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What is a Graph?

e Vertex Set V
e Edge Set F of {v,w} eV

e Equivalently:

Areflexive Symmetric Relation
Write: v ~ w

Read: v,w are adjacent

Note to cognescenti: no loops, multiple edges

Usually: n :=|V|, number of vertices



First Order Language

Relations = (equality), ~ (adjacency)
Usual Boolean A,—,V, —, ...

Universal Vy, dw

NOTE: Quantification only over vertices!
There is a triangle:

FoFwIu(u ~v) A (v ~w) A (u~ w)
Diameter at most two:

VoVwlv =wVo~wVIy(v~uAu~w)]
Diameter at most k£ (k fixed)
Connectivity: NO!



The Random Graph G(n,p)

n vertices
p = adjacency probability

Usually p = p(n)

) — ) |
p=ip=n1Zp=00->

Allow defined for n sufficiently large



Glebskii et. al. [1969]; Fagin [1976]:

Set p = % Then for all first order sentences A

lim Pr[G(n,p) = Al=0or 1

n—aoeo

Extension Statement A, s: For all distinct
x1,...,Cr,Y1,---,Ys there exists distinct z adja-
cent to all x; and no y;.

Probability:

erivd < ()", -2 o

Combinatorics: There is a uniqgue countable
model satisfying all Ay s.

Logic: Therefore T = {A,s} is complete. If
T = A then lim, Pr[A] = 1 by compactness.
Otherwise T = —-A and lim,, Pr[A] = 0.



Given
e Distribution u, over n-point models

e Language

Possible Outcomes

e Zero-One Law: Pr[A] — 0 or 1 for all A

e Convergence: limPr[A] exists for all A

e Slow Oscillation: Pr,41[A] — Prp[A] — 0

e Nonseparability: No oracle separating A with

limPr[A] =1 from A with limPr[A] =0



Erdbs-Rényi
On the Evolution of Random Graphs

T hreshold Function

r(n) is threshold function for A if
pLr(n) — Pr[A] — 0O
p>r(n) — Pr[A] — 1
Existence of Triangle: n—1
Existence of K4: n=2/3

Diameter Two: n—1/2|n1/2

Connectivity: n=1Inn



Shelah-Spencer [1988]: « € (0,1), irrational,

. —on L A1
Jim Pr[G(n,n %) = Al =0or1

Zero-One Law for p(n) =n=¢
Interpretation: n=% is never a threshold func-
tion for a first order A.

What happens in the evolution at p = n~7/77

NOTHING!

(in our First Order universe)



Lynch [1992]: p = en~1: Convergence. lim Pr[A]

exists and is “nice’” function of c.

Pr[no triangle] — e—¢>/6

3_—3c
Pr[no isolated triangle] — e ¢ € /6

Spencer, Thoma [1999]: p = '”T”—I—cn—l: Con-
vergence. limPr[A] exists and is “nice” func-

tion of c.

—C

Pr[no isolated vertices] — e~ €



Random Ordered Graph

p=1

Vertices 1,...,n

Relations =, ~, <

Express 1 ~ 2:

Iy <Y AVa(z<y—z=2z)AN(x~y)
Convergence does not hold

Shelah: Slow Oscillation
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Ehrenfeucht Game EHR[G1, Go; k]

Parameters G1, G5 (disjoint); K = number rounds
Players: Duplicator and Spoiler

1-th Round

e Spoiler picks x; € G or y; € G»o

e Duplicator then picks y;, € Go or z; € G1

e Duplicator wins if

T; ~ x>y~ y; and x; =z oy =y,

E.g.: G1 hasisolated point, G»> does not. Spoiler
wins EHR[G 1, G5; 2]

Ehrenfeucht: Duplicator wins EHR|[G1, Go; k] if
and only if G1,Go have same first order prop-

erties of quantifier depth at most &
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Ehrenfeucht Classes

G1 = Go if Duplicator wins EHR[G1, G2; K]
Equivalence Relation

Finite number of equivalence classes

Very large (tower function!) number of equiv-

alence classes
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Gq1: Cycle length n

Go: Two disjoint Cycles length n

Thm: For all £ if n sufficiently large Duplicator
wins EHR[G 1, G»; k]

Proof Idea: With s moves remaining Dupli-
cator assures that 3%-neighborhoods of points
chosen are ‘“isomorphic.”

Corollary: Connectivity not first order
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Ehrenfeucht and Zero-One Law

n-point random Hj
THM: Zero-One Law
if and only if

for all k

lim Pr[Dupl wins EHR[Hm,, Hp; k]] = 1

m,n— 00
For arbitrary first order language Duplicator

must preserve all relations
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p = % Zero-One Law

With Pr — 1, Hy,, H, have all extension state-
ments up to k points. Duplicator Strategy:
Find point with proper adjacencies

With Pr — 1 strategy succeeds

Why doesn’t this always work??
p=n"%3%<a<l k=3

Some, not all v,w have common neighbor u
Spoiler picks x1,x> € Hpn with common neigh-
bor

Duplicator needs foresight to pick y1,y> € Hp

with common neighbor
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(R, H)—extensions

H onay,...,ar,b1,...,by With designated roots
ai,...ar. ASssume no edges between roots.
Ext(R,H): Forall x1,...,x, thereexist y1,...,ys
with the edges (maybe more) of H.

Every point in triangle

Every two points joined by path of length seven
Every two points z1,xzo in K, except maybe
{z1,22}

v = number nonroots; e = number of edges
Dense: v —ea <0

Sparse: v —ea > 0 (dichotomy!)

Rigid: All (R,H’) dense, H C H

Safe: All (R',H) sparse, RC R’
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...and G(n,n™%)

Expected number of extensions of xq,...,xzy IS
O (n"p) = O(n"=*)

Dense. v —ea < 0. Most x1,...,zr have no
(R, H) extension.

E.g.. a = xn/7 ~ 0.448. Most pairs have no
common neighbor

Safe. v —ea > 0 and no “dense parts”

Thm: All z1,...,zr have ©(nY~¢%) extensions.
E.g.. a = 7/7, all pairs joined by ©(n2—3%)

paths of length three.
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t-closure cly(X) in G

Forany 1 <u<t

and any rigid (R, H) extension with u roots
and any x1,...,xy € X with

(R, H) extension to y1,...,yu

Add y1,...,yp TO X

Iterate

E.g: a=n/6~0523. t=1. X = {z1,z5}
Add common neighbors to any pair of X.

Iterate
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Bounded Closure Size

E.g.: |cli(X)| <44 for all | X|=2
n2 choices of X
Bounded number of pictures

np? = n~ 9017 factor for each extension

n?(np®)** = o(1)
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Duplicator Look-Ahead Strategy

Constants 0 = ap<a; =1<...<ag

Select so |Clg,(z1,..., ;)| < (k—1%) + a;4+1

After ¢ rounds Duplicator assures that

xz's and y's have “same” aj_,;-closures.

a=ua;, b=a;41, X =(z1,...,7), Y = (Y1, -, ¥i),
L= Li4+1,Y — Yi+1

Need: If clg(X) = clg(Y) then after one round

Duplicator can assure cly(X,x) = clp(Y, y)
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Assume cClg(X) = clg(Y)

WLOG Spoiler picks z € G4

Inside: x € Clg(X).

Duplicator picks “isomorphic” y € clg(Y)
Outside: Not Inside

H=cly(X,z), R=clp(X,x) Ncla(X)

re€ H, ¢ R, (R,H) safe

Safe extensions always exist, find y
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Zero-One Law
= Complete Theory

— Countable Model(s)

p=n"% 0< a<1lirrational.

Countable list of safe (R, H)

Countable list of “witness requests”

E.g9.0 dy;,4842 ~y1 ANy ~ys ANyp ~ 3712

Use “new’ vertices to satisfy each witness re-
quest minimally. Get countable G

Thm: GG is Countable Model

Thm: G independent of order of requests

Thm: Theory not Np-categorical
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The Very Sparse Cases

p << n~2: No Edge!

n~2 < p(n) < n—3/2

No tree (or more) on 3 vertices
(for all r)

e r (or more) isolated vertices

e  (Oor more) isolated edges
Ng-Categorical

n—(k+1)/k p(n) < n—(k+2)/(k+1)
No trees (or more) on k 4+ 2 vertices
All trees on < k£ + 1 vertices
Ng-Categorical

p = n—1to(1) and p<Lnt

All finite trees. No cycles

Not No-Categorical: May have infinite trees!
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S
|
3|0

Theory of A with Pr[A] — 1:

e All trees as components

e No bicyclic (or more) subgraphs
Open: Cycles and their Neighborhoods
Countable Models:

All tree components infinitely often
Maybe infinite trees

Maybe unicyclic graphs
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Binary Strings

Models {0, 1}* = finite strings

Set {1,...,n}; unary predicates Uy, U;

Ua(x) : x-th position «

=;<;, Uyp,aa=0,1

There exist two consecutive ones:

oIy [U1 (@) AU () A (z < y)A-T(z < 2A2 < y)]

Random String U(n,p): Pr[Ui(z) = p]
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Ehrenfeucht Semigroup

o =, 7. Duplicator wins EHR|[o, T; k]
Equivalence Relation

E = set of equivalence classes

E finite, though very largel

o= o’ T = " implies o+ T =L o 4+ 1/
E forms Semigroup under concatenation
e — empty string

mo = no ifm,n23k
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Convergence for U(n,p)

Ehrenfeucht: lim Pr[A] exists

k = quantifier depth, EF = equivalence classes
Markov Chain!

Initial State e = empty chain

Prlr - 21] = p; Prlxt - 20] =1 —p
NonPeriodic

T herefore: Stationary Distribution on E

limPr[A] = Y lim Pr[z] over = with A.
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Persistent Strings

Following equivalent for = € Ey.:

o Vydxx+y+z==x

o Vydizt+yt+z==zx

o I,3dsVypt+y+s==z

e x persistent in Markov Chain

x called persistent.

There exist (many) persistent = (very long!)
Persistency not dependent on edge effects
x persistent implies p + x + s persistent

lim,, Pr[persistent] =1
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Circular Strings

Over Z, with C(z,y,z) = "“clockwise”
No edge effects

Zero-One Law for p constant

Thm (Shelah/JS):

Zero-One Law if n= /% « p(n) <« n=1/(k+1)
Countable Models (StJohn/JS):
p<n-1Line Z All O

n~! <« n 1l n1/2 page 72

One 1 on each “line”

n~1/2 <« p(n) < n=1/3 Book Z3

Each page with one line with two 1’s

Volume, Library,. ..
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Coming Attractions

Thursday, 1:30

Analytic Questions

Given Zero-One Law

A with quantifier depth &

Asymptotics of n(k) so that

n > n(k) = Pr[A] < 0.01 or Pr[A] > 0.99
G(n,p) with p = %:

<Z’)2k(1 _o=kyn—k g

n = ©(2kk?)
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Succint Definitions

General First Order Structure

Def: D(G) = smallest quantifier depth

of A that defines GG

What is D(G) for random n-element model?
Kim/Pikhurko/Verbitsky/JS

G(n,3) : ©(Inn)

StJohn/JS:

G<(n,%): O(In*n)

BitString U(n,3): ©(Ininn)
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