
Adaptability Aspects: An Architectural Pattern for Structuring
Adaptive Applications with Aspects

Ayla Dantas∗ and Paulo Borba†

Centro de Informática – Universidade Federal de Pernambuco
Caixa Postal 7851 - 50.732-970 Recife, PE

{add,phmb}@cin.ufpe.br

Abstract

This paper presents an architectural pattern for structuring adaptive applications using aspect-
oriented programming in order to obtain separation of concerns. It is composed of known and
novel patterns organized so as to provide good maintainability and modularity. 1

1 Intent

This architectural pattern is intended to show how to use aspects [14] in order to
better structure adaptive applications, which are able to change their behavior in response
to context changes [11], such as the device new localization or its resources state.

2 Context

Adaptability has became a common requirement [9] and its implementation usually
affects many parts of the code. Most implementations of this requirement lead to tangled
code, mixing different concerns such as application business rules, GUI code, and adaptive
behavior implementation. It is sometimes hard to include the adaptability concern in
new and existing applications in easily maintainable way. Besides that, the mechanisms
for accessing contextual information, such as environment sensors or analyzers, change
frequently, which usually demands regular modifications to the application that can be
hard to do. This is a problem because contextual information obtained by new sources
may lead to different application behaviors. For example, we can have a device that
becomes able of accessing its temperature, and according to it changes its processing
mode.

Copyright c©2003, Ayla Dantas and Paulo Borba. Permission is granted to copy for the Sugarloaf-
PLoP 2003 Conference. All other rights are reserved.

∗Supported by CNPq.
†Partially supported by CNPq, grant 521994/96–9.
1We followed the POSA (Pattern-Oriented Software Architecture) structure to present our pattern,

including an Intent section and distributing the contents of sections to be called Variants and Resolved
Example throughout the pattern.



3 Problem

Avoid lack of flexibility and code tangling mixing adaptive functionality implementa-
tion with different concerns such as application business rules and GUI code.

4 Forces

In order to solve the problem, Adaptability Aspects balances the following forces:

• Separate adaptability concerns from other concerns, in order to improve reuse and
maintainability.

• The adaptability functionality might be either plugged in/out and also turned
on/off, because the ways to acess the context and the behaviors triggered by envi-
ronment state may change a lot.

• Not all the developers need to know a particular Aspect-Oriented Programming
(AOP) language, because each team may focused on a different pattern module,
that does not necessarily need AOM.

• The application should be easy to maintain.

• The application can be implemented in any platform, from embedded devices, such
as cellular phones, to enterprise applications.

• The kind of contextual information might change and this should not cause a sig-
nificant impact on the system.

5 Solution

Use aspects [14] to make the application adaptive in a modularized and not invasive
way. With Aspect-Oriented Programming we can cleanly capture some implementation
aspects that affect many parts of a system, as it happens with adaptability, providing ap-
propriate isolation, composition and reuse of the code used to implement those aspects [8].

By using aspects in Adaptability Aspects we define how the behavior of the application
functionalities should be changed in order to support adaptability. These aspects are
able to crosscut some application execution points and change their normal execution.
They should interact with a module for monitoring the context in order to identify when
a change must be triggered and they use auxiliary classes to perform the application
changes. For a better flexibility, the auxiliary classes should interact with a module
responsible for obtaining dynamic data specifying how the application should adapt in a
specific situation. Auxiliary classes are used to avoid requiring all developers to know an
AOP language and to avoid code tangling in the adaptive behavior implementation.



Figure 1: Adaptability Aspects elements.

6 Structure

The Adaptability Aspects architectural pattern presents five elements or modules:

• Base Application: The core application functionalities, such as business and GUI
code, and possibly persistence and distribution code, but no adaptability code.

• Adaptability Aspects: The aspects implementing the adaptability concern. They
specify how the behavior of the base application functionalities should be changed
to adapt to contextual changes. This element delegates several tasks to the auxiliary
classes.

• Auxiliary Classes: Classes used by the aspects to provide the adaptive behav-
ior. Its isolation from the aspect is intended to improve reuse. They communicate
with the adaptation data provider module in order to obtain dynamic data for the
adaptation. Besides that, for developing the auxiliary classes, the developers of this
module do not necessarily need to know an AOP language. The Adaptability As-
pects developer or the system architect may simply specify the interfaces of these
classes and what they should do. Then, from these specifications, these classes can
be built and have their methods invoked by the aspects.

• Context Manager: Module responsible for analyzing context changes and trig-
gering adaptive actions implemented by the aspects. It can also be called by the
aspects to obtain information about the context. Its implementation can be based
on a variation of the Observer pattern [4], or on its implementation with aspects
[6]. In this way, new mechanisms for accessing the context can be easily supported
without significant impact on the application (see the Example section).



• Adaptation Data Provider: Classes responsible for providing data for dynamic
adaptations according to context changes. This means that the same context change
can lead to different behaviors in different moments according to the data pro-
vided by this module. These classes can be organized as an Adaptive Object-Model
(AOM) [16].

These elements and their inter-relation are shown in Figure 1. They are represented
there using the UML package notation. Each package represents a logical part of the code,
but each of these parts can be implemented using several programming language-specific
packages. The arrows represent the dependency between the packages. It is important to
notice that the relation between Context Manager and Adaptability Aspects is double-way
but this does not imply in internal packages double-way relations. Sometimes a Context
Manager package uses an Adaptability Aspects package to notify about context changes or
an Adaptability Aspects package may use a Context Manager to request some information
about the context in a certain execution point. Another important observation is that we
have a different kind of dependency between Base Application and Adaptability Aspects
because the latter is capable of crosscuting the former.

7 Dynamics

The following scenarios depict the dynamic behavior of the Adaptability Aspects pat-
tern.

Scenario I, which is illustrated by Figure 2, presents the application behavior when
the aspects request information about the context at specific points in the execution
flow and the application changes its behavior at those points according to the response
obtained:

• The application starts executing one of its core functions.

• The adaptability aspects detect points in the execution flow (join points) of the
core function where an adaptation might be performed (secure points). This is
implemented using AOP constructs such as pointcuts, which are a way of identifying
join points. Then, these aspects lead to behavior changes in the application before,
after or around those points using advice.

• Those aspects then query the context manager whether any adaptation should be
performed, which will depend on the environment state.

• The actions implementing the adaptation are then delegated to the auxiliary classes.
These actions are performed before, after, or around the join points.

• In order to access dynamic data specifying how an adaptation should be performed,
the auxiliary classes access the objects of the adaptation data provider, which can be
based on the Metadata and Active Object-Model pattern language [3], also called
Adaptive Object-Model Architecture [15].

• The application is then changed according to this dynamic data.



The sequence diagram shown in Figure 2 shows the interaction between the pattern
elements. Instead of representing objects, each diagram box represents a collection of
objects from the correspondent pattern module.

Figure 2: Dynamics of Adaptability Aspects pattern (scenario I)

Scenario II, illustrated by Figure 3, shows how the elements of the Adaptability
Aspects pattern interact when a context change triggers an adaptation on the application
behavior.

• The application starts execution.

• The context manager begins to monitor the context continuously.

• When a registered environment change is detected, the adaptability aspects are
notified.

• The adaptability aspects detect a point in the execution flow and then use auxiliary
classes to perform the changes in the application.

• The auxiliary classes use the adaptation data provider in order to access dynamic
information on how the adaptation should be performed.

• The aspects change the application behavior.

When the adaptability aspects are notified about a context change, the action to be
performed can execute either immediately, as for example, an invocation to the garbage
collector or not, as it is more usual. In the latter case, a field representing the adaptation
state can be directly set, but the adaptive behavior is introduced on the base application
just when a specific join point is reached.



Figure 3: Dynamics of the Adaptability Aspects pattern (scenario II)

8 Consequences

The Adaptability Aspects pattern provides the following benefits:

• Modularity. The base application is isolated from the adaptability aspects and from
the classes that actually execute actions at the identified adaptation points.

• Reuse. The use of auxiliary classes improves reuse, since these classes can be used
by many aspects. Besides that, as will be seen on the implementation section, the
Adaptation Data Provider and Context Manager modules should also be organized
in order to improve reuse by other adaptive applications.

• Extensibility. As the aspects code is isolated from the core and auxiliary classes
code, it becomes easier to maintain each part of the application and also to extend
the system. The context manager should also be internally organized to promote
extensibility, making it simpler to achieve and minimizing the impacts caused by the
inclusion of a new context element. Nevertheless, the use of AOP in some modules
must be done carefully and the use of visual tools is strongly recommended, because
AOP languages are considerably powerful, and a change in one part of its code can
affect the entire system.

• Platform Independence. Its general structure can be applied to a wide range of
systems, from embedded systems (such as the example we will present shortly) to
enterprise applications. This follows from it not imposing a burden on efficiency
and not requiring a significant amount of resources.



• Dynamic changes. With the adaptation data provider module, dynamic changes in
the application behavior can be performed, and those changes do not need to be
expressed by new code; they may be expressed in metadata (XML files, for example).

The Adaptability Aspects architectural pattern also has some liabilities:

• Code size. Implementations of the pattern are usually bigger than alternative non-
modular solutions that tangle adaptation code with base application code, as we
can observe from design and based on our implementations. The implementations
proposed on the Implementation section for this architectural pattern can also in-
crease the code size if more flexibility, dynamicity, and reuse are required. This
liability can be a problem for embedded systems, in which resources are restricted,
but for enterprise applications it would not be an issue.

• Efficiency. Due to the number of elements required by the architecture, the proposed
pattern imposes a burden on efficiency when compared to other non-modularized
solutions. Nevertheless, such burden would be a minor problem for an enterprise
architecture. Besides that, some efficiency problems may be related to the used
AOP language.

• Dynamic loading. An important requirement related to adaptability nowadays is
dynamicity (the extent to which the adaptation should be dynamic). Our archi-
tectural pattern provides dynamic changes using the adaptation data provider ele-
ment, which presents new application behaviors in metadata. However, it may not
be possible to dynamically load code in order to include new kinds of adaptation
mechanisms (ways of triggering new adaptations) without stopping the application,
which will depend on the application platform and on the AOP language being used.
AspectJ [7], an AOP language in widespread use, does not allow dynamic loading
of new aspects in its latest stable version.

• New programming paradigm. As we have at least one module in the pattern that uses
aspects, some developers of the team need to know Aspect-Oriented Programming.
Learning this new programming paradigm may lead to more development time,
initially. However, for other modules, or even for some parts of a module, knowing
a particular AOP language is not required.

9 Implementation

The following guidelines help implementing an adaptive system using the Adaptability
Aspects pattern.

1. Develop the base application. The application is developed with its main function-
alities, preferably organized in a way to help its evolution. If the application has
already been developed, it is occasionally suggested to do some refactoring in order
to provide internal modularity to this module.

2. Develop the context management module. This module must present ways of de-
tecting which elements from the context should change, which elements should be



informed when these changes occur, and which actions should take place at those
moments. We propose the implementation of this module using the Observer pat-
tern, and specially its implementation using aspects, proposed in another work
[6], and adapted to the observation of the context, which increases the flexibil-
ity of this module in relation to new environment elements to be observed. This
is illustrated by Figure 4. Although this figure illustrates the Context Manager
module, the SpecificAdaptabilityAspect is part of the Adaptability Aspects
part and is shown here just to illustrate the interaction between these pattern el-
ements. The SpecificAdaptabilityAspect and SpecificAdaptationProtocol

aspects and the SpecificContextElementVerifier class of this figure are used to
represent the elements used to manage a specific context change. For example, if
we want a different application behavior, such as the changing of languages used
for translation in a dictionary, when the device localization changes, we would re-
place these classes by the following ones respectively: DictionaryCustomization,
LanguageAdaptationProtocol and LocalizationVerifier. Figure 7, in the next
section, better illustrates this example and the inter-relationship among the pattern
elements in this situation.

Figure 4: Context Manager Possible Implementation

3. Develop the adaptation data provider module. Dynamic adaptation is generally
desirable. It is not good practice to fix the adaptations in code. One option is to
have these changes in metadata such as XML files that can be obtained locally or
remotely (the Bridge [4] pattern is indicated for providing this flexibility). Such an
idea is adopted by the Adaptive Object-Model architecture [16]. The use of AOM



is not mandatory for the development of this module, but presents the advantage
that, once implemented, one of its parts can be reused by many systems; only
the interpreter of this AOM remains to be implemented according to the wanted
changes, which is a task that can be performed by auxiliary classes. An AOM
partial implementation that can be reused by many kinds of adaptive applications
is shown in Figure 5. The application elements can be represented as EntityType
elements, which present Entities with their Properties or StrategyObjects to
represent different system behaviors. The interpreter of the AOM will translate
these kinds of elements into application properties or algorithms. The auxiliary
classes used by the adaptability aspects will have access to the adaptation data
provider module by the AppAOMManager class, using its getEntityType method. An
alternative implementation for the adaptation data provider module may explore the
idea presented in another work [2], using an application-specific object responsible
for obtaining dynamic data for adaptations and making them available through its
operations. However, with this approach, besides losing in reuse, for each new kind
of data, we would have to modify this object hierarchy, and the number of operations
could increase a lot.

.

Figure 5: Adaptation Data Provider using AOM

4. Identify which kind of adaptations will be included. It is necessary to analyze what
will really constitute an adaptation (an application change caused by the envi-
ronment) and which context changes would lead to those adaptations. Example
adaptations are changes in the application language due to the detection of a device
location modification, memory management, changes and inclusion of screens in the
application due to user inputs or server responses, for example.



5. Transform each kind of adaptation into an aspect. Use AOP constructions such as
pointcuts and advice to access the application components that can change and the
execution points (join points) where the adaptations should be performed. These
aspects should contain the least amount of non-aspect code as possible, delegating
necessary actions to auxiliary classes that will be developed in a later step. Be-
sides that, these classes should be able to access the context manager module in
order to verify whether an adaptation should be done. Each aspect can also be a
SpecificAdaptabilityAspect in the situation illustrated by Figure 4.

6. Develop the auxiliary classes. These classes will actually present the code to be
executed at the points selected in the aspects module. Their design should promote
reuse by many aspects. In order to perform dynamic adaptations, this module
should communicate with the adaptation data provider module. One suggestion is
to include in these classes interpreters of AOM for the application being developed.

10 Example

To exemplify the Adaptability Aspects pattern, and specially its second scenario, we will
now consider a dictionary application developed in Java [5], for the J2ME (Java 2 Micro
Edition) platform. This platform accommodates consumer electronics and embedded
devices [12]. The AOP language used is AspectJ [7], a general purpose aspect-oriented
extension to Java in widespread use.

Our Base Application will be composed by this dictionary, which is a simple MIDP
(Mobile Information Device Profile)-based application (also known as MIDlet [12]), with-
out any adaptations. Its basic functionality is to translate a given word from English into
Portuguese. It follows the MVC [1] architectural pattern and its main classes are illus-
trated by Figure 6: the controller part is being represented by the DictionaryMIDlet

and the DictionaryController; the view part is represented by the DictionaryScreen;
the model is represented by the InputSearchData class, which stores some information
about the dictionary, such as the word being translated and the source and destination
languages of the translation.

In order to make the example easier to understand, the adaptation we will include will
be the change of the application translation language when the device location changes.
The main classes and aspects used for this adaptation are illustrated by Figure 7, which
is a UML diagram that uses the << aspect >> stereotype to identify aspects. Other
stereotypes are also used in some dependency relationships to represent classes whose
behavior is monitored or changed by an aspect (<< affects >> stereotype), or those
which are just used as auxiliary classes (<< uses >> stereotype) by an aspect.

The aspects which will compose the Adaptability Aspects element of the pattern
are organized in a small framework, composed of two aspects: the Customization as-
pect (which can be reused by any J2ME application) and the DictionaryCustomization
aspect (which is application specific and extends the former). They are responsible for
changing application properties, using a captured MIDlet instance at the moment the
startApp method is executed. The following code from the Customization aspect illus-
trates that.



Figure 6: A Base Application example

pointcut MIDletStart(MIDlet midlet):

execution(void startApp()) && target(midlet);

before(MIDlet midlet): MIDletStart(midlet) {

adaptBefore(midlet);

}

The Customization aspect is general because any J2ME application should present
a class implementing MIDlet with a startApp method. Its before advice invokes the
adaptBefore abstract method, which is defined in the DictionaryCustomization aspect.
At its invocation, this aspect stores the MIDlet instance, which makes it able of changing
application properties in its methods. The interaction between these aspects and the
application classes is illustrated by Figure 7.

The Context Manager module will follow the structure shown in Figure 4. The code
for the ObserverProtocol is shown elsewhere [6]. Our SpecificAdaptationProtocol

aspect will be the LanguageAdaptationProtocol, which is shown below:

1: public aspect LanguageAdaptationProtocol extends ObserverProtocol {

2: declare parents: LocalizationVerifier implements Subject;

3: declare parents: DictionaryCustomization implements

4: Observer;

5: protected pointcut subjectChange(Subject s):

6: call(void LocalizationVerifier.setState(int))

7: && target(s);

8: protected void updateObserver(Subject s, Observer o) {

9: LocalizationVerifier lv = (LocalizationVerifier) s;

10: if (lv.getState()!=ContextVerifier.NO_ADAPTATION) {

11: ((DictionaryCustomization)



Figure 7: An Adaptability Aspects pattern example

12: o).changeLanguage();

13: ((LocalizationVerifier)

14: s).setState(ContextVerifier.NO_ADAPTATION);

15: }

16: }

17:}

In this aspect we identify the Subject (LocalizationVerifier) and the Observer

(DictionaryCustomization aspect) of the pattern using AspectJ introduction (lines 2
and 3). Then, we define the pointcut subjectChange, inherited from ObserverProtocol,
identifying the execution points that characterize the Subject change (lines 5, 6, and
7), which is the call of the setState method on a LocalizationVerifier object in this
example. Finally, we define the also inherited method, updateObserver, indicating what
should happen to the Subject and the Observer when there is a change (lines 8-16).
In this case, a method from the DictionaryCustomization aspect is invoked to change
the application language. We will talk about this method later, while describing our
Auxiliary Classes module use.

The GeneralContexVerifier from Figure 4 extends the Thread class and invokes
an abstract method called checkAndChangeState at regular intervals. This class can be
reused by other applications. The LocalizationContextVerifier extends the
GeneralContextVerifier and should only specify its abstract method, verifying the
device localization as the following code illustrates.



private LocalizationObject lo = new LocalizationObject();

public void checkAndChangeState() {

if (lo.hasChanged())

this.setState(ContextVerifier.ADAPTATION_LEVEL_ONE);

}

We use here an abstraction of a LocalizationObject, which is responsible for verify-
ing if the device localization has changed. If this happens, the setState method is called,
the LanguageAdaptationProtocol aspect identifies that the Observer should be notified
and executes the updateObserver method, which will call the changeApplicationLanguage
method from the DictionaryCustomization aspect.

As Figure 4 illustrates, the ContextManager initializes the context verifiers and as-
sociates subjects to observers. The following code extracted from it shows how it works
for this example.

public aspect ContextManager {

pointcut MIDletStart(MIDlet midlet): execution(void startApp()) &&

target(midlet);

after(MIDlet midlet): MIDletStart(midlet){

LocalizationVerifier lv = new LocalizationVerifier();

lv.start();

LanguageAdaptationProtocol.aspectOf().addObserver(lv,

DictionaryCustomization.aspectOf());

...

}

}

In order to avoid non-aspect code in aspects, the changeLanguage method from the
DictionaryCustomization aspect delegates the application language change to an auxil-
iary class, the CustomizationManager, which will be part of the Auxiliary Classes ele-
ment of the Adaptability Aspects pattern. Nevertheless, this element is not mandatory and
another possible technique would be to use non-aspect code in methods of the aspect and
not in the advice body when extensive code is necessary to provide the change. However,
to illustrate the Auxiliary Classes module use and its interaction with Adaptation
Data Provider module (see Figure 5), we will show one of the CustomizationManager

methods implementation, the changeApplicationLanguage:

public void changeApplicationLanguage(){

EntityType et = aomManager.getEntityType("DictionaryProperties");

Entity e = et.getEntity("InputSearchData");

Property sourceLang = e.getProperty("sourceLanguage");

Property destLang = e.getProperty("destinationLanguage");

InputSearchData isd = this.midlet.getController().getInputData();

isd.setDestinationLanguage(destLang.getValue().toString());

isd.setSourceLanguage(sourceLang.getValue().toString());

}



In this code we can notice the relation of the Auxiliary Classes component with the
Adaptation Data Provider module. Here, this module uses the Adaptive Object-Model
pattern language. As we can see, the application properties and behavior, described in
metadata (in our case an XML file), are translated into the object structure illustrated by
Figure 5. An UML object diagram of a possible configuration for this code is illustrated
by Figure 8. The changeApplicationLanguage method then interprets this object model
and changes the application using the MIDlet object and modifying the InputSearchData
instance. This is just a simple example of AOM’s use. By using it, better exploring the
patterns it is related to, we can do much more things that would lead to more flexibility.

Figure 8: Entity configuration example

11 Known Uses

The Adaptability Aspects architectural pattern has been used in two experiments we
have developed with J2ME: a Dictionary application for a cellular phone and an album
for pictures, also for small devices. Besides that, some parts of the patterns have already
been referred to. An example of this is a work [10] presenting some experiments using
aspects. One of the conclusions is that it is an interesting architecture to separate an
AOP system in three parts: the base code, the aspects and the auxiliary code. In this
structure, the aspects part functions as glue between the other two. Another example
is the implementation of the Observer aspect using aspects proposed by Hanneman [6]
which we modify here in the Context Manager module.

12 See Also

• The Reflection architectural pattern [1], which provides a mechanism for changing
structure and behavior of software systems dynamically, is related to our pattern.
It is intended to make applications adaptable, that means, able to easily evolve due
to requirement changes, which is also one of our requirements. Although it provides
a lot of flexibility, it seems to increase the complexity of the system more than our
solution and even to be less efficient.

• Adaptive Object-Model systems represent their attributes, classes, and relationships
as metadata [15]. AOMs can be used to represent all the system structure or



just what changes in the system. In our pattern, we took the latter approach
and explored AOP as a non-invasive way to include AOMs. We have used AOMs
in the Adaptation Data Provider module, as the provider of the adaptive be-
havior data because AOMs are known for their ability to represent classes, at-
tributes,relationships, and behavior as metadata [16].

• The PADA(Pattern for Distribution Aspects) [13], even dealing with Distribution,
is also related to this work as it provides a solution to the lack of modularity and
maintainability using AOP.

• The Observer pattern [4] is very useful in the implementation of the Context
Manager component (see Figure 4), which actually characterizes the adaptive
behavior. Its implementation with aspects [6] is interesting as a dynamic way
(using pointcuts) of identifying subject changes.

• Another work [2] describes some practices incorporated to this pattern and presents
the implementation of some adaptive concerns into J2ME applications using As-
pectJ, comparing them to pure Object-Oriented solutions using GoF patterns. The
implementation shown there does not exactly follow this pattern and does not use
Adaptive Object-Models. Instead of that, it uses a less flexible approach for obtain-
ing dynamic data for adaptations.

13 Acknowledgments

We would like to give special thanks to Paulo Masiero, our shepherd, for his impor-
tant comments and suggestions, helping us to improve our pattern. Thanks to Rossana
Andrade for her work s mediator and her attention, and also to Vander, for his valuable
suggestions. Besides them, we also want to thank the conference participants for the sug-
gestions made at the Writers’ Workshop, and specially Joseph Yoder, for his comments
and ideas even after the SugarLoafPLoP.

References

[1] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. A
System of Patterns: Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

[2] Ayla Dantas and Paulo Borba. Developing adaptive J2ME Applications Using AspectJ.
In Proceedings of the 7th Brazilian Symposium on Programming Languages, pages 226–242,
May 2003.

[3] Brian Foote and Joseph Yoder. Metadata and active object-models. Collected papers
from the PLoP ’98 and EuroPLoP ’98 Conference Technical Report wucs-98-25, Dept. of
Computer Science, Washington University, September 1998.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[5] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison-Wesley, second edition, 2000.



[6] Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java and AspectJ.
In Proceedings of the 17th ACM conference on Object-oriented programming, systems, lan-
guages, and applications, pages 161–173. ACM Press, 2002.

[7] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William
Griswold. Getting started with aspectj. Communications of the ACM, 44(10):59–65, 2001.

[8] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect–Oriented Programming. In European Confer-
ence on Object–Oriented Programming, ECOOP’97, LNCS 1241, pages 220–242, Finland,
June 1997. Springer–Verlag.

[9] Kalle Lyytinen and Youngjin Yoo. Issues and challenges in ubiquitous computing: Intro-
duction. Communications of the ACM, 45(12):62–65, 2002.

[10] Gail C. Murphy, Robert J. Walker, Elisa L. A. Baniassad, Martin P. Robillard, Albert Lai,
and Mik A. Kersten Kersten. Does aspect-oriented programming work? Communications
of the ACM, 44(10):75–77, 2001.

[11] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Jonhson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems, 14(3):54–62, May 1999.

[12] Vartan Piroumian. Wireless J2ME Platform Programming. Sun Microsystems Press, 2002.

[13] Sérgio Soares and Paulo Borba. PaDA: A Pattern for Distribution Aspects. In Second
Latin American Conference on Pattern Languages of Programming, SugarLoafPLoP’2002,
pages 87–100, Itaipava, Brazil, 5th–7th August 2002.

[14] Robert J. Walker, Elisa L. A. Baniassad, and Gail C. Murphy. An initial assessment
of aspect-oriented programming. In Proceedings of the 21st international conference on
Software engineering, pages 120–130. IEEE Computer Society Press, 1999.

[15] Joseph W. Yoder, Federico Balaguer, and Ralph Johnson. Architecture and design of
adaptive object-models. ACM SIGPLAN Notices, 36(12):50–60, 2001.

[16] Joseph W. Yoder and Ralph Johnson. The adaptive object-model architectural style. In
Working IEEE/IFIP Conference on Software Architecture 2002(WICSA), Montral, Qubec,
Canada, August 25-31 2002.


