BAES

ELSEVIER

The Journal of Systems and Software 57 (2001) 99-106

&) The Journal of

i

Systems and
Software

www.elsevier.com/locate/jss

An 1ndustrial study of reuse, quality, and productivity

William B. Frakes **, Giancarlo Succi

b

& Department of Computer Science, Virginia Tech, 7054 Haycock Rd., Falls Church, VA 22043, USA
® Department of Electrical and Computer Engineering, University of Calgary, Calgary, Canada

Received 21 October 1999; received in revised form 18 February 2000; accepted 1 May 2000

Abstract

The relationship between amount of reuse, quality, and productivity was studied using four sets of C and C++ modules
collected from industrial organizations. The data domains are: text retrieval, user interface, distributed repository, medical re-
cords. Reuse in this paper is ad hoc, black box, compositional code reuse. The data generally show that more reuse results in
higher quality, but are ambiguous regarding the relationship between amount of reuse and productivity. © 2001 Elsevier Science

Inc. All rights reserved.

Keywords: Software; Reuse; Metrics; Experiment; Empirical; Reuse level; Reuse frequency; Quality; Productivity

1. Introduction

This paper presents a quasi-experimental study of
four sets of industrial data to determine the effects of
reuse on software quality and productivity. This is an
important question since many organizations today are
attempting to significantly increase the quality and
productivity of their software systems via reuse (Frakes
and Isoda, 1994).

Despite its importance, there is a paucity of industrial
studies on this topic. Frakes and Terry (1996) provides a
survey of these studies. Some recent studies on the re-
lationship between reuse, quality and productivity based
on academic data have been reported (Basili et al., 1996;
Devanbu et al., 1996). A key difficulty is obtaining in-
dustrial data. One serious problem is the type of avail-
able industrial data. Industrial data are usually typified
by small sample sizes and lack of strict experimental
controls. Industrial data also often come in small sets,
and conclusions have to be derived from analysis across
data sets, rather than within a single set. There are two
approaches to this situation. One is to not do empirical,
industrial studies until more perfect data become avail-
able. As the lack of experimental studies in software

*Corresponding author. Tel.: +1-703-538-8374; fax: +1-703-538-
8348.

E-mail addresses: wfrakes@vt.edu (W.B. Frakes), giancarlo.
succi@enel.ucalgary.ca (G. Succi).

engineering attests, this often means that studies are
never done because ‘‘scientifically acceptable” data
never become available.

The other approach is to analyze the data that are
available, and learn what we can from them using ex-
ploratory quasi-experimental techniques. This is the
approach taken in this paper. Our method is to do a
correlational study (Campbell and Stanley, 1966) of
quality and productivity measures and ‘“amount of re-
use’” measures derived from four small sets of industrial
data.

There are many types of software reuse. A typology
of them is reported in Frakes and Terry (1996). The data
in this paper are based on ad hoc, black box, composi-
tional code reuse. Ad hoc means that the observed reuse
is not part of a repeatable, mandated organizational
process. Ad hoc reuse is by far more common than
systematic reuse, though the latter is thought to be more
powerful. Black box reuse is reuse of a software item
without modification. Compositional reuse means that
the software system was built by a human programmer
out of components, as opposed to generating a system
automatically from specifications.

This paper is organized as follows. In Section 2, we
define the measures of amount of reuse, quality, and
productivity used in this study. Section 3 presents a
discussion of the experimental methods used. Section 4
presents the analysis of the four data sets, and Section 5
presents conclusions and suggestions for future work.

0164-1212/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212(00)00121-7

100 W.B. Frakes, G. Succi | The Journal of Systems and Software 57 (2001) 99-106

2. Measures used in this study
2.1. Quality and productivity measures

Since the first studies of McCall et al. (1977), it has
been clear that it is not possible to measure the quality
and productivity of software systems with a single
number. Accordingly, many measures of software
quality and productivity have been proposed (Conte
et al., 1986; Arthur, 1993).

In this paper we use measures of quality and pro-
ductivity that we have observed to be commonly used in
industrial practice. Not all the measures that we use are
the best possible measures for describing productivity
and quality. Our selection of these measures is con-
strained by the available data. However, each measure
provides a useful perspective on software quality and
productivity.

We use the number of non-commentary source lines
(NCSLs) as a measure of the size of modules and
systems. We compute NCSL for C and C++ by
counting in the source file the number of semicolons
that are not in comments. Though often criticized,
NCSL has been used extensively by practitioners and
researchers (Boehm et al., 1995). Number of person
days spent developing modules is used as a measure of
effort.

The data available to this study for measuring quality
are:

e Number of errors per NCSL (Error Density), which is
perhaps the most commonly used measure of software
quality and has been widely reported for many years
(Conte et al., 1986; Humphrey, 1996).

e Number of module deltas (Deltas) where a delta is a
change to a software work product such as code. Such
a change can be either an enhancement or a repair,
and since they have been found to correlate well with
faults, deltas are sometimes used for estimating error
rates (Drake, 1996). For example, they were used in
large switching projects at AT&T since it was a by-
product of the formal change control process using
tools like SCCS. Several studies use it as a proxy for
maintenance effort, such as Li and Henry (1993). Ev-
idence of the relationship between Deltas and Errors
is found also in the Developer B data set, which shows
a positive correlation between these two variables.

e Quality as perceived by the developers based on the
trouble they had in debugging and maintaining the
software (Quality Rating). This is a subjective ordi-
nal measure based on an integer scale ranging from
1- worst to 10 — best. Subjective measures of quality
have been used in the past in other studies, such as
Prechelt and Tichy (1998) and form the basis of sur-
vey research, widely used in conjunction with objec-
tive measures. Subjective evaluations of advantages
or disadvantages of methodologies are also very

common, see for instance (Berg et al., 1995; Cline,
1996).

The data available to measure productivity are:

e Number of NCSLs produced per person day (NCSL/
Effort). This measure relies on the effectiveness of
NCSL as a measure of product size.

e Effort in person days spent per module (Effort/Mod-
ule) (Basili and Reiter, 1979; Conte et al., 1986). It
provides information on how much effort is needed
to develop the unit of compilation and deployment.
The higher the value of Effort/Module, the lower the
productivity.

2.2. Reuse measures

There are several classes of reuse measures (Frakes
and Terry, 1996). One of the most important is “amount
of reuse” since it indicates how much reuse has taken
place in a given software item. We will be using two
measures of amount of reuse, reuse level (RL) (Frakes,
1990) and reuse frequency (RF) (Frakes and Terry,
1994). Both of these measures are based on counting the
number of lower level items, such as functions, used to
construct a higher level item such as a system.

2.2.1. Reuse level

RL is the ratio of different lower level items reused
inside a higher level item over the total number of lower
level items used. A reused item can be internal (I) or
external (E) based on whether it was developed inside
the scope of the project where it is reused. IRL refers to
the internal reuse level, while ERL refers to the external
reuse level. The RL metric is based on counting item
types rather than item tokens.

2.2.2. Reuse frequency

RF measures the number of references to reused
items rather than counting items only once, as was done
for reuse level. This metric is based on counting item
tokens rather than item types. This metric measures the
percentage of references to lower level items reused
verbatim inside a higher level item versus the total
number of references. The definition of IRF and ERF is
analogous to that of IRL/ERL. Curry et al. (1999)
contains a detailed study on the relationships between
RL and RF.

2.3. RL and RF metrics for the C language

To apply RL and RF to the C language, we have to
define the concepts of “lower level item” and ‘“higher
level item” in a C context. We define these concepts as:
e lower level item: a function,

e higher level item: a file.

The following C code is used to illustrate the calcu-

lation of RL and RF for C. Filel.c and File2.c both

W.B. Frakes, G. Succi | The Journal of Systems and Software 57 (2001) 99-106 101

reside in the same project. Here we assume that all
functions not defined within these two files are external
to the project.

/* Filel.c */
int x, y, z, w;
int £1() {return 1;}
int £2Q);
int £30);
int g(int, int);
int £f(int a, int b) {
£10;
£10;
£20);
£20);
g(a, b);
g(a, b);
return g(a,b);
}
/* File2.c *x/
int £20);
int g(int i, int j)
{
int r=0;
£20);
g(1,2);
return i+j;

}

Table 1 lists the functions within the Filel.c and
File2.c, defining each as either internal or external
based on their location relative to the project boundary.
The last column in the table provides a listing of the
number of references made to each function. In the ex-
ample, although the reference to function g() is external
to Filel.c and internal to File2.c, it is considered as
internal since the function definition resides within the
project. However, the functions £2() and £3() are ex-
ternal to the measured component because they are
defined outside the project boundary. Table 2 summa-
rizes the resulting amount-of-reuse metrics. The details
of the computations follow.

In Filel.c, there are a total of three functions or
lower level items used within the higher level item or file.
In Filel.c there are calls to one external and two in-
ternal functions. This results in an ERL of 1/3. There are

Table 1
Classification of functions for Filel.c and File2.c
File Function Internal/ References
name external
Filel.c £10) Internal 2
Filel.c £20 External 2
Filel.c £30) External 0
Filel.c g0 Internal 3
File2.c £20) External 1
File2.c g0 Internal 1

Table 2

Amount-of-reuse in the files of the example
File ERL ERF
Filel.c 1/3 2/7
File2.c 1/2 1/2

seven references to functions: £1() (internal) and £2()
(external) are referenced twice and function g() (inter-
nal) is referenced three times. Therefore, ERF is 2/7.
These measures are computed in the same manner for
File2.c.

2.4. Reuse level measurement tool — rl

The rl software tool (Frakes and Terry, 1994) cal-
culates RL and RF for C code. Given a set of C files, r1
reports the following information:

1. internal reuse level,
2. external reuse level,
3. internal reuse frequency,
4. external reuse frequency.

The software allows multiple definitions of higher
level and lower level abstractions. The allowed higher
level abstractions are system, file or function. The lower
level abstractions are function or source lines of code.

The RL and RF data for C++ were obtained by first
translating the files from C++ to C using the standard
AT&T cfront utility. Among other tasks, cfront
produces a one-to-one mapping between methods and
functions in C++ and functions in C; the structure of the
mapping is well documented. The r1 tool was then used
on the resultant C code, taking advantage of this map-
ping. It would be better to calculate RLs and RFs di-
rectly for C++, but the current version of rl does not
support this.

3. Structure of the study

We collected four data sets from four different sour-
ces. Table 3 summarizes the sizes of the samples and the
quality and productivity measures used. An “X”” in a cell
indicates that a given quality or productivity measure
was used for a given data set.

This study is an exploratory correlational study
(Campbell and Stanley, 1966) of quality and produc-
tivity measures and amount of reuse measures. A
correlational study is a kind of quasi-experiment. Quasi-
experiments are used in settings where strict experi-
mental controls and randomization of treatment
conditions are not possible. This is typical of industrial
software experimentation. In each data set, we will de-
termine if there is a relationship between each quality
and productivity measure available and the two selected
amount of reuse measures, ERF and ERL.

102 W.B. Frakes, G. Succi | The Journal of Systems and Software 57 (2001) 99-106

Table 3
Quality and productivity measures in this study

Name of the source Sample size Error Density Quality Rating Deltas NCSL/Effort Effort/Module
PRC 3 X

Developer A 6

Developer B 12 X X X X

Software Uno 16 X X

We will use Spearman’s rank correlation (Welkowitz
et al., 1990) to determine the presence of a relationship
between quality or productivity measures and amount
of reuse measures. This correlation statistic can be used
for all our data, including ordinal measures, such as
Quality Ratings. Spearman’s rank correlation is also
robust to outliers. Given the small sample size we will
not use inferential statistics to test the significance of
correlation statistics, but report them only to indicate
the magnitude and direction of relationships between
variables.

4. Analysis of the data
4.1. PRC Inc

Our first data set was obtained from PRC Inc., a large
government contracting company located in Fairfax,
VA, USA. The domain of the software was text pro-
cessing and retrieval. We do not have demographic data
on the developers of this software. ERL and ERF were
measured for three software modules written in the C
language. Deltas in the PRC data were extracted using
SCCS, a change management tool on Unix. Table 4
summarizes these measures.

The rank correlation for ERL and Deltas is —0.5 and
for ERF and Deltasis —1.0. These data indicate a negative
relationship between ERF and ERL, and Deltas. This
meets the expectation that more reuse will produce fewer
faults, because reusable components are expected to have
been tested more thoroughly, or at least to have had
longer use allowing errors to be identified and corrected.

4.2. Developer A

These data were collected from a software engineer
(Developer A) employed by a medium-sized telecom
software company in Europe. The name of the company
is omitted for confidentiality. The developer had a B.Sc.

Table 4

PRC reuse and module delta data
Name ERL 0 ERF 0 Deltas
Module 1 0.47 0.4 13
Module 2 0.44 0.44 8

Module 3 0.33 0.25 16

in computer science and about two years of experience.
The company was certified ISO 9000 and CMM level 2
at the time of the software development. The program-
ming language was AT&T C++, the development envi-
ronment was Softbench, and the operating system was
HP/UX version 9. The target application was a graphi-
cal user interface.

Table 5 presents data from the six software modules
we collected from Developer A, and summary statistics
of these data. Modules varied in size from 442 to 2543
NCSL with a median value of 2045.5. Quality Ratings
varied from 6 to 8 with a median rating of 7. Spearman’s
rank correlation indicates a positive correlation (0.46)
between ERL and Quality Rating, and a stronger pos-
itive correlation (0.62) between ERF and Quality Rat-
ing. These findings indicate that higher levels of reuse
are related to higher perceptions of quality.

4.3. Developer B

These data were collected from another software en-
gineer at the same company as Developer A, but in a
different department. Developer B had an M.Sc. degree
in Electrical Engineering with five years of industrial
experience. These data are based on 12 modules for a
distributed reuse library. The working environment of
Developer B is the same as Developer A.

The data collected for these modules and summary
statistics are given in Table 6. Modules varied in size
from 50 to 3197 NCSL with a median value of 679. The

Table 5

Developer A data
Name NCSL ERL ERF Quality

Rating

Module 1 2055 0.44 0.39 8
Module 2 1860 0.41 0.34 7
Module 3 2543 0.46 0.21 7
Module 4 442 0.20 0.19 6
Module 5 2348 0.44 0.27 7
Module 6 2036 0.43 0.24 8
Mean 1880.67 0.40 0.27 7.17
Median 2045.50 0.43 0.26 7
S.D. 745.89 0.10 0.08 0.75
Min 442 0.20 0.19 6
Max 2543 0.46 0.39 8

W.B. Frakes, G. Succi | The Journal of Systems and Software 57 (2001) 99-106 103
Table 6
Developer B data
Name NCSL ERL ERF Errors Error Deltas Quality Effort NCSL/
Density Rating Effort
Module 1 478 0.25 0.25 0 0.000 2 7 3 159.33
Module 2 2586 0.30 0.26 0 0.000 3 7 6 431.00
Module 3 662 0.43 0.24 2 0.003 5 8 10 66.20
Module 4 553 0.48 0.42 0 0.000 1 8 2 276.50
Module 5 395 0.23 0.11 3 0.007 3 6 10 39.50
Module 6 2723 0.32 0.18 0 0.000 2 7 7 389.00
Module 7 676 0.33 0.25 1 0.001 3 8 10 67.60
Module 8 3197 0.33 0.22 2 0.000 3 7 15 213.13
Module 9 2516 0.30 0.28 1 0.000 2 7 7 359.43
Module 10 682 0.34 0.20 2 0.002 2 6 5 136.40
Module 11 50 0.43 0.43 0 0.000 1 10 1 50.00
Module 12 2293 0.33 0.31 0 0.000 1 9 3 764.33
Mean 1400.91 0.34 0.26 0.92 0.001 2.33 7.50 6.58 246.04
Median 679.00 0.33 0.25 0.50 0.000 2.00 7.00 6.50 186.23
S.D. 1144.69 0.074 0.09 1.08 0.002 1.15 1.17 4.12 213.83
Min 50.00 0.23 0.10 0 0.000 1.00 6.00 1.00 39.50
Max 3197.00 0.48 0.43 3 0.007 5.00 10.00 15.00 764.33

developer kept a log of the errors he found after re-
leasing the system and the effort it took to develop each
module, in person days. The number of errors varied
from 0 to 3 with a median value of 0.5. The effort varied
from 1 to 15 days with a median value of 6.5. The de-
veloper used the Unix utility RCS to track the number
of deltas of each module; Deltas varied from 1 to 5 with
a median value of 2. Quality Ratings varied from 6 to 10
with a median rating of 7.

Table 7 contains a summary of the rank correlations
for Developer B data. There are high negative correla-
tions between ERF and both Error Density and Deltas,
indicating that more reuse is related to more correct
software. We also found a high positive correlation
(0.76) between Quality Rating and ERF indicating that
more reuse is related to higher perceptions of quality.
The correlations between quality measures and ERL go
in the same direction as those of ERF, but are lower.

There is a high negative correlation between ERF and
Effort/Module indicating that more reuse is associated
with higher productivity for this data set. The correla-
tion between ERL and Effort/Module goes in the same
direction but it is lower. The correlations between
NCSL/Effort and amount of reuse measures are fairly
low and contradictory: the one with ERF is positive and
the one with ERL is negative.

4.4. Software Uno

These data were collected at Software Uno S.r.l., a
medium-sized software company located in Padova, It-
aly. The company has around 20 employees. The soft-
ware was developed between 1991 and 1994. There were
three people in the team that developed the software.
Two of them had B.Sc. degrees (one in Computer Sci-
ence and one in Computer Engineering) and each had 5
years of experience at the beginning of the project. The
third had an M.Sc. in Electrical Engineering with 8 years
of experience at the beginning of the project. The pro-
gramming language used was Microsoft C under MS/
DOS.

These data were collected on 16 files from a system
for medical records. The data collected for these mod-
ules, and the related descriptive statistics are given in
Table 8. Modules varied in size from 46 to 805 NCSL
with a median value of 143.5. Software Uno kept a re-
cord of the effort spent per module in person days for
management purposes.

A positive relationship was observed between ERL
and NCSL/Effort (0.31) and between ERF and person
days of effort (0.66). Negative correlations were ob-
served between ERF and NCSL/Effort (—0.22) and ERL
and person days of effort (-0.45). These results are

Table 7
Spearman’s rank correlations for data from Developer B
Error Density Deltas Quality Rating Effort/Module NCSL/Effort
ERL —-0.04 -0.18 0.56 -0.22 -0.17
ERF —-0.62 -0.61 0.76 —-0.69 0.27

104 W.B. Frakes, G. Succi | The Journal of Systems and Software 57 (2001) 99-106

Table 8
Summary of Software Uno data
Name NCSL ERL ERF Effort NCSL/Effort
Module 1 98 0.36 0.01 4 24.50
Module 2 304 0.35 0.26 23 13.22
Module 3 145 0.42 0.03 4 36.25
Module 4 327 0.32 0.01 5 65.40
Module 5 120 0.39 0.02 3 40.00
Module 6 111 0.42 0.01 2 55.50
Module 7 46 0.40 0.00 3 15.33
Module 8 805 0.37 0.06 45 17.89
Module 9 749 0.30 0.05 48 15.60
Module 10 105 0.32 0.02 3 35.00
Module 11 113 0.23 0.01 10 11.30
Module 12 248 0.29 0.03 5 49.60
Module 13 142 0.36 0.02 4 35.50
Module 14 197 0.30 0.04 7 28.14
Module 15 106 0.23 0.02 3 35.33
Module 16 467 0.28 0.03 92 5.08
Mean 255.19 0.33 0.04 16.31 30.23
Median 143.50 0.33 0.02 4.50 31.57
S.D. 230.87 0.06 0.06 24.97 17.06
Min 46 0.23 0.00 2 5.08
Max 805 0.42 0.26 92 65.40
contradictory and run counter to what would be ex- 5. Conclusions and future work
pected, since more reuse is generally thought to result in
higher productivity, regardless of the measure of This paper is an exploratory study of the relation-
amount of reuse. These results are consistent with what ships between amount of reuse, and quality and pro-
we found for Developer B. ductivity in software modules from four industrial
Table 9
Summary of the results
Data set Domain Data points Rank correlation Relationship
PRC Text retrieval 3
ERL vs. Deltas Negative
ERF vs. Deltas Negative
Developer A User interface 6
ERL vs. Quality Ratings Positive
ERF vs. Quality Ratings Positive
Developer B Distributed repository 12
ERL vs. Quality Ratings Positive
ERF vs. Quality Ratings Positive
ERL vs. Error Density Marginally negative
ERF vs. Error Density Negative
ERL vs. Deltas Marginally negative
ERF vs. Deltas Negative
ERL vs. NCSL/Effort Marginally negative
ERF vs. NCSL/Effort Marginally positive
ERL vs. Effort/Module Marginally negative
ERF vs. Effort/Module Negative
Software Uno Medical records 16
ERL vs. NCSL/Effort Positive
ERF vs. NCSL/Effort Negative
ERL vs. Effort/Module Negative

ERF vs. Effort/Module Positive

W.B. Frakes, G. Succi | The Journal of Systems and Software 57 (2001) 99-106 105

organizations. The data sets are from four different
domains: text retrieval, user interface, distributed re-
pository, and medical records. The data in this paper are
based on ad hoc, black box, compositional code reuse.
The modules in the study were written in C and C++.

The amount of reuse was measured with RL and RF.
The rl tool was used to calculate these data. Quality
was measured subjectively by asking the developers to
rate the modules they developed on a 10-point scale, and
with Error Densities and module deltas. Productivity
was measured with Effort per Module and NCSL/Effort.
Spearman’s rank correlations were calculated to sum-
marize the direction and magnitude of the relationships
between pairs of variables. The results are summarized
in Table 9.

The data generally support the conclusion that more
reuse will result in improved quality. In the PRC data
there is a negative relationship between ERL, ERF, and
Deltas. In the Developer A data, there is a positive re-
lationship between ERL, ERF, and Quality Ratings. In
the Developer B data, there is a negative relationship
between ERF, ERL, and Deltas and between ERF and
Error Density. There is a positive relationship between
ERL, ERF, and Quality Ratings.

The data are inconsistent regarding the relationship
between reuse and productivity with some relationships
being positive and others negative. This inconsistency
warrants further study.

This study, and the few others in this area, should
indicate to software practitioners that increases in soft-
ware quality and productivity from reuse cannot be ta-
ken for granted. The best approach for such
organizations will be to collect data such as we have
reported in this study for their own organizations, and
use these data to guide their reuse projects.

Future research in this area is certainly warranted.
The key is more and better data collected from widely
representative industrial software organizations. True
experimental studies with strict controls and replications
are also needed, though industrial resource constraints
and concerns for privacy will continue to be barriers. In
the meantime, it is important to keep collecting and
analyzing available industrial data.

Acknowledgements

We would like to thank Prof. G. Kovacs for his
insightful comments, N. Scioscia and G. Cardino for
their help in finding data, CIM-EXP (Budapest, Hun-
gary), PRC (Falls Church, VA), and Software Uno
S.r.l. (Padova, Italy) for the data they provided us.
Thanks also to Omar Alonso, Gabriella Belli, Gloria
Hasslacher, Eric Liu, Romana Spasojevic, Milorad
Stefanovic, Raymond Wong, and Jason Yip for their
reviews of a draft of the paper. The second author

thanks the University of Calgary, the Government of
Alberta, the Canadian National Science and Engi-
neering Research Council for partially supporting this
research.

References

Arthur, L.J., 1993. Improving Software Quality — An Insider’s Guide
to TQM. Wiley, New York.

Basili, V.R., Reiter, R.W., 1979. An investigation of human factors in
software development. IEEE Computer 12 (12), 21-38.

Basili, V., Briand, L., Melo, W., 1996. How reuse influences produc-
tivity in object-oriented systems. Communications of the ACM 39
(10), 104-116.

Berg, W., Cline, M.P., Girou, M., 1995. Lessons learned from the OS/
400 OO project. Communications of the ACM 38 (10), 54-64.
Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby,
R., 1995. Cost models for future software life cycle processes:

COCOMO 2.0. Annals of Software Engineering 1 (1), 57-94.

Campbell, D.T., Stanley, J.C., 1966. Experimental and Quasi-Exper-
imental Designs for Research. Rand Mc.Nally College Publishing
Company, Chicago, IL.

Cline, M.P., 1996. The pros and cons of adopting and applying design
patterns in the real world. Communications of the ACM 39 (10),
47-49.

Conte, S.D., Dunsmore, H.E., Shen, V.Y, 1986. Software Engineering
Metrics and Models. Benjamin/Cummings, Menlo Park, CA.

Curry, W., Succi, G., Smith, M., Liu, E., Wong, R., 1999. Empirical
analysis of the correlation between amount-of-reuse metrics in the
C programming language. In: Proceedings of the 1999 Symposium
on Software Reusability. ACM Press, New York, pp. 35-140.

Devanbu, P., Karstu, S., Melo, W., Thomas, W., 1996. Analytical and
empirical evaluation of software reuse metrics. In: Proceedings of
the 18th International Conference on Software Engineering. ACM
Press, New York, NY, pp. 189-199.

Drake, T., 1996. Measuring software quality: a case study. IEEE
Computer 29 (11), 78-87.

Frakes, W., 1990. An empirical framework for software reuse research.
In: Proceedings of the Third Annual Workshop on Software Reuse
(Technical Report No. 9014), Syracuse University CASE Center.

Frakes, W., Isoda, S., 1994. Success factors of systematic reuse. IEEE
Software 11 (5), 14-19.

Frakes, W., Terry, C., 1994. Reuse level metrics. In: Proceedings of the
Third International Conference on Software Reuse: Advances in
Software Reuse. IEEE CS Press, Los Alimitos, CA, pp. 139-148.

Frakes, W., Terry, C., 1996. Software reuse and reusability models and
metrics. ACM Computing Surveys 28 (2), 415-435.

Humphrey, W., 1996. Introduction to Personal Software Process.
Addison-Wesley, Reading, MA.

Li, W., Henry, S., 1993. Object oriented metrics that predict
maintainability. Journal of Systems and Software 23 (2), 111-122.

McCall, J., Richards, P., Walters, G., 1977. Factors in Software
Quality, NTIS AD-A049-014, 015, 055.

Prechelt, L., Tichy, W.F., 1998. A controlled experiment to assess the
benefits of procedure argument type checking. IEEE Transactions
on Software Engineering 24 (4), 302-312.

Welkowitz, J., Ewen, R.B., Cohen, J., 1990. Introductory Statistics for
the Behavioral Sciences/Includes Software, fourth. Academic Press,
New York.

William Frakes is an associate professor in the Computer Science
Department at Virginia Tech. He chairs the IEEE TCSE committee on
software reuse, and edits ReNews. He has a B.L.S. from the University
of Louisville, an M.S. from the University of Illinois at Urbana-
Champaign, and an M.S. and Ph.D. from the Syracuse University.

106 W.B. Frakes, G. Succi | The Journal of Systems and Software 57 (2001) 99-106

Giancarlo Succi is a Professor of Electrical and Computer Engineering
at the University of Alberta, Edmonton, AB. He holds a Laurea degree
in Electrical Engineering (Genova, Italy, 1988) Italy, an M.Sc. in
Computer Science (SUNY Buffalo, NY, 1991), and a Ph.D. in Elec-
trical and Computer Engineering (Genova, Italy, 1993). His research

interests include software reuse, software metrics, software product
lines, and software engineering economics. He has chaired and co-
chaired several international, scientific events and published papers in
international journals and conferences.

