
FINDING A HISTORY FOR
SOFTWARE ENGINEERING

Michael S. Mahoney
Princeton University

Annals of the History of Computing 26,1(2004), 8-19 (Preprint
version, with illustrations)

Introduction

Dating from the first international conference on the topic in
October 1968, software engineering just turned thirty-five. It has all
the hallmarks of an established discipline: societies (or sub-
societies), journals, textbooks and curricula, even research
institutes. It would seem ready to have a history. Yet, a closer look
at the field raises the question of just what the subject of the history
would be. It is not hard to find definitions. A leading practitioner
spoke of it in 1989 as "the disciplined application of engineering,
scientific, and mathematical principles and methods to the
economical production of quality software."(1) But it is also not
hard to find doubts about whether its current practice meets those
criteria and, indeed, whether it is an engineering discipline at all. A
colleague of the practitioner just quoted declared at about the same
time (1990): "Software engineering is not yet a true engineering
discipline, but it has the potential to become one."(2) From the
outset, software engineering conferences have routinely begun with
a keynote address that asks "Are we there yet?" and proposes yet
another specification of just where "where" might be.(3)

(1) W. Humphrey, "The Software Engineering
Process: Definition and Scope", Representing and
Enacting the Software Process: Proc. 4th Int'l
Software Process Workshop , ACM Press, 1989, p.
82.

(2) M. Shaw, "Prospects for an Engineering
Discipline of Software", IEEE Software
6, Nov. 1990, p. 15.

(3) Indeed, this article stems from just such an
address, delivered to ACM SIGSOFT's 9
Foundations of Software Engineering Conference
(FSEC 9) in 1998.

Since the field has been a moving target for its own practitioners,
historians may understandably have trouble knowing just where to
aim their attention. What is a history of software engineering
about? Is it about the engineering of software? If so, by what
criteria or model of engineering? Is it engineering as applied
science? If so, what science is being applied and what is its history?
Is it about engineering as project management? Is it engineering by
analogy to one of the established fields of engineering? If so, which
fields, and what are the terms of the analogy? Of what history
would the history of software engineering be a part, that is, in what
larger historical context does it most appropriately fit? Is it part of
the history of engineering? The history of business and
management? The history of the professions and of
professionalization? The history of the disciplines and their
formation? If several or all of these are appropriate, then what

Page 1 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

aspects of the history of software engineering fit where?

Alternatively, to put the question in another light, is the historical
subject more accurately described as "software engineering" with
the inverted commas as an essential part of the title? As noted
above, what seems clear from the literature of the field from its
very inception, reinforced by addresses, panels, articles and letters
to the editor that continue to appear regularly, is that its
practitioners do not agree on what software engineering is,
although most of them freely confess that, whatever it is, it is not
(yet) an engineering discipline. Historians have no stake in the
outcome of that question. They can just as readily write a history of
"software engineering" viewed as the continuing effort of various
groups of people engaged in the production of software to establish
their practice as an engineering discipline. The question of interest
to historians would then be how "software engineers" have gone
about that task of self-definition. In large part, addressing that
question comes down to observing and analyzing the answers
practitioners have offered to the questions just posed above. That
is, rather than positing a consensus among practitioners concerning
the nature of software engineering, historians can follow the efforts
to achieve a consensus. Taking that approach would place the
subject firmly in the comparative context of the history of
professionalization and the formation of new disciplines.(4)

(4) See, for example, A.D. Abbott, The System of
Professions: An Essay on the Division of Expert
Labor , University of Chicago Press, 1988.

For this reason, it may help to think of historians and practitioners
as engaged in a common pursuit. They are both looking for a
history for software engineering, though not for the same purpose
and not from the same standpoint. Hence, the title above is meant
to be ambiguous. In one sense, it describes historians trying to
determine just what the subject of their inquiry might be and then
deciding how to write its history.(5) In another sense, it describes
efforts by practitioners to define or to characterize software
engineering. Quite often those efforts amount to finding a history,
that is, to seeking to identify the current development of software
engineering with the historical development of one of the
established engineering disciplines or indeed of engineering itself.
(6) Using history in this way has its real dangers; the initial
conditions cannot by their nature be exactly repeated. Nonetheless,
it is at the very least essential both that one have the right history
and that one have the history right, not least because what passes
for history often amounts to common wisdom, folklore or local
myth.(7) Here historians may offer some assistance to the software
engineers. While we may not be able to tell them whether they
have the right history, we can in many cases tell them what history
they have chosen and whether they have got it right.

Ultimately, every definition of software engineering presupposes
some historical model. For example, take the oft-quoted passage

(5) For a recent discussions of the question, see
History of Software Engineering (Report of the
Dagstuhl Seminar No. 9635, ed. W. Aspray, R.
Keil-Slawik, and D. Parnas, Dagstuhl, 1996;
available online at
http://www.dagstuhl.de/9635/Report/)
Tomayko, "Software as Engineering" with
commentaries by A. Endres and B.E. Seely,
of Computing: Software Issues, U. Hashagen, R.
Keil-Slawik, and A. Norberg, eds., Springer Verlag,
2002.

(6) Mary Shaw of Carnegie Mellon University and
the Software Engineering Institute took this
approach explicitly in "Prospects for an

Page 2 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

from the introduction to the proceedings of the first Software
Engineering Conference, convened by the NATO Science
Committee in 1968:

The phrase 'software engineering' was deliberately
chosen as being provocative, in implying the need for
software manufacture to be based on the types of
theoretical foundations and practical disciplines that
are traditional in the established branches of
engineering.(8)

The phrase indeed turned out to be provocative, if only because it
left all the crucial terms undefined. What does it mean to
"manufacture" software? Is that a goal or a current practice? What,
precisely, are the "theoretical foundations and practical disciplines"
that underpin the "established branches of engineering"? What
roles did they play in the formation of the engineering disciplines?
Is the story the same in each case? The reference to "traditional"
makes the answer to that question a matter of history. It is a
question of how the fields of engineering took their present form. It
is a search for historical precedents, or what we have come to refer
to as "roots".

Or rather, it is a matter of what I call "agendas" The agenda of a
field consists of what its practitioners agree ought to be done, a
consensus concerning the problems of the field, their order of
importance or priority, the means of solving them (the tools of the
trade), and perhaps most importantly, what constitutes a solution.
Becoming a recognized practitioner means learning the agenda and
then helping to carry it out. Knowing what questions to ask is the
mark of a full-fledged practitioner, as is the capacity to distinguish
between trivial and profound problems; "profound" means moving
the agenda forward. One acquires standing in the field by solving
the problems with high priority, and especially by doing so in a
way that extends or reshapes the agenda, or by posing profound
problems. The standing of the field may be measured by its
capacity to set its own agenda. New disciplines emerge by
acquiring that autonomy. (9) Conflicts within a discipline often
come down to disagreements over the agenda: what are the really
important problems?

A new science means a new agenda, and tracing the emergence of a
new science means showing how a group of practitioners coalesces
around a common agenda different from other agendas in which
they have been engaged. Each of those other agendas reflects a
history, and so the members of the group bring to their new agenda
a variety of histories. Some, or perhaps even much, of the
disagreement among the participants in the first two NATO
conferences, especially the second, rested on the different histories

Engineering Discipline of Software," IEEE
Software, vol. 7, no. 6, Nov. 1990, pp. 15
where she proposed a historical model of the
professionalization of engineering based primarily
on the development of chemical engineering. Her
diagram of the process reappeared in enhanced
from in W.W. Gibbs, "Software's Chronic Crisis",
Scientific American, vol. 271, no 3, Sep. 1994, pp.
86-95; at p. 92.

(7) For example, at the first NATO conference (see
below), Ronald Graham of Bell Labs remarked that
"we build systems like the Wright brothers built
airplanes -- build the whole thing, push it off the
cliff, let it crash, and start over again" (
Engineering: Concepts and Techniques.
Proceedings of the NATO Conferences,
Randell, and J.N. Buxton, eds., Petrocelli, 1976, p.
7). Historians of technology know that the Wright
Brothers' successful flight was in fact the
culmination of a carefully planned, theoretically
and empirically informed, program of research and
development.. In particular, they had a relatively
clear idea of what problems they had to solve and
of how they might go about solving them. Whether
or not their approach might have served as a useful
example for fledgling software engineers, it does
not seem prima facie to constitute a negative
example.

(8) Software Engineering: Report on a Conference
sponsored by the NATO Science Committee,
Garmisch, Germany, 7 th to 11th October 1968
Naur and B. Randell, eds., Scientific Affairs
Division, NATO, 1969, p. 13. The report was
republished, together with the report on the second
conference in Rome the following year, in P. Naur,
B. Randell, and J.N. Buxton, eds., Software
Engineering: Concepts and Techniques.
Proceedings of the NATO Conferences
1976. Randell has made both reports available for
download in pdf format at
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/.

(9) On the formation of the agendas of theoretical
computer science, see M.S. Mahoney, "Software as
Science - Science as Software", History of
Computing: Software Issues, U. Hashagen, R. Keil
Slawik, and A. Norberg, eds. (Berlin: Springer
Verlag, 2002), pp. 25-48

(10) "Myth" here should be taken in the sense of a
story told by a community to account for why it
does things they way it does. The story may be
more or less factually accurate, but its function
does not depend on it.

Page 3 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

they brought to the gatherings. None of them was a software
engineer, for the field did not exist. Rather, people came from quite
varied professional and disciplinary traditions, each of which had
its own history, in many cases a mythic history.(10) Three of these
in particular have directed the practitioners' search for historical
guidance: applied science, mechanical engineering, and industrial
engineering and management. What follows is a brief look at how
the histories have been invoked and how they have been
understood.

Models of engineering: Historical
Precedents

Applied Science

To some, in particular many of the European participants,
engineering was essentially applied science, and the science in
question here was mathematics.(11) What was needed, then, was
firm grounding in theoretical, i.e. mathematical, computer science.
The historical model seemed clear. Indeed, it had been set forth
explicitly almost ten years earlier, albeit in another context, by John
McCarthy, the creator of LISP and co-founder of artificial
intelligence. Looking "Towards a mathematical theory of
computation" at IFIP 1962, he had reached for a familiar
touchstone:

(11) Edsgar W. Dijksta was the foremost proponent
of this view.

In a mathematical science, it is possible to deduce from
the basic assumptions, the important properties of the
entities treated by the science. Thus, from Newton's
law of gravitation and his laws of motion, one can
deduce that the planetary orbits obey Kepler's laws.
(12)

(12) "Towards a mathematical science of
computation", Proc. IFIP Congress, Munich, 1962
(IFIP 62), North-Holland, 1963, p. 21.

As McCarthy and his audience well knew, one can also deduce the
laws of the motion of terrestrial bodies and all the mechanics that
derives from them. He extended the model at the conclusion of his
1963 article, "A Basis for a Mathematical Theory of Computation",
by reference to later successes in mathematical physics:

It is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful
in the next century as that between analysis and
physics in the last. The development of this
relationship demands a concern for both applications
and mathematical elegance.(13)

(13) "A basis for a mathematical theory of
computation", Proc. Western Joint Computer Conf.
, vol.19, May, 1961, Spartan Books, pp. 225
reprinted, with corrections and an added tenth
section, in Computer Programming and Formal
Systems, P. Braffort and D. Hirschberg, eds.,
North-Holland, 1963, pp. 33-70; at p. 69.

The applications of mathematics to physics had produced more

Page 4 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

than new theories. The mathematical theories of thermodynamics
and electricity and magnetism had informed the development of
heat engines, of dynamos and motors, of telegraphy and radio.
Those theories formed the scientific basis of engineering in those
fields.

The twentieth century had a new science, McCarthy believed, and
it too had implications beyond just theory. "Computation is sure to
become one of the most important of the sciences," he began,

This is because it is the science of how machines can
be made to carry out intellectual processes. We know
that any intellectual process that can be carried out
mechanically can be performed by a general purpose
digital computer. Moreover, the limitations on what we
have been able to make computers do so far clearly
come far more from our weakness as programmers
than from the intrinsic limitations of the machines. We
hope that these limitations can be greatly reduced by
developing a mathematical science of computation.
(14)

(14) McCarthy, "Basis", 33.

The ultimate object of computer science was working programs,
argued McCarthy, and a suitable theory of computation would
provide: first, a universal programming language along the lines of
Algol but with richer data descriptions; second, a theory of the
equivalence of computational processes, by which equivalence-
preserving transformations would allow a choice of among various
forms of an algorithm, adapted to particular circumstances; third, a
form of symbolic representation of algorithms that could
accommodate significant changes in behavior by simple changes in
the symbolic expressions; fourth, a formal way of representing
computers along with computation; and finally a quantitative
theory of computation along the lines of Claude Shannon's measure
of information.(15) Note that as this list progresses, it sounds more

and more like
engineering, and
McCarthy's agenda (and
its history) continued to
echo in the software-
engineering literature. In
arguing in 1984 that "[p]
rofessional programming
practice should be based
on underlying
mathematical theories and
follow the traditions of
better-established
engineering disciplines,"

(15) Ibid., 34. McCarthy argued that none of the
three current (1961) directions of research into the
mathematics of computing held much promise of
such a science. Numerical analysis was too
narrowly focused. The theory of computability set a
framework into which any mathematics of
computation would have to fit, but it focused on
what was unsolvable rather than seeking positive
results, and its level of description was too general
to capture actual algorithms. Finally, the theory of
finite automata, though it operated at the right level
of generality, exploded in complexity with the size
of current computers. As he explained in another
article, "... [T]he fact of finiteness is used to show
that the automaton will eventually repeat a state.
However, anyone who waits for an IBM 7090 to
repeat a state, solely because it is a finite
automaton, is in for a very long wait." ("Towards a
mathematical science of computation",
Congress 62, North-Holland, 1963, p. 22).

(16) C.A.R. Hoare, "Programming: Sorcery or
Science?", IEEE Software, vol. 1, no. 2, Mar. 1984,
pp. 5-16; at p. 10. Perhaps only coincidentally the
article included a photograph of the room in which
Kepler died (p.14).

Page 5 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

C.A.R. Hoare highlighted in a sidebar McCarthy's comparison of
physics and mathematical logic quoted above. (16)

Over the decade of the '60s theoretical computer science achieved
standing as a discipline recognized by both the mathematical and
the computing communities, and it could point to both applications
and mathematical elegance.(17) Yet, it took the form more of a
family of loosely related research agendas than of a coherent
general theory validated by empirical results. No one mathematical
model had proved adequate to the diversity of computing, and the
different models were not related in any effective way. What
mathematics one used depended on what questions one was asking,
and for some questions no mathematics could account in theory for
what computing was accomplishing in practice. It was a far cry
from Newton's mechanics, much less the mathematical physics of
the nineteenth century, and it remains so.

(17) For an overview, see M.S. Mahoney, "The
Structures of Computation", The First Computers
Histories and Architectures, R. Rojas and U.
Hashagen, eds., MIT Press, 2000.

In a discussion on the last day of the second NATO Conference on
Software Engineering held in Rome in October 1969, Christopher
Strachey, Director of the Programming Research Group at Oxford
University and a leading figure in the development of formal
semantics, lamented that "one of the difficulties about computing
science at the moment is that it can't demonstrate any of the things
that it has in mind; it can't demonstrate to the software engineering
people on a sufficiently large scale that what it is doing is of
interest or importance to them."(18) About a decade later, a
committee in the United States reviewing the state of art in
theoretical computer science echoed his diagnosis, noting the still
limited application of theory to practice.(19) By the mid-'70s,
moreover, it seemed clear to some that, even if existing theory had
practical application, it would not quite meet the needs of software
engineering. In a 1976 article, Barry Boehm of TRW proposed that
software engineering be defined as "the practical application of
scientific knowledge in the design and construction of computer
programs and the associated documentation required to develop,
operate, and maintain them." Boehm identified the salient terms as
"design", "software maintenance", and "scientific knowledge" and
took stock of what was known in each area.(20)

(18) Naur, et al., Software Engineering,

(19) What Can Be Automated? (COSERS)
W. Arden, ed., MIT Press, 1980, p. 139. The
committee consisted of Richard M. Karp (Chair;
Berkeley), Zohar Manna (Stanford), Albert R.
Meyer (MIT), John C. Reynolds (Syracuse), Robert
W. Ritchie (Washington), Jeffrey D. Ullman
(Stanford), and Shmuel Winograd (IBM Research).

(20) B. Boehm, "Software Engineering",
Transactions on Computers, vol. C-25, no. 12, Dec.
1976, pp. 1226-41 (repr. in Milestones of Software
Engineering, P. W. Oman and Ted G. Lewis,
eds.,IEEE Computer Society Press, 1990, pp. 54
69), at p. 1226 (p. 54). An early leader in the field
of software metrics, Boehm later developed
COCOMO, a system for estimating the cost of
software projects and wrote the leading text in the
subject, Software Engineering Economics.

The first two terms he addressed by reference to what by then was
becoming the standard model of the "software life cycle", a
sequence that took a project from the requirements to an operating
program by way of specification, design, coding, and testing. What
he saw as current practice reinforced the concerns of the crisis. In

Page 6 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

particular, requirements analysis was informal at best, and software
design was "still almost completely a manual process ... [with]
relatively little effort devoted to design validation and risk
analysis". Yet, as he had shown in a now classic article in 1973, the
bulk of the errors in software were made during the design phase.
(21)

(21) B. Boehm, "Software and its Impact: A
Quantitative Assessment", Datamation
1973, pp. 48-59.

Most significantly for present purposes, he also concluded that little
of current computer science was relevant to the problems of
software engineering:

Those scientific principles available to support
software engineering address problems in an area we
shall call Area 1: detailed design and coding of
systems software by experts in a relatively economics-
independent context. Unfortunately, the most pressing
software development problems are in an area we shall
call Area 2: requirements analysis design, text, and
maintenance of applications software by technicians in
an economics-driven context.(22)

(22) Boehm, "Software Engineering", p. 67.
Boehm's footnote to "technicians" is worth
repeating here. "For example, a recent survey of 14
installations in one large organization produced the
following profile of its 'average coder': 2 years
college-level education, 2 years software
experience, familiarity with 2 programming
languages and 2 applications, and generally
introverted, sloppy, inflexible, 'in over his head',
and undermanaged. Given the continuing increase
in demand for software personnel, one should not
assume that this typical profile will improve much.
This has strong implications for effective software
engineering technology which, like effective
software, must be well-matched to the people who
use it."

However successful the experimental systems and theoretical
advances produced in the laboratory, especially the academic
laboratory, they did not take account of the challenges and
constraints of "industrial-strength" software in a competitive
market. As Fritz Bauer, the organizer of the first NATO
conference, had put it at IFIP '71, those problems made software
engineering "the part of computer science that is too difficult for
the computer scientists".(23)

(23) F. L. Bauer, "Software Engineering",
Information Processing 71, North-Holland
Publishing Co., 1972, pp. 530-538; at p. 530. Repr.
in Advanced Course in Software Engineering,
Bauer, ed., Springer-Verlag, 1973, pp. 522
reprint did not include Bauer's playful parody of a
computer scientist's design of a three-prong hay
fork.

Mechanical Engineering

If not applied science, then what? Others at the NATO conference
had proposed models of engineering that emphasized analogies of
practice rather than theory. Perhaps the most famous of these was
M.D. McIlroy's evocation of the machine-building origins of
mechanical engineering and the system of mass production by
interchangeable parts that grew out of them. Seeing software sitting
somewhere on the other side of the Industrial Revolution, he
proposed to vault it into the modern era.

We undoubtedly produce software by backward
techniques. We undoubtedly get the short end of the
stick in confrontations with hardware people because
they are the industrialists and we are the crofters.
Software production today appears in the scale of
industrialization somewhere below the more backward
construction industries. I think its proper place is

Page 7 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

considerably higher, and would like to investigate the
prospects for mass-production techniques in software.

He left no doubt of whose lead to follow. He continued:

In the phrase 'mass production techniques', my
emphasis is on 'techniques' and not on mass production
plain. Of course mass production, in the sense of
limitless replication of prototype, is trivial for
software. But certain ideas from industrial technique I
claim are relevant. The idea of subassemblies carries
over directly and is well exploited. The idea of
interchangeable parts corresponds roughly to our term
'modularity', and is fitfully respected. The idea of
machine tools has an analogue in assembly programs
and compilers. Yet this fragile analogy is belied when
we seek for analogues of other tangible symbols of
mass production. There do not exist manufacturers of
standard parts, much less catalogues of standard parts.
One may not order parts to individual specifications or
size, ruggedness, speed, capacity, precision or
character set.(24)

(24) M.D. McIlroy, "Mass Produced Software
Components," in Naur and Randell, pp. 138
at p. 138-39. At the time, McIlroy was one of the
representatives of Bell Labs to the Multics project
at MIT, where he worked on the semantics of PL/I.
He subsequently oversaw the development of Unix,
to which he contributed the notion of "pipes",
which allows the chaining of programs, each taking
as its input the output of its predecessor.

As studies of the American machine-tool industry during the 19th
and early 20th century have shown, McIlroy could hardly have
chosen a more potent model (he has a longstanding interest in the
history of technology). Between roughly 1820 and 1880,
developments in machine-tool technology had increased routine
shop precision from .01" to .0001". More importantly, in a process

characterized
by the
economist
Nathan
Rosenberg as
"convergence",
machine-tool
manufacturers
learned how to
translate new
techniques
developed for
specific
customers into
generic tools of
their own.(25)

So, for example, the need to machine bits for drilling sma.ll holes
percussion locks led to the development of the vertical turret lathe,
which in turn lent itself to the production of screws and small
precision parts, which in turn led to the automatic turret lathe.

(25) Nathan Rosenberg, "Technological Change in
the Machine Tool Industry, 1840-1910",
Economic History vol. 23, 1963, pp. 414
in Rosenberg, Perspectives on Technology
Cambridge Univ. Press., 1976), Chap.1.

(26) In conversation at Bell Labs, Fall, 1989.

Page 8 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

Indeed, it was precisely the automatic screw-cutting machine that
McIlroy had in mind.(26)

As McIlroy noted, he was giving sharper, historically grounded
form to an idea that had already begun to take shape. In an
Advanced Course in Software Engineering that took place at
Munich's Technical University in 1972, Jack B. Dennis of MIT's
Project MAC lectured on "Modularity", pointing as example to
standardized floor tiles (19" square "modules") which fill any size
or shape of floor area "with just a bit of trimming at the boundary",
while allowing great variety through different colors and textures
of modules.

In modular software, clearly the "standardized units or
dimensions" should be standards such that software
modules meeting the standards may be conveniently
fitted together (without "trimming") to realize large
software systems. The reference to "variety of use"
should mean that the range of module types available
should be sufficient for the construction of a usefully
large class of programs.(27)

(27) Jack B. Dennis, "Modularity", in Bauer,
Advanced Course on Software Engineering
3.A; at p. 128.

Especially
as
expressed
by
McIlroy,
the
idea
has
had
a
long
career
in

software engineering. During the '70s it directed attention beyond
the development of libraries of subroutines to the notion of
"reusable" programs across systems, and in the '80s it underlay the
growing emphasis on object-oriented programming as the means of
achieving such reusability on a broad scale. It is essentially what
Brad Cox was looking for around 1990 as the basis for software's
"industrial revolution".(28) More generally, the analogy with
machine-building and the metaphorical language of machine-based
production became a continuing theme of software engineering,
often illustrated by pictures of automobile assembly lines, as in the
case of Peter Wegner's four-part article in IEEE Software in 1984
on "Capital-Intensive Software Technology".(29) The cover of that
issue bore a photograph of a Ford assembly line in the '30s, and a

(28) Brad J. Cox, "Planning the Software Industrial
Revolution", IEEE Software vol. 7, no. 6, Nov.
1990.

(29) IEEE Software vol. 1, no. 3, July 1984, pp. 7
45.

(30) Both Wegner and Jones have told me that their
editors, not they, chose the pictures in question.
Thus, the analogy was widely shared in the larger
community.

Page 9 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

picture of the same line in the early '50s adorned Gregory W.
Jones's Software Engineering (Wiley, 1990).(30)

Industrial Engineering

As the move from machine tools to the assembly line suggests,
McIlroy's model of mechanical engineering was closely akin to
F.L. Bauer's proposal at IFIP 71 that "software design and
production [be viewed] as an industrial engineering field".

For the time being, we have to work under the existing
conditions, and the work has to be done with
programmers who are not likely to be re-educated. It is
therefore all the more important to use organizational
and managerial tools that are appropriate to the task.
(31)

(31) F. L. Bauer, "Software Engineering", p. 532.

On that model the problems of large software projects came down
to the "division of the task into manageable parts", its "division into
distinct stages of development", "computerized surveillance", and
"management". Each of these tasks posed significant problems, and
Bauer had specific suggestions to make only with regard to the
third: computerized surveillance consisted of:

l Automatic updating and quality control of documentation,
l Selective dissemination of information to all project staff,
l Surveillance of deadline plans,
l Collection of data for simulation studies,
l Collection of data for quality control,
l Automatic production of manuals and maintenance material.

"It is clear," he noted, "that a house well equipped with programs
and an underlying philosophy for doing these things, can be
regarded as a modern software plant."(32)

(32) Ibid., 533.

Bauer's idea was not new. In a "Position Paper for [the] Panel
Discussion [on] the Economics of Program Production" at IFIP 68,
also presented in substance at the NATO conference, R.W. Bemer
of GE had suggested that what software managers lacked was a
proper environment:

It appears that we have few specific environments
(factory facilities) for the economical production of
programs. I contend that the production costs are
affected far more adversely by the absence of such an
environment than by the absence of any tools in the
environment (e.g. writing a program in PL/1 is using a
tool.)

Page 10 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

A factory supplies power, work space, shipping and receiving,
labor distribution, and financial controls, etc. Thus a software
factory should be a programming environment residing upon and
controlled by a computer. Program construction, checkout and
usage should be done entirely within this environment. Ideally it
should be impossible to produce programs exterior to this
environment.(33)

(33) R.W. Bemer, "Position Paper for Panel
Discussion [on] the Economics of Program
Production", Information Processing 68
Holland Publishing Company, 1969, vol. II, p.
1626.

Bemer's proposal was aimed at the problem of workers' near-total
control over production, which the computer itself held promise of
overcoming. "Economical products of high quality," he continued,

are not possible (in most instances) when one instructs
the programmer in good practice and merely hopes that
he will make his invisible product according to those
rules and standards. This just does not happen under
human supervision.

A factory, however, has more than human supervision.
It has measures and controls for productivity and
quality. Financial records are kept for costing and
scheduling. Thus management is able to estimate from
previous data: not so with programming management
in general. Computer supervision and aid are vital,
with the accent upon human engineering factors so that
working in the environment is both attractive and
effective for the programmer.

In reading these words, it is hard not to
hear an echo of Frederick W. Taylor and
his methods of "scientific management",
which informed management thinking,
both here and in Europe in ways that are
only now becoming clear.(34) Indeed, the
basic principles of Taylor's system sound
much like the agenda that early software
engineer- managers were laying out for
themselves. The primary obligation of
management according to Taylor was to
determine the scientific basis of the task to
be accomplished. That came down to four
main duties:

(34) In the now classic Taylorism at Watertown
Arsenal: Scientific Management in Action, 1908
1915 (Cambridge, MA: Harvard U.P., 1960; repr.
as Scientific Management in Action: Tarlorism at
Watertown Arsenal, 1908-1915, Princeton,
Princeton U.P., 1985), H.G.J. Aitken listed Taylor's
"solutions of enduring significance" (p. 29): (1) the
planned routing and scheduling of work in
progress, leading to the assembly line and
continuous flow production; (2) systematic
inspection procedures between operations; (3)
printed job and instruction cards; (4) refined cost
accounting techniques; (5) systematization of store
procedures, purchasing, and inventory control; (6)
and "functional foremanship", which was the only
element not to gain general acceptance. Taylor got
little credit from historians for these things, yet
"these inconspicuous innovations have probably
exercised a more far-reaching influence on
industrial practice than has the conspicuous
innovation of stop-watch time study". Taylor and
Taylorism have attracted renewed attention from
historians in recent decades; see in particular D.
Nelson, ed., A Mental Revolution: Scientific
Management Since Taylor (Ohio State Univ. Press,
1992) and S.P. Waring, Taylorism Transformed:
Scientific Management since 1945 (Univ. North
Carolina Press, 1991). R. Kanigel's The One Best
Way: Frederick Winslow Taylor and the Enigma of
Efficiency (Viking Press, 1997) is a full and
informative biography.

First. They develop a science for each element of a
man's work, which replaces the old rule-of-thumb
method.(35)

Second. They scientifically select and then train, teach,

(35) That science constituted the famous "one best
way" on which Taylor's system rested.

(36) F.W. Taylor, The Principles of Scientific
Management, 1911; repr. Norton, 1967, pp. 36

Page 11 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

and develop the workman, whereas in the past he
chose his own work and trained himself as best he
could.

Third. They heartily cooperate with the men so as to
insure all of the work [is] being done in accordance
with the principle of the science which has been
developed.

Fourth. There is an almost equal division of the work
and the responsibility between the management and
the workmen. The management take over all work for
which they are better fitted than the workmen, while in
the past almost all of the work and the greater part of
the responsibility were thrown upon the men.(36)

In the emphasis on supervision and support of the programmer,
Bemer's factory sounds like Taylor's machine shop, with
management seeking to impose the "one best way" over a worker
still in control of the shop floor.

A decade later, William W. Agresti of the University of Michigan-
Dearborn made the tie to Taylor explicit. In a follow-up to his talk,
"Applying Industrial Engineering to the Software Development
Process, presented at the IEEE Computer Society's 23rd
International Conference in the fall of 1981, he published a short
piece on "Software Engineering as Industrial Engineering" in
Software Engineering Notes:

While working on this project, I returned for
inspiration to the "old masters" of industrial
engineering: Frederick Taylor, Henry Gantt, and Frank
and Lillian Gilbreth. The accounts of their work in the
early 1900s provide remarkable reading as a glimpse
of society at that time. I was also impressed that much
of what they were saying then about I.E. (or "scientific
management" as it was known then) could be said
today about software engineering.(37)

(37) W.W. Agresti, "Software Engineering as
Industrial Engineering", Software Engineering
Notes vol. 6, no. 5, 1981, 11 -12; at 11. I thank
Michael Cusumano for drawing my attention to this
article. Agresti later moved to Computer Sciences
Corporation and then to MITRE Corporation.

As examples, Agresti offered a page of excerpts from the works of
the masters as they might apply to such matter as "Finding Program
'Bugs'", "Introducing Structured Programming Methods", and
"Software Tools". Concerning the "Analysis of Algorithms," he
went to the heart of Taylor's system: "Now, among the various
methods used..., there is always one method which is quicker and
better than any of the rest. And this one best method can only be
discovered through a scientific study and analysis of all the
methods in use...."

Page 12 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

Whether implicitly or explicitly, Taylorism continued to inform the
industrial approach to software engineering. Leon J. Osterweil's
keynote address at the 9th International Conference on Software
Engineering in 1987 offers a striking example.(38) Even more
recently, Watts S. Humphrey, principal designer of the widely used
(and DoD-sanctioned) Capability Maturity Model and Personal
Software Process, provides more explicit testimony to Taylor's
presence in thinking about software management. In an article on
the current status and trends in the Personal Software Process,
Humphrey references Peter Drucker in asserting that "Even though
manual and intellectual tasks are significantly different, we can
measure, analyze, and optimize both and thus apply Taylor's
principles equally well." He then explains his point in language
quite close to Bemer's:

(38) L.J. Osterweil', "Software Processes are
Software Too", Proceedings of the 9th

Software Engineering (ICSE 9), IEEE Computer
Society Press, 1987, pp. 2-13. At ICSE 19,
Osterweil's paper was recognized as the most
influential paper of ICSE 9.

The principal difference between manual and
intellectual work is that the knowledge worker is
essentially autonomous. That is, in addition to deciding
how to do tasks, he or she must also decide what tasks
to do and the order in which to do them. The manual
worker commonly follows a relatively fixed task order,
essentially prescribed by the production line. So
studying and improving the performance of intellectual
work must not only address the most efficient way to
do each task but also consider how to select and order
these tasks. The is essentially the role of a defined
process and a detailed plan. The process defines the
tasks, task order, and task measures, while the plan
sizes the tasks and defines the task schedule for the job
being done.(39)

(39) W.S. Humphrey, "The Personal Software
Process: Status and Trends", IEEE Software
17, no. 6, Nov./Dec. 2000, p.72.

If, as Osterweil maintains, "software processes are software, too",
then some of those processes are Taylor-inspired software for
managing workers.

Yet, in the late 1960s, when the notions of software engineering
and the software factory were first proposed, practitioners could
fulfill none of Taylor's requirements. To what extent computer
science could replace rule of thumb in the production of software
was precisely the point at issue at the NATO conferences (and, as
noted above, it remains a question). Even the optimists agreed that
progress had been slow. Unable, then, to fulfil the first duty,
programming managers were hardly in a position to carry out the
third. Everyone bemoaned the lack of standards for the quality of
software. As far as the fourth was concerned, few ventured to say
who was best suited to do what in large-scale programming project.
Frederick P. Brooks offered an example in his now classic The
Mythical Man-Month:

Page 13 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

It is a very humbling experience to make a
multimillion-dollar mistake, but it is also very
memorable. I vividly recall the night we decided how
to organize the actual writing of external specifications
for OS/360. The manager of architecture, the manager
of control program implementation, and I were
threshing out the plan, schedule, and division of
responsibilities.

The architecture manager had 10 good men. He
asserted that they could write the specifications and do
it right. It would take ten months, three more than the
schedule allowed.

The control program manager had 150 men. He
asserted that they could prepare the specifications, with
the architecture team coordinating; it would be well-
done and practical, and he could do it on schedule.
Furthermore, if the architecture team did it, his 150
men would sit twiddling their thumbs for ten months.

To this the architecture manager responded that if I
gave the control program team the responsibility, the
result would not in fact be on time, but would also be
three months late, and of much lower quality. I did,
and it was. He was right on both counts. Moreover, the
lack of conceptual integrity made the system far more
costly to build and change, and I would estimate that it
added a year to debugging time.(40)

(40) F.P. Brooks, Jr., The Mythical Man
Essays on Software Engineering, Addison
1975, pp. 47-48.

Only with that experience behind him was Brooks in a position to
think about what precisely was wrong with his decision.

As for Taylor's second principle, by 1969 the failure of
management to establish standards for the selection and training of
programmers was legend. As Dick H. Brandon, the head of one of
the more successful software houses, pointed out, the industry at
large scarcely agreed on the most general specifications of the
programmer's task. Managers seeking to hire people without
programming experience (as the pressing need for programmers
required) had only one quite dubious aptitude test at their disposal,
and no one knew for certain how to train those people once they
were hired.(41) So one was back where one started: to implement
the model required solving the problems to which the model was
supposed to provide the solution, quite apart from how effective
that solution had in fact turned out to be.

(41) D. H. Brandon, "The Economics of Computer
Programming", On the Management of Computer
Programming, G.F. Weinwurm, ed., Auerbach,
1970, Chap.1. Brandon evidently viewed
management through Taylorist eyes, but he was
clear-sighted enough to see that computer
programming failed to meet the prerequisites for
scientific management. For an analysis of why
testing was so unreliable, see R.N. Reinstedt,
"Results of a Programmer Performance Prediction
Study", IEEE Trans. Engineering Management
Dec. 1967, 183-87, and G.M. Weinberg,
Psychology of Computer Programming
1971), Chap.9.

Much of the articulation of software engineering during the 1970s
and '80s aimed at laying the groundwork for effective management:

Page 14 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

structured analysis and design as a means of hierarchical division
of projects and allocation of tasks, structured programming as a
means both of quality control and of disciplining programmers,
methods of cost accounting and estimation, methods of verification
and validation, techniques of quality assurance. Except for
structured programming, which could be enforced by increasingly
effective diagnostic compilers, most of these methods were paper
exercises for which the computer served largely clerical purposes.
One could very well program "outside the environment".

A year after Bemer laid out his scheme, GE left the computer
business, but the concept of the software factory survived. Indeed,
the Systems Development Corporation trademarked the term, and
proposed to set up what Michael Cusumano describes as a
"conveyor and control system that brought work and materials
(documents, code modules) through different phases, with workers
using standardized tools and methods to build finished software
products", or, in the words of its designers,

In the Factory, the Development Data Base serves as
the assembly line --carrying the evolving system
through the production phases in which factory tools
and techniques are used to steadily add more and more
detail to the system framework.(42)

(42) M. Cusumano, Japan's Software Factories
147-8; the quotation is from the description of the
SDC software factory by H. Bratman and T. Court,
"Elements of the Software Factory: Standards,
Procedures, and Tools," in Software Engineering
Techniques , Infotech International, 1977, p. 137.
For a historical overview of the concept, see
Cusumano, "Shifting Economies: From Craft
Production to Flexible Systems and Software
Factories," Research Policy, vol. 21, 1992, pp. 453
80.

The evocation of the assembly line linked the software factory to a
model of industrial production different from Taylor's --how
different is a complex historical and technical question-- namely
Ford's system of mass production through automation. Ford did not
have to concern himself about how to constrain workers to do
things in "the one best way". His machines of production embodied
that way of doing things; the worker had little to do with it. The
same was true of the assembly line itself.

In the chassis assembling are forty-five separate
operations or stations. The first men fasten four mud-
guard brackets to the chassis frame; the motor arrives
on the tenth operation and so on in detail. Some men
do only one or two small operations, others do more.
The man who places a part does not fasten it --the part
may not be fully in place until after several operations
later. The man who puts in a bolt does not put on the
nut; the man who puts on the nut does not tighten it.
(43)

(43) H. Ford, My Life and Work, Doubleday, 1922,
pp. 82-83.

As parts moved through the production process, they took on the
shape of the Model T because that shape was, so to speak, built into
the machines of production. Ford's methods worked because he was
producing a machine, the essential components of which could be

Page 15 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

completely and precisely specified and hence could be produced by
machines, themselves in turn fully specifiable. Indeed, Ford
designed the Model T to be produced by machines, and therefore
the available means of production were part of the target
specifications. Underpinning that achievement was the
development of the machine-tool industry alluded to above.

The assembly line has held continuing allure for software
engineers, who generally find it ironic that "programmers have
done a good job of automating everyone's work but their own."
Indeed, that is referred to as the "software paradox".(44) That one
would find it paradoxical lies in the nature of the computer
combined with a particular notion of engineering. "We know," said
John McCarthy, "that any intellectual process that can be carried
out mechanically can be performed by a general purpose digital
computer." By "mechanically", he meant according to clear,
unambiguous procedures. Engineering, especially science-based
engineering, aims at providing solutions of just that sort to its
problems. Hence, one ought to be able to do for software what one
has done for other engineering problems, namely to transfer
solutions to the computer for execution. The grail of "automatic
programming", as pursued in particular by Robert Balzer of ISI,
with the support of DARPA, throughout the '70s and '80s was a
software development system which could take the specification of
a problem and transform it automatically into a working system as
solution, in essence cutting out the programmer altogether. Much
of the CASE software developed during this period purported to
achieve portions of that goal; on close inspection, little of it in fact
lived up to its claims.

(44) See B. Blum, "Understanding the Software
Paradox", ACM SIGSOFT Software Engineering
Notes, vol. 10, no. 1, 1985, pp. 43 -47, who
attributes the notion to L.G. Stucki.

In Japan's Software Factories and related articles, Michael
Cusumano presents evidence suggesting that the effective
management of software production lies at a level in between craft
production and mass production, namely at the level of flexible
design and production systems. The "factories" Cusumano
examined during the mid-to-late '80s involved the following
measures:

- identification of a target market and of a range of "semi-
custom" products for it
- a longterm commitment to production for that market
- intensive review of currently available tools and practices
- intensive and continuing training of personnel and
imposition of a programming discipline on them
- commitment of productive effort to the building of tools
- emphasis on reusability, encouraging designers and
programmers to devote project effort to non-project goals
- emphasis on design and testing phases of development
- intensive quality control through inspection and testing.

Page 16 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

Basically, the list comes down to a corporate investment in training
and maintaining a skilled work force with cumulative experience in
the areas for which they are building systems. There are examples
of such environments in the U.S., Bell Labs perhaps foremost
among them. Unix is a leading model for the notion of software
tools and of a "programmer's workbench".

To what extent such environments are "factories" in the sense in
which they were originally conceived is debatable. Indeed,
Cusumano notes the resistance of the programmers themselves to
the term, because it connotes a devaluation of their skills. The
phrase "workbench", which also appears in the Japanese context,
lies closer to the shop than to the assembly line. Although these
environments suggest that the production of software is far from
inherently unmanageable, they also make clear that productivity
depends on a highly skilled, and commensurately expensive
workforce.

What is being automated?

Those "factories"
are also not likely
to hold a solution
for the problems of
software
production that
motivated the drive
for software
engineering, but,
then, neither is
automatic
programming.
Consider another
version of
development
phases of the
software life cycle
(Fig. 1). We are on
firmest theoretical
ground at the
bottom of the
diagram. That is
where computer
science has
achieved its most profound results, and that is where theory has
most effectively translated into practical software tools. But the
problems of air traffic control systems, of national weather
systems, of airline booking systems all lie at the top of the diagram,
where a real-world system must be transformed into a

Page 17 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

computational model. That is where software engineering is not
about software, indeed where it may not be about engineering at
all.

Software engineering began as a search for an engineering
discipline on which to model the design and production of
software. That the search continues after thirty-five years suggests
that software may be fundamentally different from any of the
artifacts or processes that have been the object of traditional
branches of engineering: it is not like machines, it is not like
masonry structures, it is not like chemical processes, it is not like
electric circuits or semiconductors. It thereby raises the question of
how much guidance one may expect from trying to emulate the
patterns of development of those engineering disciplines. During
general discussion concerning theory and practice held on the last
day of the Rome conference in 1969, I.P. Sharp came at the issue
from an entirely different angle, arguing that one ought to think in
terms of "software architecture" (= design), which would be the
meeting ground for theory (computer science) and practice
(software engineering). "Architecture is different from
engineering," he maintained and then added, "I don't believe for
instance that the majority of what [Edsger] Dijkstra does is theory -
- I believe that in time we will probably refer to the 'Dijkstra
School of Architecture'."(45) That is no small distinction.
Architecture has a different history from engineering, and we train
architects differently from engineers.(46) It is striking to a historian
looking for a history of software engineering that the 9th
Foundations of Software Engineering Conference in 1998, which
concluded with a plenary session on whether software engineering
is ready to become a "profession", that is, whether its practitioners
should be subject to licensing as professional engineers, was
preceded by the 3rd International Workshop on Software
Architecture.

(45) Software Engineering Techniques: Report on a
conference sponsored by the NATO Science
Committee, Rome, Italy, 27th to 31st October 1969,
J.N. Buxton and B. Randell, eds., NATO Science
Committe, [1969], p. 12.

(46) For a review of the architectural model, see
J.O. Coplien, "Reevaluating the Architectural
Metaphor: Toward Piecemeal Growth",
Software vol. 16, no. 5, Sep./Oct. 1999, pp. 40

Page 18 of 18Finding a History for Software Engineering

2004-10-24http://www.princeton.edu/~mike/articles/finding/finding.html

