
An Introduction to the Enterprise Service Bus

Martin Breest

Hasso-Plattner-Institute for IT Systems Engineering at the University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany

martin.breest@student.hpi.uni-potsdam.de

Abstract. The enterprise service bus (ESB) is the most promising ap-
proach to enterprise application integration (EAI) of the last years. It
promises to build up a service-oriented architecture (SOA) by itera-
tively integrating all kinds of isolated applications into a decentralized
infrastructure. This infrastructure combines best practices from EAI, like
message-oriented middleware (MOM), (Web) services, routing and XML
processing facilities, in order to provide, use and compose (Web) services.
Because the term ESB is often used to name different things, for exam-
ple an architecture, a product or a ”way of doing things”, I point out
in this paper what exactly an ESB is. Therefore, I first describe what
distinguishes the ESB from former EAI solutions. Second, I show what
the key components of an ESB are. Finally, I explain how these key
components function alone and how they work together to achieve the
aforementioned goal.

1 Introduction

Due to the ongoing globalization, enterprises all over the world have to face a
fierce competition. In order to stay in business, they constantly have to automate
their business processes, integrate with their business partners and provide new
services to their customers.

With the changing demands in business, the goal of IT has also changed.
Today, IT has to actively support enterprises in global competition. Therefore, it
has to make business functionality and information available across the enterprise
in order to allow software engineers to create, automate and integrate business
processes and company workers to access all kinds of information in a unified
way via a department- or enterprise-wide portal.

Today, most companies try to achieve the aforementioned goal by developing
a service-oriented architecture (SOA) [4, 5]. In a SOA, the business functionality,
implemented by different applications in the enterprise, is provided via coarse-
grained, loosely-coupled business services. These business services allow to easily
create and automate business processes by using, reusing and composing the
provided business functionality.

The enterprise service bus (ESB) [1, 8] promises to build up a SOA by itera-
tively integrating isolated applications into a decentralized infrastructure. Vari-
ous research and consulting companies like Forrester Research, IDC or Gartner

2

Inc. believe that ESB is the most promising approach for enterprise application
integration (EAI) [2, 3] of the last years. Forrester Research for example regards
the ESB as ”a layer of middleware through which a set of core (reusable) business
services are made widely available”. IDC believes that ”the ESB will revolution-
ize IT and enable flexible and scalable distributed computing for generations to
come”. Gartner Inc. analyst Roy Schulte wrote in 2002: ”A new form of enter-
prise service bus (ESB) infrastructure, combining message-oriented middleware,
Web services, transformation and routing intelligence, will be running in the
majority of enterprises by 2005. ... These high-function, low-cost ESBs are well
suited to be the backbone for service-oriented architectures and the enterprise
nervous system”.

Because the term ESB is obviously not clearly defined and often used to
name different things, for example an architecture, a product or a ”way of doing
things”, I point out in this paper what exactly an ESB is. Therefore, in section
2, I discuss what the difference between ESB and former EAI solutions is. In
section 3, I describe what the key components of an ESB are and how they
work together. In this section, I also explain the most important features of the
three components message-oriented middleware (MOM), service container and
management facility in detail. In section 4, I describe the special facilities of an
ESB, which are the routing and XML processing facilities. Finally, in the last
section, I give a conclusion and a short and final answer to the most important
question: ”What is (an) ESB?”.

Throughout this paper, I use the block diagram notation of the fundamen-
tal modeling concepts (FMC) [7, 15] to illustrate architectural issues and the
business process modeling notation (BPMN) [14] to illustrate business process
issues.

2 The ESB: An Innovative Approach to EAI

ESB is about enterprise application integration. Whether the ESB approach to
integration is innovative or not is open for discussion. However, as a matter of
fact, most enterprises today try to develop a SOA by using an ESB. Because
of that, I introduce my work by answering the following questions: ”Why do
we need Integration?”, ”Why do we need the ESB?” and ”What does the ESB
promise?”.

2.1 Why do we need Integration?

The IT landscape that we find in most enterprises today, is a result of a histor-
ical development with a missing long-term strategy. It emerged from different
IT projects that have been conducted to develop new applications, to refactor
existing applications or to buy, customize and introduce standard applications.

The result of this development is a heterogeneous IT landscape that consists
of a variety of different applications. Each of these applications has been bought

3

for a particular purpose, supports people in a specific domain and is owned by
a certain department in the enterprise.

Naturally, the heads of the departments try to protect their resources, which
are in our case the machines and applications that they bought from their budget,
and the information gathered and maintained by their people. Therefore, they
only share their resources if it is either beneficial for themself or if the enterprise’s
management forces them to do so. The result of this behaviour is that the IT
landscape inside a department and across the enterprise often consists of many
isolated applications.

Due to the ongoing globalization, enterprises today have to face a fierce com-
petition. To stay in business the have to reduce their costs through process opti-
mizations and gain new market shares through process and product innovations.
Therefore, today’s IT has to actively support enterprises in their development by
continuously automating processes, integrating with business partners and de-
livering new business services to customers. In order to achieve this, applications
from different domains and departments have to be integrated. As a consequence,
to keep their departments alive and to not offend the enterprise’s management
to much, the heads of different departments have to start collaborating.

Collaboration happens in those cases where two or more heads of a depart-
ment agree, after tough negotiations, upon sharing a certain piece of information
or a specific business functionality. To actually integrate their applications, they
setup one or more integration projects. Each integration project has the goal to
integrate the affected applications.

The two common approaches for application integration in the past have
been point-to-point integration and integration using a centralized EAI broker.
A point-to-point integration aims at directly connecting two applications. An
integration using an EAI broker has the goal to connect two or more applications
via a centralized mediator. This mediator is capable of routing and transforming
messages sent between the applications.

2.2 Why do we need the ESB?

The result of conducting numerous point-to-point and EAI integration projects
is the so called accidental architecture. It consists on the one hand of unreliable
point-to-point connections between tightly coupled applications and on the other
hand of so called islands of integration.

The point-to-point integration approach leads to unreliable, insecure, non-
monitorable and in general non-manageable communication channels between
applications. The problem of this approach is also that the applications are
tightly-coupled, which means that the integrating application has to know the
target application, the interface methods to call, the required protocol to talk
and the required data format to send. The general problem is that process and
data transformation logic are encoded into the applications. Thus, each time a
change occurs in an application, a new integration project has to be launched in
order to refactor the depending applications. Figure 1 illustrates an example of
an accidental architecture.

4

M
y

C
om

pa
ny

Pa
rt

ne
r

ERP

Finance

ERPOrder System

CRM
Email

SOAP FTP

Email

Fig. 1. An example of an accidental architecture that consists of tightly-coupled appli-
cations that are connected via unreliable point-to-point connections. The process and
data transformation logic is encoded into the applications.

The EAI integration approach tries to integrate all kinds of applications us-
ing a centralized EAI broker. As we can observe in most enterprises today, this
leads to so called islands of integration. They exist because at a certain point in
time even the most ambitious and best-funded EAI integration project fails, be-
cause the heads of the departments refuse to give up control over their resources
through integrating them into or moving them to a centralized infrastructure
controlled by the enterprise. However, inside this islands of integration, most of
the aforementioned point-to-point integration problems are already solved.

Thus, the resulting architecture is named accidental not only because it has
been developed through a number of ”accidents” but also because it is very
accident-sensitive through the aforementioned characteristics.

2.3 What does the ESB promise?

The ESB promises to construct a SOA by iteratively integrating all kinds of
isolated applications into a decentralized infrastructure called service bus. In
general, ESB is based on ideas from EAI, in special message routing and trans-
formation. But, because of the decentralized infrastructure, it does not force
departments to integrate their applications into a centralized EAI broker and,
therefore, to loose control. It rather allows departments to provide selective ac-
cess to their business functionality and information, to enforce local policies and,
therefore, to keep local autonomy.

Iterative integration means that the ESB does not follow an all-or-nothing
approach. Because of the infrastructure that is not only decentralized but also

5

highly distributed and versatile, it rather allows to bring all kinds of applications
step-by-step to the service bus. Therefore, the integration projects now have the
goal to bring the business functionality implemented by different applications
as reusable business services to the bus. These business services can then not
only be used in the current integration project but also reused and composed
in subsequent projects. The main difference compared to former EAI solutions
is that the conducted integration projects now follow a long-term strategy, that
is to bring all kinds of enterprise applications as business services to the service
bus.

M
y

C
om

pa
ny

Pa
rt

ne
r

ERP

Finance

ERPOrder System

Service Bus

SOAP FTP

Email

Service Bus

CRM SOAP/
XML

SOAP/
XML

SOAP/
XML

SOAP/
XML

SOAP/
XML

Fig. 2. An example ESB architecture in which all kinds of applications are provided as
business services and connected via reliable, secure and manageable virtual channels.
As a consequence, process orchestration and data transformation logic can be moved
to the bus and process interactions can be performed in a controlled manner.

Technically, the main difference between the ESB and former EAI solutions
is that it replaces all direct application connections through reliable, secure and
manageable virtual channels. Through the introduction of these virtual channels
the applications are also decoupled, which leads to loosely coupled interactions
and interfaces. To allow a standardized message exchange between different busi-
ness services, ESB also propagates the use of XML as data format and SOAP
[26] as message exchange protocol.

As a consequence of this changes, process orchestration and data transfor-
mation logic can be moved from the applications to the service bus. Because of
that, the ESB now can also perform process interactions (choreographies) be-

6

tween a company’s processes and its business partner’s processes in a controlled
manner. Figure 2 illustrates the result of refactoring the accidental architecture
from figure 1 to an ESB architecture.

3 The Nature of an ESB

Having clarified what ESB promises, I now explain how these promises are re-
alized. I will therefore give an overview about the key components of the ESB
architecture and discuss each component in detail.

3.1 The Key Components of the ESB

The key components of an ESB architecture are MOM, service container and
management facility. Figure 3 illustrates these key components and their rela-
tionships.

Service Container

Message-Oriented Middleware (MOM)

Management Facility

Service Container

XML
Services

Internal/
Managed
Services

Service Container

Service Container
External
Services

Routing
Services

Adapter

JMS WS-ReliabilityWS-Reliable
MessagingSOAP

FTP,
Email,
HTTP

JCA,
JNI,
RMI

ESB Components Integrated Services Service
Repository

Fig. 3. FMC diagram of the ESB architecture that shows the relationship between
MOM, service containers and management facility.

The MOM is basically a highly distributed network of message servers and
is, therefore, also called the backbone of an ESB. It allows to establish reliable,
secure and manageable virtual channels and to send messages over them.

A service container either manages an application internally or provides ac-
cess to an external application via an appropriate adapter. Adapters provide

7

access to all kinds of applications. They allow for example to upload and down-
load files, to send and receive emails or to invoke a remote method via RMI. In all
these cases, the service container makes the business functionality implemented
by the managed application available as business services. It also connects these
business services to particular virtual channels and therefore allows them to
send and receive messages over the MOM. Both, intelligent service containers
and highly distributed MOM give the ESB its decentralized nature.

In an ESB architecture, a number of special services are available by default.
Among these are routing and XML processing services. As the integrated ser-
vices, they are managed by service containers and connected to certain virtual
channels.

Software engineers can easily use, reuse and compose business services by
establishing virtual channels and connecting the right business services to them.
In order to do that, MOM and service containers need to be configured.

Therefore, ESB has a powerful management facility to which MOM and all
service containers are connected. Because of that the management facility knows
all business services and virtual channels and allows to configure and monitor
them.

3.2 The MOM

The MOM is the most important component of an ESB and I explain it therefore
first. In this section, I will answer the following questions: ”What is the benefit
of having a MOM?”, ”How does a MOM function?”, ”How are virtual channels
established?” and, finally, ”What are the main characteristics of a message?”.

CRM Finance

Before

HTTP/SOAP

Call remote
method

Server Server

After

CRM Finance

XML

Add XML-Message to the
right virtual channel and let
MOM take care of delivery

XML XML

MOM

Fig. 4. The shift from synchronous remote calls to asynchronous message exchange.

The Benefit of Having a MOM: Reliable, Asynchronous Message Ex-
change As aforementioned, in an ESB, all direct communication channels be-
tween applications are replaced by virtual communication channels. As a result,

8

all synchronous remote calls are replaced by asynchronous message exchange.
Because of that, all tightly-coupled point-to-point interactions are replaced by
loosely-coupled indirect interactions. The MOM actually takes care of sending
the messages via the setup virtual communication channels to the connected
business services. Figure 4 illustrates the shift from synchronous remote calls to
asynchronous message exchange and the resulting impact.

Sending Messages over the MOM The MOM that actually takes care of
the message delivery consists of a network of message servers and a number of
message clients. Figure 5 illustrates that on an example setup.

Service Container A

MOM Server MOM Server MOM Server

Service Container B

Queues &
Topics Messages

Messages Messages

1. Send MessageXML XML

2. Store & Forward Message

3. Receive Message 4. Reply6. Receive

5. Store & Forward

Message Client Message Client

Fig. 5. FMC diagram illustrating how messages are sent over the MOM.

A message server basically manages various queues and topics and is able to
store messages sent to those. An ESB often consists of multiple message servers
that are connected to each other. The MOM routes the messages reliably through
this network of message servers via a store and forward mechanism. This means,
that each message server on the route stores the message, tries to send it to the
next message server and deletes it only if the target server has acknowledged the
reception. Using this mechanism, the MOM can guarantee the message delivery.

Each message client is connected to a message server and runs inside a service
container. Because of that, it is able to send messages to and receive messages
from this message server. However, the service container actually manages the
message client and takes care of transforming the received messages into service
invocations. Most message clients are also able to store messages temporarily.

There are different messaging standards and APIs, that can be used to send
messages to and receive messages from a MOM. Using JMS [19] in conjunction
with SOAP is very popular but only works in a Java environment. Therefore,
upcoming standards such as WSRM [24] pose a promising approach for the
future.

9

Establishing Virtual Channels in a MOM As aforementioned, a message
server is able to manage topics and queues. They are either used to realize a
point-to-point or a publish-subscribe messaging model. Figure 6 illustrates the
use case and the technical realization of both models.

Point-to-Point Messaging Model (1->1)

Publish-Subscribe Messaging Model (1->many)

Every subscriber
gets message

First receiver
gets message

CRM Finance

XML

CRM

ERP

Finance

XML

Fig. 6. Establishing virtual channels using either point-to-point or publish-subscribe
messaging models.

One can use a queue to realize a point-to-point messaging model. Therefore,
a message sender sends messages to a queue. The queue just exists virtually and
is managed by a message server. This message server also stores the received
messages temporarily. To receive messages, a message receiver can connect to a
queue and fetch the oldest message. But, although multiple message receivers
might be connected to this queue, the oldest message in the queue will only be
delivered to that message receiver that fetches the message first. As you can
see in figure 6 this messaging model can be used to establish a virtual channel
between two applications.

One can use a topic to realize the publish-subscribe messaging model. Similar
to the point-to-point messaging model, a message publisher publishes messages
to a topic. Message subscribers can subscribe to that topic to receive the pub-
lished messages. However, in this case, the message server manages the virtual
topic and for each subscriber a private queue in which the messages are stored.
Therefore, not only one but all subscribers receive the published message. As
you can see in figure 6, this model can be used to establish a virtual channel
between multiple applications.

Through the intelligent connection of queues and topics that are managed
by different message servers, one can also establish virtual channels between

10

business services provided at different geographic locations. As aforementioned,
the MOM will take care of the reliable message delivery.

Messages: The Means to Transport Data In an ESB, messages are the basic
unit of transaction. Because they are sent instead of direct method invocation,
they have to contain more information than the plain data to be transmitted.

Therefore, a message consists of a header, properties and a body. The header
contains identification and routing information. The properties allow to pass
application-specific values. Typical message properties are replyTo, correlationId
and messageId attributes. The body, finally, contains the actual payload of the
message.

The ESB is based upon a standardized message exchange. This means that
messages are sent in a normalized format. Therefore, on a business service in-
vocation, they might have to be transformed from the normalized format to the
format required by the business service and vice versa.

Because the SOAP message exchange protocol has exactly the aforemen-
tioned characteristics and is standardized, it is used in most ESBs to send mes-
sages across the network. But SOAP is not mandatory and other, sometimes
proprietary protocols, can also be used. However, using a proprietary protocol
might lead to a vendor look-in and therefore to islands of integration, again.

The message payload often contains XML documents although this is not
mandatory, too. But the advantage of using XML and the reason why it is used
in most cases is that it allows to easily transform the contents and route messages
based on the contents through the service bus.

3.3 The Service Container

In an ESB, the service container is the means to service-enable all kinds of ap-
plications. It is connected to topics and queues provided by the MOM and is
able to transform messages into service invocations. It service-enables applica-
tions, that are either managed internally by the container or managed externally
and adapted by the container, by providing the business functionality of these
applications as loosely-coupled, coarse-grained business services. Therefore, a
business service can encapsulate very different functionality, such as to upload
or download a file from an FTP server, to send or receive an email from a mail
server, to invoke a method on an EJB, to invoke a method on a simple Web
service or to invoke a method on a SAP R/3 instance using a JCA [23] adapter.

Each business service is represented by an ESB endpoint, has a unique end-
point address which can be used to reference it, and is registered at the dis-
tributed management infrastructure. Because of that, they can be used to route
messages to and compose business processes out of them. An ESB endpoint can
be represented by a Web service but does not necessarily have to.

Service containers are not a unique feature of ESBs. They have been used for
years in EAI solutions. They are also used for example in J2EE [22] to manage
JSPs, Servlets and EJBs. Recently, new lightweight containers such as the ones

11

provided by the Hivemind [37] and Spring [36] project have become very popular.
Each of these service containers can in general be used in an ESB, as long as it
can be connected to the MOM and can be managed by the management facility.

Connecting Services to the ESB As we already know, the service container
manages a message client, that allows to send and receive messages from certain
queues and topics, and it manages or adapts an application. It also manages a
number of ESB endpoints. These ESB endpoints are the mediators between mes-
sage client and the application’s business functionality. David Chappell describes
in his book ”Enterprise Service Bus” [1] a special kind of ESB endpoint that I
want to explain here as well. Figure 7 illustrates this ESB endpoint approach.

Service Container

ESB EndpointESB Endpoint

MOM Server

Message Client

ESB Endpoint

Internal/ Managed Service

Entry
Point

Exit
Point

Operations

Place message in
entry point queue

Trigger event that
can be processed
by service-method

Place message in
exit point queue

Execute service-
method and call

operation

Receive and send
messages

Fig. 7. Connecting serivces to the ESB using ESB endpoints that are managed by a
service container.

An ESB endpoint is similar to a Servlet in J2EE. It has a standardized in-
terface that consists of an entry point and an exit point. The service container
places all received messages in the queue of the entry point and messages that
shall be sent in the queue of the exit point. Each ESB endpoint has a service
method. The service method is called each time an arriving message triggers an
event that has to be processed. Calling the service method, the only input para-
meter is an ESB context that allows to access messages in the entry point queue
and place messages in the exit point queue. Finally, the service method contains
the code that handles the received message and might send new messages or
error message to the MOM. However, using the ESB context arbitrary messages
can be send to the MOM.

12

The code of the service method can for example transform the received XML
message into a Java object and call a specific method on the managed Java ap-
plication. As aforementioned all kinds of integration tasks can be achieved using
this approach. There are also a variety of default ESB endpoint implementations
available that allow the integration of all kinds of applications by simply setting
up some configuration parameters.

Possible Capabilities of the Service Container The core functionality of
each service container is that it manages a message client to send and receive
messages, that it has a management interface that allows to configure, manage
and control the container, that it manages a number of configured ESB endpoints
and that it has a simple service invocation framework that allows to call the
service method on these ESB endpoints. However, having a service container,
that manages the translation of pure messages send over the MOM into service
invocations, allows to add almost arbitrary functionality in between, as long as
it is manageable via the management interface. Figure 8 illustrates the possible
capabilities of a fully-blown service container.

Service Container

MOM Server

Internal/ Managed Service

Invocation and Mgmt. Framework

Message Client

ESB Endpoint

M
es

sa
ge

s
C

on
fig

ur
at

io
n

Service Invocation

Thread Management

Lifecycle Management

Connection
Management

Asynch Dispatch

Auditing/ Tracking

Itinerary Management

Quality of Service

Security

Management Interface

Correlation
Transaction
Management

A
ud

it
&

Tr

ac
ki

ng
 D

at
a

Lo
g

&
 E

rr
or

M

es
sa

ge
s

Q
oS

 D
at

a

M
es

sa
ge

s

Q
ue

ue
s

&

To
pi

cs

Fig. 8. FMC diagram that shows the possible capabilities of a service container.

Each service container can additionally provide functionality for auditing,
tracking, logging and error handling. Besides this functionality, one can also add
QoS functionality that allows to measure all kinds of service invocation relevant

13

data, such as the average service execution time, the throughput of the service
or the average usage of the service.

Additional functionality might also be responsible for handling the security
configuration that is required for accessing the MOM and the adapted, external
applications.

For internally managed applications, the service container might also manage
a thread or object pool in order to allow a faster request processing.

Itinerary management basically allows to handle itineraries, as it will be
explained in section ”Itinerary-Based Routing”. Correlation handling means that
the service container is able to correlate request and a corresponding response
messages using certain correlation ids.

Besides the described functionality a service container might provided func-
tionality for lifecycle management, transaction management, connection man-
agement and much more.

There are many organization that try to standardize the capabilities of a ser-
vice container. One standard is JBI [21], which is the result of a Java community
process and widely accepted in the Java world. WSRF [17] is another emerging
standard, that is based on Web services standards.

3.4 The Management Facility

The ESB is based upon a highly distributed and decentralized infrastructure
that consists of many service containers, that provide the business functional-
ity of the managed applications as business services, and a MOM to which all
service containers are connected and that connects these business services by es-
tablishing virtual channels between them. Thus, the service containers and the
message servers of the MOM need to be configured, managed and monitored.

Because of the variety of managed applications, ranging from simple EJBs
that are deployed via an deployment archive to transformation engines that
require XSLT [29] scripts to BPEL [16] engines that require process definitions,
and possibly different message servers, very different requirements concerning
configuration, deployment, management, and monitoring have to be satisfied.

The basic idea of an ESB is to have a decentralized infrastructure but to
manage it centrally. Each ESB, therefore, has a powerful and versatile manage-
ment facility. This management facility basically consists of a central repository,
a network of management servers, management interfaces at message servers
and service containers, and different configuration, management and monitoring
tools. Figure 9 illustrates the relationship between the aforementioned compo-
nents.

The Central Repository: The Means to Store all Kinds of Artifacts In
the central repository, all kinds of ESB related artifacts are stored. Besides the
ESB endpoint configuration for the service containers and the topic and queue
configuration for the message servers it also contains program code, deployment
descriptors, deployment archives and XSLT scripts. The central repository also

14

Service ContainerMOM Server

Internal/ Managed Service

Invocation and Mgmt.
Framework

Message Client

M
es

sa
ge

s
C

on
fig

ur
at

io
n

&
 D

at
a

Management Interface

C
od

e/
 S

cr
ip

ts
/

Pr
oc

es
se

s

......

Management Interface

M
es

sa
ge

s
To

pi
cs

 &

Q
ue

ue
s

C
on

fig
ur

at
io

n
&

 D
at

a
Management Facility

Configuration Service
Repository

Management Tool Code/ Scripts/
Processes

Manage and
monitor

Manage and
monitor

Message
exchange

Fig. 9. FMC diagram illustrating the key components of the management facility of
an ESB.

contains a list of available business services and their ESB endpoints, BPEL
process definitions and message routing configurations. Because the management
facility monitors all kinds of components, it also contains different monitoring
data.

The Network of Management Servers: Managing the Decentralized
Infrastructure The management facility is built upon a network of manage-
ment servers. These servers are connected to the central repository. In case of a
globally distributed ESB, the management servers can also replicate the data to
different physically separated repositories.

Each message server or service container is connected to one of the manage-
ment servers. They therefore cannot only read data from and write data to the
central repository but also to all connected components. These components can
store certain data locally. Because of having a central repository on the one hand
and storing the appropriate data for each component locally, the management
facility is very robust.

A management server basically configures the connected components, deploys
files on them, monitors them and manages them in general. Configuration means,
that it configures topics and queues of the message servers and the ESB endpoints
of the service containers. It also stores the ESB endpoint references along with
the business service description in the central repository. However, other aspects

15

like logging, error handling, auditing, QoS and security can also be configured.
What can be configured basically depends on the capabilities of the service
container or message server.

Deployment means, that the management server can upload all kinds of files
to a service container. To deploy an EJB in a service container it uploads for
example a Jar file, to configure a transformation engine it uploads certain XSLT
scripts and to configure a BPEL engine it uploads specific BPEL process defin-
itions.

Besides the configuration and deployment aspect, a management server can
also monitor the connected component and collect all kinds of management data.
Among these data are for example life-cycle, log, error, auditing or QoS data.

Finally, a management server can also manage the life-cycle of the connected
components. It therefore can, for example, start, stop and restart the connected
components.

The Management Interface: Providing Access to all Kinds of Compo-
nents Each message server and service container has a management interface
that basically provides configuration, deployment, monitoring and lifecycle man-
agement functionality.

The management interface can be based, for example, on the older SNMP
[18], on the popular JMX [20] or on the latest WSRF [17] management standard.

The Management Tools: Configuring, Monitoring and Managing Com-
ponents The management tools allow human beings to access the data that is
stored in the central repository, and the message servers and service containers
that are connected to the management infrastructure.

Using a management tool, software engineers or business process specialists
can for example view all available business services that are stored in the central
repository, including their description and ESB endpoint reference. They can
use these services to compose them, in order to create and automate business
process. Because business processes that are managed by a BPEL engine can be
accessed like any other business service, one can also define process interactions
resp. choreographies.

Having these management tools, one can also monitor the components to see
which components are available and which ones are down. Using the lifecycle
management functionality provided by the management interface one can also
start, restart and stop these components. The management tools also allow to
monitor and manually handle errors that occured in the message or process flow.
Therefore, they allow to access the service container or message server where the
processing error occured and to edit for example the XML content of the message
by hand.

The management tools also allow to view all kinds of monitoring data, for
example QoS, error, log and auditing data, to create statistics based on that
data and to visualize them as graphics.

16

4 Special Facilities of the ESB

Until now, I have only described the basic functionality of an ESB. However,
the goal of an ESB is to integrate all kinds of isolated applications into a decen-
tralized infrastructure to provide the business functionality as reusable business
services, to create, automate and integrate business processes using them, and to
manage and monitor the created business processes. Because messages sometimes
have to be pre-processed before and post-processed after service invocation, and
business services and business processes have to be enacted somehow, the ESB
provides special routing and XML processing facilities. I will explain them in
the following section in detail.

4.1 Routing Facilities

Through the usage of a MOM, an application’s functionality is no longer ex-
ecuted based on a direct, synchronous method invocation but on an indirect,
asynchronous message exchange. This message exchange is always conducted
between a business service and the service bus. So, somehow the service bus
needs to know how to route the messages through the bus.

Therefore, an ESB basically provides three mechanisms to route messages
through the bus thereby invoking multiple business services: itinerary-based
routing, service orchestration using BPEL and content-based routing. This mech-
anisms allow not only to manage the business processes but also to monitor them.

Itinerary-Based Routing Itinerary-based routing is often used to manage
short-living, transient process fragments. Gartner Inc. calls this process frag-
ments microflows. A microflow consists of a sequence of logical steps. Each log-
ical step refers to a business service. Thus, to enact a microflow, a message is
sent through the service bus in such a way that all business services are invoked.
Therefore, one must think of the service bus as a highly distributed routing
network that is build up by a variety of message servers and service containers.

In order to route a message through the bus, each message contains an
itinerary. The itinerary consists of a list of ESB endpoints that have to be vis-
ited and the information about already visited ESB endpoints. The message also
contains the current processing state as message payload. Because the itinerary
and the process state is carried by the message as it travels across the bus, each
service container is able to evaluate the itinerary and to decide in which virtual
channel the message has to be placed, to send it to the next ESB endpoint in
the list. Figure 10 illustrates this approach.

The advantage of using the decentralized routing network is that different
parts of the network can operate independently of one another without relying
on any centralized routing engine. Because of the decentralized nature of this
approach, there is no single point of failure or performance bottleneck.

17

Message
XML Content

Itinerary
(ESB Endpoints)
1: CRM Service
2: Finance Service
3: ERP Service

Service Container

Service Bus – MOM

CRM
Service

(J2EE Server)

Service Container

Finance Service

JCA Adapter
(J2EE Server)

JMS SOAP

Legacy
Protocol

WS Adapter

ERP Service

SOAP

1 2 3

Fig. 10. Itinerary-based routing in an ESB.

Service Orchestration using BPEL Service orchestration using BPEL is
used to manage long-running business processes that might run for months or
years. A BPEL process definition consists of a number of logical steps that
are connected to each other by conditional or unconditional links and can be
executed in sequence or in parallel. A BPEL process definition also allows to
define time-based, condition-based and event-based triggers. As in the itinerary-
based routing, each logical step refers to an ESB endpoint.

A service orchestration or BPEL engine is used to enact BPEL processes
based on the process definitions. The BPEL engine is provided by the ESB as a
special service via an ESB endpoint an can therefore be accessed like any other
service. Depending on the setup, an ESB might contain multiple BPEL engines
in different geographic locations that manage different BPEL processes.

During enactment, the BPEL engine simply sends asynchronous messages
to and receives asynchronous message from the MOM. Depending on the kind
of logical step, it can thereby invoke a business service or interact with a busi-
ness process managed by another BPEL engine. The procedure of invoking a
business service follows the find-bind-invoke mechanism. This means, that the
BPEL engine finds the required business service by resolving the defined ESB
endpoint, binds to it, and, finally, invokes it by sending a message. To emulate
a synchronous service invocation, the BPEL engine is also able to correlate the
send request with a reply message of the invoked service.

Figure 11 illustrates an example of a service orchestration. The part above
shows the message exchange between BPEL engine and MOM as a BPMN dia-
gram. The part below shows how the message exchange between BPEL engine
service and business services actually functions as an FMC block diagram.

As you might have noticed already, the BPEL engine not only manages the
process definitions but also the state of the currently enacted processes. There-
fore, service orchestration can be used to handle more complex situations than
with a simple itinerary. Such complex situations occur, for example, when a
stateful conversation between two business processes is carried out over a long

18

BPEL Engine

O
rd

er

Pr
oc

es
s

M
O

M
Credit
Check

Inventory
Check

Order
fulfillment Invoice

<invoke> <receive>

Service Container

Service Bus – MOM

CRM
Service

(J2EE Server)

Service Container

Service Container

BPEL Engine
(Java VM)

JCA Adapter
(J2EE Server)

JMS SOAPSOAP

Legacy
Protocol

WS Adapter

ERP Service

SOAP

Service Container

SOAP

Partner Service

WS Adapter

SOAP

Finance Service

1 2

1

2

Definition of Message Exchange with ESB in BPEL Process

Management of Message Exchange by BPEL Engine and ESB

Fig. 11. Service orchestration using BPEL.

duration with pauses and resumes that are separated by time and triggered by
external events.

The disadvantage of the service orchestration through a centralized BPEL
engine is that it represents a possible single point of failure and a performance
bottleneck. The advantage of this approach is obviously, that through the central
process management, failure and recovery can be handled and processes can also
be suspended for a certain time.

Although I talked about service orchestration using BPEL in this section,
you can orchestrate services without using BPEL as well. However, although the
BPEL standard has many flaws, it is adopted as the process definition standard
by the industry. Therefore, to avoid a vendor lock-in by using a proprietary
language you should use BPEL.

Content-Based Routing Content-based routing (CBR) is based on the fact
that XML processing services with different capabilities are plugged into the
bus. They basically allow to validate, enrich, transform, route and operate XML
messages. Combinations of these services allow to form lightweight processes
with the sole purpose to process messages.

Plugging such a lightweight process as CBR service into the message flow
between a message producer and a message consumer (which might be for ex-

19

Service Container

Service Bus – MOM

Transformation
Engine

Service Container

Service Container

Finance Service

CBR Router

JCA Adapter
(J2EE Server)

SOAP

Legacy
Protocol

WS Adapter

ERP Service

SOAP

Service Container

SOAP

Partner Service

WS Adapter

SOAP

MT2

MT1

Fig. 12. Content-based routing in an ESB.

ample two business services) allows to handle all kinds of complex integration
tasks, for example before and after a service invocation.

Figure 12 shows a content-based routing example. As you can see, a CBR
router and a transformation engine are plugged into the bus between a message
producing service and the partner service. The sole purpose of the CBR router is
to apply an XPath [27] expression to determine whether the message conforms
to message format M1 and to sent it to the transformation engine if the message
format is M2. The transformation engine then basically transforms message for-
mat M2 to M1 by transforming for example a 5 digit postal code to a 9 digit
one.

4.2 XML Processing Facilities

Because an ESB is used to integrate all kinds of applications, and for really
integrating an application it might require more than one simple step, the ESB
provides a wide range of XML processing facilities, that can be plugged together
as described in the content-based routing section to handle all kinds of complex
integration tasks.

These XML processing facilities allow, among others, to validate, transform,
and persist messages. They are either provided by the service containers or by
special XML services that are plugged into the bus.

Message validation means that validation services are plugged into the bus
that are capable of checking whether a message conforms to a certain message
or data format. Therefore, it either checks the XML payload for the existence of
certain attributes and tags or evaluates the contents using configured validation

20

rules. Validation services have often some routing intelligence and transformation
capabilities that allow them to modify the processed message or the routing
information (the itinerary) of the processed message based on the validation
result. In order to validate messages, validation services use XML standards,
such as XPath or XQuery [28].

Message transformation means that transformation services in the bus or
transformation functionality implemented in the service container is used to
change, extract, enrich or aggregate the XML payload of the processed messages.
In order to do that, transformation facilities use XML standards, such as XSLT,
XPath or XQuery.

Message persistence means that special services are plugged into the bus
that are connected to XML or relational databases and are able of storing XML
messages or their payload.

As mentioned above, XML processing services are mostly used in content-
based routing scenarios. However, because these services are accessible via an
ESB endpoint like any other service in the ESB, they can easily be used in
microflows and BPEL processes, as well.

5 Conclusion

In this paper, I gave an introduction to the ESB. Therefore, I described what
the basic promises of ESB and the main differences to former EAI solutions are.
I explained the key components of an ESB, which are MOM, service container
and management facility, in detail. I also described the special facilities, which
are routing and XML processing facilities, that actually make up an ESB.

As a conclusion of my work, I can say that ESB combines best practices
from EAI of the last years, reuses and integrates components that have been on
the market for years, and makes it more manageable. It combines best practices
from EAI because it is based on concepts from MOM, event-driven architec-
ture (EDA) and SOA. It reuses components, such as messaging systems, J2EE
servers, integration adapters from centralized EAI solutions, business process
management engines and XML processing services, and integrates them to pro-
vide added-value. Finally, it makes the integrated components more manageable
and therefore more valuable by providing a powerful management facility and
integrating them into it.

5.1 What is (an) ESB?

Having clarified the advantages and disadvantages of an ESB, let us finally an-
swer the question: ”What is (an) ESB?”.

A ”Way of Doing Things”? Yes, the ESB is definitively a ”way of doing
things”. It is an incremental approach of constructing a SOA by connecting all
kinds of applications to a enterprise-wide distributed infrastructure.

21

An Architecture? Yes, the ESB is an architectural style in which applications
are service-enabled through service containers and connected to a MOM based
service bus, that is not only capable of routing messages but also of transforming
them. This architectural style allows to iteratively construct a SOA, to create,
automate and integrate business processes based on the provided business ser-
vices, and to easily manage and monitor these business processes.

A new Type of Product? Yes, somehow. There are many companies that
sell ESB infrastructure products allowing enterprises to build up an ESB. These
products are often composed out of existing components, such as MOMs, J2EE
servers and EAI integration adapters, and provided in a manageable manner.

Software companies, such as IBM [30], Sonic Software [31], Seebeyond [32]
and Cape Clear [33] are very active participants in this market. They are fighting
for market shares by selling there own ESB infrastructure products and offering
consulting services to help enterprises in realizing their ESB.

There are also a number of open source projects, such as Open ESB [34]
sponsored by Sun and Mule [35] sponsored by Codehaus that try to provide
enterprises with free ESB infrastructure implementations.

References

1. Chappell, D. A.: Enterprise Service Bus. O’Reilly Media Inc., 2004.

2. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Pearson Education, 2004.

3. Fowler, M.. Patterns of Enterprise Application Architecture. Addison Wesley, 2002.

4. Pulier, E., Taylor, H.: Understanding Enterprise SOA, Manning, 2006.

5. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall, 2004.

6. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architec-
tures and Applications. Springer-Verlag, 2004.

7. Tabeling, P., Groene, B., Knoepfel, A.: Fundamental Modeling Concepts - Effective
Communication of IT Systems. John Wiley & Sons, Ltd., 2006.

8. PolarLake: Understanding the ESB.

http://www.polarlake.com/en/assets/whitepapers/esb.pdf.

9. Sun Microsystems: Service Oriented Business Integration.

http://java.sun.com/integration/.

10. Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Communica-
tions of the ACM, 46(10), 2003.

11. Chappel, D.A.: Using the ESB Service Container.

http://www.onjava.com/pub/a/onjava/excerpt/esb ch6/index.html, 2004.

12. Keen, M. et al.: Implementing an SOA using an Enterprise Service Bus.

http://www.redbooks.ibm.com/redpieces/pdfs/sg246346.pdf, 2004.

13. Keen, M. et al.: SOA with an Enterprise Service Bus in WebSpehere.

http://www.redbooks.ibm.com/redbooks/pdfs/sg246494.pdf, 2005.

14. Business Process Management Initiative: BPMN: Business Process Modelling No-
tation 1.0.

http://www.bpmn.org/Documents/BPMN V1-0 May 3 2004.pdf.

22

15. FMC Consortium: FMC: Fundamental Modelling Concepts.
http://www.f-m-c.org.

16. BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems: Business Process
Execution Language for Web Services 1.1 (BPEL4WS).
http://www- 128.ibm.com/developerworks/library/specification/ws-bpel/.

17. The Web Services Resource Framework.
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrfpaper.html

18. The SNMP Protocol.
http://www.snmp.com/protocol/

19. Sun Microsystems: Java Message Service (JMS) API.
http://java.sun.com/products/jms/.

20. Sun Microsystems: Java Management Extension (JMX).
http://java.sun.com/products/JavaManagement/

21. Sun Microsystems: Java Business Integration (JBI).
http://www.jcp.org/en/jsr/detail?id=208.

22. Sun Microsystems: Java Enterprise Environment (Java EE).
http://java.sun.com/javaee/.

23. Sun Microsystems: Java EE Connector Architecture (JCA).
http://java.sun.com/j2ee/connector/.

24. Oasis: Web Service Reliable Messaging (WSRM)
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrm

25. W3C: Web Services Architecture (WSA).
http://www.w3.org/TR/ws-arch/, 2004.

26. W3C: SOAP specification.
http://www.w3.org/TR/soap/.

27. W3C: XML Path Language (XPath).
http://www.w3.org/TR/xpath.

28. W3C: XML Query Language (XQuery).
http://www.w3.org/TR/xquery/.

29. W3C: XML Transformations (XSLT).
http://www.w3.org/TR/xslt.

30. IBM Websphere ESB product page.
http://www-306.ibm.com/software/integration/wsesb/.

31. Sonic Software ESB product page.
http://www.sonicsoftware.com/products/sonic esb/index.ssp.

32. Seebeyond eInsight ESB product page.
http://www.seebeyond.com/software/einsightenterprise.asp.

33. Cape Clear ESB product page.
http://www.capeclear.com/products/cc6.shtml.

34. Open ESB project page.
https://open-esb.dev.java.net/.

35. Mule ESB project page.
http://mule.codehaus.org/.

36. The Spring Framework.
www.springframework.org/

37. The Hivemind Framework.
http://jakarta.apache.org/hivemind/index.html

