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This talk will discuss both generalizations and

boundary-case exceptions permitted by Gödel’s

Second Incompleteness Theorem. It will show

that two logically equivalent axiomatizations for

IΣ0 have opposite incompleteness properties !
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3 Themes of This Talk:

1. Gödel’s Incompleteness Theorem is an aston-

ishingly powerful result.

2. Our Prior Research has found both general-

izations and partial exceptions to Gödel’s

Second Incompleteness Theorem.

3. New Research will show that Two Logically

Equivalent axiomatizations for IΣ0 have fully

opposite incompleteness properties!

This surprising result will hold because

our two “equivalent” axiomatizations, α

and β, will prove identical sets of theo-

rems BUT NOT KNOW THAT they

prove identical sets of theorems !
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Gödel’s 1931 Paper Had Two Results:

FIRST INCOMPLETENESS THEOREM:
No algorithm can list all True Statements of
Arithmetic

SECOND INCOMPLETENESS THE-
OREM: No Axiom System of Conventional
Strength Can Prove a Theorem Formally Con-
firming Its Own Self-Consistency.

Our JSL 2001 & 2005 Papers Explored:

Boundary-Case Exceptions to the Second In-

completeness Effect where an axiom system con-

tains a formal axiom sentence stating:

“I am consistent” i.e. the union of the

other axioms with THIS STATEMENT

(looking at itself) is consistent.

MAIN RESULT OF JSL 2001 AND

JSL 2005 was such Constructions are Reasonable

Under Some Very Special and Tightly Controlled

Circumstances.
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Definition 1 . A formula in the language or

arithmetic (using the addition and multiplication

symbols) is called ∆0 iff all its quantifiers are

bounded.

i.e. they look like ∀ x ≤ t or ∃ x ≤ t

Definition 2 . The axiom system IΣ0 is de-

fined to be an extension of Robinson’s Axiom

System Q that recognizes the validity of the Prin-

ciple of Induction for ∆0 formulae. Thus if φ(x, y)

is ∆0 then IΣ0 contains the axiom:

∀x { { φ(x, 0) ∧ ∀y [ φ(x, y) =⇒ φ(x, y + 1) ] }

=⇒ ∀y φ(x, y) }

1981 Paris-Wilkie Open Question :

Does IΣ0 satisfy the Herbrandized and semantic

tableaux versions of the Gödel’s Second Incom-

pleteness Theorem?

Prior Literature has sometimes used term

“I∆0” to refer to IΣ0
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Summary of Prior research :

1. Feferman (1960) warned us to carefully sep-
arate different definitions of consistency when
generalizing Second Incomp Theorem.

2. Kriesel-Takeuti (1974) showed some logics could
verify their cut-free consistency under a second-
order logic generalization of sequent calculus

3. Wilkie-Paris 1987 showed IΣ0 + Exp cannot
prove Q’s Hilbert consistency and asked whether
IΣ0 could verify its Herbrandized and/or se-
mantic tableaux consistency” ?

4. Adamowicz-Zbierski 2001 showed IΣ0 + Ω1
satisfies Herbrandized version of Second In-
completeness Theorem

5. Willard-2002 showed conventional axiomati-
zation for IΣ0 satisfies the semantic tab ver-
sion of Second Incompleteness Theorem.

Our New Result : Unconventional ax-
iomatizations for IΣ0 Are Anti-Thresholds for
Herbrandized Version of 2nd Incomp Theorem.

Although they are logically equivalent to
its conventional axiomatizations !
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Definition 3 . Let φ(x, y) again denote a ∆0

formula. There exists two logically equivalent ax-

iomatizations for IΣ0, called Ax-1 & Ax-2, based

on the two different induction schemes below:
∀x { { φ(x, 0) ∧ ∀y [ φ(x, y) =⇒ φ(x, y + 1) ] }

=⇒ ∀y φ(x, y) } (1)

∀x ∀z { { φ(x, 0) ∧ ∀y ≤ z [ φ(x, y) =⇒ φ(x, y + 1) ] }
=⇒ ∀y ≤ z φ(x, y) } (2)

Ko lodziejczyk’s Email to Willard asked the

following question:

How difficult would it be to generalize Willard’s

JSL-2002 article so that its generalization of the

Second Incompleteness Theorem would extend to

the Ax-2 formalism under Herbrand Deduction?

Surprising Answer to this Question:

While it is not difficult to generalize JSL-2002’s

methods to Ax-2, there exists a third axioma-

tization for IΣ0, called Ax-3, which is an anti-

threshold for the Herbrandized version of the

Second Incompleteness Theorem.
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Definition 4 . The statement “ α ⊃ β ”

means that the axiom system α contains all

β ’s formal axioms.

Above is much stronger than the statement

that “ α can prove all β ’s theorems”.

Definition 5 . Let A denote a consistent

axiom system and D denote a deduction method.

Then (A, D) is an Incompleteness Threshold

iff every consistent α ⊃ A is unable to prove

the theorem statement that α is consistent un-

der the deduction method D.

Definition 6 . (A, D) is an Anti-Threshold

when Definition 5’s condition fails.

i.e. there exists a consistent α ⊃ A able

to prove the theorem statement that α is

consistent under deduction method D.

Main Surprising Result . One axiomati-

zation for IΣ0 is a Herbrandized Threshold —

and oddly another is an Anti-Threshold.
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Main Surprising Result . One axiomati-

zations for IΣ0 is a Herbrandized Threshold —

and oddly another is an Anti-Threshold.

A Quiet Question that Needs To

Be Seriously Asked ?

How do two equivalent axiomatizations for IΣ0

Manage to have fully opposite Herbrandized Thresh-

old properties ???

Answer . The statement α ∼= β merely

means that α and β prove the same set of

theorems. It does not indicate that they can

prove the formal statement “ α ∼= β ”.

Our result about IΣ0’s puzzling Herbran-

dized Threshold and Anti-Threshold prop-

erties will involve constructing two equiva-

lent systems, α and β , unable to prove

that “ α ∼= β ”.
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Definition 7 Bounded Quantifiers ∀ x ≤ T

and ∃ x ≤ T are called Restricted when T

consist of one single variable only.

i.e. function symbols are not allowed in T

Definition 8 . A formula is called ∆R
0 iff it is

a ∆0 formula — all of whose bounded quantifiers

are so restricted.

Definition 9 . Let us recall that Ax-2 was

defined as the axiomatization of IΣ0 that con-

sisted of the union of axiom system Q with the

following induction scheme for all ∆0 formula

φ(x, y) :
∀x ∀z { { φ(x, 0) ∧ ∀y ≤ z [ φ(x, y) =⇒ φ(x, y + 1) ] }

=⇒ ∀y ≤ z φ(x, y) }

The axiom system IndR will have an identical

definition as Ax-2 except it will use the preceding

induction scheme only when φ(x, y) is ∆R
0 .

Theorem 1 . Exists set of ΠR
1 sentences,

called Trivial-R, where Ax-2 ∼= IndR+Trivial-R.
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Below again is Ax-2’s ∆0 induction axiom:

∀x ∀z { { φ(x, 0) ∧ ∀y ≤ z [ φ(x, y) =⇒ φ(x, y + 1) ] }

=⇒ ∀y ≤ z φ(x, y) }

The axiom system IndR will have an identical

definition as Ax-2 except it will use the preceding

induction scheme only when φ(x, y) is ∆R
0 .

Theorem 1 . Exists set of ΠR
1 sentences,

called Trivial-R, where Ax-2 ∼= IndR+Trivial-R.

Proof Sketch: In one direction this equality

holds because each induction axiom of IndR is

an induction axiom of Ax-2. In other direction,

equality holds because each induction axiom of

Ax-2 with n logical symbols has a proof from

IndR+Trivial-R with length O( 2n ).

Clarifying Comment . This O( 2n ) ex-

pansion in proof length is the reason we are able

to construct two equivalent axiom systems, one

of which will be a threshold for the Herbrandized

version of the Second Incompleteness Theorem

— and the other an anti-threshold !
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List of Main Theorems

Theorem 1 . There exists a formal set of

ΠR
1 sentences, called Trivial-R such that :

Ax-2 ∼= IndR+Trivial-R

Theorem 2 . Let Ax-3 denote the system

IndR+Trivial-R. This system Ax-3 is an Anti-

Threshold relative to the Herbrandized version

of the Second Incompleteness Theorem.

Theorem 3 . In contrast, Ax-1 and Ax-2

are Thresholds for the Herbrandized version of

the Second Incompleteness Theorem.

Intuition behind contrast between Theorem 2

and Theorem 3 on next slide.
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Difference Between ∆0 and ∆R
0 Formulae:

Let ΨK = ∃ y ≤ 22K
φ(y). It has

following two properties:

• ΨK ’s formal encoding has a 2K length

when it is written as a ∆R
0 formula (because

2k digits are needed to encode “ 22K
” )

• In contrast, ΨK ’s encoding has an O( K )

length when it is written as a ∆R
0 formula be-

cause it can be encoded as:

∃x0 ≤ 2 ∃x1 ≤ (x0)
2 ∃x2 ≤ (x1)

2 ...

∃xk ≤ (xk−1)
2 ∃y ≤ (xk) φ(y).

This difference in sentence lengths explains in-

tuition why Ax-2 and Ax-3 definitions of IΣ0 have

opposite incompleteness properties despite the

fact they prove the same theorems !
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Revisiting our List of Main Theorems

Theorem 1 . There exists a formal set of

ΠR
1 sentences, called Trivial-R such that :

Ax-2 ∼= IndR+Trivial-R

Theorem 2 . Let Ax-3 denote the system

IndR+Trivial-R. This system Ax-3 is an Anti-

Threshold relative to the Herbrandized versions

of the Second Incompleteness Theorem.

Theorem 3 . In contrast, Ax-1 and Ax-2

are Thresholds for the Herbrandized version of

the Second Incompleteness Theorem.

Intuitive reason for contrast between Theorem

2 and Theorem 3 is the difference in length for

encoding Ψk as a ∆0 and ∆R
0 formula.

ΨK = ∃ y ≤ 22K
φ(y)
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Main Surprising Result . One axiomati-

zations of IΣ0 is a Herbrandized Threshold —

and another is an Anti-Threshold.

A Quiet Question that Needs To

Be Seriously Asked ?

How do two equivalent axiomatizations for IΣ0

manage to have Fully Opposite Threshold

properties ???

Answer . The statement α ∼= β merely

means that α and β prove the same set of

theorems. It does not indicate that they can

prove the formal statement “ α ∼= β ”.

Our result about IΣ0’s puzzling Herbran-

dized Threshold and Anti-Threshold prop-

erties involves constructing two equivalent

systems, α and β , unable to prove that

“ α ∼= β ”.
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Concluding Remark :

Generalizations of Gödel’s Second Incomplete-
ness Theorem are much more important than its
occasional boundary-case exceptions. However
in a context where the Incompleteness Theorem
has been called the centennial theorem of 20-th
century mathematics, the latter topic should also
be explored to help sharpen our knowledge of the
exact meaning of Gödel’s result.

Concluding Joke :

My original 1993 paper on this topic repre-
sented a perhaps 0.1 % Re-Interpretation of Gödel’s
Centennial Incompleteness Theorem. The com-
bined new work in the last 12 years is perhaps a
Factor-30 Improvement over the initial work

... i.e. a perhaps 3 % Re-Interpretation of
Gödel’s Centennial Theorem.

Serious Remark : If this combined research
does represent a “3 % Re-Interpretation” of the
meaning Gödel’s Centennial Theorem, then it is
a serious, albeit limited, result.

8–15


