
ER@BR’13 -- 1

Requirements Models at Design- and
Runtime

John Mylopoulos
University of Trento

ER@BR at RE 2013
Rio de Janeiro, Brasil
July 16, 2013

[Chidi Okoye]

ER@BR’13 -- 2

Abstract

We review the history of requirements models going back to
the seminal works of Douglas Ross on SADT. We also discuss the
main ingredients of modeling languages in general, and
requirements modeling languages in particular, including the
set of primitive concepts they are founded on (their ontology),
the language they offer for building models, and their
semantics, defined in terms of an entailment relation over
models. Finally, we sketch some of the desirable features (. . .
“requirements”) of design-time and runtime requirements
models and draw conclusions about their similarities and
differences.

ER@BR’13 -- 3

Acknowledgements
This presentation is based on on-going joint work with Alex
Borgida (Rutgers University), Fabiano Dalpiaz (University of
Toronto), Jennifer Horkoff (University of Trento), Vitor Souza
(UFES) and others on Adaptive Software Systems.

ER@BR’13 -- 4

Requirements Engineering (RE)
Concerned with the elicitation, analysis and refinement of

stakeholder requirements in order to produce a
specification for a system-to-be.

Founded on seminal works by Douglas Ross, Michael
Jackson and others in the mid-70s.

Unique research area within CS because its task is not to
solve problems, but rather to define ones.

Interesting area because stakeholder (“early”)
requirements are necessarily vague, informal, self-
contradictory, and more (... in short, "scruffy"), but they
are requirements none-the-less.

ER@BR’13 -- 5

Origins
Requirements are activities/functions the system-to-be

will perform within its operational environment (Douglas
Ross, c.1977).

Buy
Supplies

Cultivate

Extract
Seeds

Seed & Vegie
Prices

Plan &
Budget Weather

Plan

Budget

Fertilizer

Seeds

Plants

Vegetables

Pick
Produce

Vegetables

Grow Vegetables

Money

ER@BR’13 -- 6

The Requirements problem
In its original formulation [Jackson95], a requirements

problem consists of finding a specification S for a given set
of requirements R and indicative environment properties E
such that

 E, S |- R

meaning: “… satisfaction of the requirements can be
deduced from satisfaction of the specification, together
with the environment properties…” [Jackson95]

Solution through refinement (as in program refinement):
Start with requirements and keep refining them to
eliminate mention of non-executable elements.

ER@BR’13 -- 7

Access
Agenda

Requirements as goals
Requirements are now goals and (requirements) problem

solving amounts to incremental AND/OR goal refinement
(Axel van Lamsweerde, c.1993).

Achieve
[ParticipantConstraintsKnown]

Achieve
[ConstraintsRequested]

AgendaAccessible

AgendaUpdated

Achieve
[ConstraintsAccessed] Achieve

[ConstraintsProvided]

OR node refinement AND node

Agenda
Handler

operationalization

goal

constraint

assumption

action
agent

Constraint
Handler

Send
Constraints Request

Minimize
[ParticipantInteraction]

ER@BR’13 -- 8

Stakeholders as Actors
Models now include stakeholders, represented as actors,

who have goals and rely on others for their fulfillment (Eric
Yu, c.1993).

ContributeToMtg

AttendMtg

UsefulMtg

CalendarInfo

SuitableTime

Scheduler Participant

ScheduleMtg

resource task

actor

Initiator

goal

softgoal

ER@BR’13 -- 9

Interesting ideas ...
Requirements derived from models of the domain (Ross).

Requirements and specifications are different things, though
logically related (Jackson).

Requirements as goals stakeholders want (vanLamsweerde).

The requirements problem is a social problem (Yu).

The requirements problem is solved through problem
refinement (all), and this refinement has many forms: activity
decomposition (Ross), abductive inference (Jackson), goal
refinement (vanLamsweerde), social delegation (Yu).

With goal models and refinement, you are not exploring a
design, but rather a design space.

ER@BR’13 -- 10

Lessons learned
Requirements modelling languages (RMLs) should be

informality-tolerant, therefore not terribly expressive, e.g.,
propositional languages will do.

RMLs should be inconsistency-tolerant.

RMLs should be logics with a well defined semantics, e.g., an
entailment relation (|=).

RMLs are (… should be) triples, consisting of an ontology of
primitive concepts, a language for making statements about
requirements and the domain, and an entailment relation.

The ontology chosen for a RML impacts greatly elicitation,
modelling and analysis.

ER@BR’13 -- 11

Goal models circa 2013
Goals can be mandatory/nice-to-have, can have priorities

[Jureta08], probabilities [Letier04], utility [Liaskos13], …

Schedule
meeting

Choose
schedule

By
person

Collect
timetables

By system

By person

OR

By
system

Collect Rooms
available

Good
quality

schedule

>70%
participation

Find free
 room

OR

OR

OR

AND
AND AND

+
-

OR

OR

Softgoal

Goal

AND

Schedule
Task

Domain
assumption

Quality
constraint

Choice
points

cp1
cp2

cp3

X

Get free
room

Low cost
scheduling

AND

X

ER@BR’13 -- 12

Reasoning with design-time goal models
What-if: Assuming that some goals have been

fulfilled/denied, infer the status of the rest of the goal model.

Satisfiability: Is there a specification for a given goal model?

What-if reasoning can be handled with simple label
propagation algorithms, satisfiability requires a SAT solver
[Sebastiani04].

Reasoning with preferences, probabilities and utilities
requires more than a SAT solver, e.g., AI planners [Liaskos10],
SMT solvers, …

ER@BR’13 -- 13

What do these models tell us?
They give us alternative specifications (sets of functions,

qualities and assumptions) for fulfilling requirements.

If someone wants a design that fulfills requirements in
multiple ways (e.g., product families, flexible business
processes, adaptive software systems) then our solution and
implementation should encompass multiple specifications,
not just one.

These are design-time goal models, of no apparent use
during runtime and/or evolution.

ER@BR’13 -- 14

Adaptive Software Systems
Software systems increasingly operate within volatile

environments where the one constant is uncertainty: cyber-
physical systems, socio-technical systems, …

In response, there has been growing interest in adaptive
software that monitors its own performance and the
environment, and adapts if its requirements fail.

☞ Need to monitor requirements, but how?

Two approaches: (a) Monitor design artifacts (code,
architecture, business process) and draw conclusions about
requirements, (b) monitor requirements.

… We opt for the latter, of course!

ER@BR’13 -- 15

Requirements for adaptation

Awareness requirements [Souza11]: Impose constraints
on the success/failure of other requirements
 e.g., “Requirement R should not fail for more that 5% of
 the time for any 1-month period”

Evolution requirements [Souza12]: When certain
conditions apply, specify changes to other requirements
 e.g., “If requirement R fails 3 times in a row, drop it (it is
 no longer a requirement).

ER@BR’13 -- 16

Runtime models – motivation
 Yiqiao Wang [Wang07] used goal models to support

monitoring and diagnosis for adaptive systems.

Excerpt from her ATM example goal model

Serve
customer

Done

Deposit

Balance

OR

OR OR

Withdraw

OR

Serve
customer

Done

Deposit

Balance

AND

AND AND

Withdraw

AND

Wait a minute …
Why not …??

ER@BR’13 -- 17

Design-time vs runtime models
Design-time models are intended to help us capture required
functionality for the system-to-be.

Runtime models are intended to help us monitor behaviour of
the system and take corrective action, if necessary.

We know how to (formally) reason with design-time models.

How do we reason with runtime ones? For example, if we know
that an instance of D, satisfied, is followed by 2 instances of W,
both satisfied, and two instances of B, one satisfied, the other
pursued, what can we infer about their parent instance of SC?

See [Morandini09] for early results on this.

… How about (CT CS)+ D?

We could use regular expressions to describe behaviour, but
also Finite State Machines, Labelled Transition Systems, …

Serve
customer

Done

Deposit

Balance

AND

AND AND

Withdraw

AND

ER@BR’13 -- 18

Towards Runtime Models
We augment goal models, so that they additionally capture:

 Behaviour – possible sequences of sub-goals for fulfilling
a goal;

 State – possible states of a goal instance; current state
of each goal instance;

 History – the state history of all instances of a goal

ER@BR’13 -- 19

Behaviour
Defined by annotating every non-leaf goal with a shuffle

regular expression, e.g.,

 annot(SC) = (D | W | B)+ ; Dn

The result of such annotations is a behavioural goal model
(BGM)

… or … ((D | W) + # B+) ; Dn

Serve
customer

Done

Deposit

Balance

AND

AND AND

Withdraw

AND

D

W

B

Dn

SC

ER@BR’13 -- 20

Behaviour – Shuffle
Means exactly what you see …

If w1 = abb and w2 = acbb,

 then w1 # w2 consists of strings

 like aabcbbb, aacbbbb, … lot’s of them!

More interestingly, shuffle closure …

 w# = w | w#w | w#w#w | …

 amounts to unbounded concurrency

For example, SCS = SC#

Recognition for shuffle regular expressions

 is PTIME

Serve
customers

Serve
customer

SCS

SC

ER@BR’13 -- 21

State

We can use FSMs, such as the following one (for goals).

Every goal instance can be in one of these states. …

Running

Succeeded

Failed

Waiting
start

succeed

fail

suspend

resume

ER@BR’13 -- 22

History

At runtime, a system trace is generated marking state
transitions for leaf goal instances

 d1.start,d1.succ,d2.start,…,dn.start,dn.succ

r

D

W

Dn

SC

B

r

d1

dn

sc1

b1
d2

start,succ

start,succ

start,succ

start,succ

start,succ

annot(SC) = (D | W | B)+;Dn

Inferred!

ER@BR’13 -- 23

Reasoning with runtime goal models
Recognition: Given a trace and a BGM, determine if the

trace is legal.

RGI construction: Given a trace and a BGM, infer the states
of non-observable goal instances and construct a
corresponding goal instance model.

Diagnosis: Assume a class of possible failures; given a trace
and a BGM, determine if there is a failure; if so, determine all
possible root causes.

ER@BR’13 -- 24

Summary
Unlike their design cousins, runtime requirements models

need to capture behaviour, state and history.

Reasoning with such models is founded on recognition
problems for formal languages and automata, rather than
satisfiability in logics.

The ever-growing demand for flexibility, adaptability,
customizability, evolvability, etc. dictates the use of
requirements models both at design time, runtime and
throughout the lifecycle of a software system.

ER@BR’13 -- 25

References
[Borgida13] Borgida A., Dalpiaz F., Horkoff J., Mylopoulos J., “Requirements Models for

Design- and Runtime”, 2nd ICSE Workshop on Models in Software Engineering (MISE’13), San
Francisco, May 2013.

[Dalpiaz13] Dalpiaz F., Borgida A., Horkoff J., Mylopoulos J., “Runtime Goal Models”, 7th
IEEE International Conference on Research Challenges in Information Science (RCIS’13),
Paris, May 2013.

[Dardenne93] Dardenne, A., van Lamsweerde, A. and Fickas, S.,”Goal-Directed
Requirements Acquisition”, in The Science of Computer Programming 20, 1993.

[Jackson95] Jackson M., Zave P., “Deriving Specifications from Requirements: An
Example”, 17th International Conference on Software Engineering (ICSE’95).

[Jureta10] Jureta, I., Borgida, A., Ernst, N., Mylopoulos, J., “Techne: Towards a New
Generation of Requirements Modeling Languages with Goals, Preferences and Inconsistency
Handling”, 19th Int. IEEE Conference on Requirements Engineering (RE’10), Sydney Australia,
Sept. 2010.

[Letier04] Letier E., van Lamsweerde A., “Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering”, 12th International Symposium on the Foundation of
Software Engineering FSE-04, pages 53–62, Newport Beach CA, November 2004.

ER@BR’13 -- 26

References (cont’d)
[Liaskos10] Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J., “Integrating Preferences

into Goal Models for Requirements Engineering”, 19th International IEEE Conference on
Requirements Engineering (RE’10), Sydney Australia, September 2010.

[Liaskos13] Liaskos S., Khan S., Soutchanski M., Lapouchnian A., and Mylopoulos J.,
“Modeling and Reasoning About Uncertainty in Goal Models”, (submitted for publication)

[Morandini09] Morandini M., Penserini L. and Perini A., “Operational Semantics of Goal
Models in Adaptive Agents,” 8th International Conference on Autonomous Agents and
Multi-agent Systems (AAMAS’09), 129–136.

[Ross77] Ross, D. T., and Schoman, “Structured Analysis: A Language for Communicating
Ideas,” IEEE Transactions on Software Engineering 3(1), Special Issue on Requirements
Analysis, January 1977, 16-34.

[Sebastiani04] Sebastiani R., Giorgini P., Mylopoulos J., “Simple and Minimum-Cost
Satisfiability for Goal Models”, 16th International Conference on Advanced Information
Systems Engineering (CAiSE’04), Riga, June 2004, Springer-Verlag LNCS 2003, 20-35.

[Souza11] Silva Souza V., Lapouchnian A., Robinson W., Mylopoulos J., “Awareness
Requirements for Adaptive Systems”, 6th ICSE Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS’11), Waikiki Honolulu, May 2011.

ER@BR’13 -- 27

References (cont’d)
[Souza11a] Silva Souza V., Lapouchnian A., Mylopoulos J., “System Identification for

Adaptive Software Systems: A Requirements Engineering Perspective”, 30th International
Conference on Conceptual Modelling (ER’11), Brussels, November 2011, 346-361.

[Souza12] Silva Souza, V., Lapouchnian A., Angelopoulos K., Mylopoulos J.,
“Requirements-Driven Software Evolution”, Computer Science – Research and Development
(CSRD), Springer-Verlag, October 2012 (online version).

[Souza12a] Souza V., Lapouchnian A., Mylopoulos J., “Requirements-Driven Qualitative
Adaptation”, 20th International Conference on Cooperative Information Systems
(CoopIS’12), Rome, September 2012, Springer-Verlag LNCS 7566, 342-361.

[Wang07] Wang, Y., McIlraith, S., Yu, Y., Mylopoulos, J., “An Automated Approach for
Monitoring and Diagnosing Requirements”, 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE’07), Atlanta, November 2007, 293-302.

[Yu93] Yu Eric, “Modelling Organizations for Information Systems Requirements
Engineering”, First IEEE International Symposium on Requirements Engineering (ISRE’93),
San Jose, January 1993.

[Chidi Okoye] http://www.modernartimages.com/expressionsofdance3.htm

