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Abstract 
 

We review the history of requirements models going back to 
the seminal works of Douglas Ross on SADT. We also discuss the 
main ingredients of modeling languages in general, and 
requirements modeling languages in particular, including the 
set of primitive concepts they are founded on (their ontology), 
the language they offer for building models, and their 
semantics, defined in terms of an entailment relation over 
models. Finally, we sketch some of the desirable features (. . . 
“requirements”) of design-time and runtime requirements 
models and draw conclusions about their similarities and 
differences.  
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Requirements Engineering (RE) 
Concerned with the elicitation, analysis and refinement of 

stakeholder requirements in order to produce a 
specification for a system-to-be. 

Founded on seminal works by Douglas Ross, Michael 
Jackson and others in the mid-70s. 

Unique research area within CS because its task is not to 
solve problems, but rather to define ones. 

Interesting area because stakeholder (“early”) 
requirements are necessarily vague, informal, self-
contradictory, and more (... in short, "scruffy"), but they 
are requirements none-the-less.  
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Origins 
Requirements are activities/functions the system-to-be 

will perform within its operational environment (Douglas 
Ross, c.1977). 
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The Requirements problem 
In its original formulation [Jackson95], a requirements 

problem consists of finding a specification S for a given set 
of requirements R and indicative environment properties E 
such that 

   E, S |- R 

meaning: “… satisfaction of the requirements can be 
deduced from satisfaction of the specification, together 
with the environment properties…” [Jackson95] 

Solution through refinement (as in program refinement): 
Start with requirements and keep refining them to 
eliminate mention of non-executable elements.   
 



ER@BR’13  -- 7 

Access 
Agenda 

Requirements as goals 
Requirements are now goals and (requirements) problem 

solving amounts to incremental AND/OR goal refinement 
(Axel van Lamsweerde, c.1993). 
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Stakeholders as Actors 
Models now include stakeholders, represented as actors, 

who have goals and rely on others for their fulfillment (Eric 
Yu, c.1993). 
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Interesting ideas ... 
Requirements derived from models of the domain (Ross). 

Requirements and specifications are different things, though 
logically related (Jackson). 

Requirements as goals stakeholders want (vanLamsweerde). 

The requirements problem is a social problem (Yu). 

The requirements problem is solved through problem 
refinement (all), and this refinement has many forms: activity 
decomposition (Ross), abductive inference (Jackson), goal 
refinement (vanLamsweerde), social delegation (Yu). 

With goal models and refinement, you are not exploring a 
design, but rather a design space. 
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Lessons learned  
Requirements modelling languages (RMLs) should be 

informality-tolerant, therefore not terribly expressive, e.g., 
propositional languages will do. 

RMLs should be inconsistency-tolerant. 

RMLs should be logics with a well defined semantics, e.g., an 
entailment relation (|=). 

RMLs are (… should be) triples, consisting of an ontology of 
primitive concepts, a language for making statements about 
requirements and the domain, and an entailment relation. 

The ontology chosen for a RML impacts greatly elicitation, 
modelling and analysis. 
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Goal models circa 2013 
Goals can be mandatory/nice-to-have, can have priorities 

[Jureta08], probabilities [Letier04], utility [Liaskos13], … 
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Reasoning with design-time goal models 
What-if: Assuming that some goals have been 

fulfilled/denied, infer the status of the rest of the goal model. 

Satisfiability: Is there a specification for a given goal model? 

What-if reasoning can be handled with simple label 
propagation algorithms, satisfiability requires a SAT solver 
[Sebastiani04]. 

Reasoning with preferences, probabilities and utilities 
requires more than a SAT solver, e.g., AI planners [Liaskos10], 
SMT solvers, … 
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What do these models tell us?  
They give us alternative specifications (sets of functions, 

qualities and assumptions) for fulfilling requirements. 

If someone wants a design that fulfills requirements in 
multiple ways (e.g., product families, flexible business 
processes, adaptive software systems) then our solution and 
implementation should encompass multiple specifications, 
not just one. 

These are design-time goal models, of no apparent use 
during runtime and/or evolution. 
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Adaptive Software Systems  
Software systems increasingly operate within volatile 

environments where the one constant is uncertainty: cyber-
physical systems, socio-technical systems, … 

In response, there has been growing interest in adaptive 
software that monitors its own performance and the 
environment, and adapts if its requirements fail. 

☞ Need to monitor requirements, but how? 

Two approaches: (a) Monitor design artifacts (code, 
architecture, business process) and draw conclusions about 
requirements, (b) monitor requirements. 

… We opt for the latter, of course! 
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Requirements for adaptation  

Awareness requirements [Souza11]: Impose constraints 
on the success/failure of other requirements 
   e.g., “Requirement R should not fail for more that 5% of      
   the time for any 1-month period” 

Evolution requirements [Souza12]: When certain 
conditions apply, specify changes to other requirements  
   e.g., “If requirement R fails 3 times in a row, drop it (it is    
   no longer a requirement). 
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Runtime models – motivation 
 Yiqiao Wang [Wang07] used goal models to support 

monitoring and diagnosis for adaptive systems.  

Excerpt from her ATM example goal model 
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Design-time vs runtime models 
Design-time models are intended to help us capture required 
functionality for the system-to-be. 

Runtime models are intended to help us monitor behaviour of 
the system and take corrective action, if necessary. 

We know how to (formally) reason with design-time models. 

How do we reason with runtime ones? For example, if we know 
that an instance of D, satisfied, is followed by 2 instances of W, 
both satisfied, and two instances of B, one satisfied, the other 
pursued, what can we infer about their parent instance of SC? 

See [Morandini09] for early results on this. 
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Towards Runtime Models 
We augment goal models, so that they additionally capture:  

 Behaviour – possible sequences of sub-goals for fulfilling 
a goal; 

 State – possible states of a goal instance; current state 
of each goal instance; 

 History – the state history of all instances of a goal 
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Behaviour  
Defined by annotating every non-leaf goal with a shuffle 

regular expression, e.g., 

    annot(SC) = (D | W | B)+ ; Dn    

 

The result of such annotations is a behavioural goal model 
(BGM) 
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Behaviour – Shuffle 
Means exactly what you see … 

If w1 = abb and w2 = acbb,  

   then w1 # w2 consists of strings  

    like aabcbbb, aacbbbb, … lot’s of them! 

More interestingly, shuffle closure … 

 w# = w | w#w | w#w#w | …  

    amounts to unbounded concurrency 

For example, SCS = SC# 

Recognition for shuffle regular expressions  

     is PTIME 
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State 

We can use FSMs, such as the following one (for goals). 

Every goal instance can be in one of these states. … 
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History 

At runtime, a system trace is generated marking state 
transitions for leaf goal instances 

 d1.start,d1.succ,d2.start,…,dn.start,dn.succ 
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Reasoning with runtime goal models 
Recognition: Given a trace and a BGM, determine if the 

trace is legal. 

RGI construction: Given a trace and a BGM, infer the states 
of non-observable goal instances and construct a 
corresponding goal instance model. 

Diagnosis: Assume a class of possible failures; given a trace 
and a BGM, determine if there is a failure; if so, determine all 
possible root causes. 
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Summary 
Unlike their design cousins, runtime requirements models 

need to capture behaviour, state and history. 

Reasoning with such models is founded on recognition 
problems for formal languages and automata, rather than 
satisfiability in logics. 

The ever-growing demand for flexibility, adaptability, 
customizability, evolvability, etc. dictates the use of 
requirements models both at design time, runtime and 
throughout the lifecycle of a software system. 
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