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Introduction 

 

Dating from the first international conference on the topic in 
October 1968, software engineering just turned thirty-five. It has all 
the hallmarks of an established discipline: societies (or sub-
societies), journals, textbooks and curricula, even research 
institutes. It would seem ready to have a history. Yet, a closer look 
at the field raises the question of just what the subject of the history 
would be. It is not hard to find definitions. A leading practitioner 
spoke of it in 1989 as "the disciplined application of engineering, 
scientific, and mathematical principles and methods to the 
economical production of quality software."(1) But it is also not 
hard to find doubts about whether its current practice meets those 
criteria and, indeed, whether it is an engineering discipline at all. A 
colleague of the practitioner just quoted declared at about the same 
time (1990): "Software engineering is not yet a true engineering 
discipline, but it has the potential to become one."(2) From the 
outset, software engineering conferences have routinely begun with 
a keynote address that asks "Are we there yet?" and proposes yet 
another specification of just where "where" might be.(3) 

(1) W. Humphrey, "The Software Engineering 
Process: Definition and Scope", Representing and 
Enacting the Software Process: Proc. 4th Int'l 
Software Process Workshop , ACM Press, 1989, p. 
82.  

(2) M. Shaw, "Prospects for an Engineering 
Discipline of Software", IEEE Software
6, Nov. 1990, p. 15.  

(3) Indeed, this article stems from just such an 
address, delivered to ACM SIGSOFT's 9
Foundations of Software Engineering Conference 
(FSEC 9) in 1998.  

Since the field has been a moving target for its own practitioners, 
historians may understandably have trouble knowing just where to 
aim their attention. What is a history of software engineering 
about? Is it about the engineering of software? If so, by what 
criteria or model of engineering? Is it engineering as applied 
science? If so, what science is being applied and what is its history? 
Is it about engineering as project management? Is it engineering by 
analogy to one of the established fields of engineering? If so, which 
fields, and what are the terms of the analogy? Of what history 
would the history of software engineering be a part, that is, in what 
larger historical context does it most appropriately fit? Is it part of 
the history of engineering? The history of business and 
management? The history of the professions and of 
professionalization? The history of the disciplines and their 
formation? If several or all of these are appropriate, then what 
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aspects of the history of software engineering fit where? 

Alternatively, to put the question in another light, is the historical 
subject more accurately described as "software engineering" with 
the inverted commas as an essential part of the title? As noted 
above, what seems clear from the literature of the field from its 
very inception, reinforced by addresses, panels, articles and letters 
to the editor that continue to appear regularly, is that its 
practitioners do not agree on what software engineering is, 
although most of them freely confess that, whatever it is, it is not 
(yet) an engineering discipline. Historians have no stake in the 
outcome of that question. They can just as readily write a history of 
"software engineering" viewed as the continuing effort of various 
groups of people engaged in the production of software to establish 
their practice as an engineering discipline. The question of interest 
to historians would then be how "software engineers" have gone 
about that task of self-definition. In large part, addressing that 
question comes down to observing and analyzing the answers 
practitioners have offered to the questions just posed above. That 
is, rather than positing a consensus among practitioners concerning 
the nature of software engineering, historians can follow the efforts 
to achieve a consensus. Taking that approach would place the 
subject firmly in the comparative context of the history of 
professionalization and the formation of new disciplines.(4) 

(4) See, for example, A.D. Abbott, The System of 
Professions: An Essay on the Division of Expert 
Labor , University of Chicago Press, 1988.

For this reason, it may help to think of historians and practitioners 
as engaged in a common pursuit. They are both looking for a 
history for software engineering, though not for the same purpose 
and not from the same standpoint. Hence, the title above is meant 
to be ambiguous. In one sense, it describes historians trying to 
determine just what the subject of their inquiry might be and then 
deciding how to write its history.(5) In another sense, it describes 
efforts by practitioners to define or to characterize software 
engineering. Quite often those efforts amount to finding a history, 
that is, to seeking to identify the current development of software 
engineering with the historical development of one of the 
established engineering disciplines or indeed of engineering itself.
(6) Using history in this way has its real dangers; the initial 
conditions cannot by their nature be exactly repeated. Nonetheless, 
it is at the very least essential both that one have the right history 
and that one have the history right, not least because what passes 
for history often amounts to common wisdom, folklore or local 
myth.(7) Here historians may offer some assistance to the software 
engineers. While we may not be able to tell them whether they 
have the right history, we can in many cases tell them what history 
they have chosen and whether they have got it right. 

Ultimately, every definition of software engineering presupposes 
some historical model. For example, take the oft-quoted passage 

(5) For a recent discussions of the question, see 
History of Software Engineering (Report of the 
Dagstuhl Seminar No. 9635, ed. W. Aspray, R. 
Keil-Slawik, and D. Parnas, Dagstuhl, 1996; 
available online at 
http://www.dagstuhl.de/9635/Report/)
Tomayko, "Software as Engineering" with 
commentaries by A. Endres and B.E. Seely, 
of Computing: Software Issues, U. Hashagen, R. 
Keil-Slawik, and A. Norberg, eds., Springer Verlag, 
2002. 

(6) Mary Shaw of Carnegie Mellon University and 
the Software Engineering Institute took this 
approach explicitly in "Prospects for an 
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from the introduction to the proceedings of the first Software 
Engineering Conference, convened by the NATO Science 
Committee in 1968: 

The phrase 'software engineering' was deliberately 
chosen as being provocative, in implying the need for 
software manufacture to be based on the types of 
theoretical foundations and practical disciplines that 
are traditional in the established branches of 
engineering.(8) 

The phrase indeed turned out to be provocative, if only because it 
left all the crucial terms undefined. What does it mean to 
"manufacture" software? Is that a goal or a current practice? What, 
precisely, are the "theoretical foundations and practical disciplines" 
that underpin the "established branches of engineering"? What 
roles did they play in the formation of the engineering disciplines? 
Is the story the same in each case? The reference to "traditional" 
makes the answer to that question a matter of history. It is a 
question of how the fields of engineering took their present form. It 
is a search for historical precedents, or what we have come to refer 
to as "roots".  

Or rather, it is a matter of what I call "agendas" The agenda of a 
field consists of what its practitioners agree ought to be done, a 
consensus concerning the problems of the field, their order of 
importance or priority, the means of solving them (the tools of the 
trade), and perhaps most importantly, what constitutes a solution. 
Becoming a recognized practitioner means learning the agenda and 
then helping to carry it out. Knowing what questions to ask is the 
mark of a full-fledged practitioner, as is the capacity to distinguish 
between trivial and profound problems; "profound" means moving 
the agenda forward. One acquires standing in the field by solving 
the problems with high priority, and especially by doing so in a 
way that extends or reshapes the agenda, or by posing profound 
problems. The standing of the field may be measured by its 
capacity to set its own agenda. New disciplines emerge by 
acquiring that autonomy. (9) Conflicts within a discipline often 
come down to disagreements over the agenda: what are the really 
important problems? 

A new science means a new agenda, and tracing the emergence of a 
new science means showing how a group of practitioners coalesces 
around a common agenda different from other agendas in which 
they have been engaged. Each of those other agendas reflects a 
history, and so the members of the group bring to their new agenda 
a variety of histories. Some, or perhaps even much, of the 
disagreement among the participants in the first two NATO 
conferences, especially the second, rested on the different histories 

Engineering Discipline of Software," IEEE 
Software,  vol. 7, no. 6, Nov. 1990, pp. 15
where she proposed a historical model of the 
professionalization of engineering based primarily 
on the development of chemical engineering. Her 
diagram of the process reappeared in enhanced 
from in W.W. Gibbs, "Software's Chronic Crisis", 
Scientific American, vol. 271, no 3, Sep. 1994, pp. 
86-95; at p. 92.  

(7) For example, at the first NATO conference (see 
below), Ronald Graham of Bell Labs remarked that 
"we build systems like the Wright brothers built 
airplanes -- build the whole thing, push it off the 
cliff, let it crash, and start over again" ( 
Engineering: Concepts and Techniques. 
Proceedings of the NATO Conferences, 
Randell, and J.N. Buxton, eds., Petrocelli, 1976, p. 
7). Historians of technology know that the Wright 
Brothers' successful flight was in fact the 
culmination of a carefully planned, theoretically 
and empirically informed, program of research and 
development.. In particular, they had a relatively 
clear idea of what problems they had to solve and 
of how they might go about solving them. Whether 
or not their approach might have served as a useful 
example for fledgling software engineers, it does 
not seem prima facie to constitute a negative 
example.  

(8) Software Engineering: Report on a Conference 
sponsored by the NATO Science Committee, 
Garmisch, Germany, 7 th  to 11th  October 1968
Naur and B. Randell, eds., Scientific Affairs 
Division, NATO, 1969, p. 13. The report was 
republished, together with the report on the second 
conference in Rome the following year, in P. Naur, 
B. Randell, and J.N. Buxton, eds., Software 
Engineering: Concepts and Techniques. 
Proceedings of the NATO Conferences
1976. Randell has made both reports available for 
download in pdf format at 
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/.

(9) On the formation of the agendas of theoretical 
computer science, see M.S. Mahoney, "Software as 
Science - Science as Software", History of 
Computing: Software Issues, U. Hashagen, R. Keil
Slawik, and A. Norberg, eds. (Berlin: Springer 
Verlag, 2002), pp. 25-48  

(10) "Myth" here should be taken in the sense of a 
story told by a community to account for why it 
does things they way it does. The story may be 
more or less factually accurate, but its function 
does not depend on it.  
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they brought to the gatherings. None of them was a software 
engineer, for the field did not exist. Rather, people came from quite 
varied professional and disciplinary traditions, each of which had 
its own history, in many cases a mythic history.(10) Three of these 
in particular have directed the practitioners' search for historical 
guidance: applied science, mechanical engineering, and industrial 
engineering and management. What follows is a brief look at how 
the histories have been invoked and how they have been 
understood. 

Models of engineering: Historical 
Precedents 

Applied Science 

To some, in particular many of the European participants, 
engineering was essentially applied science, and the science in 
question here was mathematics.(11) What was needed, then, was 
firm grounding in theoretical, i.e. mathematical, computer science. 
The historical model seemed clear. Indeed, it had been set forth 
explicitly almost ten years earlier, albeit in another context, by John 
McCarthy, the creator of LISP and co-founder of artificial 
intelligence. Looking "Towards a mathematical theory of 
computation" at IFIP 1962, he had reached for a familiar 
touchstone: 

(11) Edsgar W. Dijksta was the foremost proponent 
of this view. 

In a mathematical science, it is possible to deduce from 
the basic assumptions, the important properties of the 
entities treated by the science. Thus, from Newton's 
law of gravitation and his laws of motion, one can 
deduce that the planetary orbits obey Kepler's laws.
(12) 

(12) "Towards a mathematical science of 
computation", Proc. IFIP Congress, Munich, 1962
(IFIP 62), North-Holland, 1963, p. 21.

As McCarthy and his audience well knew, one can also deduce the 
laws of the motion of terrestrial bodies and all the mechanics that 
derives from them. He extended the model at the conclusion of his 
1963 article, "A Basis for a Mathematical Theory of Computation", 
by reference to later successes in mathematical physics: 

 

It is reasonable to hope that the relationship between 
computation and mathematical logic will be as fruitful 
in the next century as that between analysis and 
physics in the last. The development of this 
relationship demands a concern for both applications 
and mathematical elegance.(13) 

(13) "A basis for a mathematical theory of 
computation", Proc. Western Joint Computer Conf. 
, vol.19, May, 1961, Spartan Books, pp. 225
reprinted, with corrections and an added tenth 
section, in Computer Programming and Formal 
Systems, P. Braffort and D. Hirschberg, eds., 
North-Holland, 1963, pp. 33-70; at p. 69.

The applications of mathematics to physics had produced more 
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than new theories. The mathematical theories of thermodynamics 
and electricity and magnetism had informed the development of 
heat engines, of dynamos and motors, of telegraphy and radio. 
Those theories formed the scientific basis of engineering in those 
fields.  

The twentieth century had a new science, McCarthy believed, and 
it too had implications beyond just theory. "Computation is sure to 
become one of the most important of the sciences," he began, 

 

This is because it is the science of how machines can 
be made to carry out intellectual processes. We know 
that any intellectual process that can be carried out 
mechanically can be performed by a general purpose 
digital computer. Moreover, the limitations on what we 
have been able to make computers do so far clearly 
come far more from our weakness as programmers 
than from the intrinsic limitations of the machines. We 
hope that these limitations can be greatly reduced by 
developing a mathematical science of computation.
(14) 

(14) McCarthy, "Basis", 33. 

The ultimate object of computer science was working programs, 
argued McCarthy, and a suitable theory of computation would 
provide: first, a universal programming language along the lines of 
Algol but with richer data descriptions; second, a theory of the 
equivalence of computational processes, by which equivalence-
preserving transformations would allow a choice of among various 
forms of an algorithm, adapted to particular circumstances; third, a 
form of symbolic representation of algorithms that could 
accommodate significant changes in behavior by simple changes in 
the symbolic expressions; fourth, a formal way of representing 
computers along with computation; and finally a quantitative 
theory of computation along the lines of Claude Shannon's measure 
of information.(15) Note that as this list progresses, it sounds more 

and more like 
engineering, and 
McCarthy's agenda (and 
its history) continued to 
echo in the software-
engineering literature. In 
arguing in 1984 that "[p]
rofessional programming 
practice should be based 
on underlying 
mathematical theories and 
follow the traditions of 
better-established 
engineering disciplines," 

(15) Ibid., 34. McCarthy argued that none of the 
three current (1961) directions of research into the 
mathematics of computing held much promise of 
such a science. Numerical analysis was too 
narrowly focused. The theory of computability set a 
framework into which any mathematics of 
computation would have to fit, but it focused on 
what was unsolvable rather than seeking positive 
results, and its level of description was too general 
to capture actual algorithms. Finally, the theory of 
finite automata, though it operated at the right level 
of generality, exploded in complexity with the size 
of current computers. As he explained in another 
article, "... [T]he fact of finiteness is used to show 
that the automaton will eventually repeat a state. 
However, anyone who waits for an IBM 7090 to 
repeat a state, solely because it is a finite 
automaton, is in for a very long wait." ("Towards a 
mathematical science of computation", 
Congress 62, North-Holland, 1963, p. 22). 

(16) C.A.R. Hoare, "Programming: Sorcery or 
Science?", IEEE Software,  vol. 1, no. 2, Mar. 1984, 
pp. 5-16; at p. 10. Perhaps only coincidentally the 
article included a photograph of the room in which 
Kepler died (p.14).  
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C.A.R. Hoare highlighted in a sidebar McCarthy's comparison of 
physics and mathematical logic quoted above. (16) 

Over the decade of the '60s theoretical computer science achieved 
standing as a discipline recognized by both the mathematical and 
the computing communities, and it could point to both applications 
and mathematical elegance.(17) Yet, it took the form more of a 
family of loosely related research agendas than of a coherent 
general theory validated by empirical results. No one mathematical 
model had proved adequate to the diversity of computing, and the 
different models were not related in any effective way. What 
mathematics one used depended on what questions one was asking, 
and for some questions no mathematics could account in theory for 
what computing was accomplishing in practice. It was a far cry 
from Newton's mechanics, much less the mathematical physics of 
the nineteenth century, and it remains so. 

(17) For an overview, see M.S. Mahoney, "The 
Structures of Computation", The First Computers 
Histories and Architectures, R. Rojas and U. 
Hashagen, eds., MIT Press, 2000. 

In a discussion on the last day of the second NATO Conference on 
Software Engineering held in Rome in October 1969, Christopher 
Strachey, Director of the Programming Research Group at Oxford 
University and a leading figure in the development of formal 
semantics, lamented that "one of the difficulties about computing 
science at the moment is that it can't demonstrate any of the things 
that it has in mind; it can't demonstrate to the software engineering 
people on a sufficiently large scale that what it is doing is of 
interest or importance to them."(18) About a decade later, a 
committee in the United States reviewing the state of art in 
theoretical computer science echoed his diagnosis, noting the still 
limited application of theory to practice.(19) By the mid-'70s, 
moreover, it seemed clear to some that, even if existing theory had 
practical application, it would not quite meet the needs of software 
engineering. In a 1976 article, Barry Boehm of TRW proposed that 
software engineering be defined as "the practical application of 
scientific knowledge in the design and construction of computer 
programs and the associated documentation required to develop, 
operate, and maintain them." Boehm identified the salient terms as 
"design", "software maintenance", and "scientific knowledge" and 
took stock of what was known in each area.(20) 

(18) Naur, et al., Software Engineering,

(19) What Can Be Automated? (COSERS)
W. Arden, ed., MIT Press, 1980, p. 139. The 
committee consisted of Richard M. Karp (Chair; 
Berkeley), Zohar Manna (Stanford), Albert R. 
Meyer (MIT), John C. Reynolds (Syracuse), Robert 
W. Ritchie (Washington), Jeffrey D. Ullman 
(Stanford), and Shmuel Winograd (IBM Research). 

(20) B. Boehm, "Software Engineering", 
Transactions on Computers, vol. C-25, no. 12, Dec. 
1976, pp. 1226-41 (repr. in Milestones of Software 
Engineering, P. W. Oman and Ted G. Lewis, 
eds.,IEEE Computer Society Press, 1990, pp. 54
69), at p. 1226 (p. 54). An early leader in the field 
of software metrics, Boehm later developed 
COCOMO, a system for estimating the cost of 
software projects and wrote the leading text in the 
subject, Software Engineering Economics.

The first two terms he addressed by reference to what by then was 
becoming the standard model of the "software life cycle", a 
sequence that took a project from the requirements to an operating 
program by way of specification, design, coding, and testing. What 
he saw as current practice reinforced the concerns of the crisis. In 
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particular, requirements analysis was informal at best, and software 
design was "still almost completely a manual process ... [with] 
relatively little effort devoted to design validation and risk 
analysis". Yet, as he had shown in a now classic article in 1973, the 
bulk of the errors in software were made during the design phase.
(21) 

(21) B. Boehm, "Software and its Impact: A 
Quantitative Assessment", Datamation
1973, pp. 48-59. 

Most significantly for present purposes, he also concluded that little 
of current computer science was relevant to the problems of 
software engineering: 

Those scientific principles available to support 
software engineering address problems in an area we 
shall call Area 1: detailed design and coding of 
systems software by experts in a relatively economics-
independent context. Unfortunately, the most pressing 
software development problems are in an area we shall 
call Area 2: requirements analysis design, text, and 
maintenance of applications software by technicians in 
an economics-driven context.(22) 

(22) Boehm, "Software Engineering", p. 67. 
Boehm's footnote to "technicians" is worth 
repeating here. "For example, a recent survey of 14 
installations in one large organization produced the 
following profile of its 'average coder': 2 years 
college-level education, 2 years software 
experience, familiarity with 2 programming 
languages and 2 applications, and generally 
introverted, sloppy, inflexible, 'in over his head', 
and undermanaged. Given the continuing increase 
in demand for software personnel, one should not 
assume that this typical profile will improve much. 
This has strong implications for effective software 
engineering technology which, like effective 
software, must be well-matched to the people who 
use it." 

However successful the experimental systems and theoretical 
advances produced in the laboratory, especially the academic 
laboratory, they did not take account of the challenges and 
constraints of "industrial-strength" software in a competitive 
market. As Fritz Bauer, the organizer of the first NATO 
conference, had put it at IFIP '71, those problems made software 
engineering "the part of computer science that is too difficult for 
the computer scientists".(23) 

(23) F. L. Bauer, "Software Engineering", 
Information Processing 71, North-Holland 
Publishing Co., 1972, pp. 530-538; at p. 530. Repr. 
in Advanced Course in Software Engineering,
Bauer, ed., Springer-Verlag, 1973, pp. 522
reprint did not include Bauer's playful parody of a 
computer scientist's design of a three-prong hay 
fork. 

Mechanical Engineering 

If not applied science, then what? Others at the NATO conference 
had proposed models of engineering that emphasized analogies of 
practice rather than theory. Perhaps the most famous of these was 
M.D. McIlroy's evocation of the machine-building origins of 
mechanical engineering and the system of mass production by 
interchangeable parts that grew out of them. Seeing software sitting 
somewhere on the other side of the Industrial Revolution, he 
proposed to vault it into the modern era. 

We undoubtedly produce software by backward 
techniques. We undoubtedly get the short end of the 
stick in confrontations with hardware people because 
they are the industrialists and we are the crofters. 
Software production today appears in the scale of 
industrialization somewhere below the more backward 
construction industries. I think its proper place is 
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considerably higher, and would like to investigate the 
prospects for mass-production techniques in software. 

He left no doubt of whose lead to follow. He continued: 

In the phrase 'mass production techniques', my 
emphasis is on 'techniques' and not on mass production 
plain. Of course mass production, in the sense of 
limitless replication of prototype, is trivial for 
software. But certain ideas from industrial technique I 
claim are relevant. The idea of subassemblies carries 
over directly and is well exploited. The idea of 
interchangeable parts corresponds roughly to our term 
'modularity', and is fitfully respected. The idea of 
machine tools has an analogue in assembly programs 
and compilers. Yet this fragile analogy is belied when 
we seek for analogues of other tangible symbols of 
mass production. There do not exist manufacturers of 
standard parts, much less catalogues of standard parts. 
One may not order parts to individual specifications or 
size, ruggedness, speed, capacity, precision or 
character set.(24) 

(24) M.D. McIlroy, "Mass Produced Software 
Components," in Naur and Randell, pp. 138
at p. 138-39. At the time, McIlroy was one of the 
representatives of Bell Labs to the Multics project 
at MIT, where he worked on the semantics of PL/I. 
He subsequently oversaw the development of Unix, 
to which he contributed the notion of "pipes", 
which allows the chaining of programs, each taking 
as its input the output of its predecessor.

As studies of the American machine-tool industry during the 19th 
and early 20th century have shown, McIlroy could hardly have 
chosen a more potent model (he has a longstanding interest in the 
history of technology). Between roughly 1820 and 1880, 
developments in machine-tool technology had increased routine 
shop precision from .01" to .0001". More importantly, in a process 

characterized 
by the 
economist 
Nathan 
Rosenberg as 
"convergence", 
machine-tool 
manufacturers 
learned how to 
translate new 
techniques 
developed for 
specific 
customers into 
generic tools of 
their own.(25) 

So, for example, the need to machine bits for drilling sma.ll holes 
percussion locks led to the development of the vertical turret lathe, 
which in turn lent itself to the production of screws and small 
precision parts, which in turn led to the automatic turret lathe. 

(25) Nathan Rosenberg, "Technological Change in 
the Machine Tool Industry, 1840-1910",
Economic History  vol. 23, 1963, pp. 414
in Rosenberg, Perspectives on Technology
Cambridge Univ. Press., 1976), Chap.1. 

(26) In conversation at Bell Labs, Fall, 1989. 
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Indeed, it was precisely the automatic screw-cutting machine that 
McIlroy had in mind.(26) 

As McIlroy noted, he was giving sharper, historically grounded 
form to an idea that had already begun to take shape. In an 
Advanced Course in Software Engineering that took place at 
Munich's Technical University in 1972, Jack B. Dennis of MIT's 
Project MAC lectured on "Modularity", pointing as example to 
standardized floor tiles (19" square "modules") which fill any size 
or shape of floor area "with just a bit of trimming at the boundary", 
while allowing great variety through different colors and textures 
of modules. 

 

In modular software, clearly the "standardized units or 
dimensions" should be standards such that software 
modules meeting the standards may be conveniently 
fitted together (without "trimming") to realize large 
software systems. The reference to "variety of use" 
should mean that the range of module types available 
should be sufficient for the construction of a usefully 
large class of programs.(27) 

(27) Jack B. Dennis, "Modularity", in Bauer, 
Advanced Course on Software Engineering
3.A; at p. 128. 

Especially 
as 
expressed 
by 
McIlroy, 
the 
idea 
has 
had 
a 
long 
career 
in 

software engineering. During the '70s it directed attention beyond 
the development of libraries of subroutines to the notion of 
"reusable" programs across systems, and in the '80s it underlay the 
growing emphasis on object-oriented programming as the means of 
achieving such reusability on a broad scale. It is essentially what 
Brad Cox was looking for around 1990 as the basis for software's 
"industrial revolution".(28) More generally, the analogy with 
machine-building and the metaphorical language of machine-based 
production became a continuing theme of software engineering, 
often illustrated by pictures of automobile assembly lines, as in the 
case of Peter Wegner's four-part article in IEEE Software in 1984 
on "Capital-Intensive Software Technology".(29) The cover of that 
issue bore a photograph of a Ford assembly line in the '30s, and a 

(28) Brad J. Cox, "Planning the Software Industrial 
Revolution", IEEE Software  vol. 7, no. 6, Nov. 
1990. 

(29) IEEE Software vol. 1, no. 3, July 1984, pp. 7
45.  

(30) Both Wegner and Jones have told me that their 
editors, not they, chose the pictures in question. 
Thus, the analogy was widely shared in the larger 
community.  
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picture of the same line in the early '50s adorned Gregory W. 
Jones's Software Engineering (Wiley, 1990).(30) 

Industrial Engineering 

As the move from machine tools to the assembly line suggests, 
McIlroy's model of mechanical engineering was closely akin to 
F.L. Bauer's proposal at IFIP 71 that "software design and 
production [be viewed] as an industrial engineering field".  

 

For the time being, we have to work under the existing 
conditions, and the work has to be done with 
programmers who are not likely to be re-educated. It is 
therefore all the more important to use organizational 
and managerial tools that are appropriate to the task.
(31) 

(31) F. L. Bauer, "Software Engineering", p. 532.

On that model the problems of large software projects came down 
to the "division of the task into manageable parts", its "division into 
distinct stages of development", "computerized surveillance", and 
"management". Each of these tasks posed significant problems, and 
Bauer had specific suggestions to make only with regard to the 
third: computerized surveillance consisted of: 

l Automatic updating and quality control of documentation,  
l Selective dissemination of information to all project staff,  
l Surveillance of deadline plans,  
l Collection of data for simulation studies,  
l Collection of data for quality control,  
l Automatic production of manuals and maintenance material.  

 

"It is clear," he noted, "that a house well equipped with programs 
and an underlying philosophy for doing these things, can be 
regarded as a modern software plant."(32) 

(32) Ibid., 533. 

Bauer's idea was not new. In a "Position Paper for [the] Panel 
Discussion [on] the Economics of Program Production" at IFIP 68, 
also presented in substance at the NATO conference, R.W. Bemer 
of GE had suggested that what software managers lacked was a 
proper environment: 

It appears that we have few specific environments 
(factory facilities) for the economical production of 
programs. I contend that the production costs are 
affected far more adversely by the absence of such an 
environment than by the absence of any tools in the 
environment (e.g. writing a program in PL/1 is using a 
tool.)  
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A factory supplies power, work space, shipping and receiving, 
labor distribution, and financial controls, etc. Thus a software 
factory should be a programming environment residing upon and 
controlled by a computer. Program construction, checkout and 
usage should be done entirely within this environment. Ideally it 
should be impossible to produce programs exterior to this 
environment.(33) 

(33) R.W. Bemer, "Position Paper for Panel 
Discussion [on] the Economics of Program 
Production", Information Processing 68
Holland Publishing Company, 1969, vol. II, p. 
1626. 

Bemer's proposal was aimed at the problem of workers' near-total 
control over production, which the computer itself held promise of 
overcoming. "Economical products of high quality," he continued,  

are not possible (in most instances) when one instructs 
the programmer in good practice and merely hopes that 
he will make his invisible product according to those 
rules and standards. This just does not happen under 
human supervision. 

A factory, however, has more than human supervision. 
It has measures and controls for productivity and 
quality. Financial records are kept for costing and 
scheduling. Thus management is able to estimate from 
previous data: not so with programming management 
in general. Computer supervision and aid are vital, 
with the accent upon human engineering factors so that 
working in the environment is both attractive and 
effective for the programmer. 

In reading these words, it is hard not to 
hear an echo of Frederick W. Taylor and 
his methods of "scientific management", 
which informed management thinking, 
both here and in Europe in ways that are 
only now becoming clear.(34) Indeed, the 
basic principles of Taylor's system sound 
much like the agenda that early software 
engineer- managers were laying out for 
themselves. The primary obligation of 
management according to Taylor was to 
determine the scientific basis of the task to 
be accomplished. That came down to four 
main duties: 

(34) In the now classic Taylorism at Watertown 
Arsenal: Scientific Management in Action, 1908
1915 (Cambridge, MA: Harvard U.P., 1960; repr. 
as Scientific Management in Action: Tarlorism at 
Watertown Arsenal, 1908-1915, Princeton, 
Princeton U.P., 1985), H.G.J. Aitken listed Taylor's 
"solutions of enduring significance" (p. 29): (1) the 
planned routing and scheduling of work in 
progress, leading to the assembly line and 
continuous flow production; (2) systematic 
inspection procedures between operations; (3) 
printed job and instruction cards; (4) refined cost
accounting techniques; (5) systematization of store 
procedures, purchasing, and inventory control; (6) 
and "functional foremanship", which was the only 
element not to gain general acceptance. Taylor got 
little credit from historians for these things, yet 
"these inconspicuous innovations have probably 
exercised a more far-reaching influence on 
industrial practice than has the conspicuous 
innovation of stop-watch time study". Taylor and 
Taylorism have attracted renewed attention from 
historians in recent decades; see in particular D. 
Nelson, ed., A Mental Revolution: Scientific 
Management Since Taylor (Ohio State Univ. Press, 
1992) and S.P. Waring, Taylorism Transformed: 
Scientific Management since 1945 (Univ. North 
Carolina Press, 1991). R. Kanigel's The One Best 
Way: Frederick Winslow Taylor and the Enigma of 
Efficiency (Viking Press, 1997) is a full and 
informative biography. 

First. They develop a science for each element of a 
man's work, which replaces the old rule-of-thumb 
method.(35) 

Second. They scientifically select and then train, teach, 

(35) That science constituted the famous "one best 
way" on which Taylor's system rested. 

(36) F.W. Taylor, The Principles of Scientific 
Management, 1911; repr. Norton, 1967, pp. 36
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and develop the workman, whereas in the past he 
chose his own work and trained himself as best he 
could. 

Third. They heartily cooperate with the men so as to 
insure all of the work [is] being done in accordance 
with the principle of the science which has been 
developed. 

Fourth. There is an almost equal division of the work 
and the responsibility between the management and 
the workmen. The management take over all work for 
which they are better fitted than the workmen, while in 
the past almost all of the work and the greater part of 
the responsibility were thrown upon the men.(36) 

In the emphasis on supervision and support of the programmer, 
Bemer's factory sounds like Taylor's machine shop, with 
management seeking to impose the "one best way" over a worker 
still in control of the shop floor. 

A decade later, William W. Agresti of the University of Michigan-
Dearborn made the tie to Taylor explicit. In a follow-up to his talk, 
"Applying Industrial Engineering to the Software Development 
Process, presented at the IEEE Computer Society's 23rd 
International Conference in the fall of 1981, he published a short 
piece on "Software Engineering as Industrial Engineering" in 
Software Engineering Notes: 

 

While working on this project, I returned for 
inspiration to the "old masters" of industrial 
engineering: Frederick Taylor, Henry Gantt, and Frank 
and Lillian Gilbreth. The accounts of their work in the 
early 1900s provide remarkable reading as a glimpse 
of society at that time. I was also impressed that much 
of what they were saying then about I.E. (or "scientific 
management" as it was known then) could be said 
today about software engineering.(37) 

(37) W.W. Agresti, "Software Engineering as 
Industrial Engineering", Software Engineering 
Notes vol. 6, no. 5, 1981, 11 -12; at 11. I thank 
Michael Cusumano for drawing my attention to this 
article. Agresti later moved to Computer Sciences 
Corporation and then to MITRE Corporation.

As examples, Agresti offered a page of excerpts from the works of 
the masters as they might apply to such matter as "Finding Program 
'Bugs'", "Introducing Structured Programming Methods", and 
"Software Tools". Concerning the "Analysis of Algorithms," he 
went to the heart of Taylor's system: "Now, among the various 
methods used..., there is always one method which is quicker and 
better than any of the rest. And this one best method can only be 
discovered through a scientific study and analysis of all the 
methods in use...." 
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Whether implicitly or explicitly, Taylorism continued to inform the 
industrial approach to software engineering. Leon J. Osterweil's 
keynote address at the 9th International Conference on Software 
Engineering in 1987 offers a striking example.(38) Even more 
recently, Watts S. Humphrey, principal designer of the widely used 
(and DoD-sanctioned) Capability Maturity Model and Personal 
Software Process, provides more explicit testimony to Taylor's 
presence in thinking about software management. In an article on 
the current status and trends in the Personal Software Process, 
Humphrey references Peter Drucker in asserting that "Even though 
manual and intellectual tasks are significantly different, we can 
measure, analyze, and optimize both and thus apply Taylor's 
principles equally well." He then explains his point in language 
quite close to Bemer's: 

(38) L.J. Osterweil', "Software Processes are 
Software Too", Proceedings of the 9th

Software Engineering  (ICSE 9), IEEE Computer 
Society Press, 1987, pp. 2-13. At ICSE 19, 
Osterweil's paper was recognized as the most 
influential paper of ICSE 9. 

The principal difference between manual and 
intellectual work is that the knowledge worker is 
essentially autonomous. That is, in addition to deciding 
how to do tasks, he or she must also decide what tasks 
to do and the order in which to do them. The manual 
worker commonly follows a relatively fixed task order, 
essentially prescribed by the production line. So 
studying and improving the performance of intellectual 
work must not only address the most efficient way to 
do each task but also consider how to select and order 
these tasks. The is essentially the role of a defined 
process and a detailed plan. The process defines the 
tasks, task order, and task measures, while the plan 
sizes the tasks and defines the task schedule for the job 
being done.(39) 

(39) W.S. Humphrey, "The Personal Software 
Process: Status and Trends", IEEE Software
17, no. 6, Nov./Dec. 2000, p.72. 

If, as Osterweil maintains, "software processes are software, too", 
then some of those processes are Taylor-inspired software for 
managing workers. 

Yet, in the late 1960s, when the notions of software engineering 
and the software factory were first proposed, practitioners could 
fulfill none of Taylor's requirements. To what extent computer 
science could replace rule of thumb in the production of software 
was precisely the point at issue at the NATO conferences (and, as 
noted above, it remains a question). Even the optimists agreed that 
progress had been slow. Unable, then, to fulfil the first duty, 
programming managers were hardly in a position to carry out the 
third. Everyone bemoaned the lack of standards for the quality of 
software. As far as the fourth was concerned, few ventured to say 
who was best suited to do what in large-scale programming project. 
Frederick P. Brooks offered an example in his now classic The 
Mythical Man-Month: 
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It is a very humbling experience to make a 
multimillion-dollar mistake, but it is also very 
memorable. I vividly recall the night we decided how 
to organize the actual writing of external specifications 
for OS/360. The manager of architecture, the manager 
of control program implementation, and I were 
threshing out the plan, schedule, and division of 
responsibilities. 

The architecture manager had 10 good men. He 
asserted that they could write the specifications and do 
it right. It would take ten months, three more than the 
schedule allowed. 

The control program manager had 150 men. He 
asserted that they could prepare the specifications, with 
the architecture team coordinating; it would be well-
done and practical, and he could do it on schedule. 
Furthermore, if the architecture team did it, his 150 
men would sit twiddling their thumbs for ten months. 

 

To this the architecture manager responded that if I 
gave the control program team the responsibility, the 
result would not in fact be on time, but would also be 
three months late, and of much lower quality. I did, 
and it was. He was right on both counts. Moreover, the 
lack of conceptual integrity made the system far more 
costly to build and change, and I would estimate that it 
added a year to debugging time.(40)  

(40) F.P. Brooks, Jr., The Mythical Man
Essays on Software Engineering, Addison
1975, pp. 47-48. 

Only with that experience behind him was Brooks in a position to 
think about what precisely was wrong with his decision.  

As for Taylor's second principle, by 1969 the failure of 
management to establish standards for the selection and training of 
programmers was legend. As Dick H. Brandon, the head of one of 
the more successful software houses, pointed out, the industry at 
large scarcely agreed on the most general specifications of the 
programmer's task. Managers seeking to hire people without 
programming experience (as the pressing need for programmers 
required) had only one quite dubious aptitude test at their disposal, 
and no one knew for certain how to train those people once they 
were hired.(41) So one was back where one started: to implement 
the model required solving the problems to which the model was 
supposed to provide the solution, quite apart from how effective 
that solution had in fact turned out to be. 

(41) D. H. Brandon, "The Economics of Computer 
Programming", On the Management of Computer 
Programming, G.F. Weinwurm, ed., Auerbach, 
1970, Chap.1. Brandon evidently viewed 
management through Taylorist eyes, but he was 
clear-sighted enough to see that computer 
programming failed to meet the prerequisites for 
scientific management. For an analysis of why 
testing was so unreliable, see R.N. Reinstedt, 
"Results of a Programmer Performance Prediction 
Study", IEEE Trans. Engineering Management
Dec. 1967, 183-87, and G.M. Weinberg, 
Psychology of Computer Programming
1971), Chap.9. 

Much of the articulation of software engineering during the 1970s 
and '80s aimed at laying the groundwork for effective management: 
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structured analysis and design as a means of hierarchical division 
of projects and allocation of tasks, structured programming as a 
means both of quality control and of disciplining programmers, 
methods of cost accounting and estimation, methods of verification 
and validation, techniques of quality assurance. Except for 
structured programming, which could be enforced by increasingly 
effective diagnostic compilers, most of these methods were paper 
exercises for which the computer served largely clerical purposes. 
One could very well program "outside the environment". 

 

A year after Bemer laid out his scheme, GE left the computer 
business, but the concept of the software factory survived. Indeed, 
the Systems Development Corporation trademarked the term, and 
proposed to set up what Michael Cusumano describes as a 
"conveyor and control system that brought work and materials 
(documents, code modules) through different phases, with workers 
using standardized tools and methods to build finished software 
products", or, in the words of its designers, 

In the Factory, the Development Data Base serves as 
the assembly line --carrying the evolving system 
through the production phases in which factory tools 
and techniques are used to steadily add more and more 
detail to the system framework.(42) 

(42) M. Cusumano, Japan's Software Factories
147-8; the quotation is from the description of the 
SDC software factory by H. Bratman and T. Court, 
"Elements of the Software Factory: Standards, 
Procedures, and Tools," in Software Engineering 
Techniques , Infotech International, 1977, p. 137. 
For a historical overview of the concept, see 
Cusumano, "Shifting Economies: From Craft 
Production to Flexible Systems and Software 
Factories," Research Policy, vol. 21, 1992, pp. 453
80. 

The evocation of the assembly line linked the software factory to a 
model of industrial production different from Taylor's --how 
different is a complex historical and technical question-- namely 
Ford's system of mass production through automation. Ford did not 
have to concern himself about how to constrain workers to do 
things in "the one best way". His machines of production embodied 
that way of doing things; the worker had little to do with it. The 
same was true of the assembly line itself. 

 

In the chassis assembling are forty-five separate 
operations or stations. The first men fasten four mud-
guard brackets to the chassis frame; the motor arrives 
on the tenth operation and so on in detail. Some men 
do only one or two small operations, others do more. 
The man who places a part does not fasten it --the part 
may not be fully in place until after several operations 
later. The man who puts in a bolt does not put on the 
nut; the man who puts on the nut does not tighten it.
(43) 

(43) H. Ford, My Life and Work, Doubleday, 1922, 
pp. 82-83. 

As parts moved through the production process, they took on the 
shape of the Model T because that shape was, so to speak, built into 
the machines of production. Ford's methods worked because he was 
producing a machine, the essential components of which could be 
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completely and precisely specified and hence could be produced by 
machines, themselves in turn fully specifiable. Indeed, Ford 
designed the Model T to be produced by machines, and therefore 
the available means of production were part of the target 
specifications. Underpinning that achievement was the 
development of the machine-tool industry alluded to above.  

 

The assembly line has held continuing allure for software 
engineers, who generally find it ironic that "programmers have 
done a good job of automating everyone's work but their own." 
Indeed, that is referred to as the "software paradox".(44) That one 
would find it paradoxical lies in the nature of the computer 
combined with a particular notion of engineering. "We know," said 
John McCarthy, "that any intellectual process that can be carried 
out mechanically can be performed by a general purpose digital 
computer." By "mechanically", he meant according to clear, 
unambiguous procedures. Engineering, especially science-based 
engineering, aims at providing solutions of just that sort to its 
problems. Hence, one ought to be able to do for software what one 
has done for other engineering problems, namely to transfer 
solutions to the computer for execution. The grail of "automatic 
programming", as pursued in particular by Robert Balzer of ISI, 
with the support of DARPA, throughout the '70s and '80s was a 
software development system which could take the specification of 
a problem and transform it automatically into a working system as 
solution, in essence cutting out the programmer altogether. Much 
of the CASE software developed during this period purported to 
achieve portions of that goal; on close inspection, little of it in fact 
lived up to its claims.  

(44) See B. Blum, "Understanding the Software 
Paradox", ACM SIGSOFT Software Engineering 
Notes, vol. 10, no. 1, 1985, pp. 43 -47, who 
attributes the notion to L.G. Stucki. 

In Japan's Software Factories and related articles, Michael 
Cusumano presents evidence suggesting that the effective 
management of software production lies at a level in between craft 
production and mass production, namely at the level of flexible 
design and production systems. The "factories" Cusumano 
examined during the mid-to-late '80s involved the following 
measures: 

- identification of a target market and of a range of "semi-
custom" products for it 
- a longterm commitment to production for that market 
- intensive review of currently available tools and practices 
- intensive and continuing training of personnel and 
imposition of a programming discipline on them 
- commitment of productive effort to the building of tools  
- emphasis on reusability, encouraging designers and 
programmers to devote project effort to non-project goals 
- emphasis on design and testing phases of development 
- intensive quality control through inspection and testing. 
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Basically, the list comes down to a corporate investment in training 
and maintaining a skilled work force with cumulative experience in 
the areas for which they are building systems. There are examples 
of such environments in the U.S., Bell Labs perhaps foremost 
among them. Unix is a leading model for the notion of software 
tools and of a "programmer's workbench". 

To what extent such environments are "factories" in the sense in 
which they were originally conceived is debatable. Indeed, 
Cusumano notes the resistance of the programmers themselves to 
the term, because it connotes a devaluation of their skills. The 
phrase "workbench", which also appears in the Japanese context, 
lies closer to the shop than to the assembly line. Although these 
environments suggest that the production of software is far from 
inherently unmanageable, they also make clear that productivity 
depends on a highly skilled, and commensurately expensive 
workforce.  

What is being automated? 

Those "factories" 
are also not likely 
to hold a solution 
for the problems of 
software 
production that 
motivated the drive 
for software 
engineering, but, 
then, neither is 
automatic 
programming. 
Consider another 
version of 
development 
phases of the 
software life cycle 
(Fig. 1). We are on 
firmest theoretical 
ground at the 
bottom of the 
diagram. That is 
where computer 
science has 
achieved its most profound results, and that is where theory has 
most effectively translated into practical software tools. But the 
problems of air traffic control systems, of national weather 
systems, of airline booking systems all lie at the top of the diagram, 
where a real-world system must be transformed into a 
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computational model. That is where software engineering is not 
about software, indeed where it may not be about engineering at 
all. 

Software engineering began as a search for an engineering 
discipline on which to model the design and production of 
software. That the search continues after thirty-five years suggests 
that software may be fundamentally different from any of the 
artifacts or processes that have been the object of traditional 
branches of engineering: it is not like machines, it is not like 
masonry structures, it is not like chemical processes, it is not like 
electric circuits or semiconductors. It thereby raises the question of 
how much guidance one may expect from trying to emulate the 
patterns of development of those engineering disciplines. During 
general discussion concerning theory and practice held on the last 
day of the Rome conference in 1969, I.P. Sharp came at the issue 
from an entirely different angle, arguing that one ought to think in 
terms of "software architecture" (= design), which would be the 
meeting ground for theory (computer science) and practice 
(software engineering). "Architecture is different from 
engineering," he maintained and then added, "I don't believe for 
instance that the majority of what [Edsger] Dijkstra does is theory -
- I believe that in time we will probably refer to the 'Dijkstra 
School of Architecture'."(45) That is no small distinction. 
Architecture has a different history from engineering, and we train 
architects differently from engineers.(46) It is striking to a historian 
looking for a history of software engineering that the 9th 
Foundations of Software Engineering Conference in 1998, which 
concluded with a plenary session on whether software engineering 
is ready to become a "profession", that is, whether its practitioners 
should be subject to licensing as professional engineers, was 
preceded by the 3rd International Workshop on Software 
Architecture. 

(45) Software Engineering Techniques: Report on a 
conference sponsored by the NATO Science 
Committee, Rome, Italy, 27th to 31st October 1969, 
J.N. Buxton and B. Randell, eds., NATO Science 
Committe, [1969], p. 12. 

(46) For a review of the architectural model, see 
J.O. Coplien, "Reevaluating the Architectural 
Metaphor: Toward Piecemeal Growth", 
Software vol. 16, no. 5, Sep./Oct. 1999, pp. 40
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