A Counter-Intuitive Incompleteness Property of

the Axiom System $I\Sigma_0$

by

Dan E. Willard

University at Albany

This talk will discuss both generalizations and boundary-case exceptions permitted by Gödel's Second Incompleteness Theorem. It will show that two logically equivalent axiomatizations for $I\Sigma_0$ have opposite incompleteness properties ! A Counter-Intuitive Incompleteness Property of the Axiom System $I\Sigma_0$

by

Dan E. Willard

University at Albany

3 Themes of This Talk:

- 1. Gödel's Incompleteness Theorem is an astonishingly powerful result.
- 2. Our Prior Research has found both generalizations and partial exceptions to Gödel's Second Incompleteness Theorem.
- 3. New Research will show that $Two \ Logically$ Equivalent axiomatizations for $I\Sigma_0$ have fully opposite incompleteness properties!

This surprising result will hold because our two "equivalent" axiomatizations, α and β , will prove identical sets of theorems *BUT NOT KNOW THAT* they prove identical sets of theorems ! Gödel's 1931 Paper Had Two Results:

- FIRST INCOMPLETENESS THEOREM: No algorithm can list all True Statements of Arithmetic
- SECOND INCOMPLETENESS THE-OREM: No Axiom System of Conventional Strength Can Prove a Theorem Formally Confirming Its Own Self-Consistency.

Our JSL 2001 & 2005 Papers Explored:

Boundary-Case Exceptions to the Second Incompleteness Effect where an axiom system contains a formal axiom sentence stating:

"I am consistent" i.e. the union of the other axioms with **THIS STATEMENT** (looking at itself) is consistent.

MAIN RESULTOFJSL 2001ANDJSL 2005 was such Constructions are ReasonableUnder Some Very Special andTightly ControlledCircumstances.

Definition 1. A formula in the language or arithmetic (using the addition and multiplication symbols) is called Δ_0 iff all its quantifiers are bounded.

i.e. they look like $\forall x \leq t$ or $\exists x \leq t$ **Definition 2.** The axiom system $I\Sigma_0$ is defined to be an extension of Robinson's Axiom System Q that recognizes the validity of the Principle of Induction for Δ_0 formulae. Thus if $\phi(x, y)$ is Δ_0 then $I\Sigma_0$ contains the axiom:

1981 Paris-Wilkie Open Question : Does $I\Sigma_0$ satisfy the Herbrandized and semantic tableaux versions of the Gödel's Second Incompleteness Theorem?

Prior Literature has sometimes used term "I Δ_0 " to refer to I Σ_0

Summary of Prior research :

- 1. Feferman (1960) warned us to *carefully separate* different definitions of consistency when generalizing Second Incomp Theorem.
- 2. Kriesel-Takeuti (1974) showed some logics could verify their cut-free consistency under a secondorder logic generalization of sequent calculus
- 3. Wilkie-Paris 1987 showed I $\Sigma_0 + Exp$ cannot prove Q's Hilbert consistency and asked whether I Σ_0 could verify its Herbrandized and/or semantic tableaux consistency"?
- 4. Adamowicz-Zbierski 2001 showed I $\Sigma_0+\Omega_1$ satisfies Herbrandized version of Second Incompleteness Theorem
- 5. Willard-2002 showed conventional axiomatization for I Σ_0 satisfies the semantic tab version of Second Incompleteness Theorem.

Our New Result : Unconventional axiomatizations for $I\Sigma_0$ Are Anti-Thresholds for Herbrandized Version of 2nd Incomp Theorem.

Although they are logically equivalent to its conventional axiomatizations ! **Definition 3.** Let $\phi(x, y)$ again denote a Δ_0 formula. There exists two logically equivalent axiomatizations for I Σ_0 , called Ax-1 & Ax-2, based on the two different induction schemes below:

$$\forall x \in \{ \phi(x,0) \land \forall y [\phi(x,y) \Longrightarrow \phi(x,y+1)] \}$$

$$\implies \forall y \phi(x,y) \}$$

$$(1)$$

$$\forall x \,\forall z \,\{ \,\{ \,\phi(x,0) \land \forall y \leq z \,[\,\phi(x,y) \Longrightarrow \phi(x,y+1) \,] \,\} \\ \implies \forall y \leq z \ \phi(x,y) \quad\}$$
(2)

Kołodziejczyk's Email to Willard asked the following question:

How difficult would it be to generalize Willard's JSL-2002 article so that its generalization of the Second Incompleteness Theorem would extend to the Ax-2 formalism under Herbrand Deduction?

Surprising Answer to this Question:

While it is not difficult to generalize JSL-2002's methods to Ax-2, there exists a *third axioma-tization for* $I\Sigma_0$, called Ax-3, which is an *anti-threshold* for the Herbrandized version of the Second Incompleteness Theorem.

Definition 4. The statement " $\alpha \supset \beta$ " means that the axiom system α contains all β 's formal axioms.

Above is much stronger than the statement that " α can prove all β 's theorems". **Definition 5.** Let A denote a consistent axiom system and D denote a deduction method. Then (A, D) is an *Incompleteness Threshold* iff every consistent $\alpha \supset A$ is unable to prove

the theorem statement that α is consistent under the deduction method D.

Definition 6. (A, D) is an *Anti-Threshold* when Definition 5's condition fails.

i.e. there exists a consistent $\alpha \supset A$ able to prove the theorem statement that α is consistent under deduction method D.

Main Surprising Result. One axiomatization for $I\Sigma_0$ is a Herbrandized Threshold and oddly another is an Anti-Threshold. Main Surprising Result. One axiomati-

zations for I Σ_0 is a Herbrandized Threshold — and oddly another is an Anti-Threshold.

A Quiet Question that Needs To

Be Seriously Asked ?

How do two equivalent axiomatizations for I Σ_0 Manage to have fully opposite Herbrandized Threshold properties ???

Answer. The statement $\alpha \cong \beta$ merely means that α and β prove the same set of theorems. It does not indicate that they can prove the formal statement " $\alpha \cong \beta$ ".

Our result about $I\Sigma_0$'s puzzling Herbrandized Threshold and Anti-Threshold properties will involve constructing two equivalent systems, α and β , unable to prove that " $\alpha \cong \beta$ ". **Definition 7** Bounded Quantifiers $\forall x \leq T$ and $\exists x \leq T$ are called Restricted when T consist of one single variable only.

i.e. function symbols are not allowed in T Definition 8. A formula is called Δ_0^R iff it is a Δ_0 formula — all of whose bounded quantifiers are so restricted.

Definition 9. Let us recall that Ax-2 was defined as the axiomatization of $I\Sigma_0$ that consisted of the union of axiom system Q with the following induction scheme for all Δ_0 formula $\phi(x, y)$:

$$\forall x \,\forall z \,\{ \,\{ \,\phi(x,0) \land \forall y \leq z \,[\,\phi(x,y) \implies \phi(x,y+1) \,] \,\} \\ \implies \forall y \leq z \ \phi(x,y) \quad \}$$

The axiom system Ind^R will have an identical definition as Ax-2 except it will use the preceding induction scheme only when $\phi(x, y)$ is Δ_0^R .

Theorem 1. Exists set of Π_1^R sentences, called Trivial-R, where Ax-2 \cong Ind^R+Trivial-R.

Below again is Ax-2's Δ_0 induction axiom: $\forall x \forall z \{ \{ \phi(x,0) \land \forall y \leq z [\phi(x,y) \Longrightarrow \phi(x,y+1)] \}$ $\implies \forall y \leq z \ \phi(x,y) \}$

The axiom system Ind^R will have an identical definition as Ax-2 except it will use the preceding induction scheme only when $\phi(x, y)$ is Δ_0^R .

Theorem 1. Exists set of Π_1^R sentences, called Trivial-R, where Ax-2 \cong Ind^R+Trivial-R.

Proof Sketch: In one direction this equality holds because each induction axiom of Ind^R is an induction axiom of Ax-2. In other direction, equality holds because each induction axiom of Ax-2 with n logical symbols has a proof from Ind^R +Trivial-R with length $O(2^n)$.

Clarifying Comment. This $O(2^n)$ expansion in proof length is the reason we are able to construct two equivalent axiom systems, one of which will be a *threshold* for the Herbrandized version of the Second Incompleteness Theorem — and the other an anti-threshold !

List of Main Theorems

Theorem 1. There exists a formal set of Π_1^R sentences, called Trivial-R such that :

$$\mathsf{Ax-2}\cong\mathsf{Ind}^R{+}\mathsf{Trivial}{-}\mathsf{R}$$

Theorem 2. Let Ax-3 denote the system Ind^R +Trivial-R. This system Ax-3 is an *Anti-Threshold* relative to the Herbrandized version of the Second Incompleteness Theorem.

Theorem 3. In contrast, Ax-1 and Ax-2 are *Thresholds* for the Herbrandized version of the Second Incompleteness Theorem.

Intuition behind contrast between Theorem 2 and Theorem 3 on next slide.

Difference Between Δ_0 and Δ_0^R Formulae:

Let $\Psi_K = \exists y \leq 2^{2^K} \phi(y)$. It has following two properties:

- Ψ_K 's formal encoding has a 2^K length when it is written as a Δ_0^R formula (because 2^k digits are needed to encode " 2^{2^K} ")
- In contrast, Ψ_K 's encoding has an O(K)length when it is written as a Δ_0^R formula because it can be encoded as:

$$\begin{aligned} \exists x_0 &\leq 2 \ \ \exists x_1 \leq (x_0)^2 \ \ \exists x_2 \leq (x_1)^2 \ \ .. \\ \\ \exists x_k \leq (x_{k-1})^2 \ \ \exists y \leq (x_k) \ \ \phi(y). \end{aligned}$$

This difference in sentence lengths explains intuition why Ax-2 and Ax-3 definitions of $I\Sigma_0$ have opposite incompleteness properties despite the fact they prove the same theorems ! Revisiting our List of Main Theorems

Theorem 1. There exists a formal set of Π_1^R sentences, called Trivial-R such that :

$Ax-2 \cong Ind^R + Trivial-R$

Theorem 2. Let Ax-3 denote the system Ind^R +Trivial-R. This system Ax-3 is an *Anti-Threshold* relative to the Herbrandized versions of the Second Incompleteness Theorem.

Theorem 3. In contrast, Ax-1 and Ax-2 are *Thresholds* for the Herbrandized version of the Second Incompleteness Theorem.

Intuitive reason for contrast between Theorem 2 and Theorem 3 is the difference in length for encoding Ψ_k as a Δ_0 and Δ_0^R formula.

$$\Psi_K \quad = \quad \exists \ y \ \le 2^{2^K} \ \phi(y)$$

8-13

Main Surprising Result. One axiomati-

zations of $I\Sigma_0$ is a Herbrandized Threshold — and another is an Anti-Threshold.

A Quiet Question that Needs To

Be Seriously Asked ?

How do two equivalent axiomatizations for $I\Sigma_0$ manage to have *Fully Opposite* Threshold properties ???

Answer. The statement $\alpha \cong \beta$ merely means that α and β prove the same set of theorems. It does not indicate that they can prove the formal statement " $\alpha \cong \beta$ ".

Our result about $I\Sigma_0$'s puzzling Herbrandized Threshold and Anti-Threshold properties involves constructing two equivalent systems, α and β , unable to prove that " $\alpha \cong \beta$ ".

Concluding Remark :

Generalizations of Gödel's Second Incompleteness Theorem are much more important than its occasional boundary-case exceptions. However in a context where the Incompleteness Theorem has been called the centennial theorem of 20-th century mathematics, the latter topic should also be explored to help sharpen our knowledge of the exact meaning of Gödel's result.

Concluding Joke :

My original 1993 paper on this topic represented a perhaps 0.1 % Re-Interpretation of Gödel's Centennial Incompleteness Theorem. The combined new work in the last 12 years is perhaps a Factor-30 Improvement over the initial work

... i.e. a perhaps 3 % Re-Interpretation of Gödel's Centennial Theorem.

Serious Remark : If this combined research does represent a "3 % Re-Interpretation" of the meaning Gödel's Centennial Theorem, then it is a *serious, albeit limited, result.*