INTRODUCTION TO DATA MINING: DATA PREPROCESSING

Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy chiara.renso@isti.cnr.it

WHAT IS DATA?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
 Collection of attributos
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

	Attributes							
		Tid	Refund	Marital Status	Taxable Income	Cheat		
(1	Yes	Single	125K	No		
		2	No	Married	100K	No		
		3	No	Single	70K	No		
	4	4	Yes	Married	120K	No		
J	Ę	5	No	Divorced	95K	Yes		
	6	6	No	Married	60K	No		
	-	7	Yes	Divorced	220K	No		
	8	8	No	Single	85K	Yes		
	Ş	9	No	Married	75K	No		
		10	No	Single	90K	Yes		

TYPES OF ATTRIBUTES

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

DISCRETE AND CONTINUOUS ATTRIBUTES

• Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight.
 - Practically, real values can only be measured and represented using a finite number of digits.
 - Continuous attributes are typically represented as floatingpoint variables.

TYPES OF DATA SETS

• Record

- Data Matrix
- Document Data
- Transaction Data

• Graph

- World Wide Web
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Sequential Data
- Genetic Sequence Data

IMPORTANT CHARACTERISTICS OF STRUCTURED DATA

- Dimensionality
 - Curse of Dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale

Record Data

• Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Marrie d	100K	Νο
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	Νο
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

DATA MATRIX

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

DOCUMENT DATA

• Each document becomes a `term' vector,

- each term is a component (attribute) of the vector,
- the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	n <u>K</u> .	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TRANSACTION DATA

• A special type of record data, where

- each record (transaction) involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

11

GRAPH DATA

• Examples: Generic graph and HTML Links

 Data Mining

 Graph Partitioning

 Parallel Solution of Sparse Linear System of Equations

 N-Body Computation and Dense Linear System Solvers

CHEMICAL DATA

• Benzene Molecule: C₆H₆

• Sequences of transactions

Items/Events (AB) (D) (CE) (BD) (C) (E) (CD) (B) (AE)

An element of the sequence

ORDERED DATA

• Genomic sequence data

GGTTCCGCCTTCAGCCCGCGCCC CGCAGGGCCCGCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGGCG GGGGGAGGCGGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC

ORDERED DATA

• Spatio-Temporal Data

Average Monthly Temperature of land and ocean

Trajectories of Moving Objects Data Mining Course - UFPE - June 2012

Data Mining Course - UFPE - June 2012

16

DATA QUALITY

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

NOISE

• Noise refers to modification of original values

 Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

17

0.8

OUTLIERS

• Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

DEVIATION/ANOMALY DETECTION

- Outliers are useful when we need to detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection

• Network Intrusion Detection

MISSING VALUES

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases
 (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

DUPLICATE DATA

• Data set may include data objects that are duplicates, or almost duplicates of one another

- Major issue when merging data from heterogeous sources

• Examples:

- Same person with multiple email addresses

• Data cleaning

- Process of dealing with duplicate data issues

DATA PREPROCESSING

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

AGGREGATION

• Combining two or more attributes (or objects) into a single attribute (or object)

• Purpose

- Data reduction
 - ◆ Reduce the number of attributes or objects
- Change of scale
 - ◆ Cities aggregated into regions, states, countries, etc
- More "stable" data
 - ◆ Aggregated data tends to have less variability

SAMPLING

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

25

SAMPLING ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

8000 points

500 Points

CURSE OF DIMENSIONALITY

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful.

DIMENSIONALITY REDUCTION

• Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

FEATURE SUBSET SELECTION

• Reduce dimensionality of data

Remove:

• Redundant features

- duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid

• Irrelevant features

- contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

30

FEATURE SUBSET SELECTION

• Techniques:

- Brute-force approch:
 - ◆Try all possible feature subsets as input to data mining algorithm
- Embedded approaches:
 - ◆ Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches:
 - ◆ Features are selected before data mining algorithm is run