

Towards an Ubiquitous and Context Sensitive Public Transportation System

Vaninha Vieira vaninha@dcc.ufba.br Luiz Rodrigo Caldas lrrcaldas@gmail.com Ana Carolina Salgado acs@cin.ufpe.br

Existing Approaches

ITS to improve passenger information

- e.g. Google Maps, OnibusRecife.com, SPTrans...
 - Information is static and do not consider the context dynamicity
 Algorithms, models and tools are proprietary
- Context sensitive ITS still an open issue
 - Few approaches found
 - Sustainable transport (Froehlich et al, 2009)
 - Integrated navigation (Kruger et al, 2004)
 Road safety (Gregoriades, 2007)
 - Road Salety (Gregoriades, 2007)
 - People with disabilities (Carmien et al., 2005)

Our proposal – Objectives

UbiBus System

- Integrated ubiquitous context-sensitive ITS system
- Characteristics
 - Open solutions (models, algorithms, tools, middleware)
 - Focus on passengers of public transportation
 - particularly buses on urban areas of big cities
 - Real-time dynamic information to support decision making
 - Accessible from multiple devices

Contextual Elements for YCT								
Entity	Contextual Element	Context Source	Acquisition	Description				
Station	Location	GPS	Acquired (Static)	Georeferenced location				
Bus	Location	GPS	Acquired (Dynamic)	Georeferenced location				
Bus	Avg Speed	YCT	Calculated (Dynamic)	Average speed of a bus calculated from stretches it passed by				
Bus	Line	Bus operator	Provided (Static/ Dynamic)	Current line a bus is allocated to				
Bus	Latest Station	Sensor	Acquired (Dynamic)	Previous station a bus has just passed by				
Bus	Distance to next station	YCT	Calculated (Dynamic)	Distance from a bus current location to the next station in its route				
Bus	Time to next station	YCT	Calculated (Dynamic)	Estimated time from a bus to arrive on the next station in its route.				
Stretch	Avg Speed	YCT	Calculated (Dynamic)	Average speed of a stretch - from buses speed that recently passed by				
Stretch	Traffic Level	YCT	Calculated (Dynamic)	The traffic level intensity on a stretch (low, moderate, high).				
				12				

YCT Evaluation Scenario and Methodology

- Simulated a scenario with real data
- Collected from the city of Salvador
 Define a bus route composed by existing bus station
 - Acquire bus stations geo locations – GPS
 Register static data about the
 - defined route in a database

YCT Evaluation Scenario and Methodology

- Simulated the dynamic bus movement in our defined route
 - 1. Install GPS in a car
 - 2. Drive the car on the route performing speeds and stops similar to buses
 - Repeat step 2 in different times of the day simulating situations and scenarios Rush hour: high traffic Late at night: low traffic

Found Results on YCT Evaluation

Distance	D	ay	Night	
to the next Station (km)	Estimated Arrival Time (min.)	Difference Estimated x Real (mm:ss)	Estimated Arrival Time (min.)	Difference Estimated x Real (mm:ss)
3,3	6,8	01:48	4,9	00:28
2,9	6,2	00:24	-	-
2,3	4,6	00:00	-	-
1,9	-	-	2,5	00:04
1,3	2,2	00:24	-	-
0,5	1,2	00:36	-	-
0,4	-	-	0,6	00:10

Comparing our results with Google Maps

Update Time	Distance to Next Stop (km)	Difference Between Reality (m	Difference between Your City on Time and Google						
		Your City on Time	Google Maps	Maps					
12:41	3,3	01:48	03:36	01:48					
12:43	2,9	00:24	02:36	02:12					
12:45	2,3	00:00	01:36	01:36					
12:47	1,3	00:24	01:36	01:12					
12:49	0,5	00:36	00:10	-00:26					
12:51	-	-	-	-					

Static information

Do not consider context variations

Conclusions

- UbiBus project contributions
 - Solutions to support passengers' decisions
 - Different types of applications and information
 - Availability on different devices
 - Open models, algorithms and tools.
 - Usage of standard protocols
 - Middleware to support different applications development
- Preliminary experiments with Your City on Time prototype
 - Showed that context information aids providing more accuracy in estimating a bus arrival time

Further Work

- Work in progress
 - Effort involves researchers from several institutions
 Academy and industry
 - · We expect to use real data from the cities of Salvador and Recife
- Current work
 - Specification and development of
 - The five levels of UbiBus architecture
 - The Middleware for Ubiquitous Context-Sensitive ITS
 - Evolution of YCT application to support other devices
 - Web, Mobile phones and social networks (Facebook and Twitter)
 Investigation of crowdsourcing, collaborative maps and information sharing using social networks

Towards an Ubiquitous and Context Sensitive Public Transportation System

Vaninha Vieira vaninha@dcc.ufba.br Luiz Rodrigo Caldas Irrealdas@gmail.com Ana Carolina Salgado acs@cin.ufpe.br

Our proposal – The UbiBus System

Research Question:

 How Context and Ubiquity can improve ITS systems to better support passengers decisions?

Main Objective

To specify and develop smart solutions to support public transportation users, particularly those in urban areas

Characteristics:

- Integrate methods and techniques from several areas: Ubiquitous Computing, Context Sensitive Systems, Middleware and Geographical Information Systems
- Develop an integrated system with computational solutions, such as: Personalized information, recommendations, and information sharing through social networks

Issues Related to Using Context

- When designing a Context-Sensitive ITS
 - an emphasis should be given to the analysis of how users (should) interact with the system and how they expect the system to act on their behalf
 - · Designers need to deal with issues associated to:
 - which information to consider as context
 - how to represent it
 - how to manage it and
 - how to integrate context usage into the system

22

Related Work

Differs from existing ones on focus and scope

- Sustainable transport (Froehlich et al, 2009)
- Integrated navigation (Kruger et al, 2004)
- Road safety (Gregoriades, 2007)
- People with disabilities (Carmien et al., 2005)

23