
Copyright © 2003, Lucent Technologies. 
Permission is granted to copy for the purposes of SugarLoaf PLoP. 

All Other Rights Reserved. 
   

Operations and Maintenance 2 

Robert Hanmer 
Lucent Technologies 

2000 Lucent Lane 
Naperville, IL 60566-7033 USA 

hanmer@lucent.com 
+1 630 979 4786 

 
Abstract 

Large computer systems consist of many parts, only some of which contribute directly to the application for 
which the system was built.  This collection of patterns describes several capabilities of a system that perform 
this background, supporting role.  The roles of these patterns is to aid in application specific data, performance 
and health measurements, managing faults, and also managing the entire system complex remotely. The patterns 
here, as well as others previously workshopped at other conferences, combine to form a pattern language 
describing a small telecommunications switch. Previous patterns have discussed the call processing application 
and other portions of the system's supporting capabilities. 
 
 

There is a partitioning of functionality within any complex computer system of two 
main parts: one that performs the application for which the system was built, and the other 
one that is not directly involved with that application but that support the application 
functions. The patterns here address some of the important things that are not directly 
involved with the application functions. These patterns are part of a larger collection of 
patterns that describe the architecture of a telephone switching system. 

Call Processing [6] introduced the main application component of a telephone 
switching system, the HALF CALL.  This is the pattern that handles the details of the telephone 
or data connection to exchange information between two parties to the call.  To conserve 
resources are shared and switched in real-time to provide the needed connection.  This 
switching function makes a logical electronic path in a circuit switching system, or directs a 
packet between specific ports. 

Defining the application architecture is important to guarantee that the system will 
meet the needs of its users.  Equally important is the design of the supporting infrastructure. 
In many systems while the application is the glamorous part of the system, the supporting 
functions actually make up a majority of the system.  The patterns in [7] describe several 
functions that are necessary to switch telephone calls, but which are not actually involved in 
seeing that a particular telephone connection or call is made.  The patterns documented here 
continue and expand these supporting functions. 

The following figure sketches out the relationship between the patterns presented here 
and those found in Call Processing [6] and OAM-1 [7].  



   

 

Network Element 
Manager Fault Management

Maintenance 
Software 

Self Protection

System Integrity 

Billing

MeasurementsSwitch DataStore 

Half Call
Call Processing 
Hanm2001 

OAM-1 
[Hanm2002] 

Provisioning System 

This collection 

 
Figure 1 
The patterns are presented in the Alexandrian form.  The structure of each pattern is as 

follows:  Each pattern begins with a numbered title.  The number is used to reference to the 
other patterns in this collection.  A photograph is then used to illustrate some essential aspect 
of the pattern.  For example, the pattern MEASUREMENTS (3) shows a scientist taking a 
measurement at a field site.  Following the photograph is a description of the context where 
the problem exists.  Three diamonds follow this. 

The next section of the pattern is the problem.  It is printed in a bold font.  A 
description of the problem, how it relates to the context and some possible solutions are 
discussed.  The keyword therefore follows to introduce the solution section, which is also 
printed in a bold font and includes a sketch of the solution.  Three diamonds provide a 
separation between the solution and the resulting context.  The resulting context section 
introduces the situation after the solution has been applied.  It frequently will point the reader 
to other patterns that can be used to resolve new forces that this solution has introduced. 



   

1. Switch Data Store1 

2 
 

Some applications in telecommunications or data communications construct a 
permanent connection and mapping between endpoints.  This is also true at lower levels, e.g. 
the physical layer, in the overall protocol hierarchies. If a call arrives on one endpoint, it is 
always routed to the same other endpoint as shown in figure 2. 

 
Figure 2 
As networks grow and become more pervasive, direct connections between endpoints 

are no longer flexible enough.  They also require dedicated resources because the connections 
are usually idle for a large percentage of the time.  This also requires that a customer have 
multiple devices – one for each connection that they have.  Figure 3 shows direct connections 
between different pairs of customer endpoints. 

                                                 
1 An example implementation of this pattern is discussed briefly in [4]. 
2 The photos that begin each of the patterns are provide a real-life example of an aspect of the pattern.  

The photos were selected from the USA National Archives and Records Administration, www.nara.gov 



   

 

 
Figure 3 
It is more efficient to reconfigure the connection for each call.  Then when a call 

arrives on one endpoint, the destination endpoint it is routed to may vary from call to call.  
Variable connections, see figure 4, require some information about the connection is required.  
The endpoints might have different capabilities.  Data about these differences can also be 
saved to prevent mismatching capabilities.  This data describes the endpoints and also 
contains information about the types of calls that can be handled. 

?

 
Figure 4 
HALF CALL [6] discusses how we can arrange the call processing components that 

will participate in a connection between endpoints within our system. It describes the statics 
of the system's components, but it doesn't discuss the dynamics of an actual connection 
request.  System architecture must address both the static and dynamic behaviours and 
attributes. 

 
   

How can the system dynamically handle connections that aren't predefined? 
Telephone systems once solved this problem with an intelligent agent -- a human 

operator.  Calls would arrive from the originating party and ask the human operator to speak 
with a specific party.  The operator would either know from prior experience or look up which 
connection to make to connect the parties. 

This prior knowledge might be in the form of a lookup such as to connect Frank to 
Jane, connect ports 3 and 14 together, as shown in Table 1.  As the number of possible 
connections grew, the amount of knowledge that is required grows. 



   

Frank 3
Joe 17
Jane 14
Billy 10

 
Table 1 
Eventually the amount of information becomes more than the operator can easily 

handle. A better solution is needed.   
An important thing to note is that the queries to the system are very consistent.  The 

same information is sought each time and the request is almost of the same form. 
How do I connect calling party a to called party b?  
The calling party might not even be described by name; the name is not important.  

And sometimes it can be distracting.  Frank may be calling Jane, but he might be using 
Ralph's telephone. What is important is the port through which the calling party accesses the 
system as shown in figure 5. 

 

Caller a’s 
endpoint 

Port A 

 
Figure 5 
This changes the query to:   
How do I connect the calling party on port A to called party b? 
The modern telephone network identifies particular parties with a number.  Usually a 

telephone number, such as 123 4567, or an IP address 123.12.34.56.  The actual party at the 
end of the number may or may not be the desired party B, but the number points to a place 
that B has been and is expected to answer regularly. 

So the query is now: 
How do I connect the calling party on port A to some called party on port B? 
A small database can store the data needed for such a regular query. Originally human 

operators performed these lookups. Early automatic systems implemented the translation and 
switching in hardware.  If a call desired destination b it was switched to port B all in 
hardware.  Eventually software replaced this hardware function. 

The database must support the simple queries like those just described, and also be 
able to support a number of administrative actions. 

Sometimes customers receive new, additional telephone numbers or network 
addresses. For example, customer b obtains an additional number, and is now on both ports 
B1 and  B?  Some way of updating the database is required.  

Transactions that are required include: 
• the initial population of number to port mappings into the switch database 

(customer c is assigned to port C), 
• changing entries (customer b is moved to port D), and  



   

• deleting an entry altogether (customer d leaves the system). 
Few other types of transactions will be required.  The data needs are quite simple.  
Since this database will be interrogated on every connection within the system it must 

return its answer quickly.   
If the database is unavailable due to a failure, the system cannot connect calls, so the 

database system must have few faults.   
A general-purpose database could be used to store and retrieve the information 

needed.  However most database systems require more overhead than can be afforded, both in 
terms of retrieval time and memory overhead.  A better solution is to use a small custom 
configured database system that is tailored to the situation.  Therefore,  

Install a small, custom data storage system that will be able to quickly and 
reliably decide how to connect two parties to the call.  Figure 6 shows the connection of a 
database containing customer data with one of the Half Call entities associated with the 
call.  Table 2 outlines the responsibilities of the customer data database. 

 

Half-
Call 

Half-
Call 

Switching Node 

Customer 
Data 

 
Figure 6 

 

Switch Data Store 

Responsibilities: 
• Reply to queries about port/customer location 
• Update port/customer location mapping 
• Delete port/customer location mapping 
• Add new port/customer location mapping 
  

Table 2 
   

In many systems, such as at the lower level protocol routers and switches this database might 
be implemented in hardware.  And some protocols might include all the addressing 
information within the contents of the message, eliminating the need for a custom database. 

The database can get much more complicated as additional features such as address 
translations are required. An example of this is when a telephone call with one of the toll-free 
area codes such as 800, 877, or 888 is made.  In these cases the systems processing the call 
request must translate the number that was entered (888 123 4567) into the number of a real 



   

telephone. [10] This complication evolved into telephone systems.  Initially toll-free service 
in the USA was provided to serve the needs of traveling salesmen to call the home office. 

In all probability the system's database will not be populated through entirely manual 
actions, nor will it remain constant.  The types of transactions are simple, yet the system can 
benefit through having a PROVISIONING SYSTEM (2) that will administer the changes.  



   

2. Provisioning System 

 
There is a lot of data in a telephone switch that must be maintained.  This is the data 

that the SWITCH DATA STORE (1) contains.  Getting it into the system is to “provision” it. 
   

Somehow we need to get the data into the SWITCH DATA STORE (1). 
 We could type it in each time we need it.  Or each time we turn the system on.  Since 

the system tries to run non-stop (SYSTEM INTEGRITY [7]), we wouldn’t even need to do this 
very often.  But we might get something wrong.  We might forget something or get something 
wrong (e.g. a typographical error). 

The switch is designed to process telephone calls, not to interface to a provisioning 
person. Its primary purpose is to switch telephone calls, not to look to its provisioning staff to 
be putting in data updates. 

Keyboards or really any human controlled interface to the system is slow.  With 1000 
bytes of data to be entered over a 9600 bps serial link (Does this make sense today?  What’s 
the speed of the keyboard connection of a PC?) This takes { 1000 bytes / ( 8 bits/byte) * 1 
sec/9600 bits} seconds to get the data into the system.  There are higher speed links 
nowadays, such as high speed Ethernet.  High-speed interfaces allow the data to be transferred 
much more quickly, which minimizes out of service time.  

Humans can’t communicate with the system at these high speeds but another computer 
can.  

The data in the system might not be in a human readable form.  So someone must 
translate it, or the system must translate it.  This translation takes time from the primary 
purpose of the system. 

Several different switches might need the same data.  If a common source were to 
provide the data to each of them then there is less chance that the data will differ erroneously. 

Therefore, 
Build a computer system that will interface with the switch to put in the data it 

needs in its Switch Data Store.  This system will have a model of the Switch Data Store 



   

and will interface with the switching node to access and update the node’s database, as 
shown in figure 7. 

 

Half-
Call 

Half-
Call 

Switching Node 

Customer 
Data 

Provisioning System 

Customer 
Data 

 
Figure 7 

   
Initial and ongoing provisioning will be done much faster than if the only interfaces on 

the system are the human interfaces or a serial link. 
Interactions with this other system must be restricted somehow (PROTECT THYSELF 

[7]) to prevent it from using too much of the switch’s resources.  Remember, that 
Provisioning is necessary for the switch’s primary function, but the act of provisioning is not 
the switch’s primary function.  

 



   

3. Measurements3 

 
… The telecom system consists of many parts, some hardware and some software. 

You hope to make money by using this system to serve people who will pay you for services. 
You might need to add additional capabilities or additional systems to support additional 
customers in the future. In order to supply the appropriate amount of service to a region — 
not too much, wasting your capital, nor too little, and missing revenue opportunities — you 
need information about the activities.  If a particular geographic region supported by a 
switching system grows very rapidly the system might not be able to handle the load. By 
knowing how much the system is being used, your engineering staff can make good 
engineering decisions about deployment of new capacity, or moving capacity that currently 
exists. You can't afford to guess at how much the system's components are being used. 

   
How do you know how much your system is being used? 
The system is engaged in many activities, some of which are not externally visible. 

Each of these activities can report its usage in whatever manner their developers decide. 
Having many different mechanisms for reporting usage can easily lead to chaos, and chaos 
makes it harder to keep the system operational. 

Some of the data that you are interested in to support and administer the system 
consists of raw counts from the hardware or software subsystems. Some of the data needs to 
be aggregated or somehow processed to be useful. 

BILLING [7] collects key information from the HALF CALLS [6] to be able to charge 
customers for their usage. This information is extremely important, but does not paint a 
complete picture of the system. 

The system generates much information that can help the network engineers put the 
appropriate amount of switching capacity in an area.  The people associated with the 
engineering functions like to have real data, rather than just working from their hunches.  The 

                                                 
3 An example implementation of this pattern is discussed in [3]. 



   

information will also have internal uses, such as SYSTEM INTEGRITY [7] who can use it to 
assess system state. 

Collecting data about the system's usage and activities is not the primary application 
of the switching system. The amount of time that is required to do this should be minimized. 

Therefore, 
Create a subsystem that will keep track of counts and measurements from the 

parts of the system and provide a framework to produce meaningful reports with 
meaningful data, refer to figure 8. The measurement subsystem will be most useful if it 
creates information reports for the maintenance staff at regular intervals. 

 

Measurements Billing 

Other parts 
of the system

Customer Usage 
Information 

General Information
that is unrelated to

individual customers’
usage

Engineering and 
Operations  

System Integrity

 
Figure 8 

   
MEASUREMENTS PROVIDE a way for SYSTEM INTEGRITY [7] to check the system 

activity levels. 
Not all of the people charged with system maintenance are, or will be, local. Some 

way of getting the data "upstream" is required. The NETWORK ELEMENT MANAGER (4) 
subsystem supports this. 

MEASUREMENTS will provide a way to cross check and validate the results of the 
BILLING [7] system. 

TELECOM DATA HANDLING [2] provides additional details useful in building a 
MEASUREMENTS system. 

 



   

4. Network Element Manager 

 
SWITCH DATA STORE (1) benefits from PROVISIONING SYSTEM (2).  Making sure that 

the switch data store is working at peek efficiency is something that can be monitored by 
MEASUREMENTS (3).  MEASUREMENTS need to be sent somewhere to be looked at and 
maintained otherwise their generation was a waste of time. 

   
The administrative and operational interfaces of the switch should go somewhere 

other than /dev/null, the “bit bucket”. 
 If we don’t need these subsystems that generate information that will help manage the 

system effectively then we shouldn’t build them.  But as their descriptions suggest there are 
reasons to collect measurements.  To make the best decisions about engineering of the 
network it’s elements (the switching systems) should be studied for a period of time. 

Once collected by the system they should go somewhere.  
We can print them out…but that isn’t always useful.  A network of several switches 

will all be collecting measurements.  Individual paper measurements from several different 
switching systems would be difficult to analyze. We could send them to another computer 
system that will store them and allow later retrieval. 

If another computer is involved in collecting the data then why not have it do some 
other functions, such as providing a convenient interface for a human manager to monitor the 
switch.  And why not adapt it to support several switches at the same time?  

Our switch is like an embedded system that has certain interfaces that the primary 
application sees the telephoning public and others that the primary users don’t.  For example, 
the primary throttle interface from a driver to a car’s primary computer as well as the interface 
to the mechanic’s diagnostic machine. 

Therefore, 
Build a computer system, external to the switch that can be used to oversee and 

administer the operations of the switch as shown in figure 9.  This system should support 
several “target” switches at a time through collecting MEASUREMENT and provisioning 



   

related data from these switches.  Switch control functions, such as those helpful to 
provide human oversight of SYSTEM INTEGRITY [7] should be included in this system. 

 

Network
Element 
Manager

 

Half-
Call 

Half-
Call 

Switching Node 

Half-
Call 

Half-
Call 

Switching Node 

 
Figure 9 

   
Unlike the switching system network elements being monitored and controlled, the 

primary function of the NETWORK ELEMENT MANAGER will be to monitor the other systems 
and to interface with human network managers and engineers.  Remember that the primary 
function of the switching system is to process calls or packets, not to deal with 
MEASUREMENTS.  The designers must manage this difference in concerns or else 
inappropriate responsibilities will be created. 

With a NETWORK ELEMENT MANAGER our system can effectively be monitored and 
administered by humans.  The Measurements that it produces can be analyzed over a period 
of time and in conjunction with its network peers. 

Deciding the capabilities of the system in terms of how many switches it should 
support should not be made in haste.  Monitoring too many or via too much measurement data 
can make this system unusable. 



   

5. Fault Management4 

 
SYSTEM INTEGRITY [7] is responsible for monitoring system health and invoking 

corrective action.  When an error is detected action must be taken so that the effects don’t 
ripple throughout the system.  Once isolated they should be remedied, by a software or human 
induced correction being introduced. 

During corrective actions the system might generate other errors.  Focus and attention 
on the overall situation 

   
How can SYSTEM INTEGRITY’S focus on monitoring and controlling be preserved 

when it might run into errors during its corrective action? 
 The first thing that must be done to isolate a fault is to determine what is faulty.  In 

order to do this the system must be able to “look inside” of the other parts of the system to 
look for discrepancies.  This might mean that a component just drop its barriers of 
encapsulation to allow examination. 

This requires clearly defined interfaces between the potential targets of correction and 
the entity that is trying to locate and correct the fault.  There is the potential for very many 
interfaces.   

Another way of handling this problem is for SYSTEM INTEGRITY to ask each 
component to resolve issues on its own.  The problems with this are that if a component is 
suspected of causing an error then it can’t be trusted to take care of itself, or to keep the 
interests of the system forefront in its operation.  Another difficulty is that this results in very 
much duplication of code – each object (or family of objects) must have its own fault 
handling capabilities.  In a large system where many developers are writing the code, 
probably on a functional basis, this will mean many implementations of the same things, and 
thus potentially very many latent faults. 

The part of the system that looks for faults to correct must be pretty fault-free itself.  
Otherwise a fault in it can spread quickly. 
                                                 

4 An example implementation of this pattern can be found in [9]. 



   

Sometimes the system is configurable with a different set of hardware or software 
components.  The ability to add and subtract specialized fault handlers will make the system 
more reliable, as only the necessary ones need to be loaded.  This in turn becomes a system 
software maintenance problem as the correct software modules must be loaded and available 
for whatever configuration the system currently has. 

There are many techniques to determine if something is faulty.  One simple one is 
through a LEAKY BUCKET COUNTER [1]. This is mentioned to point out the need for data that 
describes the system’s fault history.  The MEASUREMENTS () data will be helpful, but it might 
not really capture the data that will be most interesting for looking at historical faults.  
MEASUREMENTS data is probably too high level, or too system specific; fault handling data 
will need to be lower level, more related to individual components. 

Therefore, 
Create a FAULT MANAGEMENT subsystem.  This subsystem collects the data it 

needs by interrogating other parts of the system or through its own historical data.  It 
then isolates and perform corrective repairs to the system as needed. Give the FAULT 
MANAGEMENT subsystem the power it needs to take corrective actions.  SYSTEM 
INTEGRITY should be small to monitor and invoke the FAULT MANAGEMENT subsystem, 
refer to figure 10, with little risk to the SYSTEM INTEGRITY system. 

 

System Integrity 

Fault Management 

Switching Node 

Half-
Call Half-

Call 
Half-
Call 

Half-
Call 

 
Figure 10 

   
The FAULT MANAGEMENT system needs to be simple enough to work even if parts of 

the system are incapable of working.  It must also be able to examine and repair itself. 



   

6. Acknowledgments 

All photographs used courtesy of the National Archives and Records Administration 
of the USA 

Thanks to John Letourneau who served as the SugarLoaf PLoP shepherd. Thanks go 
to my SugarLoaf PLoP Writers’ Workshop Group. 

7. Pattern Thumbnails 

PATTERN 

Reference 
(Single digits are 

in this work) Pattern Intent 
BILLING [7] Keep records of usage in a centralized object. 
FAULT MANAGEMENT 5 A specialized subsystem should quickly handle 

errors and failures by isolating and treating faults. 
HALF CALL [6] Use a 2 part (half call) model for call processing. 
MAINTENANCE SOFTWARE [7] Identify and isolate faults before they are 

encountered in an operational system. 
MEASUREMENTS 3 Provide a single object to collect counts and 

measurements and then distribute them to 
concerned parties. 

MINIMIZE HUMAN 
INTERVENTION 

[1] Design the system so that human intervention is not 
required. 

NETWORK ELEMENT 
MANAGER 

4 Provide a single point to consolidate human 
interaction with switches for both integrity and 
measurement purposes. 

PEOPLE KNOW BEST [1] Provide a way for an expert human to override the 
system’s automatic responses. 

REASSESS OVERLOAD 
DECISION 

[5] Conditions change and the system should 
periodically reassess its decisions to see if they are 
still valid. 

SELF PROTECTION [7] In the face of too much incoming traffic, try to push 
traffic back to neighbors and thus keep your own 
sanity. 

SHED WORK AT THE 
PERIPHERY 

[6],[8] Try to prevent work from reaching the core of the 
system; stop it close to the periphery, where fewer 
system resources will have been expended on it. 

SICO FIRST AND ALWAYS [1] Give SYSTEM INTEGRITY the power and ability to 
handle the situations that might arise. 

SYSTEM INTEGRITY [7] Provide an object that will watch for abnormal 
system activity and will initiate necessary reactions. 

TELECOM DATA HANDLING [2] Telecom systems have some unique attributes for 
their measurements. 

 

8. References 

[1] Adams, M. J. Coplien, R. Gamoke, R. Hanmer, F. Keeve and K. Nicodemus.  1996.  "A 
Pattern Language for Improving the Capacity of Reactive Systems" in Pattern Languages of 
Program Design — 2, edited by J. Vlissides, J. Coplien and N. Kerth.  Reading, MA:  Addison-
Wesley Publishing Co. 

[2] DeLano, D. 1998.  "Telephony Data Handling" in Proceedings of PLoP 1998 Conference. 



   

[3] Greene, T., D. Haenschke, B. Hornbach and C. Johnson, 1977. "No 4 ESS:  Network 
Management and Traffic Administration." Bell System Technical Journal, vol. 56, no. 7, Sept., 1977:  
1169-1201. 

[4] Giunta, J. A., S. F. Heath III, J. T. Raleigh, M. T. Smith, Jr., 1977, “No. 4 ESS:  
Data/Trunk Administration and Maintenance.” Bell System Technical Journal, vol. 56, no. 7, Sept., 
1977:  1203-1237. 

[5] Hanmer, R. 2000.  “Real Time and Resource Overload in Proceedings of PLoP 2000 
Conference. 

[6] Hanmer, R.  2001. "Call Processing" in Proceedings of PLoP 2001 Conference. 
[7] Hanmer, R. 2002.  “Operations, Administration and Maintenance-1” in Proceedings of 

PLoP 2002 Conference. 
[8] Meszaros, G. 1996 “A Pattern Language for Improving the Capacity of Reactive Systems” 

in Pattern Languages of Program Design — 2, edited by J. Vlissides, J. Coplien and N. Kerth.  
Reading, MA:  Addison-Wesley Publishing Co.  

[9] Meyers, M., W. Routt and K. Yoder, 1977.  "No 4ESS:  Maintenance Software." Bell 
System Technical Journal, vol. 56, no. 7, Sept., 1977:  1139-1167. 

[10] Sheinbein, D., and R. P. Weber, 1982.  "800 Service Using SPC Network Capability." 
Bell System Technical Journal, vol. 61, No. 7, Part 3, Sept. 1982:  1737-1757. 

 


	Switch Data Store
	Provisioning System
	Measurements
	Network Element Manager
	Fault Management
	A. Acknowledgments
	B. Pattern Thumbnails
	C. References

