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NP — Efficient proof verification

ML x € L iff JyMj (x,y) =accept

Efficiency: My, runs in deterministic polynomial time in |z|
Completeness: x € L = Jy, My (z,y) = accept
Soundness: T gé L = Vy, My (z,y) = reject
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PCP — Super-Efficient Proof Verification
v

Efficiency:  V runs in randomized polynomial time in |z
Completeness: x €¢ L = 3, Pr[V™(x) = accept] =1
Soundness: x ¢ L = Vm, Pr[V™(z) = reject] > 1/2



PCP — Super-Efficient Proof Verification

Pros Cons
* Few queries into proof «t * Errors possible
* Running time polylog(m) * Proofs longer

Efficiency:  V runs in randomized polynomial time in |z
Completeness: x €¢ L = 3, Pr[V™(x) = accept] =1
Soundness: x ¢ L = Vm, Pr[V™(z) = reject] > 1/2



Definition: PCP language class

We say [, € PCP

If there exists verifier V=V, that on input z, |z|=

time
length

| query

< t(n)
< I(n)
< q(n)

comp.
sound.

> c(n)
> s(n)

n, ruNs in

time t(n), makes q(n) quries to a proof of length /(n), such

that:

Completeness: ¢ € L = Jr, Pr[V™(x) = accept] > c(n)

Soundness:

r ¢ L = Vr, Pr[V™(x) = reject] > s(n)




PCP Theorems

time < ¥ =
Thm: NP C PCP | length < g;’un‘;' 3
query < 0(1) e

Two settings, two applications:

» Hardness of approximation [FGL+91]
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Thm: NP C PCP

Two settings, two applications:

time
length
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» Hardness of approximation [FGL+91]

comp.
sound.
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« Super-efficient proof/computation verification [BFL+91]




PCPs and Hardness of approximation [FGL+91]

Example [Has97]: [ time 1 W
Thm: NP C PCP | length gl -
: sound. 1/2-¢
| query < 3 Dbits 4
V' computes XOR of 3 answer bits

List all possible verifier tests:
YD Yo ys=1

WA /A
AVARRV,

YsD Y5 D yg=0

Completeness: z € L: Exists y satisfying 1-¢fraction of constraints
Soundness: r ¢ L: Every y satisfies < 1/2-¢frac. of constraints

Corollary: NP-hard to 2-approximate MAX3LIN.
NP-hard to 8/7-approximate MAX3SAT.



PCPs and Hardness of approximation [FGL+91]

e atlimes a8 .
Thm: NP C PCP | length < e ——
sound. > 1/2
_query =< 0(1) !
s Many hardness of approximation results
m [Has96: Cligue ni=
m [H3s97 MAX3SAT 8/7 - ¢
m [Has97 MAXCUT 17/16
= [Fei98] Set Cover CL="zy e )
s [DRO2] Vertex cover 1.36




PCPs and super-efficient verification [BFL+91]

Thm [BS05; BGH+05]: NTIME(f(n)) C

 time < fOU(R)
PCP | length < f(n) - polylogf(n)
X U S P

comp. >1
sound. > 1/2

s Not enough time to read input z (!)
m Settle for approximate soundness:

If input z Isretin L, then V rejects.
far (in Hamming distance) from

Proof Carrying Codes
[Necula, Lee€] ===

Software
Producer

Software : ™
Consumer
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If input z Isretin L, then V rejects.
far (in Hamming distance) from

Proof Carrying Codes
[Necula, Lee€]
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Software |~ Software
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[Kil92], [Mic94]
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PCP Blueprint
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s Want to verify that y witnesses z is in L

s Encode gy, "spreading” its information. Minimal
requirements from code:

s Locally testable

s Locally decodable
s Problem: Too many queries/too little soundness
s Solution: Proof composition



Error Correcting Codes
Encoding: E£:{0,1}* — {0,1}", C={E(m): m in {0,1}%}
Rate = k/n, blowup = 1/rate

Distance: Code space={0, 1}"

6(x,y) = Pricin) @i # i
0(C) = ming+yccid(z,y)} . = .

Oc(w) = mingec{d(w,z)}

Message space={0, 1}*

®e e @
Jil




Sub-linear coding algorithms

Rur?ging time = o(n), typically poly(logn)

n bits
- rryr '

s Want "good” code (large rate and distance) s.t.

|| uUu It Lltiire 1vi bIIbUUIIIg Zth bit

m Sub-linear distance estimation
locally testable code (LTC)

s Sub-linear decoding of one message-bit
locally decodable code (LDC)



Locally Testable Code

Tester —— accept/reject

ot A
B B B Bcorrupted codeword B |
m t(n)=o(n), think of polylog »
m g(n)=o(n), think of O(1)
s Comp. : we C — Pr[Testerv=accept] = 1
s Sound.: 0. (w)>0, = Pr[Testerv=reject] > .99

Def: Implicit in [BFL+91], explicit in [Aro94; Spi95; FS95]



Locally Decodable Code

f:1{0,1}%— {0, 1} R, © " Supposedly
f (message)

,/'
B B B Bcorrupted codeword § 1

s Let /' be family of Boolean functions on £ bits
m F'is loc. dec. from FEif ¢(n), q(n)=o0(n) and

for all fin F,
Comp.: &(w, E(m))<8, = Pr[Dec.“(H)=f(m)] > .99

s Remark: No soundness requirement

Def: Implicit in [BFL+91; Sud92], explicit in [KT0O0]



LTCs and LDCs — brief comparison

s Applications (other than PCPs and coding theory)
m LTCs: Property testing

s LDCs: Derandomization, Cryptography, Private
Information Retrieval

s Rate comparison for ¢=0(1)
m LTCs: n = k- polylog £ [BS05;Din06]

m LDCs: n = exp(k) [BIK+02]



LTCs — results

s Positive (constructions)
s Hadamard codes [BLLR90; BCH+96 ]

s Reed-Muller codes [BFL+91; ALM+92: AS97/;
RS97 ...]

s Derandomized Hadamard/Reed-Muller testers
[GS02; BSV+03; BGH+04; SW04: BS05; RM06]

m [ensor codes [BS04; DSWO06 ]
s Negative (lower bounds)

m =2 [BGSO03]

s LDPC expander codes [BHRO3]

m Cyclic codes [BSS05]

s Two-wise tensor [Val05; CRO5]

s Very little known...



LDCs - results

m Positive (lower bounds)

s Hadamard codes [BLR9O]

s Reed-Muller codes [BF9O0]

s Improvements [AmbS7; IK99; BIO1; BIKRO2]
s Negative (lower bounds)

s [Man98; KT00; GKS+02; Oba02]

s Exponential lower bounds for ¢=2 [KdWO03 |

s Very little known ...



L TCs, LDCs and PCP Blueprint

Given z as input, request E(y), where

m Fis Locally testable
s "Interesting” Fis locally decodable from E

Use F to locally test that y withnesses z is in L

Code space={0, 1}"
Message space={0, 1}* @
o o E : @ @




Example: Hadamard-Walsh based PCP

Given z as input, request E(y), where

m Fis Locally testable

s Interesting” F is locally decodable from FE
Use F to locally test that y withesses z is in L

E is a LTC, with 3 queries [BLR90] ? 888? 1
Every linear function is Loc. Dec. from E, | bt ;
with 2 queries (} § i gg
Verifying zis in L can be reduced to ol =lo111
decoding a constant number of linear : i S
i 1010
functions [ALM+91] (1) |
0 1100
1 1 110 1
Problem: rate... E:{0,1}* — {0,1}*>" | %] [{111]
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Proof Composition [AS91]
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Problems

If ¢(n) = O(1), s(n)=1/2, then [(n)=eXxp(n?)

If [(n)=poly(n), q(n)=0(1),then s(n)=1/n

If [((n)=poly(n), s(n)=1/2, then q(n)=polylog(n)
Solution

Proof composition



PCPs of Proximity/Assignment testers
IBGH+05; DRO5]

|||||’|/E/[5<<;,w>y@ 7]

Let L, = {(z,y) : M, (z,y) = accept}
Let L. = {y : M,(z,y) = accept}
A PCPP-verifier V verifies that y is close to L,



PCPs of Proximity/Assignment testers
IBGH+05; DRO5]

I I

] ]
Definition: " time < t(n) i A1 ;
Wesay [, c PCPP | length <lI(n) sounil. ; 99
| query < g(n) AR

If there exists a nonadaptive PCPP verifier V running in time
t(n), making ¢(n) quries to a proof of length /(n), such that:

Completeness:y € L, = 31 E 6 ((y,7)|g, L)) =0

Robust Soundness: vr E[d ((y,7)|q, Lz)] > 0.99-(y, L)



PCPs of Proximity/Assignment testers
IBGH+05; DRO5]

- ——

Theorem [BS05; Din06]: If L € NTIME(f(n)), then

 time < fO(p)
L, € PCPP | length < f(n) - polylogf(n)
| query < O(1)

comp.
sound.

IV

99

Completeness:y € L, = 31 E 6 ((y,7)|g, L)) =0
Robust Soundness: v E 0 ((y,7m)|q, L)) > 0.99-(y, Ly)



PCPs of Proximity/Assignment testers
IBGH+05; DRO5]
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PCPPs - History

Holographic proofs - PCPPs where assignment y is encoded.
[BFL+91]

PCPP - implicit in low-degree tests [RS92; ALM+91 |
PCPPs - special case of "PCP Spot Checkers” [EKR99]
PCPP - extension of Property Testing [RS92; GGR96]



PCPs of Proximity/Assignment testers
IBGH+05; DRO5]
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Applications of PCPPs

s PCPPs yield PCPs

s Simpler proof composition, essential in
s Shorter PCPs [BGH+05; BS05; BGH+06]
s PCPs via gap amplification [Din06]

s Coding
s Locally Testable Codes [GS02;BSV+03;BGH+05...]
s Relaxed Locally Decodable Codes [BGHO5+ ]

s Property testing
s Every property is locally testable (with a little help)
= Lower bounds for tolerant testing [FFO5]



PCPP Composition

Completeness: y € L, = In E |6 ((y, 7)|g, Lx)] =0
Soundness: ' E[5 ({y, 7)|q, L)) > 099 - 8(y, L)
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Putting it all together

s Algebraic approach

s Encode using LTCs/LDCs based on polynomials,
specifically, Reed-Solomon and Reed-Muller codes

s Large g, large s

s PCPP Composition to reduce g, while preserving s

s Expander-based approach [Din06 ]
= Constant g, small s

= Randomness-efficient repetition to boost s (but g also
increases)

= Encode using simple, rate-inefficient LTCs/LDCs
s PCPP Composition to reduce g, while preserving s



PCP via gap amplification [Din0OG]

éap amplification: There exists c> 0 s.t. for s(n)< il

e

A5
<

time < t(n) ol h
PCP l#dengthi < I(n) 2 C
sound. > s(n)
| query < 2 4
[ time < O(t(n))
PCP | length <O(i(n)) | <P =1
sound. > 2-s(n)
\\ | query” <2
ﬁroof of PCP Theorem:
[ time < nf@) zt y
NP CPCP | length <nO® | °MP- =
sound. > 1/n
[ qUERY. ~ 4= 2 |
Apply gap amplification log n times...
[ time < nf®) b ]
C PCP | length < n©W zgg:; > .
o | query <2 - =°] @ED/




PCP via gap amplification [DIn0G]

time < t(n)
length < I(n)
query 4 =22
time < O(t(n))
length < O(Il(n))
querys <2

comp.

sound. > s(n)

comp.

éap amplification: There exists c> 0 s.t. for s(n)< il

> 1

> 1

sound. > 2-s(n)

Y

1M

22

Constraint graph
s Vertices: Proof symbols

m Edges: constraints over pair of queries

m z € L = All constraints can be satisfied
m ¢ ¢ L = At least s(n) frac. of constraints reject



PCP via gap amplification [DIn0G]

éap amplification: There exists c> 0 s.t. for s(n)< il

time < t(n)
length < I(n)
query #- =22
time < O(t(n))
length < O(l(n))
querys <2

comp.

comp. >1
sound. > s(n)

Cakp |

1M

sound. > 2-5s(n)

Y

22

Boosting soundness — 1st attempt

s Query 100 edges (sequential repetition)
m z ¢ L = all constraints can be satisfied

m ¢ ¢ L = atleast 10s(n) frac. of constraints reject

s Problem: qis large



PCP via gap amplification [DIn0G]

éap amplification: There exists c> 0 s.t. for s(n)< il \
- time < t(n)
length < [(n)
query #- =22

time < O(t(n))
comp: =1
length < O(l(n)) soun%- £ 5 s(n)

[ querys <2 J

Boosting soundness - 2nd attempt

s Encode ass. to every 100-tuple of vertices using LDC/LTC
s Pick 100 edges, make 2 queries to get ass. to endpoints
s Use PCPPs to prove codewords satisfy all constraints

n’ g=2.f ¢= H'sOUnd.*=_95(n )

s Problems: (1) i=n!?%, (2) consistency

comp. >1
sound. > s(n)

1M




PCP via gap amplification [DIn0G]

% per

PCP

4

éap amplification: There exists c> 0 s.t. for s(n)< il

time < t(n)
length < [(n)
query #- =22
time < O(t(n))
length < O(l(n))
querys <2

comp. >1
sound. > s(n)

1M

comps >'1
sound. > 2-5s(n)

Y
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Boosting soundness — 3 (final) attempt

= W.l.o.g. G is constant degree regular expander graph
s Encode assignment to ball of radius 100 around every v

using LDC/LTC

s Pick u,v at distance 150, query balls around u,v

s Use PCPPs to prove balls agree and satisfy intersection
m ¢=2, c=1, sound. > /s(n), I=0(n) (deg(G)=0(1))

s Problem: consistency. Solution: G is an expander... QED



Summing up

s PCPs are fundamental computational objects

used in:

s Hardness of approximation
s Super-efficient verification of proofs
s Main building blocks:
s Locally testable and decodable codes
s PCPP composition
s Soundness amplification/preservation
s Open question:

?
NP C PCP

time < nP1)
length < nlogO(l) n
query < 3 bits

comp. >1—c¢
sound. >1/2—¢
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