' /* c expr */ ']' { /* c code */ ; }

 Executability

 true

 Effect

 As defined by the semantics of the C code fragment placed between the curly braces.

 Description

 The c_code primitive supports the use of embedded C code fragments inside PROMELA models. The code must be
syntactically valid C, and must be terminated by a semicolon (a required statement terminator in C).

 There are two forms of the c_code primitive: with or without an embedded expression in square brackets. A missing
expression clause is equivalent to [1]. If an expression is specified, its value will be evaluated as a general C
expression before the C code fragment inside the curly braces is executed. If the result of the evaluation is non-zero,
the c_code fragment is executed. If the result of the evaluation is zero, the code between the curly braces is ignored,
and the statement is treated as an assertion violation. The typical use of the expression clause is to add checks for
nil-pointers or for bounds in array indices. For example:

c_code [Pex->ptr != 0 && now.i < 10 && now.i >= 0] {

 Pex->ptr.x[now.i] = 12;

}

 A c_code fragment can appear anywhere in a PROMELA model, but it must be meaningful within its context, as
determined by the C compiler that is used to compile the complete model checking program that is generated by
SPIN from the model.

 Function and data declarations, for instance, can be placed in global c_code fragments preceding all proctype
definitions. Code fragments that are placed inside a proctype definition cannot contain function or data declarations.
Violations of such rules are caught by the C compiler. The SPIN parser merely passes all C code fragments through
into the generated verifier uninterpreted, and therefore cannot detect such errors.

 There can be any number of C statements inside a c_code fragment.

 Examples

int q;

c_code { int *p; };

init {

 c_code { *p = 0; *p++; };

 c_code [p != 0] { *p = &(now.q); };

 c_code { Printf("%d\n", Pinit->_pid); }

}

 In this example we first declare a normal PROMELA integer variable q that automatically becomes part of the
verifier's internal state vector (called now) during verification. We also declare a global integer pointer p in a global
c_code fragment. Since the contents of a C code fragment are not interpreted by SPIN when it generates the verifier,
SPIN cannot know about the presence of the declaration for pointer variable p, and therefore this variable remains
invisible to the verifier: its declaration appears outside the state vector. It can be manipulated as shown as a regular
global pointer variable, but the values assigned to this variable are not considered to be part of the global system state
that the verifier tracks.

 To arrange for data objects to appear inside the state vector, and to be treated as system state variables, one or
more of the primitives c_decl, c_state, and c_track should be used (for details, see the corresponding manual pages).

 The local c_code fragment inside the init process manipulates the variable p in a direct way. Since the variable is not
moved into the state vector, no prefix is needed to reference it.

 In the second c_code fragment in the body of init, an expression clause is used that verifies that the pointer p has a
non-zero value, which secures that the dereference operation that follows cannot result in a memory fault. (Of course,
it would be wiser to add this expression clause also to the preceding c_code statement.) When the c_code statement
is executed, the value of p is set to the address of the PROMELA integer variable q. Since the PROMELA variable is
accessed inside a c_code fragment, we need a special prefix to identify it in the global state vector. For a global
variable, the required prefix is the three-letter word now followed by a period. The ampersand in &(now.q) takes the
address of the global variable within the state vector.

 The last c_code statement in init prints the value of the process identifier for the running process. This is a predefined
local variable.

 To access the local variable in the init process, the required prefix is Pinit->. This format consists of the uppercase
letter P, followed by the name of the process type, followed by an arrow ->.

 See also the description on data access in c_expr.

 Notes

 The embedded C code fragments must be syntactically correct and complete. That is, they must contain proper
punctuation with semicolons, using the standard semantics from C, not from PROMELA. Note, for instance, that
semicolons are statement terminators in C, but statement separators in PROMELA.

 Because embedded C code is not interpreted by the SPIN parser, inline parameter substitutions are not applied to
those code fragments. In cases where this is needed, the inline definitions can be replaced with macro preprocessor
definitions.

 A common use of the c_code primitive is to include a larger piece of code into a model that is stored in a separate
file, for instance, as follows:

c_code {

#include "someheaders.h"

#include "someCcode.c"

};

 If the included code fragment is too large (in the current implementation of SPIN this means larger than about
64Kbyte of text), SPIN will complain about that and fail. A simple way to bypass this restriction, for instance, when
generating the verification code with SPIN's -a option, is to defer the interpretation of the include directives by the
SPIN preprocessor, and to copy them through into the generated code unseen. This can be accomplished as follows,
by placing a backslash before the pound sign of any include directive that appears inside a c_code primitive.

c_code {

\#include "someheaders.h"

\#include "someCcode.c"

};

 Functionally, this is identical to the previous version, but it makes sure that the SPIN preprocessor will not read in the
text of the included files when the model is parsed.

 See Also

 c_expr, c_decl, c_state, c_track, macros

[Team LiB]

[Team LiB]

c_decl

 Name

 c_decl, c_state, c_track – embedded C data declarations.

 Syntax

c_decl { /* c declaration */ }
c_state string string [string]
c_track string string

 Executability

 true

 Description

 The primitives c_decl, c_state, and c_track are global primitives that can only appear in a model as global
declarations outside all proctype declarations.

 The c_decl primitive provides a capability to embed general C data type declarations into a model. These type
declarations are placed in the generated pan.h file before the declaration of the state-vector structure, which is also
included in that file. This means that the data types introduced in a c_decl primitive can be referenced anywhere in the
generated code, including inside the state vector with the help of c_state primitives. Data type declarations can also be
introduced in global c_code fragments, but in this case the generated code is placed in the pan.c file, and therefore
appears necessarily after the declaration of the state-vector structure. Therefore, these declarations cannot be used
inside the state vector.

 The c_state keyword is followed by either two or three quoted strings. The first argument specifies the type and the
name of a data object. The second argument the scope of that object. A third argument can optionally be used to
specify an initial value for the data object. (It is best not to assume a known default initial value for objects that are
declared in this way.)

 There are three possible scopes: global, local, or hidden. A global scope is indicated by the use of the quoted string
"Global." If local, the name Local must be followed by the name of the proctype in which the declaration is to appear,
as in "Local ex2." If the quoted string "Hidden" is used for the second argument, the data object will be declared as a
global object that remains outside the state vector.

 The primitive c_track is a global primitive that can declare any state object, or more generally any piece of memory,
as holding state information. This primitive takes two string arguments. The first argument specifies an address,
typically a pointer to a data object declared elsewhere. The second argument gives the size in bytes of that object, or
more generally the number of bytes starting at the address that must be tracked as part of the system state.

 Examples

 The first example illustrates how c_decl, c_code and c_state declarations can be used to define either visible or
hidden state variables, referring to type definitions that must precede the internal SPIN state-vector declaration. For
an explanation of the rules for prefixing global and local variables inside c_code and c_expr statements, see the
manual pages for these two statements.

c_decl {

 typedef struct Proc {

 int rlock;

 int state;

 struct Rendez *r;

 } Proc;

 typedef struct Rendez {

 int lck;

 int cond;

 Proc *p;

 } Rendez;

}

c_code {

 Proc H1;

 Proc *up0 = &H1;

 Rendez RR;

}

/*

 * The following two c_state declarations presume type

 * Rendez known the first enters R1 into state vector

 * as a global variable, and the second enters R2 into

 * proctype structure as local variable.

 */

c_state "Rendez R1" "Global"

c_state "Rendez R2" "Local ex2" "now.R1"

/*

 * The next two c_state declarations are kept outside

 * the state vector. They define H1 and up0 as global

 * objects, which are declared elsewhere.

 */

c_state "extern Proc H1" "Hidden"

c_state "extern Proc *up0" "Hidden"

/*

 * The following declaration defines that RR is to be

 * treated as a state variable -- no matter how it was

 * declared; it can be an arbitrary external variable.

 */

c_decl {

\#include "types.h" /* declare type Rendez */

/* for the purpose of the backslash, see p. 504 */

}

c_track "&RR" "sizeof(Rendez)"

active proctype ex2()

{

 c_code { now.R1.cond = 1; }; /* global */

 c_code { Pex2->R2.lck = 0; }; /* local */

 c_code { H1.rlock = up0->state; }; /* C */

 printf("This is Spin Version 4.0\n")

}

 Notes

 SPIN instruments the code of the verifier to copy all data pointed to via c_track primitives into and out of the state
vector on forward and backward moves during the depth-first search that it performs. Where there is a choice, the
use of c_state primitives will always result in more efficiently executed code, since SPIN can instrument the generated
verifier to directly embed data objects into the state vector itself, avoiding the copying process.

 To get a better feeling for how precisely these primitives are interpreted by SPIN, consider generating code from the
last example, and look in the generated files pan.h and pan.c for all appearances of variables R1, R2, P1, and up0.

 Avoid using type-names that clash with internal types used within the SPIN-generated verifiers. This includes names
such as State, P0, P1, etc., and Q0, Q1, etc. Name clashes caused by unfortunate choices of type names are reliably
caught by the C compiler when the verification code is compiled.

 See Also

 c_expr, c_code

[Team LiB]

[Team LiB]

c_expr

 Name

 c_expr – conditional expressions as embedded C code.

 Syntax

c_expr { /* c code */ }
c_expr '[' /* c expr */ ']' { /* c code */ }

 Executability

 If the return value of the arbitrary C code fragment that appears between the curly braces is non-zero, then true;
otherwise false.

 Effect

 As defined by the semantics of the C code fragment that is placed between the curly braces. The evaluation of the C
code fragment should have no side effects.

 Description

 This primitive supports the use of embedded C code inside PROMELA models. A c_expr can be used to express
guard conditions that are not necessarily expressible in PROMELA with its more restrictive data types and language
constructs.

 There are two forms of the c_expr primitive: with or without an additional assertion expression in square brackets. A
missing assertion expression is equivalent to [1]. If an assertion expression is specified, its value is evaluated as a
general C expression before the code inside the curly braces is evaluated. The normal (expected) case is that the
assertion expression evaluates to a non-zero value (that is to an equivalent of the boolean value true). If so, the C
code between the curly braces is evaluated next to determine the executability of the c_expr as a whole.

 If the evaluation value of the assertion expression is zero (equivalent to false), the code between the curly braces is
ignored and the statement is treated as an assertion violation.

 The typical use of the assertion expression clause is to add checks for nil-pointers or for possible array bound
violations in expressions. For example:

c_expr [Pex->ptr != NULL] { Pex->ptr->y }

 Note that there is no semicolon at the end of either C expression. If the expression between square brackets yields
false (zero), then an assertion violation is reported. Only if this expression yields true (non-zero), is the C expression
between curly braces evaluated. If the value of this second expression yields true, the c_expr as a whole is deemed
executable and can be passed; if false, the c_expr is unexecutable and blocks.

 Examples

 The following example contains a do-loop with four options. The first two options are equivalent, the only difference
being in the way that local variable x is accessed: either via an embedded C code fragment or with the normal
PROMELA constructs.

active proctype ex1()

{ int x;

 do

 :: c_expr { Pex1->x < 10 } ->

 c_code { Pex1->x++; }

 :: x < 10 -> x++

 :: c_expr { fct() } -> x--

 :: else -> break

 od

}

 The local variable x is declared here as a PROMELA variable. Other primitives, such as c_decl, c_state, and
c_track allow for the declaration of data types that are not directly supported in PROMELA.

 The references to local variable x have a pointer prefix that always starts with a fixed capital letter P that is followed
by the name of the proctype and an pointer arrow. This prefix locates the variable in the local state vector of the
proctype instantiation.

 The guard of the third option sequence invokes an externally defined C function named fct() that is presumed to
return an integer value. This function can be declared in a global c_code fragment elsewhere in the model, or it can be
declared externally in separately compiled code that is linked with the pan.[chtmb] verifier when it is compiled.

 Notes

 Note that there is no semicolon before the closing curly brace of a c_expr construct. It causes a C syntax error if
such a semicolon appears here. All syntax errors on embedded C code fragments are reported during the compilation
of the generated pan.[chtmb] files. These errors are not detectable by the SPIN parser.

 Because embedded C code is not processed by the SPIN parser, inline parameter substitutions are not applied to
those code fragments. In cases where this is needed, the inline definitions can be replaced with macro preprocessor
definitions.

 See Also

 c_code, c_decl, c_state, c_track, macros

[Team LiB]

[Team LiB]

Chapter 18. Overview of SPIN Options
 "An error does not become a mistake unless you refuse to correct it."

 —(Manfred Eigen, 1927–)

 In this chapter we discuss all available SPIN options. The options are grouped into seven categories according to
their primary use, as follows:



 Compile-time options, which can be used to compile the SPIN source itself for different platforms and for
different types of use



Simulation options, which can be used for customizing simulation runs of PROMELA models


Syntax checking options, for performing a basic check of the syntactic correctness of PROMELA models


LTL conversion options, describing various ways in which the conversion from LTL formulae to PROMELA
never claims can be done



Model checker generation options


Postscript generation options


Miscellaneous options

 Except for the first category above, all these options are defined as run-time parameters to the SPIN tool. Since
SPIN is an evolving tool, new options will continue to be added to the tool from time to time. An up-to-date list of
these options in the specific version of SPIN that is installed on your system can always be printed with the command:

$ spin --

 The discussion in this chapter covers all compile-time and run-time options that are available in SPIN version 4.
[Team LiB]

[Team LiB]

Compile-Time Options
 There are eight compile-time directives that can be used to change the default settings for the compilation of the
SPIN sources. They are: __FreeBSD__, CPP, MAXQ, NO_OPT, NXT, PC, PRINTF, and SOLARIS.

 These directives are typically set in the SPIN makefile at the time the tool is first installed on a system, and should
rarely need modification later. The settings are typically included by changing the definition of the CFLAGS parameter
in SPIN's makefile. As an example, to change the default location of the C preprocessor in the compiled version of
SPIN, we could change the line

CFLAGS=-ansi -D_POSIX_SOURCE

 into this new setting

CFLAGS=-ansi -D_POSIX_SOURCE -DCPP=/opt/prep/cpp

 We first discuss the use of the CPP directive together with the two special cases __FreeBSD__ and SOLARIS.

 -DCPP=..., -DSOLARIS, -D__FreeBSD__

 SPIN always preprocesses the source text of PROMELA models with the standard C preprocessor before it
attempts to parse it. The preprocessor takes care of the interpretation of all #include and #define directives. On most
UNIX systems, the location of the C preprocessor is /lib/cpp, so the default compilation of SPIN implies
-DCPP=/lib/cpp.

 On PCs the preprocessor is usually installed as a separate program, and therefore when SPIN is compiled with the
directive -DPC, the default setting of the CPP parameter changes to -DCPP=cpp.

 To override the default settings, an explicit value for the CPP parameter can be provided.

 Two standard cases are predefined. By compiling SPIN with the directive -D__FreeBSD__, the default setting for
the preprocessor changes to cpp, which matches the requirements on these systems. By compiling SPIN with the
directive -DSOLARIS, the default setting for the preprocessor changes to /usr/ccs/lib/cpp, matching the location of
the C preprocessor on Solaris systems.

 These settings only affect the compilation of the main.c file from the SPIN sources.

 There is also another way to define a switch to another preprocessor—by using SPIN's command line arguments P
and E. For instance, on an OS2 system one might say:

$ spin -Picc -E/Pd+ -E/Q+ model

 to notify SPIN that preprocessing is done by calling icc with parameters /Pd+ /Q+. Similarly, on a Windows system
with the Visual C++ compiler installed, one can say:

$ spin -PCL -E/E model

 independent of the settings for CPP with which SPIN itself was compiled. For more information on these run-time
options, see the miscellaneous options section below.

 -DMAXQ=N

 The maximum number of message channels that can be created during a verification run is fixed to the value 255. This
limit prevents both runaway models that may be attempting to create infinite numbers of channels, and it secures nicely
that the identifying number, used internally by the verifier to keep track of channels, always fits within a single byte. In
simulation, the requirements are less strict. In early versions of SPIN, the maximum number of channels that could be
created in a simulation run was set at 2,500. In SPIN version 4.0 and later, the limit is set the same for both simulation
and verification, which means that it is 255 in both modes. The default setting for simulations can be changed by
compiling the SPIN sources with a different upper-bound, for instance, -DMAXQ=2500. This override only affects
the compilation of the file mesg.c and it only affects the behavior of SPIN in simulation mode.

 -DNO_OPT

 In the conversion of LTL formulae into PROMELA never claims, SPIN uses a number of simple optimizations that
are defined as rewrite rules on formulae. To study the effect of these rewrite rules, SPIN can be compiled without
them. The rules are disabled if SPIN is compiled with the compiler directive -DNO_OPT. Clearly, it is not
recommended to use this setting for normal use of SPIN.

 -DNXT

 In the syntax that SPIN accepts for the specification of LTL formulae, the standard LTL operator next, written X, is
not allowed. The restriction secures that all LTL properties that can be expressed are necessarily compatible with
SPIN's partial order reduction strategy. Technically, it means that the behavior expressed by these formulae is stutter
invariant. Quite apart from this desirable closure property, one can also make a strong argument that the only types of
properties that one can sensibly state about distributed system executions preclude the use of the next operator.
(There is no real notion of a unique next step in a concurrent system.) The conversion algorithm for LTL formulae,
though, can easily handle the next operator if the above concerns are not applicable. Furthermore, it is also possible to
write LTL formulae that do include the next operator and that are still stutter invariant, but this is generally hard to
determine.

 If desired, therefore, SPIN can be compiled with the next operator enabled by adding the directive -DNXT.

 -DPC

 When the SPIN sources are compiled under Windows on a PC, a few UNIX-isms are not guaranteed to work.
This, for example, includes calls to non-POSIX system library functions such as sbrk(). Also, the PC versions of
parser generators such as yacc are likely to leave their output in files named y_tab.c and y_tab.h, rather then the
multidotted file names used on UNIX systems y.tab.c and y.tab.h. Adding the compile-time directive -DPC will
arrange for the right modifications in the compilation of the SPIN sources.

 -DPRINTF

 During verification runs, PROMELA printf statements are normally disabled. This means that execution of a print
statement during the search that is performed by the verifier normally produces no output on the user's terminal. Such
output would be of very little use. It would be generated in seemingly random order and it would noticeably slow
down the verification process if it were not disabled. Nonetheless, for debugging purposes the execution of print
statements during verification can be enabled by compiling the SPIN sources with the directive -DPRINTF. This
change affects only the verification process; print statements are never disabled during simulation runs. The directive
affects the compilation of only the source files named pangen1.c and pangen2.c.

[Team LiB]

[Team LiB]

Simulation Options
 The command line options to SPIN that we discuss in this section are all meant to define or modify the type of output
that is produced during a simulation run, that is, they do not affect any verification settings.

 SPIN can be used for three main types of model simulation: random (default), interactive (option -i), and guided
simulation (option -t).

 When invoked with only a filename as an argument and no other command-line options, for instance,

$ spin model

 SPIN performs a random simulation of the model that is specified in the file. If no filename is provided, SPIN
attempts to read a model from the standard input. This can of course be confusing if it is unexpected, so SPIN gives a
warning when it is placed in this mode:

$ spin

Spin Version 4.0.7 -- 1 August 2003

reading input from stdin:

 Typing an end-of-file symbol gets the tool out of this mode again (control-d on UNIX systems, or control-z on
Windows systems).

 Also possibly confusing at first, even if a filename is provided, may be that a simulation run of the model by itself may
not generate any visible output; for instance, when the PROMELA model does not contain any explicit print
statements. At the end of the simulation run, though, if it does terminate, SPIN always prints some details about the
final state that is reached when the simulation completes. By adding additional options (e.g., -c, or -p) more detail on
a simulation run in progress will be provided, but only the information that the user explicitly requests is generated.
Every line of output that is produced by the simulator normally also contains a reference to the source line in the model
that generated it.

 Summarizing: A random simulation is selected by default. If run-time option -i is used, the simulation will be
performed in interactive mode, which means that the SPIN simulator will prompt the user each time that a
non-deterministic choice has to be resolved. The user can then choose from a list of alternatives, and in this way
interactively guide the execution towards a point of interest. If run-time option -t is used, the simulator is put into
guided simulation mode, which presumes the existence of a trail file that must have been produced by the verification
engine prior to the simulation.

 Alphabetical Listing

 -B

 Suppresses the printout at the end of a simulation run, giving information on the final state that is reached in each
process, the contents of channels, and the value of variables.

 -b

 Suppresses the output from print statements during a simulation run.

 -c

 Produces an ASCII approximation of a message sequence chart for a simulation run. For instance:

$ spin -c tpc6

proc 0 = :init:

proc 1 = user

proc 2 = local_tpc

proc 3 = manager

proc 4 = Session

proc 5 = Session

q 0 1 2 3 4 5

 4 . tpc!offhook,0

 4 . . tpc?offhook,0

 5 . . handler[0]!offhook

 5 . . . handler[0]?offhook

 1 . . . child[0]!start

 1 me?start

 1 . . . child[0]!offhook

...

 For every process that is initiated, SPIN assigns a pid and prints it, together with the name of the corresponding
proctype. In the example, the simulation run starts with the initiation of six processes of the types listed. In the
remainder of the listing, the processes and message channels are only referred to by their identifying numbers. The
output for each process appears in a different column. Only message send and receive operations are printed in the
columnated format. If print statements are executed, the output from the statement also appears within the column of
the executing process (but see options -b and -T). For send and receive operations, the left margin lists the specific
channel number that is used for the operation. See also options -M, and -u.

 -g

 Shows at each time step the current value of global variables. Normally, this only prints the value of a global variable
when a new value was assigned to that variable in the last execution step. To obtain a full listing of all global variable
values at each execution step, add options -v and -w.

 -i

 Performs an interactive simulation, allowing the user to resolve non-deterministic choices wherever they occur during
the simulation run. The simulation proceeds without user intervention whenever it can proceed deterministically.

 -J

 Reverses the evaluation order of nested unless statements, so that the resulting semantics conforms to the evaluation
order of nested catch statements in Java programs.

 -jN

 Skips the first N steps of a random or guided simulation. N most be a positive integer value. See also option -uN.

 -l

 In combination with option -p, this shows the current value of local variables of the process. Normally, this only prints
the value of a local variable when a value was assigned to that variable in the last execution step. To obtain a full listing
of all local variable values at each execution step, add options -v and -w.

 -m

 Changes the semantics of send events. Ordinarily, a send action is unexecutable (blocked) if the target message
channel is filled to capacity. When the -m option is used, send operations are always executable, but messages sent to
a full buffer are lost.

 -nN

 Sets the seed for the random number generator that is used to guide a random simulation to the integer value N.
There is no space between the -n and the integer N. Without this option, SPIN uses the current clock time as a seed.
This means that to get a reproducible random simulation run, the use of the -n option is required.

 -p

 Shows at each execution step in the simulation run which process changed state, and what source statement was
executed. For instance (using also a few other options discussed here):

$ spin -b -B -p -u5 tpc6

0: proc - (:root:) creates proc 0 (:init:)

1: proc 0 (:init:) line 213 "tpc6" (state 11) [i = 0]

2: proc 0 (:init:) line 219 "tpc6" (state 8) [.(goto)]

3: proc 0 (:init:) line 215 "tpc6" (state 7) [((i<1))]

4: proc 0 (:init:) creates proc 1 (user)

4: proc 0 (:init:) line 216 "tpc6" (state 3) [run user(i)]

5: proc 0 (:init:) line 216 "tpc6" (state 4) [i = (i+1)]

 -qN

 In columnated output (i.e., using option -c) and with options -s and -rthis suppresses the printing of output for send
and receive operations on the channel numbered N. To discover which channel numbers correspond to which
channels, it can be useful to first perform a straight simulation with just the -c option.

 -r

 Prints all receive statements that are executed, giving the name and number of the receiving process and the
corresponding source line number. For each message parameter this shows the message type and the message
channel number and name. For instance:[1]

[1] For layout purposes, line and source file references that are normally part of the listings are omitted here.

$ spin -b -B -r -u99 tpc6

29: proc 3 (manager) ... offhook <- q 5 (handler[0])

43: proc 4 (Session) ... start <- q 2 (me)

53: proc 4 (Session) ... offhook <- q 2 (me)

62: proc 3 (manager) ... number <- q 5 (handler[0])

69: proc 4 (Session) ... number <- q 2 (me)

timeout

91: proc 3 (manager) ... onhook <- q 5 (handler[0])

depth-limit (-u100 steps) reached

 -s

 Prints all send statements that are executed in a format similar to that produced by the -r option. For instance:

$ spin -b -B -u99 -s tpc6

25: proc 1 (user) ... Sent offhook,0 -> q 1 (tpc)

27: proc 2 (local_tpc) ... offhook -> q 5 (handler[0])

42: proc 3 (manager) ... start -> q 2 (child[0])

43: proc 3 (manager) ... offhook -> q 2 (child[0])

55: proc 1 (user) ... Sent number,0 -> q 1 (tpc)

56: proc 2 (local_tpc) ... number -> q 5 (handler[0])

68: proc 3 (manager) ... number -> q 2 (child[0])

86: proc 1 (user) ... Sent onhook,0 -> q 1 (tpc)

87: proc 2 (local_tpc) ... onhook -> q 5 (handler[0])

88: proc 1 (user) ... Sent offhook,0 -> q 1 (tpc)

89: proc 2 (local_tpc) ... offhook -> q 5 (handler[0])

96: proc 3 (manager) ... onhook -> q 2 (child[0])

depth-limit (-u100 steps) reached

 See also -c.

 -T

 Suppresses the default indentation of the output from print statements. By default, the output always appears indented
by an amount that corresponds to the pid number of the executing process. With this option the output appears
left-adjusted. See also -b.

 -t[N]

 Performs a guided simulation, following an execution trail that was produced by an earlier verification run. If an
optional number N is attached (with no space between the number and the -t), a numbered execution trail is executed
instead of the default unnumbered trail. Numbered execution trails can be generated with verification option -e.

 -uN

 Stops the simulation run after N steps have been executed. See also -jN.

 -v

 Performs the simulation in verbose mode, adding more detail to the printouts and generating more hints and warnings
about dubious constructs that appear in the model.

 -w

 Enables more verbose versions of the options -l and -g.

[Team LiB]

[Team LiB]

Syntax Checking Options

 -a

 Normally, when simulation runs are performed, SPIN tries to be forgiving about minor syntax issues in the model
specification. Because the PROMELA model is interpreted on-the-fly during simulations, any part of the model that is
not executed may escape checking. It is therefore possible that some semantic issues are missed in simulation runs.

 When SPIN option -a is used, though, a more thorough check of the complete model is performed, as the source
text for a model-specific verifier is also generated. This means that, quite apart from the generation of the verifier
source files, the -a option can be useful as a basic check on the syntactical correctness of a PROMELA model. More
verbose information is generated if the -v flag is also added, as in:

$ spin -a -v model

 -A

 When given this option, SPIN will apply a property-based slicing algorithm to the model which can generate
warnings about statements and data objects that are likely to be redundant, or that could be revised to use less
memory. The property-based information used for the slicing algorithm is derived from basic assertion statements and
PROMELA never claims that appear in the model.

 -I

 This option will cause SPIN to print the body text of each proctype specification after all preprocessing and inlining
operations have been completed. It is useful to check what the final effect is of parameter substitutions in inline calls,
and of ordinary macro substitions.

 -Z

 This option will run only the preprocessor over the model source text, writing the resulting output into a file named
pan.pre. Good for a very mild syntax check only. The option is there primarily for the benefit of XSPIN.
[Team LiB]

[Team LiB]

Postscript Generation

 -M

 Generates a graphical version of a message sequence chart as a Postscript file. A long chart is automatically split
across multiple pages in the output that is produced. This representation is meant to closely resemble the version that
is produced by XSPIN. The result is written into a file called model.ps, where model is the name of the file with the
PROMELA source text for the model. The option can be used for random simulation runs, or to reproduce a trail
generated by the verifier (in combination with option -t). See also option -c for a non-Postscript alternative.
[Team LiB]

[Team LiB]

Model Checker Generation
 The following options determine how verification runs of PROMELA models can be performed. The verifications are
always done in several steps. First, optimized and model-specific source code for the verification process is
generated. Next, that source code can be compiled in various ways to fine-tune the code to a specific type of
verification. Finally, the compiled code is run, again subject to various run-time verification options.

 -a

 Generates source code that can be compiled and run to perform various types of verification of a PROMELA model.
The output is written into a set of C files named pan.[cbhmt], that must be compiled to produce an executable verifier.
The specific compilation options for the verification code are discussed in Chapter 19. This option can be combined
with options -J and -m.

 -N file

 Normally, if a model contains a PROMELA never claim, it is simply included as part of the model. If many different
types of claims have to be verified for the same model, it can be more convenient to store the claim in a separate file.
The -N option allows the user to specify a claim file, containing the text of a never claim, that the SPIN parser will
include as part of the model. The claim is appended to the model, that is, it should not contain definitions or
declarations that should be seen by the parser before the model itself is read.

 The remaining five options control which optimizations that may be used in the verifier generation process are enabled
or disabled. Most optimizations, other than more experimental options, are always enabled. Typically, one would
want to disable these optimizations only in rare cases, for example, if an error in the optimization code were to be
discovered.

 -o1

 Disables data-flow optimizations in verifier. The data-flow optimization attempts to identify places in the model where
variables become dead, that is, where their value cannot be read before it is rewritten. The value of such variables is
then reset to zero. In most cases, this optimization will lower verification complexity, but it is possible to create models
where the reverse happens.

 -o2

 Disables the elimination of write-only variables from the state descriptor. It should never be necessary to use this
option, other than to confirm its effect on the length of the state vector and the resulting reduction in the memory
requirements.

 -o3

 Disables the statement merging technique. Statement merging can make it hard to read the output of the pan -d
output (see Chapter 19), which dumps the internal state assignments used in the verifier. Disabling this option restores
the old, more explicit format, where only one statement is executed per transition. Disabling this option, however, also
loses the reduction in verification complexity that the statement merging technique is designed to accomplish.

 -o4

 Enables a more experimental rendezvous optimization technique. This optimization attempts to precompute the
feasibility of rendezvous operations, rather than letting the model checker determine this at run time. It is hard to find
cases where the use of this option brings convincing savings in the verifi-cation process, so it is likely that this option
will quietly disappear in future SPIN versions.

 -o5

 Disables the case caching technique. Leaving this option enabled allows the verifier generator to make smarter use of
case statements in the pan.m and pan.b files, especially for larger models. This allows for a sometimes considerable
speedup in the compilation of the generated verifier.

 -S1 and -S2

 Separate compilation options. If the size of the verification model is much larger than the size of a never claims, and
there are very many such claims that need to be verified for a single model, it can be more efficient to compile the
verification source text for the model separately from the source text for the claim automata. If the file model.pml
contains both the main model specification and the never claim, in the simplest case the verifier is then generated and
compiled in two separate steps

$ spin -S1 model.pml # source for model without claim

$ spin -S2 model.pml # source for the claim

 This generates two sets of sources, with file names pan_s.[chmbt] and pan_t.[chmbt], respectively. These sources
can be compiled separately and then linked to produce an executable verifier:

$ cc -c pan_s.c # source for model without claim

$ cc -c pan_t.c # source for the claim

$ cc -o pan pan_s.o pan_t.o # link both parts

 Alternatively, on a Windows machine using the Gnu C compiler, the command sequence might look as follows:

$ gcc -c pan_s.c # source for model without claim

$ gcc -c pan_t.c # source for the claim

$ gcc -o pan.exe pan_s.obj pan_t.obj # link both parts

 The idea is that the first part, generating and compiling the source for the main model without the claim, needs to be
done only once, independent of the number of different never claims that must be verified. The second part, generating
and compiling the source for the claim automata, can be repeated for each new claim, but is generally much faster,
since the claim automata are typically much smaller than the model to be verified. Chapter 11, p. 261, contains a more
detailed discussion of these options.

[Team LiB]

[Team LiB]

LTL Conversion
 These two options support the conversion of formulae specified in Linear Temporal Logic (LTL) into PROMELA
never claims. The formula can either be specified on the command line or read from a file.

 -f formula

 This option reads a formula in LTL syntax from the second argument and translates it into the equivalent PROMELA
syntax for a never claim. Note that there must be a space between the -f argument and the formula. If the formula
contains spaces, or starts with the diamond operator <>, it should be quoted to form a single argument and to avoid
misinterpretation by the shell. The quoting rules may differ between systems. On UNIX systems either double or
single quotes can be used. On many Windows or Linux systems only single quotes work. In case of problems, use the
-F alternative below.

 -F file

 This option behaves like option -f except that it will read the formula from the given file and not from the command
line. The file should contain the formula on the first line. Any text that follows this first line is ignored, which means that
it can be used to store arbitrary additional comments or annotation on the formula.
[Team LiB]

[Team LiB]

Miscellaneous Options

 -d

 Produces symbol table information for the PROMELA model. For each PROMELA object, this information includes
the type, name, and number of elements (if declared as an array); the initial value (if a data object) or size (if a
message channel), the scope (global or local), and whether the object is declared as a variable or as a parameter. For
message channels, the data types of the message fields are also listed. For structure variables, the third field in the
output defines the name of the structure declaration that contained the variable.

 -C

 Prints information on the use of channel names in the model. For instance:

$ spin -C tpc6

chan rtpc

 never used under this name

chan manager-child[2]

 exported as run parameter by: manager to Session par 3

 sent to by: manager

chan manager-parent

 exported as run parameter by: manager to Session par 4

 received from by: manager

 In this example, the names Session, manager, parent, and child are the names of proctypes in the model. Local
channel names are identified as the pair of a proctype name and a channel name, separated by a hyphen. A channel
name is said to be exported if it appears as an actual parameter in a run statement. In effect, the channel is then
passed from one process to another. The listing gives the number of the parameter in the call to run in which the
channel name appears.

 When combined with option -g, the output will also include information on known access patterns to all globally
declared channels:

$ spin -C -g tpc6

chan handler

 received from by: manager

 sent to by: local_tpc

chan tpc

 received from by: local_tpc

 sent to by: user

chan rtpc

 never used under this name

chan Session-me

 imported as proctype parameter by: Session par 1

 received from by: Session

chan Session-parent

 imported as proctype parameter by: Session par 1

 sent to by: Session

chan manager-child[2]

 exported as run parameter by: manager to Session par 3

 sent to by: manager

chan manager-parent

 exported as run parameter by: manager to Session par 4

 received from by: manager

 -Dxxx

 Passes the argument -Dxxx in its entirety to the preprocessor that is used. This option allows one to leave the value of
some symbolic constants undefined in the model, so that they can be defined on the command line. See also option
-E.

 -Exxx

 Passes only the string xxx as an argument to the preprocessor.

 -Pxxx

 Replaces the compiled-in name of the preprocessor with xxx. By default, the program used here is the standard C
preprocessor cpp, but with this option it can be replaced with any other, including user-defined programs.

 -V

 Prints the SPIN version number and exits.

$ spin -V

Spin Version 4.0.7 -- 1 August 2003

 -X and -Y

 These two options are reserved for use by the XSPIN interface. Their effect is limited to small changes in the
formatting of the output that can be generated by the other options, such as the addition of blank lines to separate the
output from different execution steps.

[Team LiB]

[Team LiB]

Chapter 19. Overview of PAN Options
 "The only reasonable way to get a program right is to assume that it will at first contain errors and take steps to
discover these and correct them."

 —(Christopher Strachey, 1916–1975)

 This chapter summarizes all verification options. The options apply to the verification code that is generated with
SPIN's run-time option -a. Also included is an explanation of the information that is generated by the program at the
end of a verification run (unless disabled with PAN run-time option -n).

 The three main sections of this chapter cover:


 PAN Compile-Time Options:

Options that are available at the time of compilation of the verifier source code.


PAN Run-Time Options:

Options that are available as command-line arguments to the executable PAN code that is generated by the
compiler.



PAN Output Format:

An explanation of the information that is generated by the PAN verifiers at the end of a run.

 The primary reason for the reliance of compile-time options for the automatically generated verifier code is efficiency:
using compile-time directives allows for the generation of more efficient executables than if all options were handled
through the use of command line arguments.

 If the XSPIN user interface is used, most options are selected automatically by XSPIN (based on user preferences),
so in that case there is no strict need to be familiar with the information that is presented in this chapter.
[Team LiB]

[Team LiB]

PAN Compile-Time Options
 There are quite a few compile-time options for the PAN sources. We will divide them into the following groups,
depending on their main purpose:



 Basic options


Options related to partial order reduction


Options to increase speed


Options to reduce memory use


Options for use only when prompted by PAN


Options for debugging PAN verifiers


Experimental options

 Usage of all compile-time directives is optional. In its most minimal form, the generation, compilation, and execution
of the verification code would simply proceed as follows:

$ spin -a spec

$ cc -o pan pan.c

$./pan

 The compile-time directive can modify the default behavior of the verifier to achieve specific effects, as explained in
more detail shortly. For instance, to enable breadth-first search and bitstate hashing, the compilation command would
change into:

$ cc -DBFS -DBITSTATE -o pan pan.c

[Team LiB]

[Team LiB]

Basic Options

 -DBFS

 Arranges for the verifier to use a breadth-first search algorithm rather than the standard depth-first search. This uses
more memory and restricts the type of properties that can be verified to safety properties only, but within these
restrictions it is the easiest way to find a short error path. This option can be combined with the various methods for
reducting memory use, such as hash-compact, bitstate hashing, collapse compression, and minimized automaton
compression.

 -DMEMCNT=N

 Sets an upper-bound to the amount of memory that can be allocated by the verifier to 2N bytes. This limit should be
set as closely as possible to the amount of physical (not virtual) memory that is available on the machine. Without this
limit, the verifier would pass this limit and start using virtual memory, which in this type of search can lead to a serious
degradation of performance, and in the worst case (when the amount of virtual memory used exceeds the amount of
physical memory used) to thrashing. For example,

$ cc -DMEMCNT=29 -o pan pan.c

 sets the memory limit at 229 = 512 Megabyte. The next step up would bring this to 1 Gigabyte. Somewhat finer
control is available with the directive MEMLIM.

 -DMEMLIM=N

 Sets an upper-bound to the amount of memory that can be allocated by the verifier to N Megabytes. For example,

$ cc -DMEMLIM=600 -o pan pan.c

 sets the limit at 600 Megabyte.

 -DNOCLAIM

 If a PROMELA never claim is part of the model, the addition of this directive will exclude it from the verification
attempt. It is safe to use this directive even if no never claim is present. The code that would ordinarily be used for the
handling of the claim is disabled, which can also improve performance slightly.

 -DNP

 Includes the code in the verifier for non-progress cycle detection, which in turn enables run-time option -l and
simultaneously disables run-time option -a for the detection of standard acceptance cycles.

 -DON_EXIT=STRING

 The name ON_EXIT can be used to define an external procedure name that, if defined, will be called immediately
after the verifier has printed its final statistics on a verification run and just before the verifier exits. A possible use can
be, for instance:

$ spin -a spec

$ cc -DON_EXIT=mycall() -o pan pan.c user_defined.c

$./pan

 where the file user_defined.c contains the definition of procedure mycall().

 -DPROV=file

 If the name PROV is defined, the verifier will arrange to execute whatever code segment is defined in the file file into
the verifier source text, at a point just before the search starts. The code segment should be a sequence of statements
that will be inserted, via an include directive, at the start of the run() procedure. All variable access must be done with
the proper local prefixes, using knowledge about the internal data structures used by the verifier, so the proper use of
this option will require some knowledge of the internals of the verifier. The option can be used to set provisioning
information, for instance, by assigning values to variables declared to be hidden that are used as constants in the
model.

[Team LiB]

[Team LiB]

Options Related to Partial Order Reduction

 -DNOREDUCE

 Disables the partial order reduction algorithm and arranges for the verifier to perform an exhaustive full state
exploration, without reductions. This clearly increases both the time and the memory requirements for the verification
process. The partial order reduction method used in SPIN is explained in Chapter 9 (p. 191).

 -DXUSAFE

 Disables the validity checks on xr and xs assertions. This improves the performance of the verifier and can be useful
in cases where the default check is too strict.
[Team LiB]

[Team LiB]

Options Used to Increase Speed

 -DNOBOUNDCHECK

 Disables the default check on array indices that is meant to intercept out-of-bound array indexing errors. If these
types of errors are known to be absent, disabling the check can improve performance.

 -DNOFAIR

 Disables the code for the weak fairness algorithm, which means that the corresponding run-time option -f will
disappear. If it is known that the weak fairness option will not be used, adding this directive can improve the
performance of the verifier.

 -DSAFETY

 Optimizes the code for the case where no cycle detection is needed. This option improves performance by disabling
run-time options -l and -a, and removing the corresponding code from the verifier.
[Team LiB]

[Team LiB]

Options Used to Decrease Memory Use

 -DBITSTATE

 Uses the bitstate storage algorithm instead of default exhaustive storage. The bitstate algorithm is explained in
Chapter 9 (p. 206).

 -DHC

 Enables the hash-compact storage method. The state descriptor is replaced with a 64-bit hash value that is stored in
a conventional hash table. Variations of the algorithm can be chosen by adding a number from zero to four to the
directive: HC0, HC1, HC2, HC3, or HC4 to use 32, 40, 48, 56, or 64 bits, respectively. The default setting with HC
is equivalent to HC4, which uses 64 bits. The hash-compact algorithm is explained in Chapter 9 (p. 212).

 -DCOLLAPSE

 Compresses the state descriptors using an indexing method, which increases run time but can significantly reduce the
memory requirements. The collapse compression algorithm is explained in Chapter 9 (p. 198).

 -DMA=N

 Enables the minimized automaton storage method to encode state descriptors. Often combines a very significant
reduction in memory requirements with a very significant increase in the run-time requirements. The value N sets an
upper-bound to the size of the state descriptor as stored. This method can often fruitfully be combined with
-DCOLLAPSE compression.

 -DSC

 Enables a stack cycling method, which can be useful for verifications that require an unusually large depth-limit. The
memory requirements for the stack increase linearly with its maximum depth. The stack cycling method allows only a
small fraction of the stack to reside in memory, with the remainder residing on disk. The algorithm swaps unused
portions of the search stack to disk and arrange for just a working set to remain in-core. With this method, the
run-time flag -m determines only the size of the in-core portion of the stack, but does not restrict the stack's maximum
size. This option is meant only for those rare cases where the search stack may be millions of steps long, consuming
the majority of the memory requirements of a verification.
[Team LiB]

[Team LiB]

Options to Use When Prompted by PAN

 If the verifier discovers a problem at run time that can be solved by recompiling the verifier with different directives,
the program prints a recommendation for the recompilation before it exits. This applies to two directives in particular:
-DNFAIR and -DVECTORSZ.

 -DNFAIR=N

 Allocates memory for enforcing weak fairness. By default, that is, in the absence of an explicit setting through the use
of this directive, the setting used is N=2. If this setting is insufficient, the verifier will prompt for recompilation with a
higher value. The default setting can be exceeded if there is an unusually large number of active processes. Higher
values for N imply increased memory requirements for the verification.

 -DVECTORSZ=N

 The default maximum size for the state vector (i.e., state descriptor) is 1,024 bytes. If this is insufficient, for unusually
large models, the verifier will prompt for recompilation with a higher value. For example:

$ cc -DVECTORSZ=2048 -o pan pan.c

 There is no predefined limit for the size of the state vector that can be set in this way. Often, a large state vector can
successfully be compressed losslessly by also using the -DCOLLAPSE directive.
[Team LiB]

[Team LiB]

Options for Debugging PAN Verifiers

 -DVERBOSE

 Adds elaborate debugging printouts to the run. This is useful mostly for small models, where a detailed dump of the
precise actions of the verifier is needed to trace down suspect or erroneous behavior.

 -DCHECK

 Provides a slightly more frugal version of the -DVERBOSE directive.

 -DSVDUMP

 Enables an additional run-time option -pN to the verifier which, if selected, writes a binary dump of all unique state
descriptors encountered during a verification run into a file named sv_dump. The file is only generated at the end of
the verification run, and uses a fixed integer size of N bytes per recorded state. State descriptors shorter than N bytes
are padded with zeros. See also -DSDUMP.

 -DSDUMP

 If used in combination with the directive -DCHECK this adds an ASCII dump of all state descriptors encountered in
the search to the verbose debugging output that is generated.
[Team LiB]

[Team LiB]

Experimental Options

 -DBCOMP

 If used in combination with the directive -DBITSTATE, modifies the code to compute hash functions over not the
original but the compressed version of the state descriptor (using the standard masking technique). In some cases this
has been observed to improve the coverage of a bitstate run.

 -DCOVEST

 If used in combination with the directive -DBITSTATE, this option compiles in extra code for computing an
alternative coverage estimate at the end a run. On some systems, the use of this code also requires linkage of the
object code with the math library, for instance, with the compiler flag -lm.

 The experimental formula that is used to compute the coverage in this mode was derived by Ulrich Stern in 1997.
Stern estimated that when a run has stored R states in a hash array of B bits, then the true number of reachable states
R' is approximately

 When the verifier is compiled with directive -DCOVEST it reports the estimated state space coverage as the
percentage of states that was reached compared to the estimated total number of reachable states, that is:

 -DCTL

 Allows only those partial order reductions that are consistent with branching time logics, such as CTL. The rule used
here is that each persistent set that is computed contains either all outgoing transitions or precisely one.

 -DGLOB_ALPHA

 Considers process death to be a globally visible action, which means that the partial order reduction strategy cannot
give it priority over other actions. The resulting verification mode restores compatibility with SPIN version numbers
from 2.8.5 to 2.9.7.

 -DHYBRID_HASH

 Using this option can reduce the size of every state descriptor by precisely one word (4 bytes), but this benefit will
only be seen in 25% of all cases. In the standard storage method, when the state descriptor is one, two, or three bytes
longer than a multiple of four, the memory allocator pads the amount of memory that is effectively allocated with one,
two, or three bytes, respectively. This padding is done to secure memory alignment. To avoid this in at least some of
the cases, the HYBRID_HASH will consider state descriptors that exceed a multiple of four by precisely one byte,
and truncate the state vector by that amount. The one byte that is removed is now added to the hash value that is
computed. This can cause more hash collisions to occur, but it does preserve a correct search discipline, and it can
save memory.

 -DLC

 If used in combination with the directive -DBITSTATE, this option replaces exhaustive storage of states in the
depth-first search stack with a four-byte hash-compact representation. This option slows down the verification
process, but it can reduce the memory requirements. There is a very small additional risk of hash collisions on stack
states which, if it occurs, can affect the effective coverage achieved. This option is automatically enabled when -DSC
is used in combination with -DBITSTATE.

 -DNIBIS

 Applies a small optimization of partial order reduction technique. The attempt is to avoid repeating the exploration of
a successor state in cases where the exploration of the reduced set of transitions fails (e.g., because it closed a cycle).
This requires extra testing to be done during the search to see if the optimization applies, which in many cases can
more than cancel the benefit of the optimization.

 -DNOCOMP

 Disables the default masking of bits in the state vector during verifications. This can improve performance, but is not
compatible with cycle detection or bitstate storage methods.

 -DNOSTUTTER

 Disables the rule that allows a never claim to perform stuttering steps. This is formally a violation of the semantics for
LTL model checking. The stuttering rule is the standard way to extend a finite run into an infinite one, thus allowing for
a consistent interpretation of Büchi acceptance conditions.

 -DNOVSZ

 This option removes four bytes from each state descriptor before it is stored in the state space. The field that is
removed records the effective size of the state descriptor. In most cases, this information is indeed redundant, so
when memory is tight and the exhaustive state space storage method is used, this option may give relief. The number
of states stored that is reported at the end of a run should not change when -DNOVSZ is enabled. This option is not
compatible with -DCOLLAPSE. Generally, the latter option will reduce the memory requirements by a more
substantial amount, and in a safer way.

 -DOHASH

 Replaces the default hash function used in the verifier with an alternative one based on the computation of a cyclic
redundancy check. In combination with run-time option -hN, a choice of 32 different hash functions can be used. The
quality of these alternate function is often less than the built-in default.

 -DPEG

 Includes and enables code in the verifier for performing complexity profiling. With this option, the number of times
that each basic statement is executed will be counted, and the counts are printed at the end of the run as a simple aid
in identifying the hot spots in the code with respect to verification.

 -DPRINTF

 Enables the execution of printf statements during verification runs. Useful only for debugging purposes.

 -DRANDSTOR=N

 If used in combination with -DBITSTATE, this will randomly prune the number of states that are actually recorded in
the hash array. The probability of storage is determined by the parameter N. For example,

$ cc -DRANDSTOR=33 -DBITSTATE -o pan pan.c

 would reduce the probability of storage for each state from 100% to 33%. (Only approximately one out of every
three unique states encountered is stored.) The value for N must be between 0 and 99. Low values will increase the
amount of (duplicate) work that has to be done by the verifier, and thus increases the time requirements of a
verification. Low values, however, can also increase the effective coverage of a bitstate verification for very large state
spaces. This option can be useful also in sequential bitstate hashing runs to improve the cumulative coverage of all runs
combined.

 -DREACH

 Use of this option changes the search algorithm in such a way that the absence of safety errors can be guaranteed
within the run-time depth limit that is set by -m. The algorithm used is discussed in Chapter 8 (p. 171). This option
cannot guarantee that the shortest path to a liveness error is found.

 -DVAR_RANGES

 Includes and enables code in the verifier for computing the effective value range of all basic (i.e., not PROMELA
typedef structure) variables. To keep things manageable, all values over 255 are grouped under a single entry in the
report that is generated at the end of the run.

[Team LiB]

[Team LiB]

PAN Run-Time Options
 The following options can be given as command-line arguments to the compiled version of the verifiers generated by
SPIN. They are listed here in alphabetical order.

 -A

 Suppresses the reporting of basic assertion violations. This is useful if, for instance, the verification process targets a
different class of errors, such as non-progress cycles or Büchi acceptance cycles. See also -E.

 -a

 Arranges for the verifier to report the existence, or absence, of Büchi acceptance cycles. This option is disabled
when the verifier is compiled with the directive -DNP, which replaces the option with -l, for non-progress cycle
detection.

 -b

 Selecting this bounded search option makes it an error, triggering an error trail, if an execution can exceed the depth
limit that is specified with the -m option. Normally, exceeding the search depth limit only generates a warning.

 -cN

 Stops the search after the Nth error has been reported. The search normally stops after the first error is reported.
Using the setting -c0 will cause all errors to be reported. See also run-time option -e.

 -d

 Prints the internal state tables that are used for the verification process and stops. For the leader election protocol
example from the SPIN distribution, the output looks as follows.[1] One state table is generated for each proctype
that appears in the SPIN model, with one line per transition.

[1] Not all transitions are shown. Long lines are split into two parts here for layout purposes.

$ spin -a leader

$./pan -d

proctype node

 state 1 - (tr 8) -> state 3 [id 0 tp 2] [----L] \

 line 16 => Active = 1

 state 3 - (tr 9) -> state 30 [id 2 tp 5] [----L] \

 line 18 => out!first,id [(3,2)]

 state 30 - (tr 10) -> state 15 [id 3 tp 504] [--e-L] \

 line 19 => in?first,number [(2,3)]

 state 30 - (tr 17) -> state 28 [id 16 tp 504] [--e-L] \

 line 19 => in?second,number

 ...

proctype init

 state 10 -(tr 3)-> state 7 [id 33 tp 2] [A---L] \

 line 49 => proc = 1

 state 7 -(tr 4)-> state 3 [id 34 tp 2] [A---L] \

 line 51 => ((proc<=5))

 state 7 -(tr 6)-> state 9 [id 37 tp 2] [A---L] \

 line 51 => ((proc>5))

 state 3 -(tr 5)-> state 7 [id 35 tp 2] [A---L] \

 line 53 => (run node(...))

 state 9 -(tr 1)-> state 11 [id 41 tp 2] [----L] \

 line 51 => break

 state 11 -(tr 7)-> state 0 [id 43 tp 3500] [--e-L] \

 line 58 => -end- [(257,9)]

...

Transition Type: A=atomic; D=d_step; L=local; G=global

Source-State Labels: p=progress; e=end; a=accept;

Note: statement merging was used. Only the first

 stmnt executed in each merge sequence is shown

 (use spin -a -o3 to disable statement merging)

 The description of each transition specifies a series of numbers and strings. We refer to these with greek symbols, as
follows:

state  -(tr )-> state  [id  tp ] [....] \
 line  => .... [....]

 is the source state of the transition.

 is the target state of the transition.

 is a unique number that corresponds with the case
number for the transition that appears in the two switch
statements that are generated by SPIN in the files pan.m
and pan.b. These two cases describe, respectively, the
detailed precondition and effect of the execution of the
forward and the backward move during the state space
search for this specific transition.

 is another identifying number for the transition that is used
internally by the SPIN parser. This is also the identifying
number used in the verbose printouts that are generated
when the verifier is compiled with any one of the
directives -DCHECK, -DDEBUG, or -DVERBOSE.

 describes the type of the transition, assigning a
classification that is used for enforcing the partial order
reduction strategy. The number 2, for instance, indicates
that the transition touches only local variables, and the
number 3,500 indicates a process death operation. (The
precise number assignments are not particularly
interesting, but if needed, they can be found in the SPIN
source file pangen2.c in procedure valTpe().)

 In models that contain unless statements, the  entry can
be followed with some more information about the
presence of an escape transition that would be taken in
case the escape clause from the unless statement
becomes executable.

 is a string of dashes and symbols that interprets the type
of transition encoded in . The lower and uppercase
letters that can appear here are explained at the bottom
of the printout as the transition types and source-state
labels, which is meant to be self-explanatory.

 is the line number at which the original text for the
transition can be found in the source file for the model.
(To avoid too verbose outputs, the file name is not
included here.)

 reproduces the source text for the transition.

 appears on only transitions that are marked by SPIN as
conditionally safe transitions for the partial order
reduction strategy. The numbers indicate the types of
conditions that apply and are also included in the printout
only for debugging purposes.

The state tables are optimized in three separate steps by the verifier before the verification process begins. The
original and intermediate versions of the tables can be generated by using the -d argument two, three, or four times in
a row (e.g., by typing the command pan -d -d -d).

 -E

 Suppresses the reporting of invalid end-state violations. See also -A.

 -e

 Creates a numbered error trail for all errors that are encountered during the search up to the bound set by the -cN
argument. By default, only one single error trail is produced per run. The maximum possible number of error trails is
therefore generated by the combination:

$./pan -e -c0

 -f

 Uses the weak fairness restriction in the search for either acceptance cycles (in combination with option -a) or
non-progress cycles (option -l). The weak fairness algorithm is discussed in Chapter 8 (p. 182).

 -hN

 If the verifier is compiled with the directive -DOHASH, this option replaces the default hash function with an
alternative function. The value N must be greater than zero and less than 33. The default hash function corresponds to
the setting -h1.

 -i

 Enables a fine-grained iterative search method to look for the shortest path to an error. After each error that is found,
the verifier will set a new depth limit that is one step smaller than the length of the last error trail. The use of this
method can increase complexity. For the method to reliably identify the shortest possible error path, the verifier must
be compiled with -DREACH. The option is only guaranteed to work for safety properties. Given a safety property,
there is also an alternative way to home in on the shortest possible error path, also at increased resource requirements
(memory and time). That alternative option is to compile the verifier with option -DBFS. In this case, the -DREACH
option is not needed.

 -I

 An alternative to run-time option -i. Instead of reducing the search depth to one step below the length of the last error
trail that was generated, this option reduces it to half that size, in an effort to reduce the number of iterations that has
to be made. This will not necessarily find the shortest possible error sequence, but it often gets reasonably close. This
option also requires compilation with -DREACH for best performance.

 -J

 Reverses the evaluation order of nested unless statements so that the resulting semantics conforms to the evaluation
order of nested catch statements in Java programs. This option matches command-line option -J to SPIN itself, where
it applies to simulation instead of verification runs. To play back an error trail that was generated with the -J
verification option requires the use of the -J option during guided simulation.

 -l

 Arranges for the verifier to report the existence, or absence, of non-progress cycles. This option is not enabled unless
the verifier source code is compiled with -DNP and disables the search for acceptance cycles (option -a).

 -mN

 Sets the maximum search depth for a depth-first search verification to N steps. The default value for N, that is, in the
absence of an explicit -m argument, is 10,000. See also -b.

 -n

 Suppresses the default listing of all unreached states at the end of a verification run.

 -q

 Adds an extra restriction on end states. Normally a valid end state is one where each process has reached the end of
its code or has stopped at a state that was marked with an end-state label. By default, message channels are not
required to be empty for a state to be considered a valid end state. The use of this option adds that requirement.

 -s

 Changes the bitstate search algorithm to use 1-bit hashing instead of the default 2-bit hashing method. The use of this
option requires compilation with -DBITSTATE.

 -V

 Prints the SPIN version number that was used to generate the verifier code and stops.

 -wN

 The default size of the hash table that is used for exhaustive (i.e., non-bitstate) verifications is 218 = 262, 144 slots.
For bitstate verifications, the default size of the hash array is 218 bits, which means 215 = 32,768 bytes. This default
corresponds to the setting -w18. The default size can be changed, with currently an upper-limit of -w32.

 -X

 Option reserved for use by XSPIN. It causes the UNIX standard error output to be printed onto the standard output
stream.

 -Y

 Causes the end of the output to be marked with a special line that can be recognized by postprocessors such as
XSPIN.

[Team LiB]

[Team LiB]

PAN Output Format
 A typical printout of a verification run is shown in Figure 19.1 This is what each line in this listing means:

 Figure 19.1 Example Output Generated by Pan

$./pan

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Full statespace search for:

 never claim - (none specified)

 assertion violations +

 acceptance cycles - (not selected)

 invalid end states +

State-vector 32 byte, depth reached 13, errors: 0

 74 states, stored

 30 states, matched

 104 transitions (= stored+matched)

 1 atomic steps

hash conflicts: 2 (resolved)

(max size 2^18 states)

1.533 memory usage (Mbyte)

unreached in proctype ProcA

 line 7, state 8, "Gaap = 4"

 (1 of 13 states)

unreached in proctype :init:

 line 21, state 14, "Gaap = 3"

 line 21, state 14, "Gaap = 4"

 (1 of 19 states)

(Spin Version 4.0.7 -- 1 August 2003)

 Identifies the version of SPIN that generated the pan.c source from which this verifier was compiled.

+ Partial Order Reduction

 The plus sign means that the default partial order reduction algorithm was used. A minus sign would indicate
compilation for exhaustive, non-reduced verification with option -DNOREDUCE. If the verifier had been compiled
with the breadth-first search option, using compiler directive -DBFS, then this fact would have been noted here as
well.

Full statespace search for:

 Indicates the type of search. The default is a full state space search. If the verifier is instead compiled with one of the
various types of state compression enabled (e.g., collapse compression, bitstate search, or hash-compact storage),
this would be noted in this line of output.

 The next line in the output reads:

never claim - (none specified)

 The minus sign indicates that no never claim or LTL formula was used for this run. If a never claim was part of the
model, it could have been suppressed with the compiler directive -DNOCLAIM. If a trace assertion is used instead
of a never claim, this would also be reflected in this line of output.

assertion violations +

 The plus indicates that the search checked for violations of user-specified assertions, which is the default.

acceptance cycles - (not selected)

 The minus indicates that the search did not check for the presence of acceptance or non-progress cycles. To do so
would require a run-time option -a or compilation with -DNP combined with the run-time option -l.

invalid end states +

 The plus indicates that a check for invalid end states was done (i.e., for absence of deadlocks).

State-vector 32 byte, depth reached 13, errors: 0

 The complete description of a single global system state required 32 bytes of memory. The longest depth-first search
path contained 13 transitions from the root of the tree (that is, 13 statement executions, starting from the initial system
state). Of course, this depth is typically smaller when breadth-first search is used than with the default depth-first
search. No errors were found in the search, as reflected in the zero error count.

 Normally, the number of errors reported is either zero or one, since by default the search will stop when the first
error is found. The verifier can be run in several different modes, though, where it would be allowed to continue the
search beyond the first error. The run-time flags -c and -e can be used for this purpose.

74 states, stored

 This line indicates that a total of 74 unique global system states were stored in the state space (each represented
effectively by a state vector of 32 bytes).

30 states, matched

 In 30 cases the search returned to a previously visited state in the search tree.

104 transitions (= stored+matched)

 A total of 104 transitions were explored in the search, which can serve as a statistic for the amount of work that has
been performed to complete the verification.

1 atomic steps

 One of the transitions was part of an atomic sequence; all others were outside atomic sequences.

 When breadth-first search is used, in addition to these numbers, the verifier also reports a count for the number of
nominal states. This number is derived by subtracting all states that would not have to be stored in a depth-first search
from the reported number of stored states. This includes all states inside atomic sequences, and all states that record
the point of execution in the middle of attempted rendezvous handshakes. Some of those handshake attempts will
succeed, and some will fail (if, for instance, the intended recipient of the rendezvous offer is not ready to accept it), so
separately, the number of successful rendezvous handshakes will also be reported in this case. These additional
numbers are meant to make it easier to compare the performance of breadth-first searches with depth-first searches.

 The next line in the output from Figure 19.1 reports:

hash conflicts: 2 (resolved)

 In two cases the default hashing scheme (a weaker version than what is used in bitstate hashing) encountered a
collision and had to resolve this collission by placing states into a linked list within the hash table.

(max size 2^18 states)

 The (perhaps default) argument that was specified for the size of the hash table was 218 equivalent to a run-time
option -w18. If this had been a bitstate search, the size would give the number of bits in the memory arena, rather than
the number of slots in the hash table.

1.533 memory usage (Mbyte)

 Total memory usage was 1.533 Megabytes, including the stack, the hashtable, and all related data structures.
Choosing smaller values for run-time options -m and -w than the defaults, would allow memory use to decrease. In
this case, with only 74 reachable states of 32 bytes each, this could result in considerable savings.

 When the verifier is compiled with directive -DCOLLAPSE for memory compression, some extra statistics are
printed on how many elements there turned out to be in each of three main groups that are stored and indexed
separately. For instance, the report

nr of templates: [globals chans procs]

collapse counts: [3262 18 20 3]

 says that there were 3,262 different versions of the portion of the state descriptor containing global variables values,
18 different versions of the portion containing all channel states, 20 different versions of local process states for
processes created from the first proctype declaration in the model, and two for processes created from the second
proctype declaration. If more proctype declarations are present in the model, more numbers will follow in this list.

unreached in proctype ProcA

 line 7, state 8, "Gaap = 4"

 (1 of 13 states)

unreached in proctype :init:

 line 21, state 14, "Gaap = 3"

 (1 of 19 states)

 A listing of the state numbers and approximate line numbers for the basic statements in the specification that were not
reached. Since this is a full state space search that ran to completion, this means that these transitions are effectively
unreachable and constitute dead code in the model.

 In bitstate searches the output also contains an estimate for the coverage that was realized in a verification run. This
estimate is based on a statistical argument about the likelihood of hash collissions and the number of reachable system
states that may have been missed because of this. The coverage estimate is expressed as the so-called hash factor,
which measures the relative number of bits in the bitstate space that remained unused. This hash factor is computed as
the number of bits that was available for the search in the bitstate space (which can be set with run-time parameter
-w), divided by the number of states that was reached.

 For the default double-bit hashing method, a value for the hash factor over one hundred normally correlates with high
confidence with an exhaustive, or nearly exhaustive, coverage. Lower values correlate with lower confidence, with
values near one corresponding to near certainty that only a very small fraction of the true state space was visited in the
run. See also the compile-time directive -DCOVEST, which can be used to add the computation of an alternative
coverage estimate to the search results.

[Team LiB]

[Team LiB]

Literature
 "I find that a great part of the information I have was acquired by looking up something and finding something else on
the way."

 —(Franklin P. Jones, 1853-1935)

 Abadi, M., and L. Lamport. [1991]. "The existence of refinement mappings." Theoretical Computer Science. May
1991. Vol. 82, No. 2, pp. 253–284.

 Alpern, B. and F.B. Schneider. [1985]. "Defining liveness." Information Processing Letters. Oct. 1985. Vol. 21, No.
4, pp. 181–185.

 Alpern, B. and F.B. Schneider. [1987]. "Recognizing safety and liveness." Distributed Computing. Vol. 2, pp.
117–126.

 Ball, T., R. Majumdar, T. Millstein, and S.K. Rajamani. [2001]. "Automatic Predicate Abstraction of C Programs."
SIGPLAN Notices. Vol. 36, No. 5, pp. 203–213.

 Bang, K-S., J-Y. Choi, and C. Yoo. [2001]. "Comments on "The Model Checker Spin." IEEE Trans. on Software
Engineering. June 2001. Vol. 27, No. 6, pp. 573–576.

 Bartlett, K.A., R.A. Scantlebury, and P.T. Wilkinson. [1969]. "A note on reliable full-duplex transmission over
half-duplex lines." Comm. of the ACM. May 1969. Vol. 12, No. 5, pp. 260–261,265.

 Berard, B., M. Bidoit, A. Finkel, et al. [2001]. Systems and Software Verification: Model-Checking Techniques and
Tools. Springer Verlag.

 Bloom, B.H. [1970]. "Spacetime trade-offs in hash coding with allowable errors." Comm. of the ACM. July 1970.
Vol. 13, No. 7, pp. 422–426.

 Bosnacki, D. [2001]. Enhancing state space reduction techniques for model checking. Ph.D Thesis. Eindhoven Univ.
of Technology, The Netherlands.

 Brat, G., K. Havelund, S.J. Park, and W. Visser. [2000]. "Java PathFinder: Second generation of a Java model
checker." Proc. Workshop on Advances in Verification. July 2000. Chicago, Illinois.

 Büchi, J.R. [1960]. "On a decision method in restricted second order arithmetic." Proc. Intern. Congr. on Logic,
Methodology and Philosophy of Science. Stanford, CA. Stanford Univ. Press. pp. 1–11.

 Carter, L., R. Floyd, J. Gill, G. Makowsky, and M. Wegman. [1978]. "Exact and approximate membership testers."
Proc. 10th Annual ACM Symp. on Theory of Computing. San Diego, CA. pp. 59–65.

 Chechik, M. and W. Ding. [2002]. "Lightweight reasoning about program correctness." Information Frontiers. Dec.
2002. Vol. 4, No. 4, pp 363–379.

 Chou, C-T. and D. Peled. [1999]. "Formal verification of a partial order reduction technique for model checking."
Automated Reasoning. Nov. 1999. Vol. 23, No. 3, pp. 265–298.

 Choueka, Y. [1974]. "Theories of automata on -tapes: A simplified approach." Journal of Computer and System
Science. April 1974. Vol. 8, No. 2, pp. 117–141.

 Clarke, E.M., E.A. Emerson, and A.P. Sistla. [1986]. "Automatic verification of finite-state concurrent systems using
temporal logic specifications." ACM Trans. on Prog. Lang. and Systems. April 1986. Vol. 8, No. 2, pp. 244–263.

 Clarke, E.M., O. Grumberg, and D.E. Long. [1994]. "Model checking and abstraction." ACM-TOPLAS. Sept.
1994. Vol. 16, No. 5, pp. 1512–1542.

 Clarke, E.M., O. Grumberg, and D. Peled. [2000]. Model Checking, Cambridge, MA. MIT Press.

 Corbett, J.C., M.B. Dwyer, J.C. Hatcliff, S. Laubach, C.S. Pasareanu, Robby, and H. Zheng. [2000]. "Bandera:
Extracting finite-state models from java source code." Proc. 22nd International Conf. on Software Engineering. June
2000. Limerick, Ireland. ACM Press. pp. 439–448.

 Courcoubetis, C., M.Y. Vardi, P. Wolper, P., and M. Yannakakis. [1990]. "Memory efficient algorithms for the
verification of temporal properties." Proc. 2nd Conf. on Computer Aided Verification, Rutgers Univ., NJ. Also in:
Formal Methods in Systems Design. Oct. 1992. Vol. 1, No. 2/3, pp. 275–288.

 Cousot, P. and R. Cousot. [1976]. "Static determination of dynamic properties of programs." Proc. Colloque sur la
Programmation. Apr. 1976. Paris, France. Dunod Publ. pp. 106–130.

 Dams, D. [1996]. Abstract Interpretation and Partition Refinement for Model Checking. Ph.D Thesis. Eindhoven
Univ. of Technology, The Netherlands.

 Dams, D., R. Gerth, and O. Grumberg. [1997]. "Abstract interpretation of reactive systems." ACM Trans. on
Programming Languages and Systems. March 1997. Vol. 2, No. 19, pp. 253–291.

 Dams, D., W. Hesse, and G.J. Holzmann. [2002]. "Abstracting C with abC." Proc. Conf. on Computer Aided
Verification. July 2002. Copenhagen, Denmark. Springer Verlag, LNCS 2404, pp. 515–520.

 Das, S., D.L. Dill, and S. Park. [1999]. "Experience with Predicate Abstraction." Conf. on Computer-Aided
Verification. Trento, Italy. Springer Verlag, LNCS 1633, pp. 160–171.

 Dillon, L.K., G. Kutty, L.E. Moser, P.M. Melliar-Smith, and Y.S. Ramakrishna. [1994]. "A graphical interval logic
for specifying concurrent systems." ACM Trans. on Softw. Eng. and Methodology. Apr. 1994. Vol. 3, No. 2, pp.
131–165.

 Doran R.W. and L.K. Thomas. [1980]. "Variants of the software solution to mutual exclusion." Inf. Proc. Letters.
Vol. 10, No. 4, pp. 206–208.

 Dijkstra, E.W. [1965]. "Solution of a problem in concurrent programming control." Comm. of the ACM, Sept.
1965. Vol. 8, No. 9, p. 569.

 Dijkstra, E.W. [1968]. "Co-operating sequential processes." In: Programming Languages. Ed. F. Genuys. New
York, Academic Press, pp. 43–112.

 Dijkstra, E.W. [1972]. "Notes on Structured Programming." In: Structured Programming. Eds. O.-J. Dahl, E.W.
Dijkstra and C.A.R. Hoare. London, Academic Press, pp. 1–82.

 Dijkstra, E.W. [1975]. "Guarded commands, nondeterminacy and formal derivation of programs." Comm. of the
ACM. Aug. 1975. Vol. 18, No. 8, pp. 453–457.

 Dwyer, M.B., G.S. Avrunin, and J.C. Corbett. [1999]. "Patterns in Property Specifications for Finite-state
Verification." Proc. 21st Int. Conf. on Software Eng. May 1999. ACM Press. pp. 411–420.

 Emerson, E.A. [1990]. "Temporal and model logic." In: Handbook of Theoretical Computer Science. Elsevier. Vol.
B, pp. 997–1072.

 Etessami, K. and G.J. Holzmann. [2000]. "Optimizing Büchi automata." Proc. Proceedings of 11th Int. Conf. on
Concurrency Theory. Aug. 2000. Springer Verlag, LNCS 1877, pp. 153–167.

 Etessami, K., T. Wilke, and R. Schuller. [2001]. "Fair simulation relations, parity games, and state space reduction
for Büchi automata." Proc. 28th Int. Col. on Automata, Languages, and Programming. Springer Verlag, LNCS 2076,
pp. 694–707.

 Gastin, P. and D. Oddoux. [2001]. "Fast LTL to Büchi automata translation." Proc. 13th Int. Conf. on Computer
Aided Verification. Springer Verlag, LNCS 2102, pp. 53–65.

 Gerth, R., D. Peled, M.Y. Vardi, and P. Wolper. [1995]. "Simple on-the-fly automatic verification of linear temporal
logic." Proc. Symposium on Protocol Specification, Testing, and Verification. Warsaw, Poland. Chapman & Hall
Publ. pp. 3–18.

 Godefroid, P. and G.J. Holzmann. [1993]. "On the verification of temporal properties." Proc. Int. Conf on Protocol
Specification, Testing, and Verification. Liege, Belgium. North-Holland Publ. pp. 109–124.

 Godefroid, P., G.J. Holzmann, and D. Pirottin. [1995]. "State space caching revisited." Formal Methods in System
Design. Nov. 1995. Vol. 7, No. 3, pp. 1–15.

 Gödel, K. [1931]. "Uber Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme."
Monatshefte für Math. u. Physik. Vol. 38, pp. 173–198.

 Goldstein, H.W. and J. von Neumann. [1947]. Planning and coding problems for an electronic computing instrument.
Part II, Vol. 1. Apr. 1947. In: John von Neumann. Collected Works. Vol. V, p. 92. Ed. A.H. Taub. Pergamon
Press, N.Y. 1963.

 Graf, S. and H. Saidi. [1997]. "Construction of abstract state graphs with PVS." Proc. Conf. on Computer Aided
Verification. Haifa, Israel. Springer Verlag, LNCS 1254, pp. 72–83.

 Harel, D. [1987]. "Statecharts: A visual formalism for complex systems." Sci. Comput. Program. June 1987. Vol. 8,
No. 3, pp. 231–274.

 Havelund, K. and T. Pressburger. [2000]. "Model Checking Java Programs Using Java PathFinder." Int. Journal on
Software Tools for Technology Transfer. Apr. 2000. Vol. 2, No. 4, pp. 366–381.

 Heijenoort, J. van. (Ed.) [2000]. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. New
York, toExcel.

 Hoare, C.A.R. [1978]. "Communicating sequential processes." Comm. of the ACM. Aug. 1978. Vol. 21, No. 8,
pp. 666–677.

 Holzmann, G.J. [1981]. PAN - a protocol specification analyzer. Bell Laboratories Technical Memorandum. May
1981. TM81-11271-5.

 Holzmann, G.J. [1987]. "Automated protocol validation in Argos: Assertion proving and scatter searching." IEEE
Trans. on Software Engineering. June 1987. Vol. 13, No. 6, pp. 683–697.

 Holzmann, G.J. [1988]. "An improved reachability analysis technique." Software Practice and Experience. Feb.
1988. Vol. 18, No. 2, pp. 137–161.

 Holzmann, G.J. [1991]. Design and Validation of Computer Protocols. Englewood Cliffs, NJ, Prentice Hall.

 Holzmann, G.J., P. Godefroid, and D. Pirottin. [1992]. "Coverage preserving reduction strategies for reachability
analysis." Proc. 12th Int. Conf on Protocol Specification, Testing, and Verification. Orlando, FL. June 1992. Springer
Verlag, LNCS, Vol. 663, pp. 178–191.

 Holzmann, G.J. and D. Peled. [1994]. "An improvement in formal verification." Proc. 7th Int. Conf. on Formal
Description Techniques. Berne, Switzerland. Oct. 1994. Chapman & Hall Publ. pp. 197–211.

 Holzmann, G.J., D. Peled, and M. Yannakakis. [1996]. "On nested depth-first search." Proc. Second Spin
Workshop. Aug. 1996. Rutgers Univ., New Brunswick, NJ. American Math. Society. DIMACS/32, pp. 23–32.

 Holzmann, G.J. [1997]. "State Compression in S PIN." Proc. Third SPIN Workshop. Apr. 1997. Twente Univ.,
The Netherlands. pp 1–10.

 Holzmann, G.J. [1997b]. "The Model Checker Spin." IEEE Trans. on Software Engineering. May 1997. Vol. 23,
No. 5, pp. 279–295.

 Holzmann, G.J. [1998a]. "An analysis of bitstate hashing." Formal methods in system design. Nov. 1998. Vol. 13,
No. 3, pp. 287–307.

 Holzmann, G.J. [1998b]. "Designing executable abstractions." Proc. Formal Methods in Software Practice.
Clearwater Beach, FL. ACM Press. pp. 103–108.

 Holzmann, G.J. [1999]. "The engineering of a model checker: The Gnu i-protocol case study revisited." Proc. of the
Sixth Spin Workshop. Toulouse, France. Sept. 1999. Springer Verlag, LNCS 1680, pp. 232–244.

 Holzmann, G.J. and A. Puri. [1999]. "A Minimized Automaton Representation of Reachable States." Software Tools
for Technology Transfer. Nov. 1999. Vol. 2, No. 3, pp. 270–278.

 Holzmann, G.J. and M.H. Smith. [1999]. "Software model checking: Extracting verification models from source
code." Formal Methods for Protocol Engineering and Distributed Systems. Oct. 1999. London, England. Kluwer
Publ. pp. 481–497.

 Holzmann, G.J. and M.H. Smith. [2000]. "Automating software feature verification." Bell Labs Technical Journal.
April–June 2000. Vol. 5, No. 2, pp. 72–87.

 Holzmann, G.J. [2000a]. "Logic Verification of ANSI-C Code with Spin." Proc. of the 7th SPIN Workshop. Sept.
2000. Springer Verlag, LNCS, Vol. 1885, pp. 131–147.

 Holzmann, G.J. [2000b]. "Software model checking." Course notes for NATO Summer School. Aug. 2000.
Marktoberdorf, Germany. IOS Press. Computer and System Sciences. Vol. 180, pp. 309–355.

 Holzmann, G.J. and M.H. Smith. [2002]. "An automated verification method for distributed systems software based
on model extraction." IEEE Trans. on Software Engineering. Apr. 2002. Vol. 28, No. 4, pp. 364–377.

 Huth, M. and M. Ryan. [2000]. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge
Univ. Press.

 Ip, C.N. and D. Dill. [1996]. "Verifying systems with replicated components in Murphi." Proc. 8th Conf. on
Computer Aided Verification, Springer Verlag, LNCS 102, pp. 147–158.

 Jenkins, B. [1997]. "Hash functions." Dr. Dobbs Journal. Sept. 1997. Vol. 22, No. 9.

 Kernighan, B.W. and D.M. Ritchie. [1978]. The C Programming Language. First edition. Englewood Cliffs, NJ,
Prentice Hall.

 Kernighan, B.W. and R. Pike. [1999]. The Practice of Programming. Reading, MA, Addison-Wesley.

 Kesten, Y. and A. Pnueli. [1998]. "Modularization and abstraction: The keys to practical formal verification."
Mathematical foundations of Computer Science. Springer Verlag, LNCS 1450, pp. 54–71.

 Kesten, Y., A. Pnueli, and M.Y. Vardi. [2001]. "Verification by augmented abstraction: The automata theoretic
view." Journal of Computer and System Sciences. Vol. 62, No. 4, pp. 668–690.

 Kupferman, O. and M.Y. Vardi. [1999]. "Vacuity detection in temporal model checking." Proc. Conf. on Correct
Hardware Design and Verification Methods. Springer-Verlag, LNCS 1703, pp. 82–96.

 Kurshan, R.P. [1993]. Automata-Theoretic Verification of Coordinating Processes. Princeton, NJ, Princeton Univ.
Press.

 Kwiatkowska, M., [1989]. "Event fairness and non-interleaving concurrency." Formal Aspects of Computing. Vol.
1, No. 3, pp. 213–228.

 Lakatos, I., [1976]. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge Univ. Press.

 Lamport, L. [1983]. "What good is temporal logic?" Proc. IFIP Conf. on Information Processing. Paris, France.
North-Holland Publ. pp. 657–668.

 Lamport, L. [1986]. "The mutual exclusion problem—parts I and II." Journal of the ACM, Apr. 1986. Vol. 33, No.
2, pp. 313–347.

 Levitt, J.R. [1998]. Formal verification techniques for digital systems, Ph.D Thesis, Stanford Univ., Stanford, CA.

 Manna, Z. and A. Pnueli. [1995]. Temporal Verification of Reactive Systems: Safety. Springer Verlag.

 Mazurkiewicz, A. [1986]. "Trace Theory." In: Advances in Petri Nets. Springer Verlag, LNCS 255, pp. 279–324.

 McIlroy, M.D. [1982]. "The development of a spelling list." IEEE Trans. on Communications. Jan. 1982. Vol.
COM-30, No. 1, pp. 91–99.

 Morris, R. [1968]. "Scatter storage techniques." Comm. of the ACM. Jan. 1968. Vol 11, No. 1, pp. 38–44.

 Peled, D., T. Wilke, and P. Wolper. [1996]. "An algorithmic approach for checking closure properties of -regular
languages." Proc. Proceedings of 7th Int. Conf. on Concurrency Theory. Aug. 1996. Springer Verlag, LNCS 1119,
pp. 596–610.

 Peled, D. [1994]. "Combining partial order reductions with on-the-fly model checking." Proc. 6th Int. Conf. on
Computer Aided Verification. Stanford, CA. June 1994. Springer Verlag, LNCS 818, pp. 377–390.

 Peled, D. and T. Wilke. [1997]. "Stutter-invariant temporal properties are expressible without the next-time
operator." Information Processing Letters. Vol. 63, No. 5, pp. 243–246.

 Peterson, G.L. [1981]. "Myths about the mutual exclusion problem." Inf. Proc. Letters. Vol. 12, No. 3, pp.
115–116.

 Perrin, D. [1990]. "Finite automata." Handbook of Theoretical Computer Science. Ed. J. van Leeuwen, Elsevier.
Vol. B, pp. 1–57.

 Pike, R., D. Presotto, K.L. Thompson, and G.J. Holzmann. [1991]. "Process Sleep and Wakeup on a
Shared-memory Multiprocessor." Proc. of the Spring 1991 EurOpen Conf.. Tromso, Norway. pp. 161–166.

 Pnueli, A. [1977]. "The temporal logic of programs." Proc. 18th IEEE Symposium on Foundations of Computer
Science. Providence, RI. IEEE Press. pp. 46–57.

 Prior, A.N. [1957]. Time and Modality. Oxford, England, Clarendon Press.

 Prior, A.N. [1967]. Past, Present, and Future. Oxford, England, Clarendon Press.

 Raynal, M. [1986]. Algorithms for Mutual Exclusion. Cambridge, MA. MIT Press,

 Rescher, N. and A. Urquhart. [1971]. Temporal Logic. Library of Exact Philosophy. Springer Verlag.

 Ruane, L.M. [1990]. "Process synchronization in the UTS kernel." Computing Systems. Vol. 3, No. 3, pp.
387–421.

 Russell, B. [1903]. The Principles of Mathematics. Cambridge Univ. Press. Vol. 1, par. 78 and Ch. X.

 Ruys, T.C. [2001]. Towards Effective Model Checking. Ph.D Thesis. Twente Univ., The Netherlands.

 Schlor, R. and W. Damm. [1993]. "Specification of system-level hardware designs using timing diagrams." Proc.
European Design Automation and ASIC Design. Feb. 1993. IEEE Press. pp. 518–524.

 Schoot, vanderH. and H. Ural. [1996]. An improvement on partial order model checking with ample sets. Computer
Science Technical Report, TR-96-11. Sept. 1996. Univ. of Ottawa, Canada.

 Shankar, N. [2002]. "Verification by Abstraction." Proc. 10th Anniversary Colloquium, March 2002, United
Nations Univ., Int. Inst. for Software Technology. Lisbon, Portugal.

 Stern, U. and D.L. Dill. [1995]. "Improved probabilistic verification by hash compaction." Proc. IFIP WG 10.5
Advanced Research Workshop on Correct Hardware Design and Verification Methods. IFIP. pp. 206–224.

 Strachey, C. [1965]. "An impossible program." Computer Journal. Jan. 1965. Vol. 7, No. 4, p. 313.

 Telcordia [2000]. LATA Switching Systems Generic Requirements, Section 11: Service Standards. A Module of
LSSGR, FR-64, GR-511-CORE, Issue 1. June 2000. Telcordia Technologies.

 Thomas, W. [1990]. "Automata on infinite objects." Handbook of Theoretical Computer Science. Ed. J. van
Leeuwen, Elsevier. Vol. B, pp. 133–187.

 Tarjan, R.E. [1972]. "Depth first search and linear graph algorithms." SIAM J. Computing. Vol. 1, No. 2, pp.
146–160.

 Tip, F. [1995]. "A survey of program slicing techniques." Journal of Programming Languages. Sept. 1995. Vol. 3,
No. 3, pp. 121–189.

 Turing, A.M. [1936]. "On computable numbers, with an application to the Entscheidungs problem." Proc. London
Mathematical Soc. Ser. 2-42, pp. 230–265.

 Vardi, M.Y. and Wolper, P. [1986]. "An automata-theoretic approach to automatic program verification." Proc.
Symp. on Logic in Computer Science. Cambridge, England. June 1986. pp. 322–331.

 Vardi, M.Y. [2001]. "Branching vs. linear time: Final showdown." Proc. Tools and Algorithms for the Construction
and Analysis of Systems. Springer Verlag, LNCS 2031, pp. 1–22.

 Villiers, P.J.A. [1997]. Validation of a micro-kernel: A case study. Ph.D Thesis. University of Stellenbosch, S.
Africa.

 Wolper, P., Vardi, M.Y., and Sistla, A.P. [1983]. "Reasoning about infinite computation paths." Proc. 24th IEEE
Symposium on Foundations of Computer Science. Tucson, AZ. IEEE Press, pp. 185–194.

 Wolper, P. [1986]. "Specifying interesting properties of programs in propositional temporal logic." Proc. 13th ACM
Symposium on Principles of Programming Languages. St. Petersburg Beach, FL. Jan. 1986. ACM Press, pp.
148–193.

 Wolper, P. and Leroy, D. [1993]. "Reliable hashing without collision detection." Proc. 5th Int. Conf. on Computer
Aided Verification. Elounda, Greece. Springer Verlag, LNCS 697, pp. 59–70.

[Team LiB]

[Team LiB]

Appendix A. Automata Products
 "Beyond each corner new directions lie in wait."

 —(Stanislaw Lec, 1909–1966)

SPIN is based on the fact that we can use finite state automata to model the behavior of asynchronous processes in
distributed systems. If process behavior is formalized by automata, the combined execution of a system of
asynchronous processes can be described as a product of automata.

Consider, for instance, a system A of n processes, each process given in automaton form, say: A1, A2, . . ., An.
Next, consider an LTL formula f and the Büchi automaton B that corresponds to its negation ¬f. Using the automata
theoretic verification procedure, we can check if A satisfies f by computing the global system automaton S

 We use the operator here to represents an asynchronous product of multiple component automata, and to
represent the synchronous product of two automata.

The result S of this computation is another finite state automaton that can now be analyzed for its acceptance
properties. If formula f can be violated (that is, if ¬f can be satisfied), then S will have accepting -runs that
demonstrate it. We can check if S has accepting runs with the algorithms discussed in Chapter 8.

The definition of the component automata that are used in the computation of the asynchronous product are derived
from proctype declarations, and the Büchi automaton B is defined by a never claim.

We have so far taken for granted how the asynchronous and synchronous products of automata are computed and
how properties such as Büchi acceptance, non-progress, and the existence of invalid end states can be expressed
within this framework. We will discuss those details here.

For each finite state automaton A = (S, s0, L, T, F) that is derived from a proctype declaration or a never claim we
can identify three interesting subsets of A. S that capture the assignment of the special label-types used in
PROMELA. We will name them as follows:

A. A is the set of states marked with accept-state labels,

A. E is the set of states marked with end-state labels,

A. P is the set of states marked with progress-state labels.

We present the definition of asynchronous and synchronous product first within the standard automata theoretic
framework. Within this framework we reason about -runs (infinite runs) that do or do not satisfy standard Büchi
acceptance conditions. The set of final states A. F for each component automaton is in this case identical to set A. A:
the set of local states that is explicitly labeled with an accept-state label.

SPIN also has separate verification modes for verifying the absence of non-progress cycles and for verifying pure
safety properties, including the verification of absence of deadlock. At the end of this Appendix we will show how the
definitions can be modified slightly to also capture these other types of verification.

[Team LiB]

[Team LiB]

Asynchronous Products

 The asynchronous product of n component automata is defined as follows:

 Definition A.1 (Asynchronous Product)

 The asynchronous product of a finite set of finite state automata A1, ..., An is another finite state automaton A = (S,
s0, L, T, F), where

A. S is the Cartesian product A1. S x ... xAn. S,

A. s0 is the n-tuple (A1. s0, ..., An. s0),

A. L is the union set A1. L ... An. L, and

A. T is the set of tuples ((x1, ..., xn), I, (y1, ..., yn)) such
that i, 1 i n, (xi, I, yi) Ai. T, and j, 1 j

n, j i (xj yj),

A. F is the subset of those elements of A. S that satisfy
the condition (A1. s, . . ., An. s) A. F, i, Ai. s
Ai. F.

Note that not all the states in this product automaton are necessarily reachable. Their reachability depends on the
semantics we attach to the labels in set A. L (cf. p. 129).

 Recall that the labels from the sets Ai. L in each component automaton record basic PROMELA statements, such as
assignment, assertion, print, condition, send, and receive statements. The intended interpretation of these labels is
given by the semantics of PROMELA, as outlined in Chapter 7. Because PROMELA statements can manipulate data
objects, when we interpret the semantics on the labels, we really expand automata into extended finite state automata.
The automata still remain finite-state under this extension, due to the fact that in PROMELA all data types can have
only finite domains. Each extended automaton can be converted fairly trivially into a pure finite state automaton by
expanding out the data values. When SPIN computes the asynchronous product, it does this expansion on the fly.

 Another interesting aspect of Definition A.1 is that it states that the transitions in the product automaton are the
transitions from the component automata, arranged in such a way that only one of the component automata can
execute one transition at a time, indivisibly. This corresponds to the standard interpretation of the semantics of
concurrency based on the interleaving of process actions. This is of course not the only possible interpretation. Some
of the alternatives are discussed in Appendix B (The Great Debates).
[Team LiB]

[Team LiB]

Encoding Atomic Sequences

 PROMELA has a notion of atomic sequences that allows a sequence of transitions from a single process component
to be executed indivisibly. In effect, the interleaving of transitions is temporarily disabled in this case. This feature can
easily be captured within the automata framework we have discussed, as also shown in Chapter 7. To do so, we can
introduce a special global integer data object named exclusive, with initial value 0. The component processes
(represented by automata) are assigned unique positive integer numbers (pids) to distinguish them. We can now add a
clause to the precondition of each transition in component p that makes the executability of the transition dependent
on the truth if: exclusive 0 exclusive p. pid. The first transition in each atomic sequence in component p now
gets an extra side effect exclusive = p. pid, and the last transition gets an extra side effect exclusive = 0. These few
changes suffice to produce the desired semantics.
[Team LiB]

[Team LiB]

Rendezvous

 PROMELA also has a notion of synchronous rendezvous that is not directly addressed by Definition A.1. These
types of operations can also be encoded within the given framework with relatively little effort.

 In a rendezvous event, matching send and receive operations from different processes meet in a single event that is
executed atomically. Since we do not have simultaneous executions, we must be able to secure in some other way
that synchronous send and receive operations indeed execute atomically in that order.

 One way to accomplish this is to define another special global integer data object, call it handshake, with initial value
0. Each rendezvous port in the system is now assigned a unique positive integer number.

 We now again add some new clauses to the preconditions of transitions in the system. For all receive operations on
rendezvous port i, this extra condition is handshake i, to restrict the states in which they are enabled to those in
which a rendezvous operation on port i has been initiated. For all non-rendezvous transitions, and all send operations
on rendezvous ports, the extra clause is handshake 0, to prevent their execution when a rendezvous action on any
queue is currently in progress.

 Next, we add some side effects to the transitions that correspond to rendezvous send or receive operations. For
each send operation on rendezvous port i, we add the side effect handshake = i, and to each rendezvous receive
operation we add the side effect handshake = 0.

 The additions guarantee that as long as handshake 0, all transitions, except the receive halves of rendezvous
operations, are executable as before. Whenever the send half of a rendezvous operation is initiated, however, the
value of handshake becomes positive, and it allows only a matching receive handshake to take place. Once that
happens, the value of handshake returns to its default initial value. (In the SPIN implementation this handshake
variable is called boq, which was originally chosen as an acronym for "blocked on queue.")
[Team LiB]

[Team LiB]

Synchronous Products

 The synchronous product of two finite state automata is defined as follows:

 Definition A.2 (Synchronous Product)

 The synchronous product of finite state automata P and B is a finite state automaton A = (S, s0, L, T, F), where

A. S is the Cartesian product P'. S x B. S, where P' is
the stutter-closure of P in which a nil self-loop is
attached to every state in P that has no successor,

A. s0 is the tuple (P. s0, B. s0),

A. L is P'. L x B. L,

A. T is the set of pairs (t1, t2) such that t1 P'. T and t2
B. T,

A. F is the set of pairs (s1, s2) A. S where s1 P. F
s2 B. F.

The intuition expressed here is that one of the two automata, say, automaton B, is a standard Büchi automaton that is,
for instance, derived from an LTL formula, or directly given as a PROMELA never claim. As in Definition A.1, we
again assume that sets of final states P. F and B. F in the component automata are identical to the corresponding sets
of acceptance states P. A and B. A.

 The main difference between an asynchronous and a synchronous product is in the definition of sets L and T. In a
synchronous product, the transitions in the product automaton correspond to joint transitions of the component
automata. The labels on the transitions now also consist of two parts: the combination of the two labels from the
original transitions in the components. The semantics of a combination of two labels is defined in SPIN as the logical
and combination of the preconditions of the two original statements, and the concatenation of the two actions. (Hence,
P B is not necessarily the same as B P.) When SPIN computes the synchronous product of a system and a claim
automaton, the labels in the claim automaton B define only conditions (i.e., state properties) and no actions. Since one
of the actions is always nil, the catenation of actions from the two automata is now independent of the ordering, and
we have P B B P.
[Team LiB]

[Team LiB]

An Example

 Consider the PROMELA model of two asynchronous processes and a never claim derived from the LTL formula
<>[] p, shown in Figure A.1.

 Figure A.1 Example PROMELA Model

#define N 4

#define p (x < N)

int x = N;

active proctype A()

{

 do

 :: x%2 -> x = 3*x+1

 od

}

active proctype B()

{

 do

 :: !(x%2) -> x = x/2

 od

}

never { /* <>[]p */

T0_init:

 if

 :: p -> goto accept_S4

 :: true -> goto T0_init

 fi;

accept_S4:

 if

 :: p -> goto accept_S4

 fi;

}

 The control-flow graph of each of these three components can be formalized as a finite state automaton, as illustrated
in Figure A.2.

 Figure A.2. Finite State Automata A1, A2, and B

 The full asynchronous product of A1 and A2 is shown in Figure A.3. The states in the product automaton have been
marked with pairs of statenames p, q with p the name of the corresponding state in component automaton A1, and q
the corresponding state in component automaton A2. State s0, s0 is the initial state. Since neither A1 nor A2
contained accepting states, the product automaton has no accepting states either.

 Figure A.3. Asynchronous Product of A1 and A2

 The initial state of the product is s0, s0. If we apply PROMELA semantics and interpret the labels on the transitions,
it is clear that all paths leading into state s1, s1 are infeasible, since they require both the condition (x%2) and its
negation to evaluate to true without an intervening change in the value of x. State s1, s1 is therefore effectively
unreachable under the intended label semantics.

 Applying PROMELA semantics, we can compute the expanded version of the asynchronous product from Figure
A.3 (fully expanding all possible values of integer data object x) which can now be interpreted as a pure finite state
automaton. This automaton is shown in Figure A.4. The states are marked with a triple p, q, v, with p and q referring
to the states of component automata A1 and A2 as before, and v giving the integer value of variable x at each state.

 Figure A.4. Expanded Asynchronous Product for Initial Value x = 4

 The synchronous product of the automaton in Figure A.4 and the property automaton B is illustrated in Figure A.5.

 Figure A.5. (Expanded) Synchronous Product of Figure A.4 and Automaton B

 The states are now marked with a tuple p, q, v, r, with the first three fields matching the markings from Figure A.4,
and the last field recording the state from component property automaton B. All transitions in the automaton from
Figure A.5 are now joint transitions from the automaton in Figure A.4 and the property automaton B. The transitions
from B are not explicitly indicated in Figure A.5, since they will be clear from context. All transitions in the top half of
the figure correspond to self-loop labeled true on B. s0; all transitions in the bottom half similarly correspond to the
self-loop labeled x < 4 on B. s1, and all transitions between top and bottom half correspond to the transition from B.
s0 to B. s1 labeled x < 4 in B. Note that some transitions are not possible, and not drawn in the figure, because the
property automaton B forbids them once it has reached state B. s1.

 If the automaton in Figure A.5 allows any .-accepting runs, they correspond to executions that satisfy the LTL
formula <>[] p. The automaton has four reachable accepting states, but it is easy to see that none of these states is
reachable from themselves (i.e., part of a cycle or a strongly connected component in the reachability graph). Hence,
the sample PROMELA model we started this example with does not satisfy the LTL formula given.

[Team LiB]

[Team LiB]

Non-Progress Cycles

 SPIN uses a simple mechanism to encode the detection of non-progress cycles in terms of standard Büchi
acceptance, thus avoiding the need for a special algorithm. When the verifier sources are compiled with the directive
-DNP, a predefined never claim is included in the model that corresponds to the LTL formula (np_), which states
that it is impossible for the system to eventually () reach a point its execution from which it always () traverses only
non- progress (np_) states (cf. page 447).

 In a synchronous or asynchronous product of component automata, the product automaton is considered to be in a
progress state if and only if at least one of the component automata is in a progress state (that is, a state within set A.
P as defined on page 554). A never claim in PROMELA syntax corresponding to the predefined formula can be
written as follows:

never { /* <>[] np_ */

 do

 :: np_ -> break

 :: true

 od;

accept:

 do

 :: np_

 od

}

 This claim defines a non-deterministic Büchi automaton. Note, for instance, that in the initial state of the automaton
the option true is always executable. The only accepting runs are the infinite runs in which eventually no more progress
states are reached. The true self-loop in the initial state allows the automaton to remain in its initial state for an
arbitrary number of initial steps in the run. When a non-progress state is reached, the automaton can, but need not,
switch to its accepting state. It is, for instance, possible that the first few non-progress states encountered in a run do
not immediately lead to a point in the run where a return to a progress state is impossible. The structure of the
automaton as given allows us to skip over such states, in a hunt for the real violations.
[Team LiB]

[Team LiB]

Deadlock Detection

 Absence of deadlock is system property that cannot be expressed directly in LTL, and hence it does not easily fit
within the standard framework of -automata that we have sketched here.

 To define a notion of acceptance that captures precisely the set of deadlocking runs of a finite state automaton, we
have to reconsider the definitions of set A. F for the asynchronous and synchronous product computations.

 To do so, we start with the assumption that set A. F in each component automaton is now defined to contain only the
normal termination state of automaton A (i.e., the state that corresponds to the point immediately before the closing
curly brace of a PROMELA proctype or never claim body declaration).

 For the asynchronous product, we now redefine the set of final states A. F from Definition A.1 as follows, using the
definition of A. E that was given on page 554:

A. Fs is the subset of those elements of A. S that satisfy
the condition (A1. s, . . ., An. s) A. F, i, (Ai.
s Ai. F Ai. s Ai. E), further, we require that
(s, I, t) A. T, s A. F.

 That is, the product state is in set A. F if and only if all component automata are either in their normal termination
state, or in a specially marked end state, and further if the state has no successors. This precisely captures the notion
of an invalid end state, which is SPIN's formalization of a system deadlock state.

 We can do something similar for Definition A.2. Note that we may still want to make use of the SPIN machinery to
compute synchronous products also if we perform a verification of only safety properties, because we can make good
use of never claims as a pruning device: the never claim can be used to restrict a verification run to a subset of
behaviors that is deemed to be of primary interest.

 To make this possible, it suffices to redefine the set of final states of a synchronous product from Definition A.2 as
follows:

 A. Fs is the set of pairs (s1, s2) A. S where s1 P. F.

 The only change from the version used in Definition A.2 is that the criterion for determining if a state is in A. F now
uniquely depends on the system automaton P, and is independent of the state of the never claim (i.e., Büchi automaton
B).
[Team LiB]

[Team LiB]

Appendix B. The Great Debates
 "It is not necessary to understand things in order to argue about them."

 —(Pierre Augustin Caron de Beaumarchais, 1732–1799)

Quite a few issues in formal verification have sparked heated debates over the years, without ever coming to a clear
resolution. Perhaps the first such issue came up when temporal logic was first being explored, in the late seventies, as
a suitable formalism for reasoning about concurrent systems. The issue was whether it was better to use a
branching-time or a linear-time logic. Much later, the debate was between symbolic or explicit verification methods.
Many of these issues directly relate to design decisions that have to be made in any verifier, including SPIN. We
discuss the more important ones here, briefly motivating the rationale for the choices that were made in the design of
SPIN. The issues we discuss are:



Branching Time versus Linear Time


Symbolic Verification versus Explicit Verification


Breadth-First Search versus Depth-First Search


Tarjan's SCC Algorithms versus SPIN's Nested Depth-First Search


Events versus States


Realtime Verification versus Timeless Verification


Probabilities versus Possibilities


Asynchronous Systems versus Synchronous Systems


Interleaving Semantics versus True Concurrency


Open versus Closed Systems
[Team LiB]

[Team LiB]

Branching Time vs Linear Time

 The two main types of temporal logic that are used in model checking are CTL, short for Computation Tree Logic,
and LTL, short for Linear Temporal Logic. CTL is a branching time logic, and is almost exclusively used for
applications in hardware verification. LTL is a linear time logic, and is almost exclusively used for applications in
software verification. The main issues that have been debated concern the relative expressiveness of the two logics
and the relative complexity of verification.

 Perhaps one reason why the debate has persisted for so long is that the two logics are not really comparable: their
expressiveness overlaps, but each logic can express properties that are outside the domain of the other. The standard
examples that are used to illustrate the difference are that LTL can express fairness properties and CTL cannot, but
CTL can express the so-called reset property and LTL cannot. Fairness properties are often used as constraints on
cyclic executions, stating, for instance, that every cyclic execution either must traverse or may not traverse specific
types of states infinitely often. The reset property expresses that from every state there exists at least one execution
that can return the system to its initial state. Not surprisingly, this type of property is more important in hardware than
in software specifications. The overlap between CTL and LTL is sufficiently broad that most properties of interest can
easily be expressed in both logics. A notion of fairness, though not expressible in CTL, can be embedded into the
verification algorithms, so this is also not much of an issue.

 This leaves the issue of complexity, which continues to be a source of confusion. The main argument here is based on
an assessment of the theoretical worst-case complexity of verifying either CTL or LTL formulae. Consider a system
with R reachable states and a formula of "length" n, where the length of a formula is the number of state subformulae it
contains. The standard procedure for CTL model checking can visit every reachable state up to n times, giving a
worst-case complexity of O(R · n). The standard procedure for LTL model checking, however, first requires the
conversion of the LTL formula into an -automaton of, say, m states, and then computing the synchronous product of
that automaton and the system, which in the worst case can be of size R · m. This gives a complexity of O(R · m). The
focus of the argument is now that in the worst case m can be exponentially larger than n. This argument leads to the
statement that CTL model checking is "of linear complexity," while LTL model checking is "of exponential
complexity." Those who read this and try to find a significant difference between the run-time or memory requirements
of CTL model checkers and LTL model checkers are often surprised: there is no such difference and in many cases
LTL model checkers like SPIN have been shown to significantly outperform CTL model checkers when presented
with the same verification problem. So what is going on?

 Let us first consider the worst-case complexity of converting an LTL formula into an -automaton. As a simple
example, consider the formula [](p -> (q U r)). The CTL equivalent [1] of this formulae is AG((!p) || A(q U r)), where
A is the universal path quantifier, G is the equivalent of the LTL box operator [], and || is the logical or operator.
There are six state subformulae (properties that can be true or false in any given state): p, q, r, A(q U r), ((!p) || A(q U
r)), and AG((!p) || A(q U r)). The standard CTL model checking algorithm marks each system state with the truth
value of the propositional symbols p, and q, r in a first pass, and then in three new passes it will mark those states in
which the remaining state subformulae hold. In the worst case, this requires four visits to each state.

[1] The equivalence assumes that there are no states without outgoing transitions in the system being verified.

 The worst-case -automaton generated from the LTL version of the formula would have 26 = 64 states. A good
implementation of an LTL converter, however, generates an equivalent -automaton of only two states. The size of
the synchronous product of this automaton and the system is somewhere between R, the original system size, and 2 ·
R. With SPIN's nested depth-first search algorithm, in the worst case we would visit every state four times to perform
the verification. Whether the CTL verification method or the LTL verification method performs better depends entirely
on the unpredictable specifics of the system structure being verified: there is no predetermined winner.

 A few things are worth observing.
1.

 The worst-case behavior of LTL converters is rare. In most cases, the converters perform significantly better
than worst-case.

2.

Temporal logic formulae of practical interest very rarely have more than two or three temporal operators in
them. It can be hard to develop a good intuition for the true meaning of more complex formulae. Even
experienced people can easily be confused by them. The shorter formulae translate into small automata,
achieving very low multiplication factors for both CTL and LTL verification alike.

3.

What affects complexity is not really the number of potentially reachable states in the automaton that is
generated from an LTL formula, but the number of effectively reachable states.

 The memory and run-time requirements of the two types of searches for identical multiplication factors are, of course,
identical. LTL verification algorithms, however, can more easily be implemented with an on-the-fly verification
strategy: they do not require the whole system graph to be computed before the verification procedure can begin.

 As many have observed by simply running verification tasks with both CTL and LTL-based model checkers, in
practice there is no measure that can reliably tell which method can solve a given problem more efficiently. It is clear,
though, that CTL model checkers have been a powerful force in the development of the early tools for hardware
verification, while LTL model checkers have become dominant in applications of software verification. The difference
in logic, however, is not the only factor that sets these types of model checkers apart, so the relative success of each
type of tool within a given domain may well be due, at least in part, to other factors as well.

 A further discussion of these issues, with an extensive list of references, can be found in Vardi [2001].

[Team LiB]

[Team LiB]

Symbolic Verification vs Explicit Verification

 Symbolic verification algorithms, or BDD-based methods, offer an ingenious strategy to combat state-space
explosion problems. They are, of course, not the only such strategy, but in the domain of hardware verification they
are often extremely effective. When applied to software verification problems, they tend to perform more poorly, but
in that domain strategies such as partial order reduction often perform exceptionally well. There are no guarantees in
either domain, though. The performance of the symbolic verification methods depends critically on the variable
ordering that is chosen for the BDDs. Choosing an optimal variable ordering is an NP-complete problem, so in
practice only heuristic methods are used. Similarly, in applications of partial order reduction methods, computing the
optimal reduction is an NP-complete problem, so heuristics are used here as well. The method implemented in SPIN,
for instance, is based on a fairly conservative static approximation of data independence relations that tends to give
the majority of the benefits of the reduction at a very small run-time cost.

 Because of the conservative approximation used in SPIN, it is hard to construct a case where a verification attempt
with partial order reduction enabled behaves worse than one without it. The difference in even the worst case is
limited to a few percent of run-time. With the use of BDDs in hardware verification, the odds are less favorable.
Undeniably, the best-case performance of these methods is outstanding, but it is relatively easy to find or construct
cases where the symbolic verification methods behave significantly worse than explicit state methods. Worse still, it is
often unpredictable when this happens, and there is very little that can be done about it when it is encountered (short
of solving the NP-hard problem of variable ordering).

 When symbolic verification and partial order reduction methods are compared, some popular statistics tend to be
misused a little. The memory use of a BDD-based method is ultimately determined by the number of nodes in the
BDD structures, and for an explicit state method it is determined by the number of states stored. It can be very
misleading, though, to compare the number of potentially reachable states that is captured by a BDD structure with
the number of states that is explored with an explicit state method based on partial order reduction. First, of course,
potentially reachable does not mean effectively reachable. Secondly, and more importantly, the states explored in an
explicit search based on partial order methods are equivalent to a possibly exponentially larger set of effectively
reachable states. It is the very purpose of the partial order reduction method to make this difference as large as
possible. If memory use is compared between the two methods, the only valid metric is to compare true memory use:
bytes. The results of such comparisons can be very surprising, and can contradict the artificial counts that are meant to
show a disproportionally large benefit for symbolic methods.

 Neither method is necessarily superior to the other. Some trends seem fairly generally agreed upon, though. Within
the domain of software verification, partial order methods tend to give better performance, and within the domain of
hardware verification, the symbolic methods tend to perform better. There are reasons for the difference. Binary or
boolean data, often bit-vectors, tend to dominate in hardware verification problems: structures that favor BDD
representations. More complex, and highly correlated, higher-level data structures tend to dominate in software
verification problems, and are not easily exploited with BDDs. Asynchronous process execution tends to dominate in
software applications, a phenomenon exploited by partial order techniques; while synchronous, clocked, operation is
more the rule in hardware applications, not easily exploited by partial order reduction.
[Team LiB]

[Team LiB]

Breadth-First Search vs Depth-First Search

 Perhaps even an older point of debate is whether, in explicit state model checkers, it is better to use a breadth-first or
a depth-first discipline as the default search algorithm. SPIN uses depth-first search as its default algorithm, and
contains a breadth-first search only as a user-defined option, which is effective only for safety properties. The main
advantage of a breadth-first search algorithm is that for safety properties it can find the shortest path to an error state,
while the depth-first search often finds a longer path. For liveness properties, or properties of infinite sequences, the
advantages disappear. There are two well-known and efficient variants of the depth-first search that can be used to
demonstrate the existence of strongly connected components in a reachability graph: Tarjan's classic depth-first search
algorithm, and the more recent nested depth-first search method that is implemented in SPIN.

 We can think of a variant of the nested depth-first search method that is based on breadth-first search. Starting the
breadth-first search from the initial system state, we proceed with the search normally. Each accepting state found in
this process would be placed on a special watch list. We are interested in identifying at least one accepting state that is
reachable from itself. To solve that problem is harder. We can consider performing a second breadth-first search (the
nested search step) from each of the states on the watch list, but an essential property of the nested depth-first search
is missing: the second search can no longer be done in post-order. Therefore, we may need to create as many copies
of the state space as there are reachable accepting states. This increases the worst-case complexity of the search from
linear to quadratic.

 Quite apart from this technical problem in constructing an effective algorithm for proving liveness properties with a
breadth-first search, is the issue of memory requirements. Even if we could manage to restrict the state space to just a
single copy of each reachable state, we no longer have the depth-first search stack to fall back on for reconstructing
counterexample error paths. The breadth-first search needs a queue to store each new generation of states that are to
be explored further, which fulfills a similar role as the stack in a depth-first search. To be able to construct error paths,
though, the breadth-first search needs to store links (pointers) at each state, pointing to at least one of the state's
predecessors in the reachability graph. Each such pointer takes at least 32-bits of memory. The nested depth-first
search method does not need to store such links between states, trading the inconvenience of longer error paths for a
savings in memory.

 SPIN has an option to find a shorter error path that is based on depth-first search that works for both safety and
liveness properties. In this variant of the search we store with each reachable state also the distance from the initial
system state at which that state was found. If a shorter path to the state is found later in the search, its successors are
re-explored, up to a user-defined maximum search depth. Clearly, finding the shortest possible error path is almost
always more expensive than just plain proving the existence any error path.
[Team LiB]

[Team LiB]

Tarjan Search vs Nested Search

 The automata theoretic verification procedure as implemented in SPIN relies on our ability to detect the presence of
infinite accepting runs in a finite reachability graph. The classic way of doing so would be to use Tarjan's depth-first
search algorithm to construct the strongly connected components of the graph, and then analyze each such component
for the presence of accepting states. The memory and time requirements of this procedure are well-known. In the
worst case, we may have to visit every reachable state twice: once to construct the reachability graph, and once in the
analysis of a strongly connected component. The storage requirements for each reachable state increase with two,
typically 32-bit wide, integer values: one to store the so-called depth-first number and one to store the lowlink
number. Further, to be able to reconstruct an accepting path through a strongly connected component, at least one
32-bit pointer to a predecessor state would need to be stored at each reachable state, bringing the total to three
32-bit values of overhead per state. The benefit of Tarjan's algorithm is clearly that it can produce all accepting runs.

 The innovation of the nested depth-first search algorithm lies in the fact that it is not necessary to produce all
accepting runs. The search is set up in such a way that an accepting run corresponds to a counterexample of a
correctness claim. Any one counterexample suffices to invalidate the claim. The nested depth-first search algorithm
has the property that it is able to detect at least one accepting run, if one or more such runs exist. It does so at the
same worst-case time complexity (maximally visiting every state twice), but at a lower memory overhead. Only two
bits of memory need to be added to each state, instead of three 32-bit values. No pointers between states need to be
stored, making it possible to also support very memory-frugal approximation algorithms such as the supertrace or
bitstate hashing method, which are among SPIN's main features.

 One point in favor of Tarjan's algorithm is that it makes it easier to implement a range of different fairness constraints,
including the strong fairness option that is currently not supported by SPIN.
[Team LiB]

[Team LiB]

Events vs States

 SPIN is an explicit state model checker. To perform verification, the system builds a global state reachability graph,
which can be stored in various ways in memory. The focus on states, rather than transitions or events, also extends to
the way in which correctness properties are formalized. A correctness property, such as a temporal logic formula, is
built up from simple boolean properties of system states. That means, to express the property that after an off-hook
event a telephone subscriber will always receive a dial tone signal, we have to find a way to express the occurrence of
the related events as state properties, rather than directly as events. An off-hook condition, for instance, will likely be
registered somewhere in a status field, and similarly the generation of dial tone by the system will be recorded
somewhere. This strict adherence to the notion of a state as the single mechanism to support correctness arguments is
sometimes clumsy. For instance, we may want to state the correctness property that always within a finite amount of
time after the transmission of a message the message will be received at its destination. Clearly, the state of a message
channel will change as a result of both types of events, provided that the message is sent through a buffered channel. If
send and receive events are rendezvous handshakes, however, it becomes much harder, and we have to find more
subtle ways of recording their execution in a way that is observable to SPIN during verification.

 In principle, it would be possible to switch to a purely event-based formalism for expressing correctness
requirements. That too would have limitations, because many types of properties lend themselves more easily to
state-based reasoning. A hybrid approach may be the most attractive, shifting some of the ensuing complexity into the
model checker itself. To date, we have not explored this extension for SPIN yet.
[Team LiB]

[Team LiB]

Realtime Verification vs Timeless Verification

 One of the most frequently asked questions about SPIN concerns the preferred way of modeling time. Verification of
system properties is based on the fundamental assumption that correctness should be independent of performance. As
Edsger Dijkstra first articulated, under no circumstances should one let any argument about the relative speed of
execution of asynchronous processes enter into correctness arguments. PROMELA has only a rudimentary way for
modeling the concept of a timeout, through the use of a predefined and read-only global boolean variable named
timeout. The timeout variable is true only when all processes are simultaneously blocked, and it is false otherwise. This
allows us to model the functional intent of a timeout condition: it takes effect to relieve the system from an apparent
hang state. There is a pleasing analogy with the predefined read-only local boolean variable else in PROMELA (yes,
this is a variable, and not a control-flow keyword, as in most implementation languages). The else variable becomes
true only when the process that contains it cannot make any other transitions.

 If we replace an occurrence of timeout with skip we can capture the assumption that timeouts may also happen when
the system is not actually stuck, and we can verify the validity of our correctness claims under those much more
severe conditions. Generally, though, this will cause a flood of pseudo error scenarios that are of only marginal interest
to a designer. All this reinforces the notion that SPIN is not meant to be used as a performance analysis tool.

 There are indeed algorithms for doing real-time analysis with model checkers, but the penalty one pays for this
additional functionality is almost always severe: typically an increase in computational complexity of several orders of
magnitude. By focusing on only functional and logical correctness issues, SPIN can gain significant efficiency, and
handle a broader class of problems.
[Team LiB]

[Team LiB]

Probability vs Possibilty

 This issue is very similar to the previous one. It is possible to modify the standard model checking algorithms to take
into account a notion of probability. One could, for instance, tag the options in every selection construct with relative
probabilities to indicate their relative likelihood of occurrence.

 There are many problems with this approach. First, it can increase the verifi-cation complexity, depriving us of the
ability to verify properties of larger systems. Second, it can be difficult to correctly interpret the results of a verification
run that is based on probability estimates. We could, for instance, compute the combined probability of occurrence of
an error scenario, but that would be meaningless as a metric. Almost all error scenarios, including the devastating ones
that can cause huge damage, have an exceedingly low probability of occurrence. Errors almost always have a low
probability of occurrence, since the normal design practices will easily shake out the higher probability bugs. It is the
very goal of model checking to find the low probability scenarios that cause systems to fail. It would be a grave error
to restrict a verification to only higher probability behaviors. Finally, it can be hard to come up with a realistic estimate
for the relative probability of different options for execution. More often than not, if such tags have to be assigned,
they will be guessed, which undermines the validity of the verification process.
[Team LiB]

[Team LiB]

Asynchronous Systems vs Synchronous Systems

 Most hardware model checkers have adopted a synchronous view of the world where in principle all process actions
are clock-driven. In such a system, at every clock-tick every process takes a step. One can model asynchronous
process behavior in such systems by including a non-deterministic pause option at every move in every process. At
each step, then, a process can choose to either pause or to advance with its execution. SPIN is one of the few
systems that adopts an asynchronous view of the world. Since in a distributed system different processes cannot see
each other's clock (and clock synchronization in a distributed system is actually a pretty difficult task in its own right),
the speed of execution of processes is fundamentally asynchronous and cannot be controlled by any device or
process: it is beyond the control of the programmer, just like it is in the real world of distributed computing.

 This choice has both advantages and disadvantages. The main disadvantage is that it is hard to model synchronous
system behavior with an asynchronous model checker. Then again, it is precisely the point of the choice to make this
hard, so this is not too surprising. Yet it does, for all practical purposes, eliminate SPIN as an effective candidate for
doing hardware verification. There are very good systems for addressing that problem, so this is not a significant loss.

 Apart from a better fit for the types of design problems that SPIN targets, there is also an unexpected benefit of
adopting the asynchronous view of the world: greater verification efficiency. Assume a model with N asynchronous
processes. Modeling these processes in a synchronous tool with non-deterministic pause transitions to emulate
asynchronous behavior incurs an N-fold overhead: at every step the model checker must explore N additional pause
transitions compared to the SPIN-based graph exploration. This efficiency argument, though, applies only to explicit
state verification methods; it disappears when symbolic verification algorithms are used.
[Team LiB]

[Team LiB]

Interleaving vs True Concurrency

 Sometimes a distinction is made between true concurrency semantics and the interleaving semantics we have
described. In addition to the interleaving of actions, a true concurrency semantics allows also for the simultaneous
execution of actions. In Definition A.1 (p. 554), this would mean the introduction of many extra transitions into set T
of the product automaton, one extra transition for each possible combination of transitions in the component automata.

 In distributed computer systems, it is indeed possible that two asynchronous processes execute actions in the same
instant of time, at least as far as could be determined by an outside observer. To see how such events can be
modeled, we must consider two cases.

 First, consider the case where the process actions access either distinct data objects, or none at all. In this case, the
simultaneous execution of these actions is indistinguishable from any arbitrarily chosen sequential interleaving. The
interleaving semantics, then, gives a correct representation. The addition of the simultaneous transitions cannot add
new functionality.

 Secondly, consider the case where two or more process actions do access a shared data object. Let us first assume
that the object is a single entity that resides at a fixed location in the distributed system, and is accessed by a single
control unit. That control unit obviously can do only one thing at a time. At some level of granularity, the control unit
wil force an interleaving of atomic actions in time. If we pick the granularity of the actions that are defined within our
labeled transition systems at that level, the interleaving semantics will again accurately describe everything that can
happen.

 But, what if the data object is not a single entity, but is itself distributed over several places in the distributed system
where it can be accessed in parallel by different control units? Also in this case, the same principles apply. We can
represent the data objects in our automata model at a slightly lower level of granularity, such that each distinct data
object resides in a fixed place.

 The important thing to note here is that automata are modeling devices: they allow us to model real-world
phenomena. The theoretical framework must allow us to describe such phenomena accurately. For this, interleaving
semantics offer the simplest model that suffices.
[Team LiB]

[Team LiB]

Open vs Closed Systems

 Traditionally, model checking is based on two requirements: the model must be finite and it must be closed. The
benefit of the finiteness assumption will need few words here, although it does mean that we can only reason about
infinite state systems if we can make finitary abstractions of them.

 To be closed, a model must include all possible sources of input and it must include explicit descriptions of all process
behaviors that could affect its correctness properties. The most often quoted benefit of an open systems description,
where not all elements of a system are necessarily specified, is that of convenience. In most cases, though, it is not
very hard to extend a system's model with a minimal set of worst case assumptions about the environment in which it
is meant to execute. These worst case assumptions can effectively match the defaults that would be presumed in an
open systems model.

 In the design phase, it can be quite helpful to a designer to focus explicitly on the otherwise hidden assumptions.
There is also significant extra power in the use of a closed systems model. The designer can, for instance, modify the
environment assumptions to see what effect they can have on critical correctness properties. The assumptions can also
be used to focus a verification task more precisely on the correct operation of a system under a specific set of
conditions. The convention of working with closed system models, finally, naturally matches a standard
assume-guarantee style of reasoning.
[Team LiB]

[Team LiB]

Appendix C. Exercises With SPIN
 "I hear and I forget; I see and I remember; I do and I understand."

 —(Confucius, 551–479 BC)
[Team LiB]

[Team LiB]

C.1.

 How many reachable states do you predict the following PROMELA model will generate?

init { /* example ex1 */

 byte i = 0;

 do

 :: i = i+1

 od

}

 Try a simulation run:

$ spin -p -l -u100 ex1

 Will the simulation terminate if the -u100 argument is omitted? Try it.
[Team LiB]

[Team LiB]

C.2.

 Estimate the total number of reachable states that should be inspected in an exhaustive verification run. Is it a finite
number? Will a verification run terminate? Try it as follows, and explain the result.

$ spin -a ex1

$ cc -o pan pan.c

$./pan

[Team LiB]

[Team LiB]

C.3.

 What would happen if you had declared local variable i to be a short or an int instead of a byte?
[Team LiB]

[Team LiB]

C.4.

 Predict accurately how many reachable states there are for the following model. Write down the complete
reachability tree for N equal to two, as specified.

#define N 2

init { /* example ex2 */

 chan dummy = [N] of { byte };

 do

 :: dummy!85

 :: dummy!170

 od

 }

 Check your prediction by generating, compiling, and running the verifier as follows:

$ spin -m -a ex2

$ cc -o pan pan.c

$ time ./pan

 (Option -m defines that messages appended to a full buffer are to be lost.)
[Team LiB]

[Team LiB]

C.5.

 What happens to the number of reachable states if you set N to three? Express the number of states as a function of
N. Use the formula to calculate how many states there will be if you set N equal to 14. Check your prediction by
running the verification, and write down:

 T: the sum of user time plus system time for the run,

 S: the number of states stored in the state space,

 G: the number of total number of states generated and analyzed,

 V: the vector size, that is, the state descriptor size, which is the amount of memory needed to store one state.

 Compute G/T as a measure for the efficiency of the run. The product of S and V gives you the minimal amount of
memory that was needed to store the state space. This is of course not the only place where memory is used during a
verification (the stack, for instance, also consumes memory), but it is often the largest memory requirement.

 The efficiency of a standard exhaustive verification run is determined by the state space storage functions. To study
this, repeat the last run first with a smaller and then with a bigger hash table than the predefined default:

$ time ./pan -w10 # hash table with 2^10 slots

$ time ./pan -w20 # hash table with 2^20 slots

 Explain the results. [Hint: Compare the number of hash conflicts.]
[Team LiB]

[Team LiB]

C.6.

 Estimate how much memory you would need to do a run with N equal to 20? (Warning: Both the number of
reachable states and the number of bytes per state goes up with N. Estimate about 30 bytes per state for N equal to
20.) If you have about 8 Megabytes of physical memory available to perform the verification, what maximal fraction
of the state-space would you expect to be able to reach?

 Now set N to 20 and perform a bitstate verification, as follows:

$ spin -m -a ex2

$ cc -DBITSTATE -o pan pan.c

$ time ./pan

 If you did the calculation, you probably estimated that there should be 2,097,151 reachable system states for N
equal to 20. What percentage of these states was reached in the bitstate run? How much memory was used?
Compare this to the earlier estimated maximal coverage for a standard exhaustive verification and explain the
difference.
[Team LiB]

[Team LiB]

C.7.

 The default state space in the bitstate verification we performed in the last exercise allocates a hash array of 222 bits
(i.e., one quarter Megabyte of memory). Repeat the run with larger amount of memory and check the coverage.
Check what percentage of the number of states is reached when you use the 8 Megabyte state space on which your
first estimate for maximal coverage in a full state space search was based (223 bytes is 226 bits, which means a
run-time flag -w26). You should be able to get reasonably good coverage and between 40,000 and 400,000 states
stored per second, depending on the speed of the machine that is used. Note that the actual number of states reached
is about twice as large as the number of states stored in this experiment: The number of states reached equals the
number of transitions that were executed.

 On a 2.5 GHz Pentium 4 Windows PC, for instance, the run reaches 99% coverage at a rate of 400,000 states per
second.

$ spin -a ex2

$ cl -DPC -DSAFETY -O pan.c

$ time ./pan -w26

(Spin Version 4.0.7 -- 1 August 2003)

 + Partial Order Reduction

Bit statespace search for:

 never claim - (none specified)

 assertion violations +

 cycle checks - (disabled by -DSAFETY)

 invalid end states +

State-vector 38 byte, depth reached 20, errors: 0

2.07474e+006 states, stored

2.07474e+006 states, matched

4.14948e+006 transitions (= stored+matched)

 0 atomic steps

2.07223e+006 lost messages

hash factor: 32.3456 (expected coverage: >= 98% on avg.)

(max size 2^26 states)

Stats on memory usage (in Megabytes):

87.139 equivalent memory usage for states

16.777 memory used for hash array (-w26)

0.280 memory used for DFS stack (-m10000)

17.262 total actual memory usage

unreached in proctype :init:

 line 8, state 6, "-end-"

 (1 of 6 states)

real 0m5.247s

user 0m0.015s

sys 0m0.000s

$

 If enough memory is available, also perform an exhaustive (non-bitstate) verification and compare the total actual
memory usage for the two runs.
[Team LiB]

[Team LiB]

C.8.

 How many states should the following program generate?

#define N 20

int a;

byte b;

init {

 do

 :: atomic { (b < N) ->

 if

 :: a = a + (1<<b)

 :: skip

 fi;

 b=b+1 }

 od

}

 Run a bitstate analysis, using the command

$ time ./pan -c0 -w26

 and explain all numbers reported.
[Team LiB]

[Team LiB]

C.9.

 It is often much easier to build an little validation model and mechanically verify it than it is to understand a manual
proof of correctness in detail. Petri Nets are relatively easy to model as PROMELA validation models. A
PROMELA model for the net in Figure C.1, for instance, is quickly made.

 Figure C.1. Petri Net with Hang State

#define Place byte /* < 256 tokens per place */

Place p1, p2, p3;

Place p4, p5, p6;

#define inp1(x) (x>0) -> x--

#define inp2(x,y) (x>0&&y>0) -> x--; y--

#define out1(x) x++

#define out2(x,y) x++; y++

init

{ p1 = 1; p4 = 1; /* initial marking */

 do

/*t1*/ :: atomic { inp1(p1) -> out1(p2) }

/*t2*/ :: atomic { inp2(p2,p4) -> out1(p3) }

/*t3*/ :: atomic { inp1(p3) -> out2(p1,p4) }

/*t4*/ :: atomic { inp1(p4) -> out1(p5) }

/*t5*/ :: atomic { inp2(p1,p5) -> out1(p6) }

/*t6*/ :: atomic { inp1(p6) -> out2(p4,p1) }

 od

}

 For this exercise, consider the following PROMELA model of a Petri Net taken from a journal paper that was
published in 1982 and proven to be deadlock-free in that paper with manual proof techniques.

#define Place byte

Place P1, P2, P4, P5, RC, CC, RD, CD;

Place p1, p2, p4, p5, rc, cc, rd, cd;

#define inp1(x) (x>0) -> x--

#define inp2(x,y) (x>0&&y>0) -> x--; y--

#define out1(x) x++

#define out2(x,y) x++; y++

init

{ P1 = 1; p1 = 1; /* initial marking */

 do

 :: atomic { inp1(P1) -> out2(rc,P2) }

 :: atomic { inp2(P2,CC) -> out1(P4) }

 :: atomic { inp1(P4) -> out2(P5,rd) }

 :: atomic { inp2(P5,CD) -> out1(P1) }

 :: atomic { inp2(P1,RC) -> out2(P4,cc) }

 :: atomic { inp2(P4,RD) -> out2(P1,cd) }

 :: atomic { inp2(P5,RD) -> out1(P1) }

 :: atomic { inp1(p1) -> out2(RC,p2) }

 :: atomic { inp2(p2,cc) -> out1(p4) }

 :: atomic { inp1(p4) -> out2(p5,RD) }

 :: atomic { inp2(p5,cd) -> out1(p1) }

 :: atomic { inp2(p1,rc) -> out2(p4,CC) }

 :: atomic { inp2(p4,rd) -> out2(p1,CD) }

 :: atomic { inp2(p5,rd) -> out1(p1) }

 od

}

 See if SPIN can find a deadlock in the model.

[Team LiB]

[Team LiB]

Appendix D. Downloading Spin
 "On two occasions I have been asked, 'Pray, Mr. Babbage, if you put into the machine wrong figures, will the right
answers come out?' I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a
question."

 —(Charles Babbage, 1792–1871)

SPIN can be run on most systems, including most flavors of UNIX and Windows PCs. The only strict requirement is
the availability of a standard, ANSI compatible, C preprocessor and compiler. If these programs are not already
installed on your system, good quality public domain versions can be readily found on the Web. A recommended
source for these tool, plus a host of other UNIX applications, is

http://www.cygwin.com

Instructions for installing SPIN, documentation, test cases, and the complete set of SPIN sources, are maintained and
kept up to date at

http://spinroot.com/spin/index.html

The SPIN package has been freely available in this form since 1991. Officially, the SPIN sources are not considered
to be in the public domain, since they are protected by a copyright from Bell Labs and Lucent Technologies. In effect,
though, the software is very widely distributed and for all practical purposes treated as freeware. The tool is used for
educational purposes, for research in formal verification, and has found considerable use in industry.

Commercial use of SPIN requires the acceptance of a standard license agreement from Bell Labs, which can be done
by clicking an accept button, and entering some contact information, at URL

http://cm.bell-labs.com/cm/cs/what/spin/spin_license.html

The commercial license also requires no fees. SPIN continues to evolve, with new releases appearing every few
months. The changes made in each new release of the tool—bug fixes, extensions, and revisions—are documented in
update files that are part of the distribution.

Perhaps the best way to stay up to date on new developments related to SPIN is through the SPIN Workshop series.
International SPIN Workshops have been held annually since 1995. The proceedings of the workshops are published
by Springer Verlag in their series of Lecture Notes in Computer Science.
[Team LiB]

http://www.cygwin.com/default.htm
http://www.spinroot.com/spin/index.html
http://www.cm.bell-labs.com/cm/cs/what/spin/spin_license.html
http://www.cygwin.com
http://spinroot.com/spin/index.html
http://cm.bell-labs.com/cm/cs/what/spin/spin_license.html

[Team LiB]

LTL Conversion
 Etessami's eqltl tool, for the conversion of extended LTL formulae, containing precisely one existential quantifier that
we discussed in Chapter 6, can be downloaded from:

 http://www.bell-labs.com/project/TMP/

 The alternative converter developed by Denis Oddoux and Paul Gastin for the conversion of standard LTL formulae
into PROMELA never claims is available from the SPIN Web site at:

 http://spinroot.com/spin/Src/ltl2ba.tar.gz

 The original package can also be obtained from the authors of this software via:

 http://verif.liafa.jussieu.fr/ltl2ba/
[Team LiB]

http://www.bell-labs.com/project/TMP/default.htm
http://www.spinroot.com/spin/Src/ltl2ba.tar.gz
http://www.verif.liafa.jussieu.fr/ltl2ba/default.htm
http://www.bell-labs.com/project/TMP/
http://spinroot.com/spin/Src/ltl2ba.tar.gz
http://verif.liafa.jussieu.fr/ltl2ba/

[Team LiB]

Model Extraction
 In Chapter 10 we discussed the use of a model extraction tool to facilitate the mechanical construction of SPIN
verification models from implementation level code. The model extractor is available from Bell Labs via URL

 http://cm.bell-labs.com/cm/cs/what/modex/index.html

 The distribution package includes documentation, as well as the FeaVer graphical user interface that can facilitate the
use of the model extraction software.
[Team LiB]

http://www.cm.bell-labs.com/cm/cs/what/modex/index.html
http://cm.bell-labs.com/cm/cs/what/modex/index.html

[Team LiB]

Timeline Editor
 The timeline editor tool, discussed in Chapter 13, is part of the FeaVer interface for the model extractor (see above).
It can also be run as a stand-alone tool. This stand-alone version of the tool can be downloaded via URL

 http://cm.bell-labs.com/cm/cs/what/timeedit/index.html
[Team LiB]

http://www.cm.bell-labs.com/cm/cs/what/timeedit/index.html
http://cm.bell-labs.com/cm/cs/what/timeedit/index.html

[Team LiB]

Tables and Figures
 "An undetected error [...] is like a sunken rock at sea yet undiscovered, upon which it is impossible to say what
wrecks may have taken place."

 —(Sir John Herschel, 1842)
[Team LiB]

[Team LiB]

Tables

3.1 Basic Data Types 41

3.2 Operator Precedence 54

6.1 Frequently Used LTL Formulae 137

6.2 Formalization of Properties 138

10.1 Example of Type Abstraction 237

16.1 Index of All Manual Pages 370

16.2 Typical Data Ranges 404
[Team LiB]

[Team LiB]

Figures

1.1 Circular Blocking 3

1.2 Deadly Embrace 4

2.1 Simple Producer Consumer Example 11

2.2 Revised Producer Consumer
Example

17

2.3 Dekker's Mutual Exclusion Algorithm
(1962)

20

2.4 Faulty Mutual Exclusion Algorithm 23

2.5 Peterson's Mutual Exclusion
Algorithm (1981)

26

2.6 Data Transfer Protocol 27

3.1 Simple Model of a Telephone System 63

3.2 Word Count Program Using STDIN
Feature

69

3.3 Using Channel Assertions 70

4.1 Labeling End States 77

4.2 Control Flow Structure for LTL
Property ¬ (p (p U q))

88

5.1 Counter Example 106

5.2 A Sink, a Source, and a Filter
Process

107

5.3 Small Model for the Pathfinder
Problem

109

5.4 Reachability Graph for Pathfinder
Problem

111

5.5 Disk Scheduler Context 114

5.6 Minimal Device Driver Interface
Model

115

5.7 Disk Scheduler Model 116

5.8 Number of Possible States for q
Message Buffers

121

6.1 A Simple Finite State Automaton 129

6.2 A Possible Interpretation of the
Automaton in 6.1

130

6.3 Model of a Simple Computation 133

6.4 Automaton for p 143

6.5 Automaton for ¬ p = ¬p 144

6.6 Automaton for (p q) 146

6.7 Never Automaton for (p !q) 146

6.8 Automaton for (p (rUq)) 147

6.9 Automaton for (p !(rUq)) 147

7.1 Sample PROMELA Model 154

7.2 Transition Relation for the Model in
Figure 7.1

155

7.3 PROMELA Semantics Engine 159

7.4 Specification of Procedure
executable()

161

7.5 State Space Structure for First and
Third Example

163

7.6 State Space Structure for Second
Example

164

7.7 Claim Stutter 165

8.1 Basic Depth-First Search Algorithm 168

8.2 Extension of Figure 8.1 for Checking
Safety Properties

170

8.3 Example for Depth-Limited Search 172

8.4 Depth-Limited Search 173

8.5 Stateless Search 176

8.6 Breadth-First Search Algorithm 177

8.7 Nested Depth-First Search for
Checking Liveness Properties

180

8.8 (k+2) Times Unfolded State Space
for Weak Fairness

183

8.9 A Two-State Global State Space
Example

184

8.10 Unfolded State Space for Example in
Figure 8.9

185

9.1 The Finite State Automata T1 and T2 192

9.2 Expanded Asynchronous Product of
T1 and T2

193

9.3 Effect of Partial Order Reduction 195

9.4 State Components for COLLAPSE
Compression

199

9.5 Minimized Automaton Structure After
Storing {000, 001, 101}

202

9.6 New Automaton Structure Storing
{000, 001, 101, 100}

203

9.7 Standard Hash Table Lookup 207

9.8 Optimal Nr. of Hash Functions and
Probability of Hash Collision

211

9.9 Measured Coverage of Double
Bitstate Hashing (k=2)

212

10.1 The Complete Parse Tree for fahr.c 219

10.2 Part of Parse Tree Structure for the
While Loop

220

10.3 Control-Flow Graph for While
Construct from 10.2

221

10.4 Generated SPIN model 223

10.5 Word Count Model 233

10.6 Abstracted Word Count Model 234

10.7 Simplified Model 235

11.1 The Structure of SPIN 246

12.1 XSPIN Main Window 268

12.2 The Simulations Options Panel 273

12.3 Message Sequence Chart Display
(portion)

274

12.4 Main Simulation Output Panel 275

12.5 Basic Verification Options 276

12.6 Advanced Verification Options 277

12.7 The LTL Property Manager 279

12.8 The Automata View 281

13.1 Simple Example of a Timeline
Specification

284

13.2 Büchi Automaton for the Timeline in
13.1

288

13.3 Never Claim for the Timeline in 13.1 288

13.4 Variation on the Timeline from 13.1 289

13.5 Büchi Automaton for the Timeline in
13.5

290

13.6 Timeline and Automaton for a Single
Required Event

291

13.7 Timeline and Automaton for a Single
Fail Event

292

13.8 Timeline and Automaton for a Regular
and a Required Event

293

13.9 A More Complex Timeline
Specification

293

13.10 Büchi Automaton for the Timeline in
13.10

294

13.11 Timeline Specification with Three
Events

294

13.12 Büchi Automaton for the Timeline in
13.12

295

13.13 Attempt to Express the LTL property
!(a U b)

296

13.14 The Correct Büchi Automaton for
LTL property !(a U b)

296

13.15 A Variant of the Timeline in Figure
13.13

296

14.1 Typical Scenario for a POTS Call 302

14.2 Initial Behavior Model of a POTS
Subscriber

303

14.3 Two Alternative Subscriber Models 304

14.4 Two-State Model of Subscriber 305

14.5 Simple Switch Model for Outgoing
Calls

306

14.6 SS7 Scenario for Call Setup 308

14.7 Extended Local Switch Model 310

14.8 POTS Interface Model for a Remote
Switch

312

14.9 PROMELA Model of Visible
Behavior of Remote Switch

313

14.10 Switch Session Management
Structure

314

14.11 New Model for the Session Handler 317

14.12 New Model for the Remote Switch 319

14.13 New Version of the Session Manager 320

14.14 Revised Subscriber Process 321

14.15 Never Claim to Trigger Three-Way
Calling Scenario

322

15.1 The Sieve of Eratosthenes 326

15.2 Alternative Structure for Sieve 331

15.3 Sleep-Wakeup Routines 336

15.4 Remainder of Verification Model for
UTS

337

15.5 Agent and Server Processes 342

15.6 The Client Processes 343

15.7 Square Root Server Model 354

15.8 A Sample Automaton to Check
C-Style Comment Conventions

359

15.9 A Simple C-Style Comment Filter 360

17.1 Example of Embedded C Code 497

17.2 Replacing c_state with c_track
Primitives

499

19.1 Example Output Generated by PAN 541

A.1 Example PROMELA Model 557

A.2 Finite State Automata A1, A2, and B 558

A.3 Asynchronous Product of A1 and A2 559

A.4 Expanded Asynchronous Product for
Initial Value x = 4

559

A.5 (Expanded) Synchronous Product of
A.4 and Automaton B

560

C.1 Petri Net with Hang State 577

[Team LiB]

	Main Page
	Table of content
	Copyright
	Preface
	Logic Model Checking
	The SPIN Model Checker
	Book Structure

	Chapter 1. Finding Bugs in Concurrent Systems
	'Circular Blocking'
	'Deadly Embrace'
	'Mismatched Assumptions'
	'Fundamental Problems of Concurrency'

	Chapter 2. Building Verification Models
	'SPIN'
	'PROMELA'
	Examples
	'Hello World'
	'Producers and Consumers'
	'Extending the Example'
	'Mutual Exclusion'
	'Message Passing'
	In Summary
	Bibliographic Notes

	Chapter 3. An Overview of PROMELA
	'Types of Objects'
	Processes
	'Provided Clauses'
	Data Objects
	'Data Structures'
	Message Channels
	'Channel Poll Operations'
	'Sorted Send And Random Receive'
	'Rendezvous Communication'
	Rules For Executability
	'Assignments And Expressions'
	Control Flow: Compound Statements
	'Atomic Sequences'
	'Deterministic Steps'
	'Selection'
	'Repetition'
	'Escape Sequences'
	'Inline Definitions'
	'Reading Input'
	'Special Features'
	Finding Out More

	Chapter 4. Defining Correctness Claims
	'Stronger Proof'
	Basic Types of Claims
	'Basic Assertions'
	'Meta Labels'
	'Fair Cycles'
	Never Claims
	'The Link With LTL'
	Trace Assertions
	'Notrace'
	Predefined Variables and Functions
	'Remote Referencing'
	Path Quantification
	'Formalities'
	Finding Out More

	Chapter 5. Using Design Abstraction
	'What Makes a Good Design Abstraction?'
	'Data and Control'
	'The Smallest Sufficient Model'
	'Avoiding Redundancy'
	'Counters'
	'Sinks, Sources, and Filters'
	'Simple Refutation Models'
	'Pathfinder'
	'A Disk-Head Scheduler'
	Controlling Complexity
	'Example'
	'A Formal Basis for Reduction'
	'Example – A File Server'
	In Summary
	Bibliographic Notes

	Chapter 6. Automata and Logic
	Automata
	'Omega Acceptance'
	'The Stutter Extension Rule'
	'Finite States, Infinite Runs'
	'Other Types of Acceptance'
	Logic
	'Temporal Logic'
	'Recurrence and Stability'
	'Using Temporal Logic'
	'Valuation Sequences'
	'Stutter Invariance'
	'Fairness'
	From Logic To Automata
	'An Example'
	'Omega-Regular Properties'
	'Other Logics'
	Bibliographic Notes

	Chapter 7. PROMELA Semantics
	Transition Relation
	Operational Model
	'Operational Model, Semantics Engine'
	Interpreting PROMELA Models
	'Three Examples'
	Verification
	'The Never Claim'

	Chapter 8. Search Algorithms
	'Depth-First Search'
	Checking Safety Properties
	'Depth-Limited Search'
	'Trade-Offs'
	'Breadth-First Search'
	Checking Liveness Properties
	'Adding Fairness'
	The SPIN Implementation
	Complexity Revisited
	Bibliographic Notes

	Chapter 9. Search Optimization
	Partial Order Reduction
	'Visibility'
	Statement Merging
	State Compression
	'Collapse Compression'
	'Minimized Automaton Representation'
	'Bitstate Hashing'
	'Bloom Filters'
	'Hash-Compact'
	Bibliographic Notes

	Chapter 10. Notes on Model Extraction
	The Role of Abstraction
	From ANSI-C to PROMELA
	'Embedded Assertions'
	A Framework for Abstraction
	'Sound and Complete Abstraction'
	'Selective Data Hiding'
	'Example'
	'Bolder Abstractions'
	Dealing With False Negatives
	Thorny Issues With Embedded C Code
	The Model Extraction Process
	The Halting Problem Revisited
	Bibliographic Notes

	Chapter 11. Using SPIN
	'SPIN Structure'
	'Roadmap'
	Simulation
	'Random Simulation'
	'Interactive Simulation'
	'Guided Simulation'
	Verification
	'Generating a Verifier'
	'Compiling the Verifier'
	'Tuning a Verification Run'
	'The Number of Reachable States'
	'Search Depth'
	'Cycle Detection'
	'Inspecting Error Traces'
	'Internal State Numbers'
	Special Cases
	'Disabling Partial Order Reduction'
	'Boosting Performance'
	'Separate Compilation'
	'Lowering Verification Complexity'

	Chapter 12. Notes on XSPIN
	'Starting a Session With XSPIN'
	The File Menu
	The Edit Menu
	The Help Menu
	The Run Menu
	'Syntax Check'
	'Property-Based Slicing'
	'Set Simulation Parameters'
	'(Re)Run Simulation'
	'Set Verification Parameters'
	'(Re)Run Verification'
	'LTL Property Manager'
	'The Automaton View Option'
	'In Summary'

	Chapter 13. The Timeline Editor
	An Example
	Types of Events
	Defining Events
	Matching a Timeline
	Automata Definitions
	Constraints
	Variations on a Theme
	Timelines With One Event
	Timelines With Multiple Events
	The Link With LTL
	Bibliographic Notes

	Chapter 14. A Verification Model of a Telephone Switch
	General Approach
	'Keep it Simple'
	'Managing Complexity'
	Modeling a Switch
	'Subscriber Model'
	'Switch Model'
	'Remote Switches'
	Adding Features
	'Three-Way Calling'
	'A Three-Way Calling Scenario'
	In Summary

	Chapter 15. Sample SPIN Models
	'Eratosthenes'
	'Process Scheduling'
	'A Client-Server Model'
	'Square Roots?'
	'Adding Interaction'
	'Adding Assertions'
	'A Comment Filter'

	Chapter 16. PROMELA Language Reference
	Chapter 16. PROMELA Language Reference
	Syntax
	EXECUTABILITY
	EFFECT
	DESCRIPTION
	Examples
	Notes
	See Also
	Grammar Rules
	Main Sections
	Reference
	Special Cases
	_
	_last
	_nr_pr
	_pid
	accept
	active
	arrays
	assert
	assignment
	atomic
	break
	chan
	comments
	cond_expr
	condition
	d_step
	datatypes
	do
	else
	empty
	enabled
	end
	eval
	false
	float
	full
	goto
	hidden
	hierarchy
	if
	init
	inline
	labels
	len
	local
	ltl
	macros
	mtype
	nempty
	never
	nfull
	np_
	pc_value
	pointers
	poll
	printf
	priority
	probabilities
	procedures
	proctype
	progress
	provided
	rand
	real-time
	receive
	remoterefs
	run
	scanf
	send
	separators
	sequence
	show
	skip
	STDIN
	timeout
	trace
	true
	typedef
	unless
	xr

	Chapter 17. Embedded C Code
	An Example
	Data References
	Execution
	Issues to Consider
	Deferring File Inclusion
	c_code
	c_decl
	c_expr

	Chapter 18. Overview of SPIN Options
	Compile-Time Options
	Simulation Options
	Syntax Checking Options
	Postscript Generation
	Model Checker Generation
	LTL Conversion
	Miscellaneous Options

	Chapter 19. Overview of P'AN' Options
	P'AN' Compile-Time Options
	'Basic Options'
	'Options Related to Partial Order Reduction'
	'Options Used to Increase Speed'
	'Options Used to Decrease Memory Use'
	'Options to Use When Prompted by P'AN''
	'Options for Debugging P'AN' Verifiers'
	'Experimental Options'
	P'AN' Run-Time Options
	P'AN' Output Format

	Literature
	Appendix A. Automata Products
	'Asynchronous Products'
	'Encoding Atomic Sequences'
	'Rendezvous'
	'Synchronous Products'
	'An Example'
	'Non-Progress Cycles'
	'Deadlock Detection'

	Appendix B. The Great Debates
	'Branching Time vs Linear Time'
	'Symbolic Verification vs Explicit Verification'
	'Breadth-First Search vs Depth-First Search'
	'Tarjan Search vs Nested Search'
	'Events vs States'
	'Realtime Verification vs Timeless Verification'
	'Probability vs Possibilty'
	'Asynchronous Systems vs Synchronous Systems'
	'Interleaving vs True Concurrency'
	'Open vs Closed Systems'

	Appendix C. Exercises With SPIN
	'C.1.'
	'C.2.'
	'C.3.'
	'C.4.'
	'C.5.'
	'C.6.'
	'C.7.'
	'C.8.'
	'C.9.'

	Appendix D. Downloading Spin
	LTL Conversion
	Model Extraction
	Timeline Editor

	Tables and Figures
	Tables
	Figures

