
Process Patterns for the Distributed Component Development1

Alexandre Alvaro 1
Daniel Lucrédio 1

Eduardo Santana de Almeida 2
Antonio Francisco do Prado 1

Luis Carlos Trevelin 1

1 Computing Departament – Federal University of São Carlos
Rod. Washington Luiz, km 235 – São Carlos/SP - Brasil

P.O box 676 – Zip.Code 13565-905
Phone/Fax: + 55-16-260-8232

{aalvaro, lucredio, prado, trevelin}@dc.ufscar.br

2 Informatics Center - Federal University of Pernambuco
Recife Center for Advanced Studies and Systems
Av. Professor Luiz Freire - Recife/PE - Brasil
University City - Zip. Code: 50740-540

Phone: + 55-81-3271-8430
esa2@cin.ufpe.br

Abstract
The proposed patterns presented in this paper describe a sequence of steps for the Distributed Component
Development integrating different known principles to support the process. The involved principles are: part
of Catalysis method used as a Component-Based Development (CBD) method to define, specify and design
the distributed components; the middleware to support components distribution and accessing; a framework
to facilitate the database access; and a CASE tool used to facilitate the patterns application.

1 Introduction
One of the most compelling reasons for adopting component-based approaches to

software development, with or without objects, is the premise of reuse. The idea is to build
software from existing components primarily by assembling and replacing interoperable
parts. The implications for reduced development time and improved product quality make
this approach very attractive [1].

Software Patterns provide a high reuse degree of software architecture and design.
Using this, the system becomes more comprehensible, flexible, easy to develop and to
maintain. Another objective of the software patterns is the spread of already experienced
software developing solutions.

Considering the accelerated growth of the Internet over the last decade, where
distribution has become an essential non-functional requirement of most applications, the
problem becomes bigger.

In this context, motivated by ideas of reuse, component-based development and
distribution, this paper proposes the evolution of the Distributed Component Development
Pattern (DCDP) presented in [6], refining it into process patterns for the Distribution
Component Development, using different known principles, which are, Catalysis as a CBD

Copyright (c) 2003, Alexandre Alvaro. Permission is granted to copy for the SugarloafPLoP 2003
Conference. All other rights are reserved.

method, a middleware to accomplish the components distribution, a framework for
database access, and a CASE tool to partially automate this process. The proposed process
patterns differ from the previous one as they present solutions for the different phases of
the development process [6]. Another difference is that now the requirements are treated in
a separated way, as will be seen later in this paper. Finally, these new patterns were
applied, producing some preliminary results, as can be seen in the Known Uses item of the
patterns descriptions.

The pattern catalog in Table 1 outlines the patterns discussed in this paper. It lists
each pattern’s name along with a short description of their function.

Pattern Name Description

Define Problem Divides the problem domain in smaller pieces for a better
understanding.

Specify Components Provides a internal specification and relationships
between the components.

Design Components Fulfilling the requirements.

Implement Components Coding the components, based in all the documentation
produced.

Table 1. A Process Patterns Catalog.

2 Define Problem

2.1 Motivation:
Consider an initial phase of software development, when you don’t know the

problem to solve and the totality of the domain. The emphasis must be placed on
understanding the problem and specifying what the components must deal with. In other
words, the requirements of the domain must be understood in order to take the appropriate
decisions in directions of the components development.

2.2 Problem:
To get a good understanding of the problem domain is the main difficulty of every

software development.

2.3 Forces:
- With a good definition of the problem, the developers have an easy

understanding of the problem domain and, consequentially, the software can be
developed faster;

- A good understanding of the problem is crucial for the consistence of the
development;

- Communication between developers and customers is crucial to the success of a
system, but there is a natural distancing and mistrust between customers and
developers;

- Without a good definition phase, there is the risk to create a solution that solves
the wrong problem. This could prejudice the whole project, requiring great
effort to correct this;

- Storyboards or Mind-Maps [1] aid the problem understanding, since they offer
an easy way to identify the main elements and operations involved; and

- Use Case Models are modeling techniques used to supply a clean description
and consistent what the system must do, such that the use cases model can be
used along the process development to document the system requirements and
to serve as base for the project modeling.

2.4 Solution:
Initially, the requirements of the domain are identified, using techniques such as

storyboards or mind-maps, aiming to represent the different situations and problem domain
sceneries. Next, the identified requirements are specified in Collaboration Models [1, 7],
representing the
action collections
and the participant
objects. Finally, the
collaboration models
are refined in Use
Cases Model [1, 7].

This pattern
is summarized in
Figure 1, where a
mind-map defined in
the Service Order
domain requirements
identification is
specified in a
Collaboration Model
and later refined and
partitioned in a Use
Cases Model, aiming
to reduce the
complexity and
improve the problem domain understanding.

2.5 Consequences:

Identification and definition of the problem: The Define Problem pattern helps
the software engineer to understand the problem and display it in a way that can
be clearly understood.
Production of models: Several models are generated to aid the software
engineer in the understanding and documentation of the domain of the problem
domain.
Extra Work: The production of models cause an extra work by Software
Engineering.

2.6 Related or Interacting Patterns:
- This pattern is a refinement of the first step from Distributed Component

Development Pattern (DCDP), proposed in a previous work [6].

Figure 1. Models generated from Define Problem pattern.

- It should be used together with the next pattern presented in this paper, Specify
Components, producing models that should be used as an input to this pattern.

- This pattern can be seen as part of the domain analysis activity.

2.7 Known Uses:
- The Laboratory of Software Engineering in Federal University of São Carlos

(UFSCar) uses this pattern in their projects.
- This pattern was used in defining the problem of a Cars Rental Company

project domain, that was developed in the Computing Department of Federal
University of São Carlos (UFSCar). This project generated 14 models, 16
classes and 10 components implemented.

3 Specify Components

3.1 Motivation:
The development of component-based systems considerably increases the

reusability degree. However, in order to correctly design and implement the components, it
is necessary to first specify the components and their roles.

3.2 Problem:
How many components are needed, what behaviors are assigned to each one and

how do they relate to each other? These questions must be answered before starting to
build the components.

3.3 Forces:
- Without previously planning the components, clearly defining their roles and

responsibilities, there is the risk of an erroneous design. This would certainly
damage the development, causing for example the reduction of the degree of
reusability of a certain component.

- The impact of identifying conceptual problems and obstacles in the later phases
is larger, causing extra costs to correct these problems;

- When translating the problem domain definitions, which are problem-oriented,
into solution-oriented specifications, there is a possibility of misunderstandings
between developers;

- Model Frameworks are templates that can be imported into some applications
design. This model makes the specifications and their modeling reusable. The
more generic this model is, the more it can be reused in other applications; and

- The Framework Application Model shows which types from the Model
Framework are used in the system is being constructed.

3.4 Solution:
Successively refine the problem definitions, through use case models, type models,

and interaction models, obtaining detailed definitions that clearly specifies “what” the
components must do in order to solve the problem.

Initially, the software engineer identifies the main types of the problem domain.
The use cases models produced in the Define Problem pattern are used in this phase. Next,

the Model of Types is specified, according to Figure 2, showing attributes and object’s
type operations, without worrying about implementation. Still in this step, the data
dictionary can be used to specify each identified type, and the Object Constraint Language
(OCL) [1] to detail the objects behavior, with no ambiguity.

Once identified and specified, the types are put together in Model Frameworks.
Model Frameworks are designed at a higher level of abstraction establishing a generic
scheme that can be imported, at the design level, with substitutions and extensions in order
to generate specific applications [1]. Figure 3 shows this model. The fact that the Model
Framework is small, thus narrowly focused, increases its reuse potential in a well-defined
application domain, the Service Order domain in this case. In addition, conceived as a
Model Framework, it is a reusable asset at the design level, thus it is intended to be
customizable to more
specific applications
down to the code
component level [1]. As
a design represents
much of the major
decisions that go into
finished code, it can
specify frameworks at a
design level and offer a
process to refine these
frameworks down to
the level of a set of
interoperable code
components.

The types with
names written between brackets are defined as placeholders [1]. These types can be
substituted in the specific application. The concept is similar to the extensibility of classes
of the object-oriented paradigm. The framework for Service Order can be reused in several
of the application’s domains. Figure 4 shows the Framework Application of Service Order
domain. In this framework, the types with placeholders are substituted by respective types.

Figure 3. Service Order Model Framework.

Figure 2. Model of Types from Specify Components pattern.

Besides, the Use Case Models are refined through Interaction Models represented
by sequence diagrams [7] to detail the utility scenarios of components in different
applications of the problem domain.

In summary, the activities from this pattern, accomplished by the software engineer in
the CASE tool [12,13] include the specifications of:

a) Model of Types;
b) Model Framework;
c) Framework Application;
d) Interactions Models, represented by sequence diagrams, based on Use Cases

Model.

3.5 Consequences:

Testability: The clear, non-ambiguous specification of the components,
produced when using this pattern, can be used as a basis for later testing their
behavior.
Production of models: Several models are generated to facilitate the software
engineer in the understanding and documentation of the internal characteristics
and behavior of the components, and their interrelations with the other
components of the problem domain.
Difficulty of generalization: In this pattern a Model Framework is generated.
This model attempts to generalize the Model of Types, aiming the reuse in a
high abstraction level. However, it is difficult to generalize because the
software engineering doesn’t have mechanisms to help it and so this model is
generalized through the experiences of projects accomplished already.

3.6 Related or Interacting Patterns:
- This pattern is a refinement of second step of DCDP, proposed in a previous

work [6];
- It should be used together with the previous pattern presented in this paper,

Define Problem; and
- It produces deliverables that should be used in the next pattern, Design

Components.

Figure 4. Service Order Framework Application.

3.7 Known Uses:
- The Laboratory of Software Engineering in Federal University of São Carlos

(UFSCar) uses this pattern in their projects.
- This pattern was used in defining the problem of a On-Line Bookstore domain,

that was developed in the Computing Department of Federal University of São
Carlos (UFSCar). This project generated 17 models, 21 classes and 20
components implemented.

4 Design Components

4.1 Motivation:
When designing components, functional and non-functional requirements must be

taken into account. In order to fulfill the functional requirements, the software engineer
must define how the components will perform the behavior that was assigned to them. The
non-functional requirements, such as distributed architecture, fault tolerance, caching,
persistence and load balancing, must also be specified in order to complete the
component’s functionality.

4.2 Problem:
The software engineer must design the components aiming to fulfill the different

requirements. However, it is hard to work with all of them at the same time, since different
issues and problems may arise together. The main problem is that the issues related to one
requirement may interfere with issues from another requirement, causing a confusion when
designing the component.

4.3 Forces:
- Separation of the requirements to isolate each one's concerns makes component

development easier;
- Well-defined design models can considerably facilitate the subsequent

implementation tasks; and
- Distributed Adapters Pattern (DAP) [15] is used to separation of concerns,

minimizing then, the impact on business code. It’s turning the components
independent from a communication API;

4.4 Solution:
The main issue here is “how” the components solve the problem. This is achieved

by specifying the functional and non-functional requirements. By using this pattern, this is
performed in an incremental way, one requirement at a time. First, the functional
requirements are considered, followed by the non-functional requirements (e.g.
distribution, persistence and fault tolerance).

In order to deal firstly with the functional requirements, the Classes Models are
created, where the classes are modeled with their relationships, taking into consideration
the components definitions and their interfaces. Interaction models showing details of the
methods behavior are also modeled. The models produced by the Specify Components
pattern, are used when creating the models in this pattern. Figure 5 shows a portion of the
Classes Model of Service Order domain.

Next, the non-functional requirements are considered. Starting from Classes Model,
the Distributed Adapters Pattern (DAP), which is a pattern for isolating distribution
characteristics from the business rules, is applied to design Components Models [7], where
the organizations and dependencies between components are shown. The next section
presents the application of this pattern.

4.4.1 Applying DAP:
Figure 6 shows the designed Components Model after the application of DAP. The

components Source and Target
abstract the business rules of the
problem domain. The
TargetInterface interface
abstracts the Target component
behavior in distributed scenery.
At this interface, the components
Source and Target do not have
communication code either.
These three elements compose a
distributed independent layer.

The main components are
SourceAdapter and
TargetAdapter. They are connected to a specific API of distribution and encapsulate the
communication details. SourceAdapter is an adapter that isolates the Source component
from distributed code. It is located in the same machine that Source and works as a proxy
to TargetAdapter. TargetAdapter is located in another machine, isolating the Target
component from distributed code. SourceAdapter and TargetAdapter, usually, are located
in different machines, and do not directly interact. TargetAdapter implements
RemoteInterface used to connect with SourceAdapter.

The presented adapters deal with basic distribution details and hide these details
from the business and the user interface code. The adapters may also handle additional
non-functional behavior, which also should not affect the business and the user interface
code. In this step, we illustrate how the adapters may perform some of this additional
behavior, which might be useful for implementing distributed applications.

Figure 5. Classes Model obtained from Model of Types.

Figure 6. Design Component Model after apply
DAP.

i. Fault Tolerance. The source adapters presented previously have no fault tolerant
behavior. If there is a communication error or if the server is unavailable, they simply raise
a communication exception. Nevertheless, source adapters can also implement fault
tolerant behavior [2].
If a source adapter receives a remote exception when interacting with the target adapter,

it may implement the policy of trying to contact the target adapter again a certain number
of times, or trying to contact another target adapter, representing a spare service. This
policy, being implemented by the source adapter, is hidden from its client, a GUI for
instance [6].
ii. Caching. Some operations may return a considerable amount of data, of which only

part is useful at any moment. Sending everything to the client at once is not desirable since
it may have a negative impact on network performance. One solution is to send a cache
with part of the required data and to transfer more data every time a fault happens [6].

A source adapter can implement this caching behavior. When a querying operation
returns many entries, part of them are used to initialize a source adapter. The client of this
adapter (a GUI, for instance) retrieves the entries from this adapter. When a fault happens
in the source adapter, it contacts the target adapter to retrieve more entries. This caching
behavior is implemented in the source adapter and is transparent to the GUI [6].
iii. Data Persistence. To facilitate database access the software engineer can reuse

components of Persistence framework [18]. Figure 7 shows these components. The
ConnectionPool component, through its IConnectionPool interface, does the management
and connection with the
database used in the
application. The DriversUtil
component, based on
eXtensible Markup Language
(XML), has information from
supported database drivers,
available through its interface
IDriversUtil. The
TableManager component
manages the mapping of an
object into database tables,
making their methods
available by the ITableManager interface. The persistent component of the
FacadePersistent structure, through its IPersistentObject interface, makes the values, which
must be added to the database available, passing parameters to the TableManager
component.

In summary, the main artifacts and the sequence of the design activities of the
Design Components pattern, include:

a) Refining Model of Types into Classes Models;
b) Refining the Interactions Models; and
c) Creating the Components Models.

4.5 Consequences:

Separation of concerns: To help the software engineer in the understanding of
the components, the functional and non-functional requirements are treated one
at a time. This helps to avoid the confusion that exists when treating several

Figure 7. Framework Persistence.

requirements at the same time. Other consequence of this separation is that it
facilitates the implementation and testing of the components, since each
requirement can be tested independently; and
An incremental project of the requirements: when it is necessary, the software
engineer can add requirements non-functional to the project, as: distribution,
persistence, faults tolerance, caching etc.
Increased classes number [15]: using the DAP pattern, using a pair of adapters,
initialization and nomination components are necessary, causing the number of
classes to increase, as well as the need for manual effort; however, these
structures can be partially generated using the CASE tool, reducing this need;
Knowledge about other technologies: using the Persistence framework, the
software engineer needs to know technologies, like XML, for definition of
information related to database management systems, as connection port,
username, password, and others.

4.6 Related or Interacting Patterns:
- Wrapper-Facade [17] and DAP [15] have the common goal of minimizing

platform-specific variation in application code. However, Wrapper-Facade
encapsulates existing lowerlevel non-object-oriented APIs (such as sockets, and
threads), whereas DAP encapsulates object-oriented distribution APIs, such as
RMI and CORBA [16].

- Facade, PersistentObject and ObjectPool. Framework Persistence is
implemented using the Design Patterns Singleton and Facade, and, patterns for
database persistence [18], like PersistentObject and ObjectPool.

- Broker and Trader. Well known patterns for structuring distributed systems
already exist. The Broker [15] and Trader [15] patterns are examples. These are
architectural patterns and focus mostly on providing fundamental distribution
issues, such as marshalling and message protocols. Therefore, they are mostly
tailored to the implementation of distributed platforms, such as CORBA. DAP
uses these fundamental patterns and provides a higher level of abstraction:
distribution API transparency to both clients and servers [12].

- This pattern is a refinement of DCDP, proposed in a previous work [6];
- It should be used together with the previous pattern presented in this paper,

Specify Components, using the models generated in this pattern to facilitate
the creation of the classes and interaction models;

- It produces deliverables that should be used in the next pattern, Implement
Components.

4.7 Known Uses:
- The Laboratory of Software Engineering in Federal University of São Carlos

(UFSCar) uses this pattern in their projects.
- This pattern was used in defining the problem of a Service Order domain, that

was developed in the Computing Department of Federal University of São
Carlos (UFSCar). This project generated 28 models, 40 classes and 24
components implemented.

5 Implement Components

5.1 Motivation:
A great effort is necessary in order to implement components. The design models,

which specifies how the components must be implemented in order to fulfill the functional
and non-functional requirements, must be translated into a low-level executable language,
demanding valuable time and money resources.

5.2 Problem:
The most common problems related to the implementation tasks include: time, the

unforeseeable cost, maintenance and testing.

5.3 Forces:
- Implementation is not consistent with the design, future maintenance may be

prejudiced, as the elements of the design may not be fully present on the final
code, and vice-versa; and

- Implementation tasks consists mainly in manual work, since the larger part of
thinking was already performed before this phase. Manual work can be
optimized through code generators, which speeds these tasks very considerably;

5.4 Solution:
This pattern is based on a code generation approach. A tool is used to generate the

components code with basis on their design. After the code is generated, it can be refined
to introduce some adjustments.

 Initially, the software engineer defines the distribution technology. In the example
presented, CORBA[16] was chosen, but other technologies such as RMI [14], JAMP [19]
and JINI [14] can be used. In CORBA each component has stubs and skeletons and the
interfaces that make its services available.

Next, the software engineer uses a CASE tool with code generation features, to
implement the components. In this example, the MVCASE tool [12, 13] was used.
However, any other tool that can generate executable code with basis on high-level design
specifications, such as classes and components models, such as Rational Rose [22] or
Together [21], could be used as well.

The models produced by the Design Components pattern are used as an input to
the CASE tool. The tool’s code
generator then generates part of the
code that corresponds to the
components. In this case, Java was
used as the implementation language.
The generated code is then
customized by software engineer, in
order to perform some adjustments and
corrections. Next, the implemented
components are stored in a repository
to be used on applications
development in the future.

Figure 8 shows the code generation process in MVCASE.

Figure 8. Generate code in MVCase tool.

5.5 Example Implementation:
The software engineer uses the MVCASE code generator and produces customized

implementations. Figure 9 shows part of the generated code to CustomerSourceAdapter, of
the Service Order example.

5.6 Consequences:

Reuse: After using and tested this pattern, implemented distributed components
are delivered. These components can be later reused, on applications
development. It must be emphasized that not just code is reused, but also the
component’s design, in a higher abstraction level;
Maintainability: when using MVCASE, changes can be made directly on the
component’s design. Because MVCASE has a code generator, changes made on
the design are reflected on the generated code. This facilitates the maintenance,
since the software engineer can quickly check the effects of the changes, and
take decisions more efficiently; and
Better quality documentation: The generated code always reflects the exact
design. This assures that the available documentation are always up-to-date
with the code.
Knowledge about distribution technology: It is necessary the knowledge about
some distribution technology. Most of these technologies, such as CORBA, are
intrinsically complex and demands great expertise in order to avoid distribution
problems, such as performance and security; and

5.7 Related or Interacting Patterns:
- This pattern is a refinement of four step from DCDP, proposed in a previous

work [6]; and

Figure 9. Implementation of the CustomerSourceAdapter.

- When used together with the previous pattern presented in this paper, Design
Components, the models generated in this pattern can be directly used to
generate the component’s code.

5.8 Known Uses:
- The Laboratory of Software Engineering in Federal University of São Carlos

(UFSCar) uses this pattern and the MVCase tool in their projects.
- This pattern was used in defining the domain of a Accountancy and Invoice

System, that was developed in the Computing Department of Federal
University of São Carlos (UFSCar). This project generated 58 models, 50
classes and 30 components implemented.

6 Putting it All Together
Now that you have seen all of the patterns, you might be asking, “how do I put it all

together?”. All of these patterns collaborate together to provide a mechanism for
Distributed Component Development. Figure 10 shows how the patterns interact with each
other.

Integration of Catalysis CBD method, the principles of middleware [10],
components framework (persistence) and the Distributed Adapters Pattern (DAP), a CASE
Tool, it was define an process that supports the Distributed Component Development.

The components of a problem domain are built in four patterns: Define Problem,
Specify Components, Design Components and Implement Components, according to
Figure 11. The first three patterns correspond to the three levels of Catalysis, as shown in
the right part of Figure. In the last pattern, the physical implementation of the components
is done. This Figure presents the levels in waterfall model, but don’t represent the process
model Waterfall.

Figure 10. Pattern Interaction Diagram.

7 Acknowledgements
The authors would like to thank to Shepherd Robert Hanmer for suggestions

received during the process. This work was supported by Fundação de Amparo à Pesquisa
do Estado da Bahia (Fapesb).

8 References
[1] D’Souza, D., F., Wills, A., C., 1999. Objects, Components, and Frameworks with UML, The Catalysis

Approach, Addison-Wesley. USA.
[2] Jacobson, I., Griss, M., Jonsson, P., 1997. Software Reuse: Architecture, Process and Organization

for Business Sucess, Addison-Wesley. Longman.
[3] Heineman, G., T., Councill, W., T., 2001. Component- Based Software Engineering, Putting the Pieces

Together, Addison-Wesley. USA.
[4] Szyperski, C., 1998. Component Software: Beyond Object-Oriented Programming, Addison-Wesley.
USA.

[5] Jacobson, I., et al., 2001. The Unified Software Development Process. Addison-Wesley. USA, 4nd
edition.

[6] Almeida, E., S., Bianchini, C., P., Prado, A., F., Trevelin, L., C. DCDP: A Distributed Component
Development Pattern, In The Second Latin American Conference on Pattern Languages of
Programming (SugarLoafPlop), Writers Workshops, 2002, Itaipava/RJ, Brazil.

[7] Rumbaugh, J., et al., 1998. The Unified Modeling Language Reference Manual, Addison-Wesley.
USA.

[8] Stojanovic, Z., Dahanayake, A., Sol., H, 2001. A Methodology Framework for Component-Based
System Development Support. In EMMSAD’2001, Sixth CAiSE/IFIP8.1.

[9] Boertin, N., Steen, M., Jonkers., H, 2001. Evaluation of Component-Based Development Methods. In
EMMSAD’2001, Sixth CAiSE/IFIP8.1.

[10] Eckerson, W., et al., 1995. Three Tier Client/Server Architecture: Achieving Scalability,
Performance, and Efficiency in Client/Server Applications. Open Information Systems.

[11] Gamma, E., et al., 1995. Elements of Design Patterns: Elements of Reusable Object Oriented
Software, Addison-Wesley.

[12] Almeida, E., S., Bianchini, C., P., Prado, A., F., Trevelin, L., C., 2002. MVCASE: An Integrating
Technologies Tool for Distributed Component-Based Software Development. In APNOMS’2002, The
Asia-Pacific Network Operations and Management Symposium,Poster Session. Proceedings of IEEE.

Figure 11. Distributed Components Development Process.

[13] Almeida, E., S., Lucrédio, D., Bianchini, C., P., Prado, A., F., Trevelin, L., C., 2002. MVCASE Tool:
An Integrating Technologies Tool for Distributed Component Development (in portuguese). In
SBES’2002, 16th Brazilian Symposium on Software Engineering, Tools Session.

[14] Horstmann, C., S., Cornell, G., 2002. Core Java 2: Volume II, Advanced Features, Prentice Hall.
[15] Alves, V., Borba, P., 2001. Distributed Adapters Pattern (DAP): A Design Pattern for Object-

Oriented Distributed Applications. In SugarLoafPlop’2001, The First Latin American Conference on
Pattern Languages of Programming.

[16] The Common Object Request Broker Architecture, 1996. Object Management Group. Avaliable in
10/04/2002, URL: http:// www.omg.org.

[17] Buschmann, F., et al, 1996. Pattern Oriented Software Architecture: A System of Patterns. John
Wiley & Sons.

[18] Yoder, J., Johnson, R., E., Wilson, Q., D., 1998. Connecting Business Objects to Relational
Databases. In PLoP’1998, Pattern Language of Progamming.

[19] Guimarães, M., P., Prado, A., F., Trevelin, L., C., 1999. Development of Object Oriented Distributed
Systems (DOODS) using Frameworks of the JAMP plataform. In First Workshop on Web
Engineering, in conjunction with the 19th International Conference in Software Engineering (ICSE).

[20] Orfali., R., Harkey, D, 1998. Client/Server Programming with Java and CORBA. John Wiley &
Sons, Second Edition.

[21] Borland Software Corporation. Together. Available at site Borland Software Corporation, URL:
http://www.borland.com/together - Consulted in May, 2003.

[22] IBM Rational Software. Rational Rose® Family. Available at site IBM Rational Software, URL:
http://www.rational.com/products/rose - Consulted in May, 2003.

