
GIG -Pattern

1GIG-Pattern

Maria Lencastre (mlpm@cin.ufpe.br)2
Felix C. G. Santos (fcgs@demec.ufpe.br)

Mardoqueu Souza Vieira (msv@cin.ufpe.br)
Mechanical Engineering Department, Federal University of Pernambuco

Rua Acadêmico Hélio Ramos, S/N, Recife, PE 50740-530 – Brazil

Abstract
This paper presents a pattern called GIG, a generic interface graph which deals with definition and control of
processes taking into account some specific requirements of simplicity, easiness of definition from algorithmic
language and flexibility in the granularity of defined processes. The pattern is intended to help the design and
reuse of programs.

1. Introduction
The use of workflow technology helps the development of more flexible and versatile

computation strategies. So, workflow management systems are a relevant support for large class of
business applications, and many workflow models as well as commercial products are currently
available [8]. While the large availability of tools facilitates the development and the fulfilment of
customer requirements, workflow applications still require simple, generic and adaptive solutions for
the complex task of rapidly producing effective applications, especially when complex domains are
involved.

The GIG pattern was developed after we noticed that many numerical algorithms showed the very
same organizing structure when trying to achieve process reuse and flexibility for the adaptation to
new strategies. Such an organizing structure in turn allowed for an abstraction, which resulted in the
GIG, a generic interface graph. As it will be seen, it is possible to devise frameworks to use the GIG
pattern in order to implement different processes in a very flexible and automatic way.

The GIG-pattern describes an abstract workflow solution, whose purpose is to provide
expressiveness and adaptability through simplified workflow programming, control and use [8]. Other
GIG motivation is to maintain predefined algorithmic structure, which means that the translation from
algorithmic language representation of the processes into a computer representation must be as direct
as possible. This is important because, the achievement of similarity between the way the programmer
has its algorithmic code organized and the implementation of it, can bring simplification in further
required changes. Also, sometimes, developers need solutions that does not make restrictions on the
scale of the process, that is, which need a mixture of small-scale processes (that execute within
applications) and large-scale processes (that execute on top of applications), usually this happens when
designers are also the programmers.

As a workflow pattern, GIG provides for the separation of process logic from task logic, which is
embedded in user applications, allowing the two to be independently modified and the same logic to
be reused in different cases. The GIG-pattern considers features related to run-time control functions
[7], which manage the workflow processes and sequence the various activities.

This work was devised from the experience obtained during the implementation of several
simulators in the FEM context [5]. FEM is a way of implementing an approximate mathematical
theory for a physical behaviour. Researchers of the Mechanical Engineering Department – UFPE –
Brazil found the need to organize their code in a way that was easier to adapt to new strategies and
also to allow process reuse. So they designed and implemented the GIG, a generic interface graph,

22 Copyright 2002, [Maria Lencastre, Felix Santos, Mardoqueu Vieira]. Permission is granted to copy for
SugarloafPLoP 2002 Conference. All other rights reserved.

GIG -Pattern

which provides an interface for process control dealing with the specific requirements mentioned. In
this paper the GIG is presented as a pattern.

The pattern’s description is organized in the following way. In section 2 the pattern name is
identified. Section 3, details the context in which the pattern solution applies. Section 4 presents a
motivation example for the GIG-pattern use. Section 5 presents the design challenge through a
question. Section 6 shows pattern forces, that is, the patterns design trade-offs, what pulls the problem
in different directions, towards different solutions. Section 7 explains how to solve the problem.
Section 8 describes the pattern implementation. Section 9 presents some variants that can extend the
pattern. Section 10 presents a simple example of use, in order to clarify the pattern use and section 11
presents a more complex one in the FEM simulators context. Section 12 details the resulting context,
telling which forces the pattern resolves and which forces remains unresolved by the pattern. Section
13 presents related patterns. Finally, section 14 talks about known uses.

2. Name: GIG-Pattern, Generic Interface Graph for Process C ontrol.

3. Context
Domain specific users, like scientists and engineers, usually program in a procedural style. The

explanation for that, in spite of the force of tradition, may be the following. Complex numerical
systems usually make use of many different pre-built auxiliary packages (like numerical integrators,
solvers for non-linear and linear systems of algebraic equations, and so on) and have their procedures
described in algorithmic language. So, the majority of the work is related to making the modules
compatible in a monolithic architecture, which resembles the structure of the algorithm. This is a
strong force that drives those users towards the procedural style.

During the development of a software system, those developers need functions that help them to
organize their logical processes and their involved tasks, in a way that makes easy its future alteration
for adapting to new solutions and for the reuse of software routines, avoiding heavy reprogramming.
We have repeatedly noticed that many numerical algorithms showed the very same organizing
structure. Such an organizing structure comes from the procedural style of the algorithm representation
and can be identified to be a Directed Acyclic Graph (DAG) [5].

4. Motivation Example
Consider, for example the case of mesh generation algorithm. A mesh can be described as a

partition of a geometric domain into simple geometric entities (triangles, tetrahedra, hexahedra, etc)
called geometric finite elements (or simply elements). In Figure 1 we present the algorithm for a
particular mesh generation, which, given a plane straight-line graph (PSLG), generates a mesh of
triangles.

GIG -Pattern

Figure 1. Block Algorithm Skeletons

Figure 1 Mesh Generation Algorithm

This algorithm can be represented using the graph structure presented in Figure 2. Observe that
there are fifteen sub-routines, including the driver (which executes the procedures I- VIII). This graph
structure can be represented in GIG-pattern (see Figure 3). Each one of those processes can be
encapsulated in an object of a class, representing a node of the graph. The proposed pattern describes
it as a derivation of a base class called AlgthmNode.

Figure 2 Mesh Generation Graph

Observe that there are many different ways of performing each one of the activities (tasks)
described in the above algorithm. For instance, IV.I.I find elements affected by the new point concerns
a search method in a geometric database of triangles, looking for a triangle whose circumscribed circle
contains a given point. There are a lot of search methods available in the specialized literature, each
one with its advantages, drawbacks and dependence on special data structures. Replacing the current
method by a new one will not affect any other place in the graph.

Entire branches can also be changed as well. For instance, the process IV.I. insert point, can be
changed by plugging another method to perform that task. That means that all the subsequent
processes (children nodes) will be also changed. Besides the severity of the change in the methods
needed by the algorithm, all the substitution work can be automatically performed.

On the other hand, the Data Domain of this problem can be decomposed in such a way that all
AlgthmNode objects (subroutines) will have access only to the data it needs. For instance, the process
III.Build an initial mesh for the bounding box will need the bounding box and will build the initial

I. Data input (PSLG)
II. Generate the bounding box for the PSLG
III.Build the initial mesh of the bounding box
IV. For each point in the PSLG do

IV.I. Insert point
IV.I.I. Find elements affected by the new point
IV.I.II. Eliminate those elements obtaining the affected region (AF)
IV.I.III Build new elements from the new point and boundary of AF

V. Find a line of the PSLG such that it is not an edge of any triangle

 (negative line)
VI. While there still is a negative line do

VI.I Compute the middle point of the line
VI.II insert middle point (see IV.I)

VII. Eliminate those triangles, which have any point of the bounding box as
 one of their vertices.
VIII.Data output

IV.I.I IV.I.II IV.I.III

I II III
IV.I

IV V VI=I VII VIII

Driver

VI.I IV.II

GIG -Pattern

mesh, which will be stored in a place in order to be accessed by other nodes. That decomposition will
give rise to the classes derived from AlgthmData. The whole set of data pieces depend on the
geometric data structure used by the developer. For instance, it can be seen that some structures have
to be present: (a) PSLG (accessed by I, II, IV and V); (b) bounding box (accessed by II, III and VII),
(c) mesh (accessed by III, IV.I.I, IV.I.II, IV.I.III, V, VII and VIII), (d) auxiliary data (many, it depends
on the designer). All those pieces of data will be encapsulated in objects of classes derived from
AlgthmData.

GraphNode

Insert point (IV.I.)

AlgthmData

AlgthmNode

AuxData

SkeletonGraph

root

PSGL

GenerBoundBox (II)

BoundingBox

DataInput (I) FindAffecElm (IV.II.)

Mesh

BuildInitMesh (III) . ..

...

MeshGenerator

Figure 3 Application of the GIG structure in Mesh generation algorithm

 In this example the mesh generation process is the controlled workflow. This process includes
information about constituent tasks (represented as the processes (I to VIII). The mesh generation
process has requirements related to modularity and exchange of sub-routines, since it has specific parts
that have several kinds of implementations, which can be exchangeable.

5. Problem

How to guarantee simplicity in the separation of process logic from task logic, during the
development of complex systems, while maintaining solution independence, reuse of processes and
the predefined algorithmic structure?

6. Forces

With respect to the defined context, there are different forces, which lead to different solutions.
Some of these forces are:

� Maintaining predefined algorithmic structure;
� Simplicity in the process definition;
� Support for different levels of granularity on the defined processes;
� Domain independence;
� Dynamic change of workflow processes;
� Reduction on error occurrences in the coupling of processes;
� Reuse of processes;
� Parallelism and processes synchronization;
� Workflow execution performance;
� Explore existing expertise of domains of knowledge.
The following discussion analyses some of these forces, in order to identify how they are pulling

against each other. GIG tries to resolve some opposing forces in the workflow definition context.
When trying to maintain the predefined algorithmic structure, the definition of some sub-process

could generate pieces of code that are not easily changeable, because are monolithically defined as a

GIG -Pattern

block of code. On the other hand, refined levels on process portioning can provide a process definition
at statement level, eliminating existing abstractions (like blocks or modules). Domain independence
and dynamic change of process requires abstractions like polymorphism and encapsulation, which are
not present in a procedural style (the predefined algorithmic structure).

The guarantee of simplicity in process definition can be one way to avoid errors and stimulate the
pattern use. The reuse of already developed and tested processes helps in the simplification of process
definition, like the possibility of reusing entire solutions. However, the reuse of processes can also
reduces the simplicity due to the need for extensions of classes or configuration. Some other opposing
forces to simple process definition are: the guarantee of domain independence, which makes more
complex the process definition; also, to allow the definition of processes parallelism and
synchronization the programmer has to deal with extra levels of complexity. The simplification can be
compromised when parallelism is required for increasing performance.

Process reuse improves reduction of errors once pre-tested software is incorporated. Refined
levels of granularity, in process definition, provide higher level of tangibility in the number of
processes to be controlled, increasing the reuse of processes. The guarantee of domain independence
also increases the number of reusable process.

Domain independence, avoiding non-monolithic solutions, makes possible the application of the
workflow solution to different applications, improving its reuse. However, in these cases the existing
expertise of a knowledge domain cannot be appropriately explored to improve the solution. Also,
synchronization and parallelism improve in one-way domain independent application supporting the
required functionality to existing applications.

The dynamic change of workflow processes improves the solution power, however, gives the
programmer the responsibility and the complex task of making a suitable division of code and data, for
further exchanging to be pertinent. The reuse of process is fundamental when the user has to change an
existing one by another one, which is already tested and classified. Maintaining the pre-defined
algorithmic structure does not help domain independence because it does not provide, for example,
encapsulation.

Parallelism and processes synchronization are very relevant to allow system optimization and
higher levels of control. The refined levels of granularity, in process definition, can allow a more
precise level of parallelism definition. The dynamic change of workflow and the reuse of process
increase the synchronization power, in process exchanging. Synchronization and parallelism improve
in one-way the power of the dynamic change of process (identifying which process are independent or
the order of the dependence). On the other hand this can arises more complexity in the changing of
processes.

Maintaining the predefined algorithmic structure can sometimes improve performance due to the
direct application of some available optimized code; parallelism also improves performance, since
allows simultaneous execution of process. On the other hand, simplicity on process definition can
decreases the performance, when it eliminates, for example, the possibility of parallelism definition.
The guarantee of domain independences can also decrease performance once the existing expertise
cannot be appropriately explored. Other forces which compromise the performance, due to the need of
extra verification and controls, are: refinement level of the granularity of process definition; dynamic
process exchange requires more controls; control of errors, reuse of process reduces the performance,
synchronization.

GIG -Pattern

7. Solution

GIG can be described as a workflow solution [7]. GIG follows the object-oriented style for
modelling and programming. For simplicity reasons of use and facility in correctness verification, GIG
implements a restricted Direct Acyclic Graph (DAG) [5].

7.1 Participants (Structure)

The GIG structure is presented in the UML diagram below (Figure 4).

AlgthmConnection

AlgthmData A lgthmNode
0..*0..*

SkeletonGraph

+root

ConcreteAlgthmNode1 ConcreteAlgthmNode2

ConcreteConnection

GraphNode
<<abstract>>

0..*

children
0 .. *0 .. *

pa rent

ConcreteAl gthmData1

Doma inData
<<domain ent ity>>

ConcreteAlgthmDa ta2

Figure 4 Participants of the GIG-pattern

The GIG pattern is composed of the following participants:

- GraphNode: it is an abstract class that implements low level operations related to the
interoperability between graph nodes. It controls the relationship between the workflow
activities.

- SkeletonGraph: it has a reference to the driver of an algorithm graph and encapsulates tools
for performing some graph operations. It can be seen as the root of workflow process.

- AlgthmNode: represent subroutines that compose the application (workflow tasks) . It is used
as a base class for all algorithm classes of the application.

- ConcreteAlgthmNode Implements a specific subroutine for a task. It invokes other subroutines
which can be tasks (defined as its children) or other defined applications.

- AlgthmData: represents a data type to be used by an instance of AlgthmNode. It is used as a
base class for all algorithm data classes of the application.

- ConcreteAlgthmData Represents data from the application domain, that is used in
ConcreteAlgthmNode classes.

- DomainData: represents the whole set of types related to the problem domain data.

- AlgthmConnection: it is an AlgthmNode, which references an algorithm subrotine that was not
connected to the graph. This class responsibility is to fetch, and build (like a proxy [10]) the
related algorithm and replaces itself with the fetched algorithm. In this way several software
processes represented by SkeletonGraphs can be assembled producing a complex software
system.

GIG -Pattern

7.2 Collaborations

We can identify the following collaborations between GIG participants:

� GraphNode encapsulates the responsibility of providing access to other GraphNodes, which
are its children.

� ConccreteAlgthmNode executes the associated process (subroutine) with the help of other
processes represented by its children, through calls inserted in its process code. It relies on
GraphNode to have access to its children AlgthmNodes.

� ConcreteAlgthmData provides access to workflow data. AlgthmNode communicates with
ConcreteAlgthmData objects to have access to its data.

� AlgthmConnection provides the dynamic connection for AlgthmNodes. The way objects of this
class interact with its SkeletonGraph or its parents AlgthmNodes depends on the
implementation. The important thing is that it represents the point where a driver node of a
software process/subroutine will be plugged in. It also contains the necessary information
about the new AlgthmNode.

driver :
SkeletonGraph

root :
ConcreteAlgthmNode1

data1 :
ConcreteAlgthmData1

son1 :
ConcreteAlgthmNode2

data2 :
ConcreteAlgthmData2

connectionNode :
ConcreteConnection

realObject :
ConcreteAlgthmNode3

<<create>> <<create>>

buildGIG() <<create>> <<create>>

buildGIG()

<<create>>

Iteration over the set of
ConcreteAlgthmNode children

mount()

getRealAlgorithmNode() <<create>>

isInstanceOfAlgthmConnection(son)

return(realObject)
return(RealObject)Make the reference to

connectionNode points
to realObject

mount()

This node can be a
ConcreteAlgthmConnection too.

If it is true then do
the next action

For each son
do the following steps

mount()

Otherwise, if it is not a
AlgthmConnection

buildGIG()

Figure 5 Sequence diagram for GIG building

GIG -Pattern

We can summarize the main part of GIG-pattern interaction, through the UML sequence diagram
of Figure 5. The GIG driver, an object of SkeletonGraph class, creates the GIG root that is an instance
of AlgthmNode class. When the SkeletonGraph requests the root to build the GIG, it instantiates each
child and asks them to build its sub-graphs recursively. After, the graph building the driver waits for
requests for GIG mounting, CIG execution, GIG reprogramming, and for other graph manipulation
functionalities. The GIG mounting is the act of remove the references to ConcreteAlgthmConnection
objects and so preparing the GIG for execution. The GIG execution is similar to the GIG building
procedure by changing buildGIG calls for execute and without <<create>> calls, during the
execution each ConcreteAlgthmNode its subroutine accesses the ConcreteAlgthmData objects
associated with it’s node.

8. Implementation

There are some implementation issues associated with the GIG participants, described previously,
who need some extra explanation. Other important details about implementation are related to the
design steps to be followed by the user for applying the GIG-pattern to a new application. In section 9,
and 10 these steps are exemplified.

8.1 Implementation Issues

The DomainData is implemented by a set of subclasses of the AlgthmData. The subclasses of
AlgthmData describe the specific domain treated in the problem. An example of the partition of the
domain in different levels can be seen in the section 11.

The AlgthmData and AlgthmNode objects must be materialised for the workflow they are serving.
The materialization activities, of AlgthmData and AlgthmNode objects, can be delegated to object
factories that are responsible for accessing the data repository and instantiating the objects, these
object factories can have object pools to reuse objects, see section 13 for details about the patterns that
can be applied.

The AlgthmNode subclasses need to cast the AlgthmData objects, associated with each node, to
the primitive type.

As was shown each AlgthmNode object must have a reference for all its children and data. This
reference can be hard coded in AlgthmNode subclass, or in a file, or can be handled by another class,
wihich has the responsibility to relate each AlgthmNode with its children. An example of such a class
is DataAlgthmServer use in the example in section 10. In this case each AlgthmNode can ask to the
DataAlgthmServer for its children and data or the DataAlgthmServer can be active and responsible to
build the GIG.

8.2 The Design Steps

The following design steps describe which actions the user needs to perform to apply the GIG-
pattern to a problem:

1) Starting from an algorithm in natural language the procedure is first divided into different
algorithm sub-routines (algorithm nodes) and then it is organized in the form of a graph.

2) The division of the algorithm into several routines induces a decomposition of the domain data
in order to provide them with an appropriate distribution of access to the data. The result of
this process gives the AlgthmData set.

3) Each AlgthmNode, that is an algorithm sub-routine, places calls to its children nodes, which
implement processes inside the whole process. The logic is defined inside each AlgthmNode
subclass and it references the execution of a child algorithm, independently of the routine that
is in that child.

4) Each AlgthmNode is related to a set of AlgthmData, which may be shared with other nodes.

GIG -Pattern

5) The driver of the whole process is identified.

9. Variants
(i) Use of the TypeObject pattern [9] to enhance adaptability, producing independence

between the software routines and its data components. This is important in situations where
the same software component is to be used in different situations and with different pieces of
data. The class diagram is like the one in Figure 6. With this extension, AlgthmType provides
the AlgthmNode the needed functionality independently of AlgthmData. The relationship
between the AlgthmData and DataType can be done at run time. This extension does not
affect the already described interactions of AlgthmNode and AlgthmData with the other
participants.

AlgthmNode

AlgthmData DataType

AlgthmTypeAdaptiveAlgthmNode

Figure 6 Class diagram for a variant of AlgthmNode

(ii) Hierarchical levels of procedures can be defined, helping in the software management. An
application of this extension can be seen in section 11, where three levels of SkeletonGraphs were
defined. For each one of those levels one may define specific functionalities for all their respective
AlgthmNodes and AlgthmData. Also, at the level of the functionalities of the SkeletonGraphs objects
specific tools can be defined. These extensions can be oriented for the applications being considered.

 (iii) It can be extended to deals with the definition/execution of processes running in a distributed
environment. We will not go into further details because this is still under development.

10. First Example of Usage

To exemplify and make clear the use of the GIG-pattern, a very simple application was designed.
This application involves the generation of random sequence of items, which are further sorted. A
better understanding of the GIG applicability and power, however, can be seen in sections 4 and 11.
The proposed application can be subdivided into the following sub-processes (algorithm sub-routines):
generation of a random sequence of items; sort of these items; and display of the sorting items. The
sort sub-process is implemented here using the Heapsort algorithm derived from [11]. Any one of the
sub-processes can be modified afterwards to another one, generating a different solution algorithm.

The Heapsort algorithm written in natural algorithmic language is described in Figure 7. This
algorithm is an example solution to a very well known problem, which has many solutions.

In this example the decomposition of the domain data is very simple. It generates only the
HeapSortData data type, which is used by all Heapsort sub-routines. The created AlgthNode classes
are derived from the process organization in Figure 8.

 Each AlgthmNode that is an algorithm subroutine places calls to its children nodes, which
implement processes inside the whole process. The logic is defined inside each AlgthmNode subclass
and it references the execution of a child algorithm, independently of the routine that is in that child.

GIG -Pattern

Figure 7 Heapsort Algorithm

The algorithms organization in the form of a direct acyclic graph can be seen in Figure 8.

Figure 8 . Main program and correspondent GIG direct acyclic graph

Figure 6 shows the UML class diagram, which was created to implement the application classes in
C++ [12], which applies the GIG-pattern. Some classes, described below, were created to implement
the GIG pattern and solve the sorting example:

� The Factory class follows the GIG implementations suggestions, described in section 9. They
define a common interface to materialise AlgthmData and AlgthmNode objects from a data
source. The FactoryHeapSort class was created to materialise objects from the classes created
to represent the Heapsort algorithm in GIG.

� The classes created to represent the AlgthmNodes are: GenerateRandomAlgthmNode,
HeapSortAlgthmNode, BuildMaxHeapAlgthmNode, MaxHeapifyAlgthmNode, and
PrintAlgthmNode, each one being related to a procedure described in the HeapSort algorithm,
see Figure 8.

� The HeapSortData is an AlgthmData subclass created to store the sequence of items to be
sorted and some control variables.

� The root (driver) of the whole process is here the GenerateRandomData..

HeapSort (A)

Buil_Max_Heap (A)
for i � length[A] down to 2 do

Exchange A[1] �� A[i]

heap-size[A] � heap-size[A] –1
Max_Heapify

Build-Max-Heap(A)

Heap-size[A] � length[A]

For I � length[A]/2 downto 1 do
Max-Heapy(A,i)

Max-Heapify(A,i)

l � LEFT(i)

r � RIGHT(i)
if l <= heap-size[A] and A[l] > A[I]
 then largest � l

 else largest � i
if r <= heap-size[A] and A[r] > A[largest]
 then largest � r
if largest != I

 then exchange A[I] �� A[largest]
 Max-Heapify(A,largest)

I II III

II.I II.I.I

driver Main Program

I. Generation of aleatory data
II. HeapSort
 II.I Build-Max-Heapify
 II.I.I Max-Heapify
III.Print

GIG -Pattern

GraphNode
<<abstract>>

0..*0..* children

father

AlgthmConnection

SkeletonGraph
runWorkFlow()
buildWorkFlow()

Application

AlgthmData
getIdNumber()

AlgthmNode
<<virtual>> run()
buildGIG()

0..*0..*

+root

DataAlgthmManager
buildWorkflow()

Factory
<<virtual>> createAlgthmData()
<<virtual>> createAlgthmNode()

DataAlgthmServer
buildWorkflow()

0..*0..*

0..*0..*

+data server

1..*1..*

FactoryHeapSort
createAlgthmData()
createAlgthmNode()

BuildMaxHeapAlgthmNode

MaxHeapifyAlgthmNode

HeapSortAlgthmNode

PrintAlgthmNode

HeapSortData

GenerateRamdomAlgthmNode

Figure 9 The Class diagram of the GIG implementation and example classes

The sample code presented in Figure 11 is an extract from the implementation of the class
HeapSortAlgthmNode. With this example, we can understand how the implementation of the run
method of an AlgthmNode class calls the children nodes in its code. In this example the
HeapSortAlgthmNode class order its first child to run, before some other tasks are performed.

Figure 10 Implementation of the run method for the class HeapSortAlgthmNode

11. Second Example

In [6], we present an application of GIG in FEM simulators. As usual it is observed that an algorithm
defined for the solution of a problem by the FEM has repeated (similar) hierarchical structures. Thus
in the pursuing of a high degree of reusability, therefore a framework considering hierarchical levels
of processes were used, where each level may have several possibilities of algorithms, and can be
easily described by a GIG graph. The whole hierarchy is represented making the connections between
the different levels and generating a complete graph. Global Skeleton, the Block Skeletons, the Group
Skeletons, and the Phenomena procedures define those levels [2]. These levels satisfy a number of
requirements, such as: (i) to separate less reusable modules from reusable ones; (ii) to make it more
comprehensible the decomposition of the simulation data among the several processes; (iii) to make it
possible the dynamic re-configuration of the simulator through the replacement of reusable modules.

void HeapSortAlgthmNode::run()
{
 this->runChild(0); //run Build-Max-Heap
 for(int i = heap->size(); i >= 2; i--)
 {
 heap->swap(1,i);
 heap->decrementHeapSize();
 this->runChild(1);//run Max-Heapify
 }
}

GIG -Pattern

1..*1..*

Phenomenon

GraphNode

Algthm2Allgthm3

. ..

Algthm1

SkeletonGraph

DomainData

AlgthmData

AlgthmNode

ServerManager

1..*1..*

GlobalSkeleton BlockSkeleton

Kernel

Simulator

1..11..1

GroupSkeleton

Block

AlgDat1 AlgDat2

 Group

Figure 11 FEM Simulator and GIG classes

For instance, the global Skeleton articulates time loop (if present), adaptation iterations and defines
processes involving the call of Block Skeletons. Block Skeletons may define different solution
strategies for different Groups, thus, articulating Group processes. Group Skeletons articulate their
phenomena procedures in very specific less reusable ways. It is in this level that solvers for algebraic
systems are applied. Phenomena are the abstraction of the entities being simulated. All those skeletons
can be implemented as objects from classes following the GIG pattern (see Figure 11). Therefore, the
GIG would allow for the realization of the interoperability of the different levels of computation (by
automatically plugging the lower level skeletons in the higher ones).

In the example described below, we consider a FEM simulator specification. This kind of simulator is
capable of solving, for example, problems involving transient phenomena, where the phenomena
context includes linear temperature-dependent elasticity, rigid body motion and linear heat transfer
[2,6]. Only two blocks are needed in the present case. The number of Groups depends on the
phenomena types present in a specific simulation. The number and type of phenomena depends as well
on the simulation being carried out. In the ith-Block Skeleton Nig is its number of groups.

Figure 12 Global Algorim Skeleton

I.From Blocks i = 1 until 2
I.0)Retrieve initial state for Block i

I.I)Compute initial time step ∆t
 i
 for Block i

I.II)Compute initial auxiliary data for Block i

II.Compute initial ∆t = min
1 ≤ i ≤ 2{∆ti

},set time instant t
1
=0

III.While t
1
≤ T

max
 do:

III.0)Set t
0
= t

1
 and t

1
= t

0
+ ∆ t

III.I)For Block i = 1 until 2
 III.I.0)Solve for Block i

 III.I.I)Compute next time ∆t
 i
 for Block i

III.II)Compute next time step ∆ t = min
1 ≤ i ≤ n {∆ t i

 }
III.III)Continue with time iteration

IV.End of the simulation

GIG

GIG -Pattern

Figure 12 shows the Global Skeleton, while Figure 13 shows two Block Skeletons. Figure 14 and
Figure 15 present the GIG direct acyclic graph to implement Global and Block Algorithm skeletons.

Figure 13 Block Algorithm Skeletons

As it was already said, there should be AlgthmData objects, which will contain the needed
problem and process data needed by each AlgthmNode object. A specialization of AlgthmNode is
AlgthmConnection, which is defined whenever a lower level process is to be called up. Its AlgthmData
object includes pieces of information needed in the identification of the lower level skeleton that will
be plugged in the Algorithm Skeleton Graph. This identification concerns a driver AlgthmNode object
(from another graph, integrating in this way the graphs presented in Figure 14 and Figure 15), which
will substitute the related AlgthmConnection object.

 Figure 14. Global Alg.Skeleton graph Figure.15 Block Alg.Skeletons graphs

12. Consequences
In what follows we make some considerations about the forces treated by the proposed pattern.

We can observe positive forces for the use of the GIG-pattern:
� Easiness of translating from algorithmic language into computer processes and simplicity in

the process definition. It supports an organisation in a graph level, providing the distribution
of code in a very flexible way, not compelling a rigid division of code. To improve simplicity
in process definition we try to avoid unnecessary levels of details and to maintain similarity to
the predefined algorithmic structure.

� Different users have evaluated this pattern with success, in applications with different levels of
complexity. A simple example can be seen in section 10, and a more complex one in [6].

Is-B
i
)Retrieve Initial State for Block i (see(I.0)):
Is-B

i
.0)For r = 1 until Nig

 Is-B
i
.0.0)Group r, compute phenomena initial states

It-B
i
)Compute initial time step for Block i (see(I.I)):
It-B

i
.0)For r = 1 until Nig

 It-B
i
.0.0)Group r, compute Initial time step ∆r

It-B
i
.I)Set ∆ti

 = min
 1≤ r ≤ Nig {∆ r

 }

IV

driver

Is-B.0.0

Is-B.0

Is-B

It-B.0.0

It-B.0

It-B

It-B.1 I

I.0 I.I I.II

II.I.0

III.II III.III

II III

III.I

III.0

III.I.I III.I.II

GIG -Pattern

� Support for different levels of granularity of the defined processes. It allows a flexible
representation for a mixture of scales, since it does not restrict the levels of programming into
which the code is defined. Differently, in [1] the workflow must be defined in terms of a set of
node types that are already been coded in the programming language level.

� It can be applied to any domain solution, through the definition of specific domain data classes
and algorithms, as it can be seen from the pattern participants, in section 6.1,

� It allows the test of individual parts of the process independently, reducing the error
occurrences in the coupling of processes.

� It allows the reuse of entire solutions, making changes in specific points. In GIG, it is easy to
change parts of the graph, maintaining the other ones intact.

� It allows the graph change (that is, the process change) at run-time. This is achieved through
the GIG intrinsic dynamic structure, as was shown in section 7.2. Data and process can be
defined at run-time, depending on GIG implementation, once the pattern can be easily
extended to incorporate design patterns like [9], as presented in section 9.

 Some negative forces, or restrictions, can also be identified:
� The pattern makes severe restrictions on the graph structure, requiring it to be an acyclic

graph. The designer is not allowed to define neither recursive iterations nor loops out of the
node code.

� GIG-pattern makes no explicit reference or imposition for the use of a specific set of process
types, differently from [1]. We can consider that this may cause loss of workflow-refined
control. It is the programmer responsibility to define and manage this organization, if required
by the application.

� Flow control is inside each node code. This can bring difficulties to some part of the process
adaptation and control.

� Synchronization is not GIG-pattern responsibility. GIG does not define a specific structure to
deal with process parallelism and processes synchronization. To allow the definition of
processes parallelism, the programmer has to deal with extra complexity. GIG-pattern requires
unnecessary levels of repetition, that is, the replication of whole process graph branches.

We may summarize saying that this pattern it is not so appropriate for applications that are

simple and do not require exchangeable processes, modularity or articulation of sub-routines. Also
it is inappropriate for applications where there is a need of a high level of refinement in the
programs code, or if they need to process synchronization and parallelism; in these cases, an
alternative is the use of the Micro-workflow proposal, described in [1]. However, through the use
of the Micro-workflow alternative one of the worthy things you loss is simplicity and the level of
granularity; the translation from algorithmic language is not such a direct mapping, losing in this
way some levels of abstraction. The application of the GIG pattern to simplify application can be
more expensive then a simple solution. On the other hand, it provides extra facilities like reuse,
flexibility for new solutions, domain independence, etc.

13. Related patterns
The following patterns, can be used together with the GIG-pattern:
� Factory Method [10], which can be used to materialize objects for workflow management;
� Template Method [10], used to define skeletons of algorithms in DataAlgthmServer class;
� Composite [10], used to implement the AlgthmNode class functionality in the framework.
� Proxy [10], used in AlgthmConnection class;
� Strategy [10], used in AlgorithmNode and AlgorithmData classes
� Adaptive object-model patterns, such as TypeObject [9], shown in variants section.
� FEM-SimulatorSkeleton [2] achieves great benefit from the GIG approach.

GIG -Pattern

14. Known uses

Many variations of numerical algorithms show the very same organizing structure, which was
abstracted by the GIG-pattern. Some of these numerical algorithms are: mesh generation procedures,
geometric reconstruction from planar slices and integration of geometric reconstruction procedures,
and so on. Despite of being a generic solution that can be applied elsewhere, the users of this pattern
have been scientists and engineers. The GIG-pattern has been applied with success in the development
of different FEM simulator applications, and in a variety of other numerical methods in computational
Mechanics. Other known uses, which applies GIG pattern, is a specific environment called Plexus,
whose objective is the construction of FEM simulators for treating problems involving coupled multi-
physic phenomena [2,6]. This environment applies GIG as a general solution for the numerical
methods and articulation strategies for solving groups of phenomena [15]. Section 11 has given some
details.

Acknowledgments

Thanks to Joe Yoder who served as the SugarLoaf PLoP shepherd.

References

1. Manolescu D.A., “Micro-Workflow: A Workflow Architecture Supporting Compositional Object

Oriented Software Development“, Ph.D, Depart. of Computer Science University of Illinois at
Urbana-Champaign, 2001.

2. Lencastre M., Santos F., Rodrigues I., “FEM Simulator based on Skeletons for Coupled
Phenomena”, SugarloafPLoP'2002, Brazil.

3. Lencastre M., Santos F., “FEM Simulation Environment for Coupled Multi-physics Phenomena”.
Simulation and Planning In High Autonomy Systems, AIS02, Portugal, 2002.

4. Lencastre M., Santos F., Araújo J, “A Process Model for FEM Simulation Support Development”
SCSC2002’, Summer Computer Simulation Conference, California, 2002

5. Lencastre, M., Santos F., Vieira M. “Workflow for Simulators based on Finite Element Method”,
 Internat.Conference on Computational Science 2003 (ICCS 2003), Saint Petersburg, Russian, 2003.
6. Lencastre M., Santos F., Vieira M., “A Case Study using GIG”, submitted 2003.
7. Workflow Management Coalition, “The Workflow Reference Model, Workflow Management

Coalition Specification”, - Winchester, Hampshire - UK, 95.
8. Casati F., Fugini M.G, Mirbel, I. and Pernici, B., “WIRES: A methodology for developing

Workflow Applications”, Requirements Engineering (2002), volume 7, number 2, Editors P.
Loucopoulos and J. Mylopoulos ISSN:0973602.

9. Yoder J., Johnson R. "The Adaptive Object Model Architectural Style", Proceeding of The
 Working IEEE/IFIP Conference on Software Architecture (WICSA3'02), World Computer
 Congress in Montreal, 2002.
10.Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns: Elements of Reusable Object-

Oriented Software” Addison-Wesley, 1995.
11. Cormen T., Leiserson C., Rivest R., Stein C., “Introduction to Algorithms” second edition, MIT

Press, 2001.
12.Stroustrup, B. “The C++ Programming Language”, third edition, Addison-Wesley, 1997.
13.Fayad M., Douglas S. Johnson R., “Building Application Frameworks: Object-Oriented

Foundations of Framework Design”, Wiley Computer Publishing, 1999.
14 “Software Architecture System Design, Development and Maintenance” Edited by Jan Bosch,

Morven Gentleman, Christine Hofmeister, and Juha Kuusela; Kluwer Academic Publishers 2002.

GIG -Pattern

15.Lencastre M, “PLEXUS - A domain specific approach for FEM simulators development”, a PhD
thesis being developed in Federal University of Pernambuco, Brazil, 2003.

