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i. Introduction 

Random access machines (RAMs) are usually defined to have registers that hold integers. 
While this captures in part the structure of a commercial computer, it overlooks an im- 
plementation-dependent feature of most binary oriented machines, namely their ability to 
operate bit by bit on the bit vectors used to represent integers. Typical operations are 
bit-wise Boolean operations (and,or,not, etc.) and shifts by an amount specified in some 
register. These operations are ideal for certain problems, such as dealing with sets 
represented as bit vectors, some parsing algorithms [41 , propositional calculus theorem 
proving, and analysis of sorting networks. A RAM so implemented we shall call a vector 
machine. 

Just as one allows RAM registers to contain any integer, one would like a vector 
machine register to contain any bit pattern, which we may consider to be semi-infinite 
to the left, with the least significant bit at the right-hand end. We shall show that 
the bit operations in such a machine provide a remarkable amount of computing power. In 
fact, we can provide relatively tight upper and lower bounds on the power of vector 
machines in terms of the power of space-bounded Turing machines. Any set accepted in 

space S(n) by a non-deterministic Turing machine may be accepted in time ClS2(n ) 

(some constant c i) by a deterministic vector machine. Conversely, any set accepted in time 

T(n) by a non-deterministic vector machine may be accepted in space c2T2(n) (some 

constant c 2) by a deterministic Turing machine. An immediate corollary is that, on 

a vector machine, the sets accepted in non-deterministic polynomial time can all be 
accepted in deterministic polynomial time. Thus the analogue for vector machines of 
the Cook-Karp P=NP question for Turing machines is settled in the affirmative. 

Vector machines are worth studying for at least two reasons. The fact that they are 
derived from RAMs in such a plausible way should make us more cautious of algorithms 
whose impressive performance is only achieved on a "not-quite-but-almost" standard RAM. 
Now that we know ~his variant is so powerful, we might justifiably steer clear of it. 
Alternatively, we might try to build one. The simple and regular structure of a vector 
(and,not, shifts by powers of two and and a test for zero are a sufficient set of oper- 
ations for them) makes them attractive from a manufactr.ring point of view, unlike Illiac 
IV, whose regular structure appears at such a macroscopic level that semi-conductor 
technology cannot take advantage of it. For the traveling salesman problem and the like, 
construction of sufficiently long vectors may be too expensive at present. For transitive 
closure of Boolean matrices and context-free parsing, for which our techniques yield 

times of O(log2n> and O(log4n) respectively requiring vectors of length O(n 2) and 

O(n 4) respectively, the requisite lengths may be economically feasible. 

This research was supported by the National Science Foundation under research grant 
GJ-34671. 
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2. Definitions 

In this section we describe the essential features of a vector machine. Although 
the motivation in the previous section suggests that a vector machine should simply be 
a RAM with additional bit-wise Boolean and shift operations, we have not succeeded in 
finding any reasonable upper bound on the power of such a machine. The difficulty is 
that very rapidly growing functions may be computed simply by repeatedly shifting a 
vector a distance equal to its value. We have as yet found no use for the particular 
functions so computable; neither have we found a way to compute them in a small amount 
of space on a Turing machine. Hence we distinguish vector registers and index registers, 
the latter being standard RAM equipment containing natural numbers but not bit vectors. 
While this weakens our original motivation, in practical terms it makes vector machines 
more attractive from a constructor's point-of-view since it simplifies the hardware 
associated with a vector register. 

Let us now define the registers, operands, operations, and predicates of a vector 
machine. There are two sets of registers, I0,Ii,I 2 .... (index registers) and V0,VI,V2,.0 , 

(vector registers). For each i, I i contains a non-negative integer while V i contains 

a bit vector semi-infinite to the "left", all but a finite number of whose bits are the 
same. The length of a vector is the number of significant digits in it; thus the lengths 
of 0,i,i0,ii,i00 .... are 0,1,2,2,3 .... respectively. For ~ndirect addressing, II. and 

1 

VI i refer respectively to Ikand V k, where k is the contents of I..1 

The following t~ble summarizes the relevant 

I-constant: 

V-constant: 

I-register: 

V-register: 

I-operand: 

V-operand: 

OperatioD: 

objects and what they may consist of. 

any non-negative integer 

any bit vector semi-infinite to the left 
with all but a finite number of bits the 
same. 

I., , II. , i~0 
1 l 

V. , VI. , i~0 
1 1 

I-constant, I-register 

V-constant, V-register 

I-register ~ I-operand + I-operand 

I-register ~ tI-operand/2J 
V-register - V-operand f V-operand 

(any Boolean function f 
of two variables) 

V-register ~ V-operand ~t I-operand 
(shift left (t) or right (~) by 
value of I-operand). 

Predicate: 
< 

I-operand > I-operand 

> 

V-operand = V-operand 

A vector machine is a set of index and vector registers, and a directed graph each 
of whose edges is labelled with a predicate or an operation as defined above. One ver- 
tex of the graph is distinguished as the start vertex, and a subset of the vertices is 
distinguished as accepting vertices. Informally, a computation of a vector machine is a 
path through its graph starting from the start vertex and proceeding at each step via an 
edge whose predicate is satisfied by the state (register contents) of the machine (as 
defined by the initial state and the computation thus far) or whose operation is used to 
update the state of the machine. Initially, V contains the input and all other re- 

o 
gisters are zero. We leave to the reader the task of formalizing the definition of a 
computation. An accepting computation is a computation whose final vertex is an 
accepting vertex. The time of a computation is its length. The space of a computation 
is the maximum, over all states of that computation, of the sum of the lengths of the 
vectors in each state. 
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A deterministic vector machine is one such that for each machine state and each 
vertex, at most one edge leaving that vertex may be followed when the machine is in 
that state. We shall sometimes refer to vector machines without this restriction as 
non-deterministic vector machines. 

3. Proqramminq Examples 

The complexity results to follow have an abstract flavor that may discourage prac- 
tically minded people from taking vector machines seriously. After all, the theoretician 

who scoffs at a time T 2 simulation loss can scarcely appreciate the economics of the 
world outside. 

To demonstrate that vector machines can operate in valuable time bounds we describe 
linear-time algorithms for establishing satisfiability of propositional calculus formulas 
in conjunctive normal form, and for testing whether a given sorting network works. Floyd 
(conversation) has independently discovered the latter algorithm, and the former arises 
in an obvious way from the method of truth tables, so no particular novelty on our part 
attaches to the method of either; our point is that a linear time bound is possible for 
both problems. We also give a time O(log n) multiplication algorithm for n~n matrices. 

We begin with the satisfiability tester. The method of truth tables is to try every 
combination of assignments of truth values to the variables of the formula, and for each 

assignment to evaluate the truth of the formula. Given n variables, the 2 n evaluations 
may all be carried out in parallel using the bitwise parallelism of the vector machine. 
With each assignment we associate one position in a vector. A uniform way to do this 
is to represent assignments as n-bit integers in the obvious way which in turn directly 
give the corresponding bit position, counting the least significant bit as zero. Then 
the i-th variable's value for assignment j is given by the j-th digit of the 

Vector of 2 n bits formed by repeatedly concatenating copies of the pattern 

021 2 i 
1 . The val'~e of the formula is computed in exactly the same way as when each 

variable is only assigned one truth value, except that all operands are now bit vectors 

of 2 n bits instead of individual truth values. 

The only trick required is the generation of all n patterns for the n variables 
in O(n) steps. This is done in two stages. The pattern for the (n-l)-st variable 

is simply -i 2n-l. The pattern for the j-th variable can be computed in 0(i) steps 

from that for the (j+l)-st variable, by a left shift 23 places and an exclusive or 
(which we write as ~). Hence the two stages, each taking O(n) operations are: 
(i) determine the (n-l)-st variable's pattern; (ii) determine all the others'. 

we now give the details of the program. We assume that the formula to be tested is 
in conjunctive normal form and is in V 0. If the contents of V 0 are expressed in 

octal, the octal digits denote: 2:0, 3:1, 4:A, 5:V, 6:7. No other octal digits may 

appear within the formula. Beyond the formula, all bits of V 0 must be zero. Vari- 

ables are represented as a string of O's and l's (octal 2's and 3's in V0) whose 

reverse represents a binary integer i identifying the variable x.. The formula 
l 

0V~IV01AIV~01 should be parsed to read (XoV ~I v x2) A (x I v x2) (or equivalently, 

its reverse). 

The following program enters an accepting state when started in the start state 
precisely when V 0 contains a satisfiable formula. The high-level notation should be 

self-explanatory. 

A useful '~acre" for most of the algorithms of this paper is one to copy an integer 
from V 0 to R 0 . 

copy : R0,0; 

while V 0 A 6 = 2 do 

(R 0 - 2R0; 

if V 0 A 1 = 1 then R0~R0+I; 

V 0 ~ V 0 ~ 3). 

test for binary digit symbol 

"shift" R 0 left 

Copy the bit in V 0. 

Next symbol 
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Whenever the expression "copy"occurs in a program, the above definition of copy is to 
be substituted for it. 

Another useful macro puts a block of 2 n l's in V 0. 

block n: V 0 ~ i; R 2 ~ i; 

for R 0 from n by -i to 1 do 

V 0 ~ V 0 v (V 0 t R2) ; 

R 2 ~ R 2 + R2). 

Wherever, say, "block RI" appears in a program, it is displaced by the definition, 
with all occurrences o~ "n" replaced by "RI". Clearly "block n" takes O(n) steps. 

At termination, the value of R 2 is 2 n. 

The set of patterns that are repetition of 02Jl 2j for 0 ~ j ~ n are stored in 
the array Rj+ 8 (0~j~n) as follows. We assume n is in whatever register is named when 

we invoke patternset, e.g. we might write "patternset R3" in a program. 

patternset n: block n; R 1 -- R2; 

for R 0 from n+8 by -I to 8 do 

(VR 0 - V0; RI" RI/2; V 0 ~ V 0 • (V0t RI)). 

(Recall that "e" is exclusive-or. 

It is easy to see that "patternset n" takes O(n) steps. Note that R 2 still 

contains 2 n on termination, because of "block n". 

We now give the main program for the satisfiability checker. 
check: First initialize everything 

VI~V0; 

RI~0; 

while V0~0 do 

(copy; 
if R0>R 1 then RI~R0; 

while VoA4~0 do V0~V0~3) 

patternset RI; 
Then evaluate the formula 

V 3 ~ ~ 0; 

V 2 ~ 0 ; 

while V 0 ~ 0 

(copy; R0~R0+8; VI-VR 0 

if V 0 A 7 = 6 then (VI- ~ VI; V0-V0$3) ; If "7" then complement. 

V 2 - V 2 v VI; "OR" into V accummulator 

if VoA3= 0 then (V3--V3AV2; V2~0) "AND" into A accummulator 

V0~V0~3) ; Next symbol 

if (V0~R2)t R2~ V 0 then accept. Test for satisfiability 

Note that "accept" is a vertex, not an edge. It should be clear that the number of 
steps required to check the formula in V 0 is O(~+n), where ~ is the length of the 

formula and n is the variable whose name is the largest. If all variables with names 
less than n appear in the formula, the bound simplifies to 0(~). 

The next algorithm tests networks to ensure that they sort. For our purposes a net- 
work of order n is a sequence of pairs (i,j) satisfying 0 ~ i < j < n. Such pairs 
are called comparators. To apply a network to an array A[0:n-17 means carrying out, 
for each comparator (i,j) in the sequence in turn, the operation "if A[i] > A[j] 
then swap (A[i], A[j])" A network sorts when it may be applied to any array 
A[0:n-l] to yield an ordered array. 

Save a copy of input 

Initialize the "largest variable" reg 

Scan the formula 

Copy variable name to R_. 
Update "largest variable", o 

Skip delimiters 

Build all patterns 

Initialize "A" accumulator to true 

and "V" accumulator to false. 

Scan the formula again 

Get value of variable 
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It is a well-known theorem that a network sorts any array if and only if it sorts any 

array containing only O's and l's. Thus we want to check the 2 n possible such arrays. 

The approach is to simulate the effect of the network, one comparator at a time, on 
all possible inputs. We represent the outcome of each application of a comparator as 

a vector of 2 n bits, whose i-th bit (counting the least significant bit as 0, as 
before) is 1 if and only if, for some initial input A, the binary representation of 
i can appear after this application as the contents of A[0:n-l] (counting A[0] as the 
least significant bit of i). The network sorts if and only if, at the end of the se- 

quence, the only positions k containing l's are of the form k=2n-23 for some integer 

j~0, since only such numbers, when written in binary, are of the form in-303 , corres- 
ponding to a sorted array. 

The idea behind the algorithm is that the effect of a comparator (i,j) on a vector 
representing all possible configurations of A just before application of the comparator 
is very simple. All bits in positions whose binary representation has its i-th bit 1 

and j-th bit 0 are shifted left 23-2 i. positions, corresponding to interchanging the 
1 and the 0. Other bits stay put. 

The bits to be moved may be identified with the same patterns we used in the satis- 

fiability checker; let M k be the vector of 2 n bits formed by repeatedly concatenating 

2 k 2 k 
0 1 , for 0 ~: i < n. Then the entire operation described in the preceding paragraph 
may be carried out on vector V thus: 

M ~ M. A M. (says i is 1 and j is 0) 
i 3 

V- (VAM) v ((VAM) t (2J-2i)). 

At the end of the sequence, the n+l bit positions of the form 2n-2 j are set to 
zero. If V is then zero, the network sorts; otherwise it does not, and we have a re- 
cord of what non-sorted outputs are possible. 

The reader should experience no diffiulty in generating the details of the algorithm, 
whose basic structure is much the same as for the satisfiability checker. 

The constraiDt i<j on a comparator may be relaxed if arbitrary networks are to be 

tested~ In this case, whenever j<i, the shift ~ (2i-23): should be carried out in place 

(2J_2 i ) of t . One criticism of our model might be that registers should hold integers, 
not natural numbers. 

We turn now to the problem of O(log m) time multiplication of m×m Boolean matrices, 
a result we use in the main Theorem in Section 4. Define the "and-or" product C of two 

m×m Boolean matricies A and B by c.. = m~l (a.~ A b~ .) , 0 ~ i,j ~ m-l. We show that 
z3 k~0 iK K 3 

a deterministic vector machine can compute £his product in O(log m~ steps provided that 
A and B are initially received "stored by columns" (or "stored by rows") in two vector 

registers. For simplicity assume m is a power of 2; m = 2 p. 

For the moment, let us assume that A (B) is "stored by rows" in vector register V 
0 

(VI) at positions which~are multiples of m, other bits of V 0 and V 1 being 0. That 

"positionT~f aij (bi~) in V 0 (Vi)" = m2i + mj, 0 ~ i,j ~ m-l. In general is, initially 
J 

when a format for storinga matrix in a vector register is given, we assume all bits of 
the register not being used to store matrix elements are 0. Assume integer m is 
available in some index register. 

In the following programs, the job of writing code which initializes index registers 
2 

will be generally' left to the reader. Other useful integers such as m can be computed 
O(log m) steps by successive doubling. 

tAll logarithms are taken to base 2. 
%t Positions are numbered right to left starting with 0. 
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In order to compute a~ the A-operations of the product in one bit-wise step, we would 
like to construct strings t 

w = (row m-l)m(row m-2)m... (row l)m(row 0) m 
r 

and 
w = ( (col m-l) (col m-2)... (col i) (col 0) )m, 
c 

where "row i" 0 ~ i < m 
= ai,m_lai,m_2...ai,lai, 0 , 

and "col j" = bm_l,jbm_2,j...bl,jb0, j , 0 ~ j < m . 

In order to see how a vector machine can produce w r within O(log m) steps, we first 
view the subproblem of compressing one row of A . Assume initially that 
"position of a. in V0" = mj , 0 ~ j < m . We desire a program at whose conclusion we 

3 
• in V0" = j , 0 ~ j < m , and all other bits of V 0 are 0 . have "position of a 3 

Therefore, a. should be shifted right j(m-l), 0 ~ j < ~i Let @. (j) denote the 
.th 3 ~ 
i bit of the binary representation of j. Writing J =i~0 8i(J) .2 shows that it is 

sufficient for each j to execute (for i = p-l,p-2 ..... 2,1,0, do ( shift aj right 

2~(m-l) iff R~ (j) = 1 )). Of course the program must do this for all j in parallel. 
Consider the ~ollowing program for compressing one row. 

one row: First construct M to be l(m/2)m0(m/2)m. Then 

k I ~ (m/2) (m-l) ; 

k 2 ~ (m/4)m ; 

While k I a m-i do rslide (v0,M). 

The macro "rslide~V,M)" is 

Tslide(V,M): V ~ (VAM) v ((VAM)~k I) ; 

k I ~ kl/2; 

M ~ M~k2; 

k 2 ~ k2/2. 

The dual macro is "islide", where "~kl" becomes "tkl". The effect of these macros 

is to slide (i.e. shift) by an amount k I just those bits of V with matching l's in 

the mask M, and to update M,k I and k 2. 

We now sketch a proof of correctness for one row. Define trunc(j,k) =i~0= Ri(J).2i. 

Consider the following induction hypothesis. 

For k = 1,2,3,...,p, the following conditions hold just before the k th execution 
of "rslide": 

(i). k I = 2 p-k. (m-l) ; 

(2). M = 1 (m/2)m 0 m'2p-k ; 

(3). "position of a.3 in V 0'' = (m-l).trunc(j,p-k) + j,0 ~ j < m; 

and hence 

(4). all a. occur at positions congruent to 0 (mod 2P-k+l). 
3 

The base k=l is obvious. Assume the hypothesis holds for some fixed k and examine 

the effect of the k th execution of "rslide" Note first for all j, 0 ~ j < m: (i) 

8p_k(j) = 1 implies "position of aj" ~ m.trunc(j,p-k) a m.2P-k; and (ii) ~ _k(j) = 0 

implies "position of a." ~ m.trunc(j,p-k) + j ~ m. (2P-k-l) + (m-l) < m.2P-k~ 
3 

Since M = 1 (m/2)m 0 m'2p-k at this time, "rslide" will mask out precisely those 

aj such that 8p_k(j) = 1 and shift these a.3 right by the proper amount ~ = 2P-k.(m-l). 

t t m denotes ttt...t (m times) where t is a string and m is an integer. 
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Moreover, these aj are "ored" back into V 0 at positions congruent to 2 p-k (mod 2P-k+l). 

Therefore, by (4) of the induction hypothesis, no shifted a. is "ored" into a position 

already occupied by some other a. which was not shifted by3this "rslide". This com- 
3 

pletes our description of the details required to prove the above inductive statement 
and thus prove correctness. 

w r is constructed by first compressing all rows in parallel to obtain w r' = 
2 2 2 

(row m-l) 0m-m (row m-2) 0m-m...(row I) 0m-m(row 0) and then copying this string 
appropriately to obtain w r stored in V 0. 

construct w (V0) : First construct M 1 to be (l(m/2)m0(m/2)m)m 
r 

M1 ~ 1 ; 

duD(Ml,l, (m/2)m) ; 

M 1 - M 1 t (m/2)m ; 

dup (Ml,m2,m) ; 

k I ~ (m/2) (m-l) ; 

k 2 ~ (m/4)m ; 

while k I ~ m-i do rslide(V0,Ml); 

Now V 0 contains W'.r 

dup (V0,m,m). 

Given a vector V containing just the word w, with lwl = ~, dup(V,~,n) forms 
n 

w in O(log n) steps, provided n is a power of 2. 

~u_~p(V,~,n): while n>l do 
(v ~ vv(v~L)); 

~ 2~; 
n -- n/2. 

To construct w c we first view the subproblem of compressing the entire contents 

of V 1 to obtain W'c = (col m-l) (col m-2) . . . .  (col i) (col 0) Recall that "position of 

bij in VI" = m2i+mj, and note "position of bij in w'" = mj + i. Therefore bij 
i(m2_l ) c should be shifted right , 0 ~ i,j ~ m-l. A little thought shows that a "scaled 

up by m" version of the previous compression program constructs w' from the contents 
C 

of V 1 . 

construct Wc(Vl) : First construct M 2 to be l(m/2)m20 (m/2)m2 

M 2 ~ 1 ; 

dup(M2,1, (m/2)m 2) ; 

M 2 - M 2 ~ (m/2)m 2 ; 

k I ~ (m/2) (m2-1) ; 

k 2 ~ (m/4)m 2 ; 

while k I m m2-1 do rslide (VI,M2); 

Now V 1 contains w' 

dup(Vl,m2,m) " c 

Correctness of construct w is proven in a way completely analogous to that of 
one row. c 

NOW C = AB is computed by performing V 0 A V 1 (that is w A w ) and then 
r c 

fanning-in the contributions to c.. for all i,j. The following procedure accepts 
13 

matrix inputs and produces the matrix product in the "expanded stored by rows" (position 

(entry(i,j)) = m2i + j) format. 
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matrixprod(V0,Vl) : construct Wr(V0) ; 

construct Wc(V1) ; 

V 0 ~ V 0 ^ V 1 ; 

Construct M 3 to be 

M 3 - 1 ; 

dup(M3,l,m/2) ; 

M 3 ~ M37 m/2 ; 

dup(M3,m,m 2) : 

k I - m/2 ; k 2 ~ kl; 

(im/20m/2)m2 : 

while k I > 1 do rslide(V0,M3). 

V 0 now contains C stored in the proper input format; that is, "position of cij 
2. ii 

in V 0 = m 1 + , and all other bits of V 0 are 0. This is convenient for performing 

a chain of products (as in the transitive closure algorithm to follow). 

Since matrices may be initially available only in some more compressed format, we 
now give procedures which efficiently (within time O(log m)) translate between a "com- 
pressed stored by columns" (position(entry(i,j))= mj + i) format and the proper I/O 
format for matrixprod. The procedures are given without further comment. 

expand(V 0) ; First construct M 4 to be (im/20m/2)m2 : 

k I - (m/2) (m2-1) ; 

k 2 - m/4 ; 

while k I > m2-1 do islide(V0,M4) 

compress(Vl) : This code is the portion of construct w c preceding the comment. 

It is clear that construct w r , construct w c , matrixprod , expand and compress 

all run within time O(log m) These procedures require space O(m 3) 

Remark. These procedures can be easily modified to involve only shifts by powers of 2. 

For example, "$ 2k(m-l) '' can be replaced by "? 2 k'' followed by "$ 2km '' In matrix- 
prod , only a fixed number (six) of vector registers are used. 

We have considered the "and-or" product since it is most compatible with the 
Boolean nature of the model. However, the basic idea carries over to other kinds of 
operations, such as +/× and min/+ matrix multiplication. If the exterior operation 
costs c I and the interior c 2 , then the cost of a matrix multiplication is 

c 2 + O(CllOg m) 

The application for matrix multiplication in the next section involves its use as a 
component of a procedure which computes the closure of an mxm Boolean matrix A 

within O(log2m) steps. The transitive closure of A is defined by 
w 

A = I V A V A 2 V A 3 V ... 

It is easy to see that also A = (I V A) m if A 
A* is therefore to square (I v A) log m times. 
The following algorithm gives the details. 

closure(V0) : First set all aii = 1 . 2Then: 

Construct M 5 to be (0 m l)m: 

M5 - 1 ; 

dup(M 5, m2+l, m) ; 

V 0 ~ V 0 v M 5 ; 

for k 3 from 1 to log m by 1 do 

(V 1 ~ V 0 ; 

matrixprod(V 0, V I) ) 

is m×m. Our approach to computing 
The O(log2m) time bound is immediate. 

Here, closure can be optimized somewhat by constructing masks M I, M 2, M 3 Remark. 
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once and shifting them back to their original positions after each call on matrixprod , 
although this saves at most a constant factor in the time bound. It follows from a 
previous remark that closure can be programmed using only shifts by powers of 2 
Six vector registers are sufficient, or four if masks are not saved. We observe that 

closure consumes time O(log2m) and space 6m 3 distributed over the six vectors 

4. The Characterization 

In the introduction we outlined a fairly tight characterization of time bounded 
vector machines in terms of space bounded Turing machines when the machines are to be 
used for set recognition, as distinct from transduction. The purpose is to state and 
prove (in outline) the characterization and to examine some of its consequences. 

Since vector machines initially receive inputs in vector registers, we assume that 
the sets to be accepted have already been coded into binary; we resolve any possible 
disputes about how long an input really is by requiring an appropriately chosen end- 
marker, whether or not the machine reads it, and apply the definition of length of a 
vector (number of significant digits) to the issue of length of an input. 

The definitions of time and space bounded acceptance by vector machines are 
completely analogous to corresponding definitions for Turing machines and are not 
repeated here. 

~ VM-NTIME (T (n):I ~VM-NSPACE (S (n) :}) 

Let ~VM_DTIME(T(n) k~VM-DSPACE(S(n) denote the classes of sets accepted by 

~ non-deterministi(~ deterministic ~ vector machines within time T(n) (within space S(n) ) where the 

complexity bounds T(n) and S(n) are given as functions of the input length n . Let 
TM-NSPACE(S(n)) , etc. denote corresponding classes for multitape Turing machines with 
separate read-only input. A Turing machine is given input x by writing ¢x¢ initially 
on the input tape with the input head scanning the leftmost ¢ . Assume all such Turing 
machines considered have been programmed never to move the input head outside the domain 
delimited by the endmarkers. The variant with a separate tape is adopted so that it 
makes sense to consider sets being accepted in less than linear space, for example log2n 
space for recognition of context-free languages. 

We are mainly interested in Turing machines as space bounded acceptors. As such, 
their power equals that of more general models of serial computation, for example 
RAM's. That: is, there is a natural definition of "space" for RAM's for which 
TM's and RAM's can simulate one another with at most constant factor space loss. 

In order to state Theorem 1 precisely, a notion of "real-time countability" for 
vector machines is needed. The following suffices. 

Definition. A function F : N - N is VM-countable iff there is a constant c > 0 and 
a deterministic vector machine V F such that for all n 0 if V F is started on any input 

of length n , it runs for time ~ c.F(n) and halts with F(n) in some designated index 
register. 

We do not attempt a characterization of VM-countable functions, but simply note that 

(Flog n]) k for arty integer k ~ 0 is VM-countable, as are all real-time countable 
functions. 

The characterization is stated as two theorems. 

Theorem i. Let S(n) be VM-countable. Then TM-NSPACE(S(n)) ~ UVM-DTIME(c- (S(n)+log n) 2). 
C;o 

Theorem 2. Let T(n) be tape constructable. Then VM-NTIME(T(n))CTM-DSPACE(T(n).(T(n)+Iog n)). 

Before proving these theorems, let us examine some consequences of these results. 
One corollary is that the four complexity concepts [deterministic, non-deterministic] × 
{time, space] are all polynomially related for vector machines. This is in contrast to 
the situation for Turing machines where "DTIME vs SPACE" and "NTIME vs DTIME" are open 
questions. 

Corollary 3. Assume F(n) is VM-countable and tape-constructable and F(n) ~ log n. 

(l) VM-NTIME(F(n)) ~ UoVM-DTIME(c. F4(n)) 

(2) VM-NTIME(F(n)) c UVM-DSPACE(c. F2(n)) 
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(3) VM-NSPACE(F(n)) c ~VM-DSPACE(cF2(n)) 
c~o 

(4) VM-NSPACE(F(n)) c UVM-DTIME(cF2(n)) 
e~o 

Proof of Corollary 3 is implicit in the diagram of Figure 1 . Arrows "-" should be 
read as inclusion "c" . Circled arrows denote trivial inclusions and involve at most a 
constant factor increase in the complexity bound. The exponent 4 in (i) can probably 
be reduced by a direct simulation. If it can be reduced to 2 , we could then say that a 
deterministic X can simulate a non-deterministic Y for any X,Y E [space bounded TM's~ U 
[time bounded VM's}, with the bound being at most squared. 

VM-NTIME ~ ........ ~ ..... VM-DT IME 

Thm 2 I lThm 1 
TM-DSPACE O ~ TM-NSPACE 

Savitch [ 3 

VM-DSPACE O ~ VM-NSPACE 

Figure 1 

Another corollary follows immediately from Theorem i, the fact that all context-free 
languages are in TM-DSPACE(Iog2n), and the fact that all context-sensitive languages are 
in TM-NSPACE (n) [ i~ 

Corollary 4. If L is a context-free language then L E VM-DTIME(Iog4n) If L is a 

context-sensitive language then L E VM-DTIME(n 2) 

An interesting question is the relationship between the time required to perform a 
computation in a deterministic serial fashion and the time required by an unbounded 
parallel method. Can one always obtain a "polynomial in log" time improvement by going 
from serial to parallel computation? If we equate vector machines with parallel computation 
then this question is equivalent to an open question concerning the "DTIME vs SPACE" 
relation for Turing machines. Of course, there is no reason to suppose that vector machines 
are the most powerful possible forms of parallel computers, even to within a polynomial. 

Corollary 5. Let ~ = IT(n) ! T(n) ~ n and (%~kEN)[logkT(n) is VM-countable and tape- 
constructable3} The following statements are equivalent. 

(i) There is a k such that, for all T(n) E ~ , TM-DTIME(T(n)) ~ U VM-DTIME(c-I°g kT(n))- 

(2) There is a k such that, for all T(n) E ~ , TM-DTIME(T(n)) ~¢~°TM-DSPACE(IogkT(n)). 

Cook [ 2 ~ has conjectured that (2) is false, at least in the case where ~ is taken to 
be the class of polynomials. The implication (2) ~ (i) is significant if we view vector 
machines as a reasonable model of unbounded parallel computation. The implication (i) D 
(2) is somewhat weak in that vector machines may not be general enough, as we remarked above. 

Proof of Theorem i. A careful proof is unnecessarily tedious. Our purpose is only to 
outline the general details sufficiently to allow the reader to construct the remainder 
easily. The basic idea is to simulate a space S(n) bounded Turing machine M by first 
constructing the one-step transition matrix for all possible instantaneous descriptions 
(i.d.'s) of M, and then computing the transitive closure of this matrix. Since M can 

enter at most nc S(n) different i.d.'s for some constant c, the transitive closure 
computation requires only time O((S(n) + log n)2). 

Let L E TM-NSPACE(S(n)) . Let M be a non-deterministic TM with one work-tape 
(in addition to the input tape) which accepts L within space S(n) . (There is an 
obvious "real-space" simulation of a multi-tape machine by a one-tape machine.) Assume 
M uses no more than space S(n) on all inputs of length n , for all n . 

Say M has states Q , input alphabet I = [0,i,¢} , and work-tape alphabet F . 

Our formalization of i.d.'s is as follows. An n-i.d, of M is a string of the form 
Tw where T E (00)*. (ii). (00)* ITI = 2n+4 , w E F*.Q.F* , and lwl = 2S(n)+l . Suppose 
M is given input ¢x¢ where x E I.[0,i}* and Ixl = n . Then the n-i.d. 

i-i n-i+2 
= (00) (ii) (00) wlqw 2 where Wl,W 2 E F* and q 6 Q, describes the situation in 
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which M is in state q, w.w 2 is written on the worktape, the worktape head is scanning the 
first symbol of ~2' and± the input head is scanning the i-th symbol of ¢x¢ . The 
initial n-i.d, is (ii) (00)n+l#S(n)q0#S(n) where # denotes the blank tape symbol in F. 

Assume M may accept an input of length n only by entering the unique accepting n-i.d. 

(ii) (00)n+l#S(n)qa#S(n) where qa is an accepting state. 

Let Next M ,denote the one-step transition predicate on the i.d.'s of M . For any 

n, if 6,6' are n-i.d.'s and x 6 1.[0,13", then NextM(x,6,5') iff 6 can reach 6' 

by one step in a computation of M on input ¢x¢ . 

We now describe the operation of a deterministic vector machine V M which simulates 

M . Since M involves possibly large alphabets I,Q,F, we think of vector registers as 
storing character strings rather than just bit strings. This can be implemented by using 
a binary block code. Let Z = IuQuFuR be all the symbols we shall need, and choose integer 

b so that 2b ~ |El ~b 0 b. 
Extend h: Z* ~ [(],li * Choose in theaobviousl-i code way.h: Z - [0,i ; in particular define h(#) = 

,Suppose V M receives input x of length n in register V 0 . As a technical 

convenience, assume V 0 actually contains a slightly coded string P(¢c¢) Define P 

by P(0) = 01 , P(1) = ii , P(¢) = i0, and extend P : I - [0,i~* in the obvious way. 

This precoding can be eliminated although the following proof becomes awkward. Because of 

the precoding we must reconstruct n, the length of the original input x. The reader can 
easily devise a time O(log n) procedure which constructs a string i0 n-I by using the 
fact that P(¢x¢) is of length 2n+4 

Since S(n) is VM-countable, O(S(n)) steps can be taken to obtain S(n) in some 

index register. Let m' = 2 b(2s(n)+l), let n' be the least power of 2 such that 
n' ~ n+2 , and let m = n'm' . These integers n', m', m can now be computed (by successive 
doubling) in other index registers within O(S(n)+log n) steps. 

Next we define bit strings c. , 0 ~ j < m , of length m . Some of these strings 
code n-i.d.'s of M . If 0 ~ i3< n' , 0 ~ z < m' , and j = n'z + i , then 

c~ = 0k(00)n'-i-l(ll) (00)iw where w 6 {0,1~* , lwl = b(2S(n)+l) , w is a binary 
r~presentation (possibly with leading zeroes) of integer z , and integer k is chosen so 
that Icjl = m B 

If 6 = Tw (~ 6 (00)*(ii) (00)* , w 6 F*QF* ) is an n-i.d, of M, then Th(w) is a 
suffix of cj for some j , 0 ~ j < m . In this case we say that cj codes 6 . 

VM'S eventual goal is to construct an m×m Boolean matrix A such that if c i 

codes an n-i.d. 6 of M , then aij=l iff (cj codes an n-i.d. 6' of M and 

NextM(x,6,6') ) If c i does not code an n-i.d., the value of aij is unimportant. 

Since the next goal is to compute A*, V M constructs A in the proper input format for the 
procedure closure described earlier; that is, "position of a.." = m2i+mj 

13 

Thus VM'S first goal is to construct strings v r = (Cm_l)m(cm_2)m... (cl)m(c0)m 
m 

and v c = (Cm_iCm_2...ClC 0) . In outline, the process is: 

(i) First the "w" parts of the [cj~ are constructed in vector register V in 

increasing numerical order, the low order bit of each w occurring at a position equal to 
a multiple of n'~ 2 . 

u 
(2) V is then copied appropriately so that w's begin at each multiple of m , u=l or 2. 

(3) The "(00)*(ii) (00)*" parts are constructed in V ~_~ . 

• . . m-m 20m~m 0m~m (4) Finally the two parts are comblned into V to yleld Cm_10 Cm_ ...c I c O in 

register V within O(log m + log m' + log n) steps , assuming m is a power of 2. 

2 
To construct v we carry out the above with u=2 , giving us m spacing between the 

r 
items, and then do copy(V,m,m). For v c we do the above with u=l , giving us no spacing 

between items, and then do copy(V,m 2,m) Thus these two vectors can be constructed in 
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time O(log m + log n) = O(S(n) + log n) 

Now V M must compute the entries of A . First execute: 

V 0 ~ v0tb(2S(n)+l ) ; 

c o p y ( V o , m , m 2 )  . 
This has the effect of constructing a copy of the input P(¢x¢) "opposite" the 

"(00)*(ii) (00)*" parts of all cj in ~r Say P(¢x¢) = X0XlX2...XnXn+ 1 where xi£{0,1} 2 

For simplicity we view the problem of computing ai0J0 for a particular i0,J0. It should 

be clear that the process for one can be done for all in parallel. The necessary 
tricks are: 
(i) Using v as a mask to select the appropriate character from the input; 

r 
(2) Using copy to"smear" the character over the segment of Vr relevant to aij ; 

(3) Constructing a character that encodes which way the head moved (+l,0,-l,other) ; 
(4) Similarly smearing the head-motion character; 
(5) Inspecting locally and in parallel all neighborhoods of the segment to determine 
whether a legal step has taken place; 
(6) Collecting-that information into one place to constitute a . 

Note that (5) can be done by a series of Boolean operations and I030 short shifts that 
mimic a logic circuit made of 2-input gates whose inputs correspond to such a neighborhood. 
There is no need to check whether legal steps have occurred in two places since the start 
configuration for M has only one place where a legal step can be taken, namely where the 
head is on the work-tape. Of course, the rest of the segment needs to be checked to make 
sure that the tape does not change unpredictably. All of the operations (i) to (5) can be 
carried out in O(log n + log S(n)) steps. 

Given that A has been constructed, all that remains is to form the transitive 
closure of A , and we are done. 

Note that V M uses space O(n2 ds(n)) for some constant d . V M accesses a fixed 

(depending only on M) number of vector and index registers; thus our results hold whether 

we consider VM's with or without indirect addressing. V M can be modified to involve only 
2 

shifts by powers of 2 and still run within time O((S(n)+log n) ) , which may be of value 
to potential VM manufacturers, who might appreciate the simplicity resulting from only 
having to implement shifts by powers of 2 . Even in the algorithms of Section 3 practically 
all shifts could be carried out as shifts by a power of 2 not introducing more than a 
constant factor into the time bounds. 

Proof of Theorem 2. In space T2(n) (where T(n) is the time bound for the simulated 

vector machine V) the simulating Turing machine M V can store the contents of all 

index registers accessed by the vector machine V . It can also store a "choice-sequence", 
which is a list of the decisions made by V (which is non-deterministic), in only space 
T(n) . Thus ~7's outer loop will cycle through all possible choice-sequences, which 
disposes of -- the issue of non-determinism for V . 

For each choice sequence, M V attempts to make progress through V's graph (program), 

consulting the choice sequence where appropriate. It updates and consults index registers 
in the obvious way. It simply ignores vector register operations until it needs to 
evaluate a predicate involving vector registers in order to tell whether it may follow the 
next edge. The strategy is to set up a goal of the form "find(i,j,k)" , where i is the 
i-th bit of V. at step k of the computation. Note that a goal can be represented in 
space T(n). 3 To test, say, V3=0 , it suffices to enumerate "find(i,3,t)" for all 

i ~ 2 T(n) , since vectors cannot get longer than this, assuming that the test is required 
at the t-th step. The test succeeds if and only if all values of "find" return 0 (note 
that this deals automatically with the case when all but finitely many of the bits of V 
are ones). To compute "find" requires, in essence, backtracking through the computation 
and setting up further subgoals at times t-i , t-2 ..... Note that at each time a bounded 
number of subgoals will have to be put on a stack, which introduces a further factor 

of T(n) into our space requirements, bringing the space bound up to T2(n) We leave to 
the reader the task of filling in the details of the recursive subgoal generator. 
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5. Generalization to Transduction 

Theorems 1 and 2 relate the power of Turing machines and Vector machines only for set 
recognition problems. More generally, both types of machines can carry out transductions. 
Both theorems generalize (at least in spirit) to transduction problems• Time constraints 
prohibit our giving proofs in this paper• Proofs will appear elsewhere. 

Let f: i.{0,i}* - i.{0,i}* be a transduction we wish to compute. For simplicity, 
assume f is total. A deterministic vector machine A computes f if A contains a special 
halting vertex v. n (that is, there are no edges directed out of v h) and for x in i{0,i}*, 

if A is started with x in register V 0 , there is a computation which terminates at vertex 

v h and leaves f(x) in register V I. A Turing machine is given a special output tape on 

which to write the result of its transduction. This tape is scanned by a left-moving 
write-only head which may or may not print an output symbol at each step. The notion of 
transduction by Turing machines is straightforward to formalize, as are the notions of 
transductions being computed within time T(n) or space S(n) by vector machines or 
Turing machines (where n is again the length of the input). Attaching the prefix "TR-" 
to a deterministic complexity class (e.g. TR-VM-DTIME(T(n))) defines a corresponding 
complexity class of functions. 

If the space required to write the output is counted as work space, then Theorem 1 
generalizes fairly easily. 

Theorem 3. Let 
( v x ) E I f ( x ) l  ~ s ' l x l ]  
for some constant c . 

f 6 TR-TM-DSPACE (S (n)) 
and (Vn)[ S(n) ~ S' (n) 

• Let S' (n) be VM-countable and satisfy 
. Then f 6 TR-VM-DTIME(c. (S' (n)+log n) z) 

However note that it makes sense to consider a function f being computed within space 
S(n) where If(x) I grows much faster than SIx I . For example, consider the integer 
multiplication function fm which produces the binary representation of the product of 

the first and last halves of its argument, each interpreted as a binary number. It is not 
hard to see that fm E TR-TM-DSPACE(Iog n). However If(x) I = Ixl-i for many inputs x . 

With more work one can show the following. 

Theorem 4. Let S(n) be VM-countable. 
Then TR-TM-DSPACE(S(n)) ~ U TR-VM-DTIME(c(S(n)+Iog n) 3) 

The exponent 3 , which is the best we presently know, may be improvable• 

The proof of Theorem 2 extends easily to transduction. 

Theorem 5. Let T(n) be tape constructable. 
Then TR-VM-DTIME(T(n)) ~ TR-TM-DSPACE (T (n) (T(n)+log n)) 
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