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What is a Graph?

• Vertex Set V

• Edge Set E of {v, w} ∈ V

• Equivalently:

Areflexive Symmetric Relation

Write: v ∼ w

Read: v, w are adjacent

Note to cognescenti: no loops, multiple edges

Usually: n := |V |, number of vertices
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First Order Language

Relations = (equality), ∼ (adjacency)

Usual Boolean ∧,¬,∨,→, . . .

Universal ∀v, ∃w

NOTE: Quantification only over vertices!

There is a triangle:

∃v∃w∃u(u ∼ v) ∧ (v ∼ w) ∧ (u ∼ w)

Diameter at most two:

∀v∀w[v = w ∨ v ∼ w ∨ ∃u(v ∼ u ∧ u ∼ w)]

Diameter at most k (k fixed)

Connectivity: NO!
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The Random Graph G(n, p)

n vertices

p = adjacency probability

Usually p = p(n)

p = 3
n; p = n−1/2; p = lnn

n − 5
n

Allow defined for n sufficiently large
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Glebskii et. al. [1969]; Fagin [1976]:

Set p = 1
2. Then for all first order sentences A

lim
n→∞Pr[G(n, p) |= A] = 0 or 1

Extension Statement Ar,s: For all distinct

x1, . . . , xr, y1, . . . , ys there exists distinct z adja-

cent to all xi and no yj.

Probability:

Pr[¬Ar,s] ≤
(n

r

)(n− r

s

)
(1− 2−r−s)n−r−s → 0

Combinatorics: There is a unique countable

model satisfying all Ar,s.

Logic: Therefore T = {Ar,s} is complete. If

T |= A then limn Pr[A] = 1 by compactness.

Otherwise T |= ¬A and limn Pr[A] = 0.
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Given

• Distribution µn over n-point models

• Language

Possible Outcomes

• Zero-One Law: Pr[A]→ 0 or 1 for all A

• Convergence: limPr[A] exists for all A

• Slow Oscillation: Prn+1[A]− Prn[A] → 0

• Nonseparability: No oracle separating A with

limPr[A] = 1 from A with limPr[A] = 0
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Erdős-Rényi

On the Evolution of Random Graphs

Threshold Function

r(n) is threshold function for A if

p � r(n) → Pr[A] → 0

p � r(n) → Pr[A] → 1

Existence of Triangle: n−1

Existence of K4: n−2/3

Diameter Two: n−1/2 ln1/2 n

Connectivity: n−1 lnn
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Shelah-Spencer [1988]: α ∈ (0,1), irrational,

lim
n→∞Pr[G(n, n−α) |= A] = 0 or 1

Zero-One Law for p(n) = n−α

Interpretation: n−α is never a threshold func-

tion for a first order A.

What happens in the evolution at p = n−π/7?

NOTHING!

(in our First Order universe)
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Lynch [1992]: p = cn−1: Convergence. limPr[A]

exists and is “nice” function of c.

Pr[no triangle] → e−c3/6

Pr[no isolated triangle] → e−c3e−3c/6

Spencer, Thoma [1999]: p = lnn
n + cn−1: Con-

vergence. limPr[A] exists and is “nice” func-

tion of c.

Pr[no isolated vertices]→ e−e−c
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Random Ordered Graph

p = 1
2

Vertices 1, . . . , n

Relations =,∼, <

Express 1 ∼ 2:

∃x∃y(x < y) ∧ ∀z(z < y → z = x) ∧ (x ∼ y)

Convergence does not hold

Shelah: Slow Oscillation
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Ehrenfeucht Game EHR[G1, G2; k]

Parameters G1, G2 (disjoint); k = number rounds

Players: Duplicator and Spoiler

i-th Round

• Spoiler picks xi ∈ G1 or yi ∈ G2

• Duplicator then picks yi ∈ G2 or xi ∈ G1

• Duplicator wins if

xi ∼ xj ↔ yi ∼ yj and xi = xj ↔ yi = yj

E.g.: G1 has isolated point, G2 does not. Spoiler

wins EHR[G1, G2; 2]

Ehrenfeucht: Duplicator wins EHR[G1, G2; k] if

and only if G1, G2 have same first order prop-

erties of quantifier depth at most k
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Ehrenfeucht Classes

G1 ≡k G2 if Duplicator wins EHR[G1, G2; k]

Equivalence Relation

Finite number of equivalence classes

Very large (tower function!) number of equiv-

alence classes
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G1: Cycle length n

G2: Two disjoint Cycles length n

Thm: For all k if n sufficiently large Duplicator

wins EHR[G1, G2; k]

Proof Idea: With s moves remaining Dupli-

cator assures that 3s-neighborhoods of points

chosen are “isomorphic.”

Corollary: Connectivity not first order
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Ehrenfeucht and Zero-One Law

n-point random Hn

THM: Zero-One Law

if and only if

for all k

lim
m,n→∞Pr[Dupl wins EHR[Hm, Hn; k]] = 1

For arbitrary first order language Duplicator

must preserve all relations
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p = 1
2 Zero-One Law

With Pr → 1, Hm, Hn have all extension state-

ments up to k points. Duplicator Strategy:

Find point with proper adjacencies

With Pr → 1 strategy succeeds

Why doesn’t this always work??

p = n−α, 1
2 < α < 1, k = 3

Some, not all v, w have common neighbor u

Spoiler picks x1, x2 ∈ Hm with common neigh-

bor

Duplicator needs foresight to pick y1, y2 ∈ Hn

with common neighbor
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(R, H)−extensions

H on a1, . . . , ar, b1, . . . , bv with designated roots

a1, . . . ar. Assume no edges between roots.

Ext(R, H): For all x1, . . . , xr there exist y1, . . . , ys

with the edges (maybe more) of H.

Every point in triangle

Every two points joined by path of length seven

Every two points x1, x2 in K4 except maybe

{x1, x2}
v = number nonroots; e = number of edges

Dense: v − eα < 0

Sparse: v − eα > 0 (dichotomy!)

Rigid: All (R, H ′) dense, H ′ ⊆ H

Safe: All (R′, H) sparse, R ⊆ R′
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. . . and G(n, n−α)

Expected number of extensions of x1, . . . , xr is

Θ(nvpe) = Θ(nv−eα)

Dense. v − eα < 0. Most x1, . . . , xr have no

(R, H) extension.

E.g.: α = π/7 ∼ 0.448. Most pairs have no

common neighbor

Safe. v − eα > 0 and no “dense parts”

Thm: All x1, . . . , xr have Θ(nv−eα) extensions.

E.g.: α = π/7, all pairs joined by Θ(n2−3α)

paths of length three.
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t-closure clt(X) in G

For any 1 ≤ u ≤ t

and any rigid (R, H) extension with u roots

and any x1, . . . , xu ∈ X with

(R, H) extension to y1, . . . , yv

Add y1, . . . , yv to X

Iterate

E.g: α = π/6 ∼ 0.523. t = 1. X = {x1, x2}
Add common neighbors to any pair of X.

Iterate
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Bounded Closure Size

E.g.: |cl1(X)| ≤ 44 for all |X| = 2

n2 choices of X

Bounded number of pictures

np2 = n−0.017··· factor for each extension

n2(np2)42 = o(1)
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Duplicator Look-Ahead Strategy

Constants 0 = a0 < a1 = 1 < . . . < ak

Select so |clai(x1, . . . , xk−i)| < (k − i) + ai+1

After i rounds Duplicator assures that

x’s and y’s have “same” ak−i-closures.

a = ai, b = ai+1, X = (x1, . . . , xi), Y = (y1, . . . , yi),

x = xi+1, y = yi+1

Need: If cla(X) ∼= cla(Y ) then after one round

Duplicator can assure clb(X, x) ∼= clb(Y, y)
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Assume cla(X) ∼= cla(Y )

WLOG Spoiler picks x ∈ G1

Inside: x ∈ cla(X).

Duplicator picks “isomorphic” y ∈ cla(Y )

Outside: Not Inside

H = clb(X, x), R = clb(X, x) ∩ cla(X)

x ∈ H, x 6∈ R, (R, H) safe

Safe extensions always exist, find y
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Zero-One Law

⇒ Complete Theory

⇒ Countable Model(s)

p = n−α, 0 < α < 1 irrational.

Countable list of safe (R, H)

Countable list of “witness requests”

E.g.: ∃y1,y2842 ∼ y1 ∧ y1 ∼ y2 ∧ y2 ∼ 3712

Use “new” vertices to satisfy each witness re-

quest minimally. Get countable G

Thm: G is Countable Model

Thm: G independent of order of requests

Thm: Theory not ℵ0-categorical
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The Very Sparse Cases

p << n−2: No Edge!

n−2 � p(n) � n−3/2

No tree (or more) on 3 vertices

(for all r)

• r (or more) isolated vertices

• r (or more) isolated edges

ℵ0-Categorical

n−(k+1)/k � p(n) � n−(k+2)/(k+1)

No trees (or more) on k + 2 vertices

All trees on ≤ k + 1 vertices

ℵ0-Categorical

p = n−1+o(1) and p � n−1

All finite trees. No cycles

Not ℵ0-Categorical: May have infinite trees!
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p = c
n

Theory of A with Pr[A] → 1:

• All trees as components

• No bicyclic (or more) subgraphs

Open: Cycles and their Neighborhoods

Countable Models:

All tree components infinitely often

Maybe infinite trees

Maybe unicyclic graphs
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Binary Strings

Models {0,1}∗ = finite strings

Set {1, . . . , n}; unary predicates U0, U1

Uα(x) : x-th position α

=;<; Uα, α = 0,1

There exist two consecutive ones:

∃x∃y[U1(x)∧U1(y)∧(x < y)∧¬∃z(x < z∧z < y)]

Random String U(n, p): Pr[U1(x) = p]
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Ehrenfeucht Semigroup

σ ≡k τ : Duplicator wins EHR[σ, τ ; k]

Equivalence Relation

E = set of equivalence classes

E finite, though very large!

σ ≡k σ′, τ ≡k τ ′ implies σ + τ ≡k σ′ + τ ′

E forms Semigroup under concatenation

e = empty string

mσ = nσ if m, n ≥ 3k
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Convergence for U(n, p)

Ehrenfeucht: limPr[A] exists

k = quantifier depth, E = equivalence classes

Markov Chain!

Initial State e = empty chain

Pr[x → x1] = p; Pr[x → x0] = 1− p

NonPeriodic

Therefore: Stationary Distribution on E

limPr[A] =
∑

limPr[x] over x with A.
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Persistent Strings

Following equivalent for x ∈ Ek:

• ∀y∃zx + y + z = x

• ∀y∃zz + y + x = x

• ∃p∃s∀yp + y + s = x

• x persistent in Markov Chain

x called persistent.

There exist (many) persistent x (very long!)

Persistency not dependent on edge effects

x persistent implies p + x + s persistent

limn Pr[persistent] = 1
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Circular Strings

Over Zn with C(x, y, z) = “clockwise”

No edge effects

Zero-One Law for p constant

Thm (Shelah/JS):

Zero-One Law if n−1/k � p(n) � n−1/(k+1)

Countable Models (StJohn/JS):

p � n−1 Line Z All 0

n−1 � n−1 � n−1/2 Page Z2

One 1 on each “line”

n−1/2 � p(n) � n−1/3 Book Z3

Each page with one line with two 1’s

Volume, Library,. . .
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Coming Attractions

Thursday, 1:30

Analytic Questions

Given Zero-One Law

A with quantifier depth k

Asymptotics of n(k) so that

n ≥ n(k) ⇒ Pr[A] < 0.01 or Pr[A] > 0.99

G(n, p) with p = 1
2:(

n
k

)
2k(1− 2−k)n−k → 0

n = Θ(2kk2)
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Succint Definitions

General First Order Structure

Def: D(G) = smallest quantifier depth

of A that defines G

What is D(G) for random n-element model?

Kim/Pikhurko/Verbitsky/JS

G(n, 1
2) : Θ(lnn)

StJohn/JS:

G<(n, 1
2): Θ(ln∗ n)

BitString U(n, 1
2): Θ(ln lnn)
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