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LP 

A quick reminder,
to get the basics in mind.
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Formulas and Axioms

Due to Sergei Artemov
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Proof Polynomials
• variables, x, y, . . . , intended to range over

proofs

• constants, a, b, . . . , for axioms
(more generally, for obvious facts)

• proof checker, if t proves A then !t proves that
t proves A

• union, + joins two proofs together

• application, if s proves A ⊃ B and t proves
A then s · t proves B
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Formulas

• Propositional letters are formulas

• ‘Falsehood’ is a formula

• If X is a formula and t is a proof polynomial 
then t:X is a formula

• Build up using implication (with other 
connectives defined, say)
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Axioms

Axioms:

• all classical tautologies

• t:(X ⊃ Y ) ⊃ (s:X ⊃ (t · s):Y )

• t:X ⊃ X

• t:X ⊃!t:t:X

• s:X ⊃ (s + t):X t:X ⊃ (s + t):X
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Rules

• Modus Ponens

• c:X where X is an axiom
and c is a proof constant
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LP and S4
LP proofs become S4 proofs when one replaces

 every proof polynomial by .

S4 theorems convert into LP theorems
under some replacement of  with proof polynomials.

Realization Theorem
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LP Semantics

Kripke-style
Fitting (2004),

based on an earlier semantics
Mkrtychev (1997).
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Frames

Standard S4 frames, transitive and reflexive.
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Possible Evidence

A proof polynomial counts as
possible evidence for some formulas,

but not for others, at states.

Possible evidence is not certain evidence.
Think of it as an expression of relevance.
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Evidence Conditions

Closure conditions on proof polynomials.

I’ll give the details later, when QLP is presented.
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Weak Models
Truth at worlds is like in S4, except:

M, Γ ! (t:X) iff t is evidence for X at Γ,
andM, ∆ ! X for every ∆ accessible from Γ.

This amounts to Justified true belief.

13



Key Condition

The condition intuitively says that
t:X is true at a state provided

X is potentially known,
and t serves as possible evidence for X

at that state.
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Fully Explanatory
A weak LP model M is Fully Explanatory

provided that, whenever M, ∆ ! X for every
∆ ∈ G such that ΓR∆, then for some proof
polynomial t we have M, Γ ! (t:X).

Intuitively, if X is knowable at a state, there is
a reason for X.

If M is a weak LP model, and if the Fully
Explanatory condition is also met, thenM is a
strong LP model.
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Strong Completeness

If the constant specification provides
constants for exactly the axioms:

X is valid in all weak models
iff

X is valid in all strong models
iff

X has an axiomatic proof
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QLP
Quantified Logic of Proofs

If  is something like
there is a proof of X

why not permit quantification
and make this explicit?

(Fitting, work in progress)
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Syntax
Allow quantification, (∀x)X
where x is a proof variable.

Add new proof polynomial, (t ∀ x),
intended to justify (∀x)X if
t justifies instances of X.

Replace proof constants by primitive
proof terms f (x1, . . . , xn), variables allowed.

If f (x) is a possible reason for ϕ(x) then
f (t) is a possible reason for ϕ(t).
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Axioms

The usual:

1. Classical tautologies.

2. t:(X ⊃ Y ) ⊃ (s:X ⊃ (t·s):Y )

3. t:X ⊃ X

4. t:X ⊃ !t:(t:X)

5. s:X ⊃ (s+t):X and t:X ⊃ (s+t):X
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More Axioms
More of the usual:

6. (∀x)ϕ(x) ⊃ ϕ(t), for any proof term t that
is free for x in ϕ(x).

7. (∀x)(ψ ⊃ ϕ(x)) ⊃ (ψ ⊃ (∀x)ϕ(x)), where
x does not occur free in ψ.

And a uniformity formula. Assume y does not
occur free in t or ϕ.

8. (∃y)y:(∀x)t:ϕ ⊃ (t ∀ x):(∀x)ϕ.
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To conclude we have a proof of (∀x)ϕ(x), it
is not enough to have a proof of each instance,
expressed by (∀x)(∃y)y:ϕ(x).

We want that each instance of ϕ(x) has a
uniform proof, (∀x)t:ϕ(x).

And we should have a proof of this,
(∃y)y:(∀x)t:ϕ.

Then conclude we have a proof of (∀x)ϕ(x),
which we can calculate from the uniform proof
of instances of ϕ(x), (t ∀ x):(∀x)ϕ.

(∃y)y:(∀x)t:ϕ ⊃ (t ∀ x):(∀x)ϕ
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Rules
Modus Ponens

X, X ⊃ Y

Y

Justified Universal Generalization
t:ϕ(x)

(t ∀ x):(∀x)ϕ(x)

Axiom Necessitation if X is an axiom and
p is a primitive proof term

p:X
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Internalization
Derived Inference Rule:

X

p:X

For some proof polynomial p

In fact, p ‘reflects’ the proof of X

23



The proof is by induction on 
proof length.

It is an easy extension of a similar 
result for LP.
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Universal Generalization
(Derived Rule)

ϕ(x) (assumed provable)

p:ϕ(x) (for some p)

(p ∀ x):(∀x)ϕ(x) (justified U. G.)

(p ∀ x):(∀x)ϕ(x) ⊃ (∀x)ϕ(x) (axiom 3)

(∀x)ϕ(x) (modus ponens)
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A Non-Theorem

(∀x)(∃y)y:ϕ(x) ⊃ (∃y)y:(∀x)ϕ(x)

This is actually a version of an
omega rule.

Proof of non-theoremhood later.

26



And a Theorem

t:(∀x)(∃y)y:ϕ(x) ⊃ (∃y)y:(∀x)ϕ(x)

and hence

(∃z)z:(∀x)(∃y)y:ϕ(x) ⊃ (∃y)y:(∀x)ϕ(x)
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Proof
y:ϕ(x) ⊃ ϕ(x) (axiom 3)

(∃y)y:ϕ(x) ⊃ ϕ(x) (standard quantifier stuff)

(∀x)(∃y)y:ϕ(x) ⊃ (∀x)ϕ(x) (more of the same)

p:[(∀x)(∃y)y:ϕ(x) ⊃ (∀x)ϕ(x)] (derived rule)

p:[(∀x)(∃y)y:ϕ(x) ⊃ (∀x)ϕ(x)] ⊃
[t:(∀x)(∃y)y:ϕ(x) ⊃ (p · t):(∀x)ϕ(x)] (ax. 1)

t:(∀x)(∃y)y:ϕ(x) ⊃ (p · t):(∀x)ϕ(x) (M. P.)

t:(∀x)(∃y)y:ϕ(x) ⊃ (∃y)y:(∀x)ϕ(x)
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Semantics

Start with a frame, as with LP.

〈G,R〉

States Accessibility:
reflexive,
transitive
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More Abstract than LP
Domain function D
maps members of G to non-empty sets, reasons.

Reasons depend on the state.

Domain functions are monotonic,
ΓR∆ implies D(Γ) ⊆ D(∆).
Reasons are not tenuous.

D is ∪Γ∈GD(Γ) (the frame domain)
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Interpretations
I assigns to n-place primitive function symbol f
an n-place function fI : Dn→ D.

I assigns to the one-place function symbol ! a
mapping !I : D → D.

I assigns to the two-place function symbol · a
binary operation ·I : D ×D → D,
and similarly for +.
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And for quantification
I assigns to ∀ a mapping ∀I from the function
space of D to D itself.

∀I : (D → D) → D

The rough idea: if ϕ(x) is a formula
and f (x) provides a reason for ϕ(x)
‘uniformly’ for each x,
then ∀I(f ) is a reason for (∀x)ϕ(x).
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Closure Conditions

For each Γ ∈ G, D(Γ) is closed under:

• fI for every primitive function symbol f

• ·I
• !I

• +I
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Valuations
A map v from proof variables to members of D.

Each proof term t maps to a member of D by:

• xv = v(x) for x a variable

• f (t1, . . . , tn)v = fI(tv1, . . . , t
v
n) for f a prim-

itive function symbol

• (t · u)v = (tv ·I uv)

• (t + u)v = (tv +I uv)

• (!t)v =!I(tv)
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More on Valuations
• Suppose tw has been defined.

For each variable x, define a mapping,
(x → tv) : D → D as follows. For each
r ∈ D, (x → tv)(r) is tw where w = v

(x
r

)
.

• (t ∀ x)v = ∀I(x → tv)

Suppose that for every proof variable y occurring
in t, other than x, v(y) ∈ D(Γ). Then it is
required that (t ∀ x)v ∈ D(Γ).
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Evidence Functions

An evidence function E is a map that assigns
to each Γ ∈ G, to each r ∈ D, and to each
valuation v, a set E(Γ, r, v) of formulas.

Think of the members of E(Γ, r, v) as the formu-
las that r provides possible evidence for, in state
Γ, using v to supply values for the free variables
of the formulas.
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Evidence Conditions
• If r /∈ D(Γ) then E(Γ, r, v) = ∅.
• ΓR∆ implies E(Γ, r, v) ⊆ E(∆, r, v)

(evidence is monotonic).

• (X ⊃ Y ) ∈ E(Γ, r, v) and X ∈ E(Γ, s, v)
implies Y ∈ E(Γ, (r ·I s), v)
(application).

• If X ∈ E(Γ, r, v) and t is any proof term such
that tv = r, then t:X ∈ E(Γ, !I(r), v)
(proof checker).

• E(Γ, r, v) ∪ E(Γ, s, v) ⊆ E(Γ, (r +I s), v)
(choice).
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• If v and w agree on the free variables of X,
then X ∈ E(Γ, r, v) iff X ∈ E(Γ, r, w)

• Let t be a proof term, and suppose that for
every ∆ ∈ G with ΓR∆,
and for every r ∈ D(∆),
X ∈ E(∆, (x → tv)(r), v

(x
r

)
).

Then (∀x)X ∈ E(Γ, (t ∀ x)v, v).
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Truth Definition
•M, Γ !v P ⇐⇒ Γ ∈ V(P )

for propositional P (arbitrary specification)

•M, Γ !!v ⊥

•M, Γ !v X ⊃ Y ⇐⇒
M, Γ $!v X or M, Γ !v Y

•M, Γ !v (∀x)ϕ ⇐⇒M, Γ !w ϕ for every
w where w = v

(x
r

)
and r ∈ D(Γ)

•M, Γ !v (t :X) ⇐⇒ X ∈ E(Γ, tv, v) and
M, ∆ !v X for every ∆ ∈ G such that ΓR∆
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Models
What was just defined is a weak model.

A strong model is also fully explanatory, where:

if X is meaningful at state Γ, and M, ∆ !v X
for every ∆ ∈ G such that ΓR∆, then
X ∈ E(Γ, r, v), for some r ∈ D(Γ).

Informally, this says that if X is known in the
Hintikka sense, then X has a reason.
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An Example
Here is an example of a QLP model.

I’m interested in a formula that does not involve 
+, !, etc., so I won’t specify an interpretation.

And I’ll be somewhat informal about valuations. 
I’ll use members of the model domain as if they 

were constants in the language.

41



Γ

∆

1

1,2

! P

! P

E(Γ, 1, v) = E(∆, 1, v) = all formulas

E(Γ, 2, v) = E(∆, 2, v) = ∅
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P ∈ E(Γ, 1, v) and P ∈ E(∆, 1, v)

Γ ! P and ∆ ! P

so

Γ ! 1:P and ∆ ! 1:P
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1:1:P ∈ E(Γ, 1, v) so Γ ! 1:1:P

so Γ ! (∃y)y:1:PD(Γ) = {1}

D(Γ) = {1} Γ ! (∀x)(∃y)y:x:Pso
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P /∈ E(∆, 2, v) so ∆ "! 2:P

D(∆) = {1, 2} so ∆ !! (∀x)x:P

so Γ !! 1:(∀x)x:P

D(Γ) = {1} so Γ !! (∃y)y:(∀x)x:P
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Γ !! (∀x)(∃y)y:x:P ⊃ (∃y)y:(∀x)x:P

or, taking x:P to be ϕ(x),

Γ !! (∀x)(∃y)y:ϕ(x) ⊃ (∃y)y:(∀x)ϕ(x)

which was a formula that was mentioned earlier.
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Results

Just a sketch.

Proofs omitted.
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Soundness and 
Completeness

Provablity coincides with
validity in weak models

and with
validity in strong models.

Completeness is by a kind of Henkin argument
giving a ‘canonical’ term model.
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Conservativeness
QLP conservatively extends LP.

Of course some adjustment must be made
for the shift from proof constants

to more complex
primitive proof terms.

Not a big deal.

The proof is largely semantic.
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Embedding

S4 embeds in QLP, translating “necessity” by 
“there exists a proof of...”

Also primarily a semantic proof. 
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For Example

!P ⊃ !!P

becomes the QLP theorem

(∃x)x:P ⊃ (∃x)x:(∃y)y:P

Of course QLP has theorems that are not
translates of LP theorems.
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Hopes for the Future

Combine QLP with a multi-agent logic of
knowledge, Hintikka-style.

Introduce an operator Ki for each ‘knower’.

But still allow reasons, with quantifiers over them.
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We could distinguish between agent i knowing
X has a reason, Ki(∃x)x:X, and agent i having
a reason for X, (∃x)Kix:X

We could say agent i has a reason for X, and j
knows this, without having to say that j knows
what the reason is, (∃x)Kix:X ∧Kj(∃x)Kix:X

We could say agent j knows there is a reason for
X, but does not know what it is,
Kj(∃x)x:X ∧ ¬(∃x)Kjx:X
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Perhaps we also want to consider separate 
domains.

Or maybe that just gets too complex?

“The awful thing about life is that everyone 
has their reasons.”

This assumes a common domain of 
reasons, for all agents.
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But

That is for future work.

Thank you.
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