
A Pattern System to Supervisory Control
of Automated Manufacturing System

Paulo Cézar Stadzisz1, Jean Marcelo Simão1,2 & Marcos Antonio Quináia1,3

1 Federal Center of Technological Education of Paraná

Post-Graduation Program in Electric Engineering and Industrial Computer Science
Av. Sete de Setembro, 3165 - CEP 80.230-901 - Curitiba-PR – Brasil

http://www.cpgei.cefetpr.br
{simao, quinaia}@cpgei.cfetpr.br

stadzisz@lit.cpdtt.cefetpr.br

2 Université Henri Poincaré (UHP)
Centre de Recherche en Automatique de Nancy (CRAN)

Présidence - 24-30, rue Lionnois BP 60120 - 54003 Nancy Cedex
http://www.cran.uhp-nancy.fr

 simao@cran.uhp-nancy.fr

3 State University of Center-West

Rua Presidente Zacarias, 875 - CEP 85015-430 - Guarapuava - PR
http://www.unicentro.br/

quinaia@unicentro.br

Abstract: Software patterns represent a promising research area in reason of the benefits
happened of its application, mainly in terms of productivity reached with the reutilization. In
automatics, patterns can be applied to recurring problems involving many types of
computational systems. A complex domain of application, for which patterns can bring great
contribution, is the Supervisory Control of Automated Manufacturing Systems (SC-AMS).
This article proposes a system of patterns that aim to be applied in SC-AMS domain. The
system is composed by an architectural pattern and three design patterns.

Keywords: Architectural pattern, Design pattern, Software Reuse, Supervisory Control,
Automated Manufacturing System, Rule Based System, Inference Engine and Agent.

I. Introduction

Nowadays, a useful technique to compose computational systems is the architectural pattern.
It expresses an organization or structural scheme, foreseeing a set of predefined subsystems,
specifying its responsibilities and including rules and general principles to their organizations
and relationships [BUSCHMANN et al 1996]. In fact, as general principle, the proposition of
an architectural patterns is not a simple task, once it is needed a trade-off between efficiency
in the performance of the instances and generality of the solution.

To obtain a better organization and reusability degree in architectural patterns, a good practice
is to define its subsystems in terms of design patterns, once these last ones are already well
specified and possibly tested.

Architectural patterns based on the design patterns, can be applied in many application
domains, as in telecommunications and automatics. In automatics, patterns are applicable, for
example, on the development of Supervisory Control of Automated Manufacturing Systems
(SC-AMS). In fact, considering the typical complexity and dimension of SC-AMS, the

Copyright © 2003, . Permission is granted to copy for the SugarloafPLoP 2003 Conference. All other rights are reserved.

http://www.cran.uhp-nancy.fr/

A Pattern System to Supervisory Control of Automated Manufacturing System

development and use of architectural patterns can bring an important contribution to the
developers.

Despite the numerous studies evolving SC-AMS [CHAAR et al 1993] [MENDES 1995]
[MIYAGI 1996] [CURY et al 2001], a lack of specific researches to the development of
architectural patterns to these computational systems is noted [SCHMID 1995]. This lack is
especially related to aspects of the composition and execution of the control decision and
consequent co-ordination of elements in the factory [SIMÃO et al 2002].

The conceiving process of an architectural pattern to SC-AMS is not a simple task because
besides conceiving a strategy of factory control, it is necessary to generalize it in a set of
situations of similar factory control.

Some approaches have been proposed in the literature as computational architectures or same
as patterns to compose (in a certain way) SC-AMS [SCHMID 1995] [BONGAERTS 1998]
[LANGER et al 2000] [SIMÃO 2001] [FLETCHER et al 2003], but none as architectural
pattern composed by design patterns, regarding and solving the decision and co-ordination
issue.

In this paper it is proposed an architectural pattern to this important area in computation and
automatics called as Supervisory Control of Automated Manufacturing System (SC-AMS).
The architectural pattern is based on design patterns, which are improvements of a
computational architecture, which proposes strategies to effectively solve issues pertinent to
SC-AMS, as the Monitoring & Command and the Regency (including the Decision and Co-
ordination) [SIMÃO et STADZISZ 2002] [SIMÃO et al 2002].

The solution is agent based, where the agent classes specify a Generic Rules Based System
(GRBS) [SIMÃO et STADZISZ 2002]. Each instance of the architectural pattern is an Expert
System (ES) with an advanced inference process, reached by the agent collaboration that
results in incremental time growth in relation to the number of rules.

The proposed patterns are conceived from the analysis of supervisory controls of factories,
including the simulated factory, modeled in the ANALYTICE II simulation tool [SIMÃO et
al 2002]. ANALYTICE II allows expressing the fundamental characteristics of real industrial
systems [KOSCIANSKI et al 1999] [SIMÃO 2001].

The architectural patterns is described following the POSA [BUSCHMANN et al 1996]
format, whereas design patterns are presented as a mix of the two approaches very used called
Alexandrian from [ALEXANDER et al 1977] and GOF from [GAMMA et al 1994].

The organization of this article is the following: section 2 is an overview about SC-AMS and
its context; in section 3 there is an explanation over the design pattern Monitoring and in
section 4 another explanation over the design pattern Command, while in section 5 presents
the design pattern Regency and, finally, the section 6 presents the architectural pattern of SC-
AMS in function of the presented design patterns.

II. An overview of SC-AMS
Before propose design patterns and an architectural pattern to SC-AMS composed by them,
would be interesting a contextualization more detailed about Automated Manufacturing
Systems (AMS), as well as about the Supervisory Control to AMS. In this sense, as example,
this section presents simulated manufacture cell, its features and the related computational
decisional system (specially the Supervisory Control).

2

A Pattern System to Supervisory Control of Automated Manufacturing System

The presented manufacture cell in Figure 1 is a system simulated in ANALYTICE II tool
[KOSCIANSKI et al 1999] [SIMÃO 2001]. This manufacture cell is composed of various
machines and their function is to produce fictitious parts of the types A and B.

Each processed part in this AMS has a process plan generated in another decision system
called Planning. The plan specifies which machines the part must visit and which operation
must be carried on through it [KÜNZLE 1990] [BONGAERTS 1998]. The process plan for A
part is {<Store> <Table 1> <Machine-Tool> <Table 2>} and for B parts is {<Store> <Table
1> <Table 3> <Lathe> <Table 3>}. There could still be an alternative of manufacture in the
process plan, in case of an existing Dynamic Scheduler (with a dispatcher) to carry out the
elections in execution time [SIMÃO 2001].

The Supervisory Control software role is to make the constituent elements of AMS (e.g.
lathes and robots) work in a harmonic way to carry out the manufacture of the parts following
the process plans [MENDES 1995] [MIYAGI 1996]. In a general manner, the elements of an
AMS can be classified in equipment, hierarchical elements and process elements.

A common division of the equipment is to classify them as execution (carry out operations
over parts), transport (carry out the transport of parts) and storage (carry out storing parts). In
the proposed example both Lathe and Machine-Tool are classified as execution equipment,
while Puma, Kuka 386 and ER III as transport and, finally, Store and Tables as of storage.

Lathe Machine-Tool

Kuka 386

Table2-Pos2

Table2-Pos1

Table1-Pos2
Table1-Pos1

Table3-Pos2
Table3-Pos1
Store

ER III

AGV

Puma 560

Lathe Machine-Tool

Kuka 386

Table2-Pos2

Table2-Pos1

Table1-Pos2
Table1-Pos1

Table3-Pos2
Table3-Pos1
Store

ER III

AGV

Puma 560

Figure 1 - Manufacture cell simulated in ANALYTICE II

The hierarchical elements are subsystems of an industrial plant, as the workstation (i.e. an
equipment set), the manufacture cell (i.e. equipment set and workstations) and the plant (i.e.
equipment set, workstations and cells). As example, the AMS illustrated in Figure 1, could
have three workstations {<Lathe> <Table3> <ER III>}, {<Machine-Tool> <Table2> <Kuka
386>} and {<Store> <Table1> <Puma>}. The AMS as a whole could be considered as a
composite cell by the three stations and the equipment of transport < AGV > (i.e. auto-guided
vehicle).

3

A Pattern System to Supervisory Control of Automated Manufacturing System

This hierarchical division provides the SC-AMS development in several levels, known as
“Hierarchical Supervisory Control” [KÜNZLE 1990]. For example, a Hierarchical SC can
determine that some parts go to a cell and not to another one. Once the parts are in the cell,
another coordination level of this SC-AMS will determine which elements of that cell will
process the parts.

The last type is the process element, which includes the parts (or products), the lot of parts
and the pallets. One lot of parts consists of a parts group of the same type that advances in
conjunction in the manufacture system. One lot has a processing priority and a production
plan (to know which lot must visit which cell), allowing extending the scopes of supervisory
control. Finally, one pallet is an element on which one or more parts (depending on the
model) are placed for the purpose of protection and standardization in the transport. The
pallets are limited resources in the AMS. Depending on the morphology of the parts, the AMS
may not use pallets, as occurred in the studied example.

III. Design Pattern: Monitor
Intent

The intent is to propose a design pattern, called Monitor, as a generic solution to facilitate the
creation of monitoring module in the design of the Supervisory Control of AMS.

Context

In the scope of Supervisory Control of AMS there exist the monitoring, which consist in to
observe the discrete states of factory elements. The context of this design pattern Monitor is
proposed a generic solution (regarding the reusability) to monitoring problem in SC-AMS.
The idea is generically represent and specify the monitoring of the factory elements, in terms
of their attributes.

To solve the question of monitoring is need monitor the discrete states of the factory elements
(e.g. equipment, work-stations and manufacturing-cells) and notify these states to interested
elements (e.g. specially the Regency). In fact, to know these states it is fundamental to allow
carry out the Regency and consequently the Command [BONGAERTS 1998] [SIMÃO et al
2002] as is argue after.

More detailed examples of AMS elements are equipment (e.g. robot, lathe and auto-guided
vehicle), hierarchical elements (e.g. station-works, manufacturing cells and plants) and
process elements (e.g. parts, lot of parts and pallets).

Each AMS element has attributes that specify its characteristics. As instance, the robot can
have an attribute to specify its state of work (i.e. free or busy) or another to specify the state of
operation (e.g. turned in, turned off or out of order). All these states must be monitored in the
SC-AMS and the Regency keep track of it.

Problem
The AMS elements, in the line of time, can assume different discrete states (e.g. robot
moving, robot stopped, lathe free and lathe processing) to each attribute. These states can

4

A Pattern System to Supervisory Control of Automated Manufacturing System

have strong influence over the process of decision (inside of the Regency), and then it is
fundamental to monitor them. The monitoring problem consists in observing the most diverse
equipment discrete states (that can be viewed as facts) and informing them to other elements
of the Supervisory Control, specifically to the decision elements, in a standardized way
[AARSTEN et al 1995] [AARSTEN et al 1996] [BONGAERTS 1998] [BRUGALI et al
1997].

In a more detailed way, the main forces found in monitoring problem are:

(i) Interface with a lot of different kind of elements (e.g. production cells, equipments
and products) to know its discrete states.

(ii) Deduce some discrete state when the monitored element does not have a direct
feedback.

(iii) Standardize the discrete states in a way that other elements (e.g. Regency) can
understand and work with them in an easy way and in a high level.

(iv) For each element, separate the standardized discrete states (that are correlated) in
little sets (that can be called “attributes”). As example, in the case of a robot, the
attribute “general state” can assume the states “busy or free” and the attribute
“gripper” can assume the state “open” or “closed”.

(v) Quickly inform (notify) the interested elements (and only the interested ones)
about the discrete states (or facts) of elements attributes, having as objective to
allow the system to be more reactive.

In terms of pattern, the problem is to find a generic way (respecting a trade-of with the
applicability) to carry out the monitoring in agree with these cited forces.

Solution
To expose the solution, it is proposed the use of computational (classes of) agents. These
agents are weak-deliberative, cognitive, reactive and cooperative. The solution comes from
agents responsible by monitor each viewed element and directly notify the interested ones, for
example other agents from the Regency.

In the sense of determining the meaning of the agent in this work, a computational agent can
be defined as a software module, with high degree of cohesion, with well-defined scope, with
autonomy and taking part in a certain context whose changes are perceived by the agent.
These perceptions may change the agent behavior and it may promote other changes in the
context [PRADO et al 1998] [FRANKLIN et GRAESSER 1996] [SCHMEIL 1999]
[YUFENG et SHUZHEN 1999].

The referred agents are cohesive objects instanced from a hierarchy of classes created to treat
classes of factory’s elements. In fact, in the pattern instance, the instantiated agents (from low
levels of the hierarchy of classes) permit to better specify specific characteristics, whereas the
more high level of classes of agent gives the generic behavior of them. Each agent captures
the states of the monitored elements by interfacing with feedback elements (e.g. sensors,
hardware and software) or by deduction of states using determined artifice (e.g. watchdogs or
information correlation) [SIMÃO et al 2002] [SIMÃO et STADZISZ 2002].

5

A Pattern System to Supervisory Control of Automated Manufacturing System

Structure
The agents responsible for monitoring are divided into two main classes (of a hierarchy of
classes) entitled as FBA (from Fact Base Agent) and AT (from Attribute Agent), which the
instances are respectively called fba and at.

Each type of feature observed regarding an element is kept by an at, e.g. the state of work
from a robot (free or transporting) or the general state of this same robot (active or out of
order). While the whole element (e.g. a robot) is managed by a fba (which computationally
represents the element) that aggregates the concerned ats, monitors the information from the
element, standardizes the information (e.g. in a predefined set of symbols) and sends the
standardized information to the interested and aggregated ats.

The name fba was chosen considering that each discrete state observed by the aggregated at
is, also, fact. Then, the set of fba with its ats is considered as base of facts, like those from
Expert System (ES).

In the diagram of Figure 2, the FBA is specialized in equipment-oriented, hierarchy-oriented
and process element-oriented agents. And each level can be specialized in more specific
levels, as the case of the Equipment_FBA a possible derivation is the classes to treat
equipment to store, process and transport the parts.

1

0..*

1 0..* Instigate

1

0..*

Equipment FBA ProcessElement FBA Hierarchy FBA

FBA

MT AT

Figure 2 - Class Diagram to Monitoring.

Dynamics
A scenario for the execution (in a generic way) of the structure previously exposed could be
the following:

(i) The fba monitors the characteristics of the elements of AMS and standardizes the
information.

(ii) The fba notifies the interested ats responsible for maintaining, one by one the state
of an attribute of the monitored elements.

6

A Pattern System to Supervisory Control of Automated Manufacturing System

(iii) The ats notify the pertinent Decision Elements and wait by a confirmation about
the information treatment from these Decision Elements.

Consequences
The adoption of the Monitoring design pattern brings the following benefits:
�� It “makes easier” to rewrite the monitoring component to work in a new SC-AMS. All the

code that has to deal with specific characteristics of the environment elements is
concentrated in the more specific levels of the hierarchy that has a standard interface (i.e.
ats). If it is required a specific change in the environment elements, it is expected that the
changes in the code will be restricted to the code of the low levels. This allows a
“quicker” adaptation (in terms of project) to the new environment with the largest reuse of
existing code.

�� In sense of the instanced solution:
�� Monitoring is encapsulated in well-contained elements, with functional independence

in relation to the other SC-AMS elements.
�� Monitored information is mapped as a set of symbols common to all the other SC-

AMS elements, transforming the heterogeneous ones in homogeneous ones.
�� The use of ats brings a special advantage, the notification mechanism that permits

notifying the changes happened to the Decision Elements, avoiding traditional
searches looking for states or facts.

�� As liability:
�� To a simpler AMS this solution can be so robust and maybe could be not

compensatory use it. Therefore, the solution is indicated to complex AMS where there
exists a great number of information to be processed (monitored).

�� To compose the Monitoring agent-classes in lower level demand expert people and
high level of technology integration, being imperative (to real case) study the solution
applicability with the actual technology.

IV. Design Pattern: Command
Intent
The intent is propose design pattern, called Command, as a generic solution to facilitate the
composition of command module in the design of the Supervisory Control of AMS.

Context
The context of the design pattern Command consists in to specify (in a general way) the send
of commands to some kinds of elements (e.g. cells, workstations or equipments), using
appropriate protocols and information (e.g. process parameters). It is also part of the context
some synchronization of commands given by the co-ordination (from Regency) to the
factory’s elements.

Problem
The force in the Command question consists in to give commands to the factory’s elements
targeting some activities (e.g. a lathe machining a part). However, these commands must be
exposed in high level of abstraction (to facilitate the instigation from co-ordination) and after,
each command, must be transformed into a command of low level (comprehensible by the

7

A Pattern System to Supervisory Control of Automated Manufacturing System

commanded element), respecting specific protocols and with the appropriate parameters, to be
sent to the target element. All this process is called command-refinement.

Another problem (or force) pertinent to the Command is the synchronization of activities
ordered by the co-ordination. The synchronization occurs when an element will receive an
order, but it will not be executed because the element depends that another task be finished
before (in one other element, which is its cooperator).

In the terms of design pattern, this problem must be exposed in a generic way, but also
respecting a trade-off with the specific aspects needs to “easily” create instances of
Command.

Solution
As solution to the command-refinement it is proposed generic class of agents, permitting
derivate more specific classes (therefore, a hierarchy of classes), which the consequent agents
instantiated can work with specific and specialized knowledge. In fact, in the instances, there
is an agent to treat each command applicable over an element of the factory and these agents
are aggregated in the same fba responsible by the monitoring process of this element.

The synchronization is carried out by the fba, once that the solution is modeled (encapsulated)
in classes of high level in the FBA hierarchy. In a generic way, this solution consists in
knowing what the prerequisites to an activity are, and always that a prerequisite is not
available, it must consider the possibility of synchronization. In this case, the fba asks to its
collaborator if, in a determined low space of time, someone will make the prerequisite true. If
the response is positive then the fba wait for its collaborator, or else this is the beginning of
the solution to the fault detection by the correlation.

A didactic instance of synchronization (in a specific case) is a fba responsible for a machine
that receives an order to process a part, but the part is not yet in its scope because a recent
order given by a robot to transport the part to it is still in execution. Therefore, this order
given to the machine will be possible to be executed in few instants of time, demonstrating
the importance of the fbas communication to know the future possibility of execution and
making the consequent synchronization of their activities.

Structure
Each agent responsible by a command-refinement is called mt (acronym of method agent),
instanced from the some class derived from the MT (i.e. Method Agents). As more specialized
is the agent, more levels of derivations can have its class. In other words, the specialized
knowledge to apply a command over an element is encapsulated in a mt (from a low level
class in the MT hierarchy).

Also are the fbas, being each one responsible not only by the monitoring and the
synchronization problems, but also by aggregate each mt that treat some command to the
element over its responsibility.
Dynamics
In a general way, the dynamic of the Command design part is:

8

A Pattern System to Supervisory Control of Automated Manufacturing System

(i) A mt is activated by someone (in fact, by an oa - order agent - defined inside of
next pattern) as a high level order.

(ii) The mt, once activated, translate the high level order in low level order dependent
of the context, i.e. dependent of the specific knowledge pertinent to the element
that will receive the order.

(iii) The fba, that aggregate the mt in question, verify the prerequisite and solve any
possible synchronization.

(iv) The mt gives the low command to the fba that “transport” it to the equipment,
respecting the specific protocol and some possible synchronization.

Consequences
�� The specific knowledge about command of AMS’ elements is encapsulated in agent

instantiated from a low level class (derived “from” the root class Method Agent),
generating functional independence.

�� As the specific knowledge and responsibility about each command of an element is
embedded in a mt, then the oa needs only activated the mt, which out considers its
specific details.

�� The synchronization is made by the cooperation of mts, following a generic idea.
�� The command and the monitoring are modeled inside of the same FBA class (or hierarchy

of FBA classes), but independently because the subclasses MTs and ATs encapsulate the
most responsibilities of each one.

�� As liability, to develop the interfaces between the agents (from low level MTs) and the
targeted elements (e.g. equipments) is still hard and dependently of specific knowledge
and technology from the element. It is imperative (to real case) study the solution
applicability with the actual technology state.

V. Design Pattern: Regency
Intent
The intent is to propose a design pattern, called Regency, as a generic solution to facilitate the
composition of the “decision”, “conflict-solution” and “co-ordination” integrated modules in
the design of the Supervisory Control of AMS.

Context
The Regency (Decision, Conflict-Solution and Co-ordination) in SC-AMS.

The Regency responsibility is, regarding the facts monitored, to decide if some actions (pre-
determined by the Planning) can be executed, resolve possible conflicts (using many
information, included the arbitration from Scheduling) and co-ordinate the actions (pre-
determined by the Planning), as well as given the orders that make part of the each action.

Problem

The problem can be divided in three sub-problems: decision, conflict and co-ordination.

Concerning to decision, the problem consist in relate or correlate observed facts by the
monitoring (respecting the ways allowed by the Planning), make a logic calculus with the
result of relations (and correlations) and decide what co-ordinations can be execute based in
the resulting of the calculus and in the alternatives proposed by the Planning.

9

A Pattern System to Supervisory Control of Automated Manufacturing System

Related to Conflict, the problem is to identify conflicts (i.e. to know when there are two or
more alternatives mutually exclusives) and solve it (i.e. to choose an alternative). More
precisely, it is necessary identifies conditions where there are elements in competition by
shared resources (e.g. a robot) and, based in some kind of parameter (e.g. from Scheduler), to
decide what is the better option.

Finally, about Co-ordination, once having the conflict solved, it is needed to co-ordinate the
orders (pre-defined) to instigate a certain number of (high level) commands [SIMÃO et al
2002].

In terms of design pattern, it is needed propose a generic solution to solve the Regency
(Decision, Conflict and Co-ordination) problem, where to create instances be needed only
give specific information to guide the generic solution.

Solution

The solution embedded in design pattern Regency is a sharing of responsibility, being the
regency solved by a lot of computational (weakly-deliberative, cognitive, cooperative and
reactive) agents, instantiated from a group of classes, that implement the knowledge of rules
and also implement a conflict solver.

The solution generality is met in the structure of the group of agent classes, which allow
instantiated agents only with the knowledge gave in rules, in a straightforwardly way, in the
scope of the Supervisory Control targeted. In other others, the same structure can be used to
any SC-AMS, being only needed give the parameters (e.g. knowledge of rules) to the generic
structure. Still, is the knowledge of rules that will make to respect the restriction of Planning
and Scheduling, once that this is specific to each system.

Each of these agents from rule is divided in others two to treat the condition and the action.
The set of condition is the Decision sub-pattern1 and the set of Action is the Coordination sub-
pattern. Still there is the agent called Conflict-Solver justly to work over the conflict question.

In fact, the structure and interaction of agents compose the main solution of the regency. This
solution is a new approach if compared with a lot of others solutions [SIMÃO 2001] [SIMÃO
et STADZISZ 2002].

Structure

The regency model is composed by the class RA (from Rule Agent) and SA (from Solver
Agent). The RA instances are called ras and the SA instance is the sa. The class RA has an
aggregation relation to class CA (from Condition Agent, whose instances are the cas) and the
AA (from Action Agent, whose instances are the aas). A ca is responsible by a fraction of the
decision, as well as, an aa is responsible by a fraction of the coordination.

A ca is connected with pas (that are instances of Premise Agents), which collaborate with it to
carry out its responsibilities. Each pas has the discrete value of an at (received by notification)
called Reference, a logical operator (to make comparisons) called Operator and another value,
called Value, that can be a constant. The pa makes a logic calculus comparing the Reference

1 A sub-pattern is a well-identified and well auto-contained part of a pattern, but that cannot be
separated because the cohesion with others parts of its pattern.

10

A Pattern System to Supervisory Control of Automated Manufacturing System

with the Value, using the Operator. The Value can be, still, other at value permitting,
therefore, to correlate values of at.
An aa is connected with oas (that are instances of Order Agents), which collaborate with it to
carry out its responsibility. Each oa instigates changes in the factory elements by means of
mts activations.

The way used to express the knowledge of the agents is a set of well-structured rules (oriented
by agents attributes) as the exemplified in the Figure 3. In fact, the proposed approach is also
a new way to compose the expert system, once each instance of the all architecture pattern is
itself an expert system carried out by distributed agents [SIMÃO et STADZISZ 2002].

agent fba.station1 attribute at.state = free and
agent fba.robot1 attribute at.state = free and
agent fba.storage1 attribute at.has-part = true

pasRule 1

agent fba.robot1 method mt.transport-part(fba.storage1, fba.station1).
agent fba.station1 method mt.process-part ().

oas

if
(ac)

(aa)

then

ValueReference Operator ra1agent fba.station1 attribute at.state = free and
agent fba.robot1 attribute at.state = free and
agent fba.storage1 attribute at.has-part = true

pasRule 1

agent fba.robot1 method mt.transport-part(fba.storage1, fba.station1).
agent fba.station1 method mt.process-part ().

oas

if
(ac)

(aa)

then

ValueReference Operator ra1

Figure 3 - Knowledge of agents in a rule format.

The rule in Figure 3 is carry out by a ra (and its ca and aa). The ca has the cooperation of tree
pas and the aa has the cooperation of two oas. These agents make a robot transport a part
from storage to a workstation when this workstation is free, the robot is free and the storage
has a part.

Expert agents that would create the ras can extract the knowledge from the rule. A way to
implement this kind of agents is using linguistic comprehension or a friendly environment to
rules composition.

Still there is the SA, which is created to generated an instance to work in the conflict
moments. A conflict is established when two ars are in true state have an exclusive premise.
An exclusive premise is one that has the Reference as being the “expression” of an
exclusively shared resource, e.g. a robot that can serve two workstations, but in different
times slice.

The sa is structured by a mechanism where each conflict established by Premises has a sub-
agent responsible by taken the priority of the ras or other decision parameters (if the priorities
are the same) and resolve the question. These alternative parameters can be, as instance, the
values specified by a dynamic scheduler.

The Figure 4 is a UML class diagram of the proposed design pattern, where all the relation of
the class agents (stated above) is expressed, included the class SA. These classes will allow to
instance objects, which are a way to implement agents

11

A Pattern System to Supervisory Control of Automated Manufacturing System

11

1..*1
Change

1..20..*Notify1..*

1..*
Notify

11..* Solve

Causal Relation

0..*1
Instigate

1..*

1..*
Notify

1..* 1..*

CA AA

SA

PA AT OAMT

FBA

RA

11

1..*1
Change

1..20..*Notify1..*

1..*
Notify

11..* Solve

Causal Relation

0..*1
Instigate

1..*

1..*
Notify

1..* 1..*

CA AA

SA

PA AT OAMT

FBA

RA

Figure 4 – Regency class diagram.

Dynamics

The pas receive notifications from the ats (i.e. from its References and, when it is the case,
from its Values) about the state change, once that the ats know what pas have interest in its
state. After the pa has received the notification with the new state, it uses this information to
make a comparison (i.e. logical calculus), generating a boolen value to itself.

If the new boolean value is different from the last one, this is notified to the interested cas,
that use this boolean value to make or re-make a logical calculus by conjunction with the
boolean values of all connected pas. If the result of this calculus is true, then the ca put it
respective ra in a true value.

After the at has notified all interested pas, it wait by a confirmation that the information was
propagated by the pas. But the pa only confirms the propagation after the interested cas have
confirmed their propagations. Evidently if (after a predetermined time) someone has not
confirmed, it need to solve the problem (e.g. to notify again). This guarantees that all
interested ras will be contemplated by the new facts.

When a ra has value true, it aa is passible of execution. To an aa be executed, its ra firstly
verifies if all the ats referenced in the collaborative pas are with the propagation confirmed.
Then, after the resolution of a possible conflict, the ra activate its aa. The aa is executed by
the activation of the connected oas. Each oa instigates works in the mts.

The Figure 5 represents the notification process allowed by the agent structure of the
architectural pattern, which this design pattern makes part.

abf1

abf 2

ca.1

at.2.n ar.1ca.2

ar.2aa.1

aa.2
oa.3mt.2.1

mt.1.1
abfs

pas

ras

oas

casats

ams aasoa.n

oa.1

pa.n
pa.3
pa.2
pa.1

mt.1.n

mt.2.n

at.2.2
at.1.n
at1.1

oa.2

abf1

abf 2

ca.1

at.2.n ar.1ca.2

ar.2aa.1

aa.2
oa.3mt.2.1

mt.1.1
abfs

pas

ras

oas

casats

ams aasoa.n

oa.1

pa.n
pa.3
pa.2
pa.1

mt.1.n

mt.2.n

at.2.2
at.1.n
at1.1

oa.2

Figure 5 – The dynamic collaboration of agents (ellipses) using notifications (arrows).

12

A Pattern System to Supervisory Control of Automated Manufacturing System

Other relevant dynamic is the conflict identification. Once that a pa with exclusive attribute as
Reference has been approved, and it collaborates to prove a rule it has a counter incremented.
This counter represents the number of rules that it collaborates to be approved. Being this
counter greater than one, the pa by itself notifies the sa to resolve the conflict. Once that sa is
notified, some of its subagents take the priorities rules to decide impasse. But, if the priorities
are the same, the sa demand a solution for whoever (e.g. the Dispatcher from Scheduler) or, in
the absence of one interlocutor, it can choose randomly (being a default politics). The rule
choose has the true from the exclusive premise confirmed and being approved, while the
others have the true from the exclusive premise disapproved and, consequently, are
disapproved too.

Consequences
The adoption of the Regency design pattern brings the following benefits:
�� It makes easier to express the causal relation (to carry out the decision and coordination)

by means of rules that work over objects attributes (or other methods that have mapping to
this kind of rules, e.g. Object Petri nets) [BAKO et VALETTE 1990].

�� It distributes the responsibilities in agents inside of the net.
�� It resolves a complex problem with generic and simple classes of agents, where the

complexity solution coming from the relations and cooperation among the instantiated
agents that works following the relation established between the classes, mainly the
relation called notification mechanisms.

�� It better carries out the IE (Inference Engine), once that in an architectural instance the
inference process works by notification relationship between agents, where the
computational complexity is incremental in reaction to the number of the premises,
because only the interested agents are notified and it is possible share information (by the
share of pas among ras).

�� It allows quickly identify the conflicts and resolve them by many ways.
�� It promotes a well conjunction, cooperation and function separation of the decision and

coordination, as well as, a good cooperation between monitoring and decision and
between coordination and command

�� The respect about the determination of the Planning and Scheduling are implicit in the
rules composition, letting the SC model more independently of this relation.

�� As liability, in fact, it is a little complex to understand all the cooperation among the
agents. But, happily, it seen “easy” to apply the solution only understand as compose the
rules (it considered that the Monitoring & Command can be composed by expert people).

VI. Architectural Pattern: Supervisory Control
Intent
Define the SC-AMS in three Designing Pattern: Monitor, Command and Regency. Each one
carries out macro-functions in the subject system and works in an interactive way with each
one, forming the whole Supervisory Control. The idea is “divide to conquer”, i.e. divide the
SC-AMS allow better understand its functions and presents solutions more functionally
independent.

Motivation
In this section it is proposed an architectural pattern to an important area in computation and
automatics, known as Supervisory Control of Automated Manufacturing System (SC-AMS).

13

A Pattern System to Supervisory Control of Automated Manufacturing System

Effectively, contributions to conceive the systems in supervisory control are necessary due to
the development complexity of this kind of computational system.

Known Uses
The ideas of the proposed architectural pattern can possibly be used in Supervisory Control of
Automated Manufacturing System (SC-AMS) and it has been used in SC of emulated AMS.
Also, there are efforts to demonstrate the model generality, as well as the major applicability
of the solution [SIMÃO et STADZISZ 2002].

To be more specifically, the robustness of the constituted architectural pattern, as well as the
efficacy of the instanced systems of this pattern, have been observed inside the supervisory
control systems applied over the industrial plant simulations made in ANALYTICE II. These
tests include the presented plant as an example in this work (in section II).

Structure
The architectural pattern is composed looking for the maximum high degree of functional
independence between the parts (i.e. design patterns). To each design pattern, it was adopted a
policy “divide to achieve”, being the functions distributed in separated elements with simple
action, maintaining the complex cooperation among them.

The diagram of Figure 6 shows the structure of the solution proposed. These elements present
the follow (generic) dynamic:

- The Monitor knows the states of the factory’s elements (e.g. equipment) and notifies
them to the Regency.

- The Regency, respecting the Planning and Scheduling, decides what to do (based in a
set of options and solving possible conflicts among alternative solutions) and when to
do the action to start the work, and make the coordination of orders to the factory’s
elements.

- The Command, instigated by the orders from the Regency, effectively gives the
command to the element (with all needed parameters) and can also make some needed
synchronizations.

After that, the factory elements receive the commands, the Monitor makes new observation,
instigating the Regency and, consequently, stimulating the Command to become a cycle or
work regime.

Problem Forces
The plant’s elements need to receive discrete orders to carry out actions that allow the factory
to work. However, these orders must be given in the appropriate moment, respecting the
decision elements (planning and scheduling) and the viabilities of the elements (i.e. its
discrete states), resulting in a harmonic interrelation among the commanded elements.

In terms of Architectural Pattern, all these functions exposed above must be modeled in a
generic way, but allowing easy instantiation and generate robust, efficacy and efficient
instances.

14

A Pattern System to Supervisory Control of Automated Manufacturing System

Supervisory
Control

Regency Command Monitor

Production Planning Process Planning

Supervisory
Control

Production Planning Process Planning

Command RegencyMonitor

Plant’s Equipment

Figure 6 - Supervisory Control architectural pattern structure.

Benefits

The proposed architectural pattern is an evolution of the essay presented in the last
SugarLoafPLoP 2002 [SIMÃO et al 2002]. The evolution is met in the specification of the
architectural pattern in terms of design patterns, as well as the own advancement of the
solution, like in the specification of the Conflict-Solver or in the aggregation of this conflict
solver with the Decision and Co-ordination inside the unique element called Regency.

The solution presented includes concepts of artificial intelligence, once the model adopted is a
kind of generic rule based system (GRBS), which instances allow carrying out CS-AMS. This
model employs the agent concept in the instantiation of classes and uses an advanced and
unique inference mechanism, by means of notification, reached by the agent collaborations
(that permit the knowledge expansion) with an incremental time in the inference process.

In fact, the class agent concept utilization allows abstracting sub-systems that are cohesive,
allowing creating well-defined frontiers and specifying the interrelation among them. As
consequence, this agent-based solution still facilitates the archetype exposition in terms of
design pattern. And then, the design pattern use make easier the reutilization, once the ideas
are better explained inside a well-known standardization.

The utilization easiness is more evident observing the process to conceive instances. The
instantiation of the Monitoring & Command takes place by the derivation of classes from the
predefined generic hierarchical classes. Actually, in the case of the physics elements (e.g.
equipment and its controls devices), this job would be easier if there were a well-defined way
(e.g. protocol) to communicate with a computer, or else some artifices should be applied (e.g.
deduction or sensors). While, the instantiation of the Regency is divided into the Decision &
Co-ordination and Solver Conflict. To the first one it is enough to express the dynamic by

15

A Pattern System to Supervisory Control of Automated Manufacturing System

rules (or other kind of compatible expression, like object Petri net) and transfer the knowledge
to the predefined agent. To the last one it is possible to use the default solution specified, as
well as, derivate another one (like use of dispatcher agent).

As the architecture has well-defined interfaces, this facilitates the work of Planning and
Scheduling, once they have to generate rules in the format predefined and standardized. Also,
the incremental inference engine solution permits the use of a great number of alternatives
without great effect over the SC-AMS performance.

Liabilities
Still, it was not developed a complete study about the availability (or weak features) of the
solution to real cases in the industry.

See Also
As parallel work, it is being realized experiments to demonstrate that the architectural pattern
can be viewed as a Petri net player, because it is known that exist a strong similarities
between the syntax and applicability of rules of expert systems and Petri nets [BAKO et
VALETTE 1990]. If the instances of the proposed Architectural Pattern can play any kind of
ordinary Petri net, this is an interesting way to demonstrate the possible major range of
applicability of the solution, once that Petri net are applicable to great number of discrete
event controls.

Still in the theme of generality, one article was proposed in a congress called Logic Applied to
the Technology – 2002 [SIMÃO et STADZISZ 2002]. The article underlines a computational
architecture as a generic and advantaged alternative form to compose expert systems. The
idea consists basically in the use of more generic levels of the Monitoring & Command, as
well as the use of the Regency. However, the article was not presented as an architectural
pattern and even the architecture was less developed.

Another aspect already developed (and being improved) is a solution to compose rules
oriented to class, and not only to objects, following and improving this good practice already
known in the literature. However, it is still necessary to write this solution (called Formation
Rules) in terms of a design pattern, in agreement to the explained architectural pattern.

An objective, as future work, is to (study the possibility) and applies the proposed
architectural pattern to real systems. Future work also includes: (i) defining a distribution
computational model of the design pattern; (ii) refining the framework, enveloped by a
friendly computational environment to constitute the Expert Systems (to SC-AMS), following
the proposed architectural pattern; (iii) exposing the design patterns, from the proposed
structural pattern, in terms of the existent standardizations in the literature, like the Gamma’s
Patterns [GAMMA et al 1994]; and (iv) developing other architectural patterns for the
conception and realization of other decision systems to the AMS, e.g. Planning, Scheduling
and Failure Supervision, in an integrated way with the proposed architectural pattern to SC-
AMS.

VIII. References

[ALEXANDER et al 1977] ALEXANDER C., ISHIKAWA S. and SILVERSTEIN M., A

Pattern Language: Towns Buildings, Constructions, Oxford University Press, New York,
1977.

16

A Pattern System to Supervisory Control of Automated Manufacturing System

[AARSTEN et al 1996] AARSTEN A., BRUGALI D. and MENGA G. Designing Concurrent
and Distributed Control Systems: an Approach Based on Design Patterns. In
Communications of the ACM - Special Issue on Design Patterns. 1996.

[AARSTEN et al 1995] AARSTEN A., ELIA G. and MENGA, G. G++: A Pattern Language
for the Object Oriented Design of Concurrent and Distributed Information Systems, with
Applications to Computer Integrated Manufacturing . In Pattern Languages of Program
Design. Coplien, J. e Schmidt, D. (eds.). Addison-Wesley, 1995.

[BAKO et VALETTE 1990] BAKO V. and VALETTE R. Towards a decentralization of
rule-based systems controlled by Petri Nets: an application to FMS. Fourth International
Symposium on Kowledge Engineering, Barcelona - Spain. 1990.

[BONGAERTS 1998] BONGAERTS L. Integration of Scheduling and Control, In Holonic
Manufacturing Systems. (Ph.D. Thesis) KatholiekeUniversiteit Leuven, 1998.

[BUSCHMANN et al 1996] BUSCHMANN F., MEUNIER R., ROHNERT H.,
SOMMERLAD P. and STAL M. Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons Ltd., 1996.

[BRUGALI et al 1997] BRUGALI D., MENGA G and AARSTEN A. The Framework Life
Span: A Case Study for Flexible Manufacturing Systems. In Communications of the ACM.
Out 1997.

[CHAAR et al 1993] CHAAR J. K., TEICHROEW D. and VOLZ R. A. Developing
Manufacturing Control Software: A Survey and Critique. The International Journal of
Flexible Manufacturing Systems. Kluwer Academic Publishers. Manufactured in The
Netherlands, pp. 53-88. 1993.

[COPLIEN et SCHMIDT 1995] COPLIEN J. and SCHMIDT D. (eds.) Pattern Languages of
Program Design. Addison-Wesley, 1995.

[CURY et al 2001] CURY J. E. R., De QUEIROZ M. H. e Santos E. A. P. Síntese Modular
do Controle Supervisório em Diagrama Escada para uma Célula de Manufatura. V
Simpósio Brasileiro de Automação Inteligente, Canela, RS, Brasil. 2001.

[FLETCHER et al 2003] FLETCHER M., BRENNAN R. W. and Norrie D. H. Modeling and
reconfiguring intelligent holonic manufacturing systems with Internet-based mobile
agents. Jounal of Intelligent Manufacturing, 2003. Kluwer Academic Publishers in The
Netherlands.

[FRANKLIN et GRAESSER 1996] FRANKLIN S. and GRAESSER A. Is it an Agent, or
Just a Program? A Taxonomy for Autonomous Agents, Institute for Intelligent Systems –
University of Memphis, In Proceedings of the Third International Workshop on Agent
Theories, Architectures and Languages, Springer-Verlag. 1996.

[GAMMA et al 1994] GAMMA E., HELM R., JOHNSON R. and VLISSIDES, J. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

[KOSCIANSKI et al 1999] KOSCIANSKI A., ROSINHA L. F., STADZISZ P. C. and
KÜNZLE L. A. FMS Design and Analysis: Developing a Simulation Environment. In
Proceedings of the 15th International Conference on CAD/CAM, Robotics and Factories
of the Future, Águas de Lindóia, v.2. p.RF25 - RF210, 1999.

[KÜNZLE 1990] KÜNZLE L. A. Controle de Sistemas Flexíveis de Manufatura -
Especificação dos níveis equipamento e estação de trabalho (Dissertação de mestrado)
CEFET/PR, 1990.

17

A Pattern System to Supervisory Control of Automated Manufacturing System

18

[LANGER et al 2000] LANGER G., SORENSEN C., SCHNELL J. and ALTING L. Design
of a Holonic Shop Floor Control System for a Steel Plate Milling-Cell, In 2000 Int. CIRP
Design Seminar on Design with Manufacturing: Intelligent Design Concepts Methods and
Algorithms, Israel, 2000.

[MCFARLANE et al 2000] MCFARLANE D., SARMA S., CHIRN J. L., WONG, C.Y. and
ASHTON, K. The Intelligent Product in Manufacturing Control and Management. IFAC
2002, 15th Triennial World Congress, Barcelona, Spain. 2000.

[MENDES 1995] MENDES R. S. Modelagem e Controle de Sistemas a Eventos Discretos -
Manufatura integrada por computador, Belo Horizonte, Fundação CEFET-MG, 1995.

[MIYAGI 1996] MIYAGI P. E. Controle Programável – Fundamentos do Controle de
Sistemas a Eventos Discretos, Edgard Blücher, 1996.

[PRADO et al 1998] PRADO J. A., ABE J. M. and ÁVILA B. C. Inteligência artificial
distribuída; Aspectos. Série Lógica e Teoria da Ciência, Instituto de Estudos Avançados –
Universidade de São Paulo. 1998.

[SCHMEIL 1999] SCHMEIL M. A. H., Sistemas Multiagente na Modelação da Estrutura e
Relações de Contratação de Organizações. Faculdade de Engenharia Universidade do
Porto. (Tese de doutorado). 1999.

[SCHMID 1995] SCHMID H. A. Creating the Architecture of a Manufacturing Framework
by Design Patterns. Fachbereich Informatik, Fachhochschule konstanz. OOPSLA’95,
1995.

[SIMÃO 2001] SIMÃO J. M. Proposta de uma arquitetura para sistemas flexíveis de
manufatura baseada em regras e agentes. (Dissertação de mestrado). CPGEI/CEFET-PR.
Brasil, 2001.

[SIMÃO et al 2002] SIMÃO J. M., QUINAIA M. A. e STADZISZ P. C. Um Padrão
Arquitetural para Sistemas Computacionais de Controle Supervisório. In Segunda
Conferência Latino-Americana em Linguagens de Padrões para Programação
(SugarLoafPLoP), Itaipava, RJ, Brasil, 2002.

[SIMÃO et STADZISZ 2002] SIMÃO J. M. and STADZISZ P. C. An Agent-Oriented
Inference Engine applied for Supervisory Control of Automated Manufacturing Systems.
Advances in Logic, Artificial Intelligence and Robotics, Volume 85, IOPress Ohmsha -
3rd Congress of Logic Applied to Technology - LAPTEC 2002, São Paulo, Brazil. 2002.

[YUFENG et SHUZHEN 1999] YUFENG L. and SHUZHEN Y., Research on the Multi-
Agent Model of Autonomous Distributed Control System, In 31 International Conference
Technology of Object-Oriented Language and Systems, IEEE Press, China. 1999.

	A Pattern System to Supervisory Control�of Automated Manufacturing System
	I. Introduction
	II. An overview of SC-AMS
	III. Design Pattern: Monitor
	Intent
	Context
	Problem
	Solution
	Structure
	Dynamics
	Consequences
	IV. Design Pattern: Command
	Intent
	Context
	Problem
	Solution
	Structure
	Dynamics
	Consequences
	V. Design Pattern: Regency
	Intent
	Context
	Problem
	Solution
	Structure
	Dynamics
	Consequences
	VI. Architectural Pattern: Supervisory Control
	Intent
	Motivation
	Known Uses
	Structure
	Problem Forces
	Benefits
	Liabilities
	See Also
	VIII. References

