
17/07/2013

1

THE NEXT 10 YEARS: THE SHAPE OF
SOFTWARE TO COME AND WHAT
IT MEANS FOR SOFTWARE
ENGINEERING

Anthony Finkelstein

Computer Science

Brief outline of talk …

17/07/2013

2

The Discipline of Software Engineering…

¨  Sustained relevance of ‘big agenda’
¨  Substantial scientific progress but (perhaps)

receding impact on practice
¨  Significant advances in some areas

¤ Testing
¤ Automated verification (model-checking)
¤  (largely outstripping capacity to absorb innovation)

The Discipline of Software Engineering…

¨  Uncertain directions in other areas
¤ Software architecture
¤ Software design
¤ Software requirements

¨  Difficulties in making progress in some areas
¤ Software development tools
¤  ‘Methodologies’ (modelling and process combos)
¤ Middleware

¨  Grounds for optimism but …

17/07/2013

3

17/07/2013

4

Our largest risk … not recognising the game has moved

17/07/2013

5

‘Internet-scale’ Services

¨  Characterised by …
¤ Large and rapid variations in the demand for resources

¨  Existing practice
¤ Some high level patterns for limited classes of

application
¤ Resource profligacy
¤ Suck it and see (dimension by dimension)

What it Means …

¨  Building large-scale
testbeds

¨  Understanding
scaling ‘in the wild’

¨  Architectural
breakdowns

¨  Dynamic systems
models

17/07/2013

6

Convergence of Content & Infrastructure

¨  Separation of the semantic models
¨  Existing practice

¤ Web standards and software engineering standards
moving in different incompatible directions

¤ Wasteful of effort and of technical opportunity

What it Means …

¨  Stop playing at the periphery and pull back to
fundamental requirements, a fudge probably will
not work

¨  Devise and test shared schemes
¨  Identify quick wins

¤ For example smart semantic tagging of software
artefacts

¨  Start the ‘hard grind’ of engagement with
standards bodies

17/07/2013

7

Marginal Business Advantage

¨  From enabling to improvement	

¨  Existing practice	

¤ We are unable to reliably predict the cost/effort

required to build a system. We may be fortunate and
have built a very similar system before. 	

¤ Function Points are precious little assistance. ‘Jelly
Beans’ only work for small systems, relatively ‘late’ in
the process.	

¨  Nothing even on the horizon here!
¨  We are probably going to have to:

¤ Rethink software economics
n Making money a ‘first class object’ in software

engineering

¤ Get a much better handle on ‘programmer
productivity’

¤ Provide an appropriate data-sharing infrastructure

What it Means …

17/07/2013

8

SaaS

¨  New models around SaaS	

¨  Existing practice	

¤ We know how to build SaaS (sort of) but we don’t know

how to:
n buy it
n manage QoS
n achieve interoperability

What it Means …

¨  Stop ‘wasting time’ with fine grained software
services (wake up and smell the cocoa)	

¨  Enterprise mash-ups
¨  Requirements methods based on balancing

mutability
¨  ‘Security in the cloud’
¨  ‘Walk away’ methods

17/07/2013

9

The Apotheosis of ‘Apps’

¨  Existing practice
¤ Highly-tuned, device-specific

interfaces across to services
with ‘sync’ to clients

¤ Because a viable payment
model exists …

What it Means …

¨  Requirements engineering for mass-markets
¨  New types of ‘product-family’ engineering
¨  App Stores SM

¨  App management
¨  App assembly

17/07/2013

10

Towards Channels

¨  Continuing development, continuing change
¨  Subscription-based business model
¨  Engagement & retention
¨  Channel packages

What it Means …

¨  Relationship focus
¨  Continuing development
¨  New paradigms

17/07/2013

11

Platforms & Ecosystems

¨  Operational platforms (upperware)
¨  Functional clusters
¨  Interdependence between platforms and plugin,

app, adapter ecosystems
¨  Developer ecologies

What it Means …

¨  API design
¨  Intertwining of commercial and technical

architecture

17/07/2013

12

Transformation of Open Source

¨  Open / Community source model changing
¨  Unable to drive innovation
¨  Take over by large organisations
¨  Interplay with service-model

What it Means …

¨  Unclear …
¨  Advantage is service wrap
¨  … and capacity to leverage ecosystem

17/07/2013

13

‘Adaptive’ Systems

¨  Systems that must adapt to context
¨  Existing practice

¤ Problems with systems embedding significant COTS/
Community Sourced independently evolving components

¤ Problems with systems that involve user scripting and
‘plug-ability’

What it Means …

¨  Moving reflection from being a programming
language level mechanism to software systems that
can ‘account for themselves’

¨  Can reflect their requirements and (through
monitoring) the extent to which those requirements are
being satisfied

17/07/2013

14

Governance

¨  Mismatches at the boundaries between business and
software engineering give rise to many of the
problems we encounter

¨  Changing business structures … more dynamically
assembled

What it Means …

¨  Reengaging with the business interface – IT/IS
communities

¨  Much more serious study of allocation of decision
rights

¨  Governance design as part of development

17/07/2013

15

Supply Chains

¨  Addressing complex inter-product and inter-supplier
dependencies

¨  Existing practice
¤ None to ad-hoc

What it Means

¨  Rethinking software production
¨  From garage ‘design and make’ to … globalised

interdependent business

17/07/2013

16

A Conclusion

¨  The dangers of not reacting quickly enough to
changes in business structures and technical
capabilities

¨  We can ‘catch-up’ but we lose credibility

