In a large software system knowing which files are most likely to be fault-prone is valuable information for project managers. They can use such information in prioritizing software testing and allocating resources accordingly. However, our experience shows that it is difficult to collect and analyze fine-grained test defects in a large and complex software system. On the other hand, previous research has shown that companies can safely use cross-company data with nearest neighbor sampling to predict their defects in case they are unable to collect local data. In this study we analyzed 25 projects of a large telecommunication system. To predict defect proneness of modules we trained models on publicly available Nasa MDP data. In our experiments we used static call graph based ranking (CGBR) as well as nearest neighbor sampling for constructing method level defect predictors. Our results suggest that, for the analyzed projects, at least 70% of the defects can be detected by inspecting only (i) 6% of the code using a Naïve Bayes model, (ii) 3% of the code using CGBR framework.

1. Introduction

Software testing is one of the most critical and costly phases in software development. Project managers need to know “when to stop testing?” and “which parts of the code to test?”. The answers to these questions would directly affect defect rates and product quality as well as resource allocation (i.e. experience of test staff, how many people to allocate for testing) and the cost.

As the size and complexity of software increases, manual inspection of software becomes a harder task. In this context, defect predictors have been effective secondary tools to help test teams locate potential defects accurately (Menzies, Greenwald, & Frank, 2007). These tools are built using historical defect databases and are expected to generalize the statistical patterns for unseen projects. Thus, collecting defect data from past projects is the key challenge for constructing such predictors.

In this paper, we share our experience for building defect predictors in a large telecommunication system and present our initial results. We have been working with the largest GSM operator (~70% market share) in Turkey, Turkcell, to improve code quality and to predict defects before the testing phase. Turkcell is a global company whose stocks are traded in NYSE and operates in Turkey, Azerbaijan, Kazakhstan, Georgia, Northern Cyprus and Ukraine with a customer base of 53.4 million. The underlying system is a standard 3-tier architecture, with presentation, application and data layers. Our analysis focuses on the presentation and application layers. However, the content in these layers cannot be separated as distinct projects. We were able to identify 25 critical components, which we will refer to throughout this paper.

We used a defect prediction model that is based on static code attributes like lines of code, Halstead and McCabe attributes. Some researchers have argued against the use of static code attributes claiming that their information content is very limited (Fenton & Neil, 1999). However, static code attributes are easy to collect, interpret and many recent research have successfully used them to build defect predictors (Menzies, Greenwald et al., 2007; Menzies, Turhan, & Distefano, 2007; Turhan & Bener 2007; Turhan & Bener 2008). Furthermore, the information content of these attributes can be increased i.e. using call graphs (Kocak, Turhan, & Bener, 2008a; Kocak, Turhan, & Bener, 2008b). Kocal et al. show that integrating call graph information in defect predictors decreases their false positive rates while preserving their detection rates. Previously, Turkcell did not use company-wide policies for collecting and analyzing such metrics. In our research, we have collected these metrics from the abovementioned 25 projects. We have also collected the static call graphs for these projects.

The collection of static code metrics and call graphs can be easily carried out using automated tools (Menzies, Greenwald et al., 2007; Menzies, Turhan et al., 2007; Turhan & Bener 2008). However, as we mentioned earlier, matching these measurements to software components is the most critical factor for building defect predictors. Unfortunately, in our case, it was not possible to match...
past defects with the software components in the desired granularity, module level, where we mean the smallest unit of functionality (i.e. Java methods, C functions). Previous research in such large systems use either component or file level code churn metrics to predict defects (Bell, Ostrand, & Weyuker 2006; Nagappan & Ball, 2006; Ostrand & Weyuker, 2002; Ostrand, Weyuker, & Bell 2005; Ostrand, Weyuker, & Bell, 2004; Ostrand, Weyuker, & Bell, 2007; Zimmermann & Nagappan, 2006). The reason is that file level is the smallest granularity level that can be achieved. For example, Nagappan, Ball and Zimmermann analyze Microsoft software in component level and Ostrand, Weyuker and Bell analyze AT&T software in file level to report effective predictors used in practice. However, defect predictors become more precise as the measurements are gathered from smaller units (Ostrand et al., 2007).

Therefore, we decided to use module level cross-company data to predict defects for Turkcell projects (Menzies, Turhan et al., 2007). Specifically, we have used module level defect information from NASA MDP projects to train defect predictors and then obtained predictions for Turkcell projects. Previous research have shown that cross-company data gives stable results and using nearest neighbor sampling techniques further improves the prediction performance when cross-company data is used (Menzies, Greenwald et al., 2007; Menzies, Turhan et al., 2007; Turhan & Bener, 2008). Our experiment results with cross-company data on Turkcell projects, estimate that we can detect 70% of the defects with a 6% LOC investigation effort.

While nearest neighbor algorithm improves the detection rate of predictors built on cross-company data, false alarm rates remain high. In order to decrease false alarm rates, we included the call graph based ranking (CGBR) framework in our analysis based on our previous research. We used graph based ranking (CGBR) framework (Kocak et al., 2008a; Kocak et al., 2008b) to software modules. Using CGBR framework improved our estimated results such that the LOC investigation effort decreased from 6% to 3%.

The rest of the paper is organized as follows: In section 2 we briefly review the related literature, in Section 3 we explain the project data. Section 4 explains our rule-based analysis. Learning based model analysis is discussed in Section 5. The last section gives conclusion and future direction.

2. Related work

Ostrand and Weyuker have been performing similar research for AT&T and they also report that it is hard to conduct an empirical study in large systems due to difficulty in finding the relevant personnel and the high cost of collecting and analyzing data (Ostrand & Weyuker, 2002). Nevertheless, there are notable research in large software systems (Adams, 1984; Basili & Perricone, 1984; Bell et al., 2006; Fenton & Ohlsson, 2000; Menzies, Greenwald et al., 2007; Menzies, Turhan et al., 2007; Ostrand & Weyuker, 2002; Ostrand et al., 2004; Ostrand et al., 2005; Ostrand et al., 2007). Fenton and Ohlsson presented results of an empirical study on two versions of a large-scale industrial software, which showed that the distribution of the faults and failures in a software system can be modeled by Pareto principle (Fenton & Ohlsson, 2000). They claimed that neither size nor complexity explain the number of faults in a software system. Other researchers found interesting results showing that small modules are more fault-prone than larger ones (Koru & Liu, 2005a; Koru & Liu, 2005b; Malaiya & Denton, 2000; Zhang 2008). Our results will also show evidence in favor of this fact.

As mentioned, Ostrand, Weyuker and Bell also worked with large telecommunications software systems in AT&T (Bell et al., 2006; Ostrand & Weyuker, 2002; Ostrand et al., 2004; Ostrand et al., 2005; Ostrand et al., 2007). They predicted fault-prone files of the large software system by using a negative binominal regression model. They report that their model can detect 20% of the files that contain 80% of all faults. Similarly, Nagappan, Ball and Zimmermann analyzed several Microsoft software components using static code and code churn metrics to predict post-release defects. They observed that different systems could be best characterized by different sets of metrics (Nagappan & Ball, 2006; Zimmermann & Nagappan, 2006).

Our work differs at a large extent from previous work. Ostrand, Weyuker and Bell carried out the most similar work to this research, where they used file level measurements as a basic component. However, we prefer using modules, since modules provide finer granularity. They have collected data from various releases of projects and predict post-release defects, whereas we have data from single release of 25 projects and we try to predict pre-release defects.

<table>
<thead>
<tr>
<th>project</th>
<th># modules</th>
<th>features</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trell 1</td>
<td>572</td>
<td>29</td>
<td>6206</td>
</tr>
<tr>
<td>Trell 2</td>
<td>3089</td>
<td>29</td>
<td>80941</td>
</tr>
<tr>
<td>Trell 3</td>
<td>3963</td>
<td>29</td>
<td>45323</td>
</tr>
<tr>
<td>Trell 4</td>
<td>260</td>
<td>29</td>
<td>5803</td>
</tr>
<tr>
<td>Trell 5</td>
<td>2698</td>
<td>29</td>
<td>53690</td>
</tr>
<tr>
<td>Trell 6</td>
<td>155</td>
<td>29</td>
<td>4526</td>
</tr>
<tr>
<td>Trell 7</td>
<td>120</td>
<td>29</td>
<td>5423</td>
</tr>
<tr>
<td>Trell 8</td>
<td>4320</td>
<td>29</td>
<td>79114</td>
</tr>
<tr>
<td>Trell 9</td>
<td>350</td>
<td>29</td>
<td>10221</td>
</tr>
<tr>
<td>Trell 10</td>
<td>2076</td>
<td>29</td>
<td>61602</td>
</tr>
<tr>
<td>Trell 11</td>
<td>57</td>
<td>29</td>
<td>2485</td>
</tr>
<tr>
<td>Trell 12</td>
<td>497</td>
<td>29</td>
<td>9767</td>
</tr>
<tr>
<td>Trell 13</td>
<td>189</td>
<td>29</td>
<td>5425</td>
</tr>
<tr>
<td>Trell 14</td>
<td>132</td>
<td>29</td>
<td>2965</td>
</tr>
<tr>
<td>Trell 15</td>
<td>1826</td>
<td>29</td>
<td>36280</td>
</tr>
<tr>
<td>Trell 16</td>
<td>1106</td>
<td>29</td>
<td>42431</td>
</tr>
<tr>
<td>Trell 17</td>
<td>460</td>
<td>29</td>
<td>6933</td>
</tr>
<tr>
<td>Trell 18</td>
<td>345</td>
<td>29</td>
<td>10601</td>
</tr>
<tr>
<td>Trell 19</td>
<td>273</td>
<td>29</td>
<td>6258</td>
</tr>
<tr>
<td>Trell 20</td>
<td>339</td>
<td>29</td>
<td>3507</td>
</tr>
<tr>
<td>Trell 21</td>
<td>150</td>
<td>29</td>
<td>1971</td>
</tr>
<tr>
<td>Trell 22</td>
<td>19921</td>
<td>29</td>
<td>215265</td>
</tr>
<tr>
<td>Trell 23</td>
<td>4518</td>
<td>29</td>
<td>51273</td>
</tr>
<tr>
<td>Trell 24</td>
<td>232</td>
<td>29</td>
<td>10135</td>
</tr>
<tr>
<td>Trell 25</td>
<td>347</td>
<td>29</td>
<td>4880</td>
</tr>
</tbody>
</table>

Fig. 1. Turkcell datasets used in this study.
Our contribution in this research is to analyze a large-scale industrial system at the module level. To accomplish this, we use a state-of-the-art cross-company defect predictor. We further demonstrate its practical use by improving its performance with nearest neighbor sampling technique. We also use a predictor that not only models intra module complexities, but also inter module connections. We used call graph based ranking (CGBR) framework and show that combining inter and intra module metrics not only increases the performance of defect predictors but also decreases the required testing effort for manual inspection of the source code.

3. Data

Fig. 1 tabulates 25 ‘Trcll’ projects that are analyzed in this research. All projects are implemented in Java and we have gathered 29 static code metrics from each. In total, there are approximately 48,000 modules spanning 763,000 lines of code. All projects are from presentation and application layers.

We used external (i.e. cross-company) data from Nasa MDP that are available online in the PROMISE repository (Boetticher, Mencias, & Ostrander, 2007; NASA). Fig. 2 shows the characteristics of Nasa projects. Each Nasa dataset has 22 static code attributes. In our analysis, we have used only the common attributes (there are 17 of them) that are available in both data sources.

4. Data analysis

4.1. Average-case analysis

Fig. 1 shows the average values of 17 static code metrics collected from the 25 telecom datasets used in this research. It also shows the recommended intervals (i.e. minimum and maximum values) based on statistics from Nasa MDP projects, when applicable. Cells marked with gray color correspond to metrics that are out of the recommended intervals. There are two clear observations in Fig. 3:

- Developers do not write comments throughout the source code.
- Low number of operands and operators indicate small, modular methods.

While the latter observation can be interpreted as a company objective to decrease maintenance effort, the former contradicts such an objective and requires action. Note that, this shows how a simple average case analysis can point out conceptual problems in company objectives as long as measurement is performed.

4.2. Rule-based analysis

Based on the recommended intervals in Fig. 3, we have defined simple rules for each metric. These rules fire, if a module’s metric is not in the specified interval, indicating the manual inspection of the module. Fig. 4 shows the 17 basic rules and corresponding metrics, along with 2 derived rules. The first derived rule, Rule 18, define a disjunction among 17 basic rules. That is Rule 18 fires if any basic rule fires. Note that, the gray colored rules in Fig. 4 fire too frequently that cause rule 18 to fire all the time. The reason is that the corresponding comment and Halstead metrics’ related intervals do not fit Turkcell’s code characteristics. A solution would be to define new intervals for these metrics, however, this is not possible since there are no defect data to derive these inspection-triggering intervals.

In order to overcome this problem we have defined Rule 19 that fires if all basic rules, but the Halstead fire. This reduces the firing frequency of the disjunction rule. However, Rule 19 states that 6484 modules (14%) corresponding to 341,655 LOC (45%) should be inspected in order to detect potential defects.

Inspection of 45% of total LOC is impractical. On the other hand, learning based model will be shown to be far more effective. We have designed two types of analysis using the learning based model:

- Analysis #1 uses the cross-company predictor with k-nearest neighbor sampling for predicting fault-prone modules.
- Analysis #2 combines inter and intra module metrics, in other words incorporate CGBR framework into static code attributes and than apply the model of Analysis #1.
5. Analysis

5.1. Analysis #1: Naïve Bayes

In this analysis we used the Naïve Bayes data miner that achieves significantly better results than many other mining algorithms for defect prediction (Menzies, Greenwald et al., 2007). We selected a random 90% subset of cross-company Nasa data to train the model. From this subset, we have selected similar projects that are similar to Trcrl in terms of Euclidean distance in the 17 dimensional metric space. The nearest neighbors in the random subset are used to train a predictor, which then made predictions on the Trcrl data. We repeated this procedure 20 times and raised a flag for modules that are estimated as defective at least in 10 trials. An identical approach is used in previous research and showed its validity by demonstrating that predictors learned on NASA Aerospace software can achieve 70–90% detections rate on Turkish white-goods controller software (Menzies, Turhan et al., 2007).

Fig. 5 shows the results from the first analysis. The estimated defect rate is 15% that is consistent with the rule-based model’s estimation. However, there is a major difference between the two models in terms of their practical implications:

- For the rule-based model, estimated defective LOC corresponds to 45% of the whole code, while module level defect rate is 14%.
- For the learning based model, estimated defective LOC corresponds to only 6% of the code, where module level defect rate is still estimated as 15%.

Why there is a significant difference between the estimated defective LOCs, thus estimated testing efforts of two models? That is because rule base model makes decisions based on individual metrics and it has a bias towards more complex and larger modules. On the other hand learning based model combines all ‘signals’ from each metric and estimates that defects are located in smaller modules. There are previous reports in literature that also validates that most of the defects reside in smaller modules rather than the large ones (Koru & Liu, 2005a; Koru & Liu, 2005b; Malaiya & Denton, 2000; Zhang 2008). Our results are consistent with these research results. One possible reason is that big and complex modules are implemented more carefully and small modules are paid less attention.

5.2. Analysis #2: call graphs

We argue that module interactions play an important role in determining the complexity of the overall system rather than assessing modules individually. Therefore used a model to investigate the module interactions with static call graphs that is proposed in a previous research (Kocak et al., 2008a; Kocak et al., 2008b). In that study, Kocal et al. proposed the call graph based ranking (CGBR) framework that is applicable to any static code metrics based defect prediction model. Static code metrics measure the inner complexities of the modules (i.e. inter module), whereas call graphs models the interactions between modules (i.e. intra module).

We created \( N \times N \) matrix for building the call graphs, where \( N \) is the number of modules. In this matrix, rows contain the information whether a module calls the others or not. Columns contain how many times a module is called by other modules. Inspired from the web page ranking methods, we treated each caller-to-callee relation in the call graph as hyperlinks from a web page to another. We then assigned equal initial ranks (i.e. 1) to all modules and iteratively calculated module ranks using PageRank algorithm. In this study we analyzed the static call graph matrices for only 22 projects, since the other 3 projects were so large that their call graph analysis were not completed at the time of writing this paper, due to high memory requirements.

In Analysis #2, we have calculated CGBR values, quantized them into 10 bins and assigned each bin, a weight value from 0.1 to 1 considering their complexity levels. Then, we have adjusted the static code attributes by multiplying each raw in the data table with corresponding weights, before we trained our model as in Analysis #1.

Fig. 6 shows the results of Analysis #2. The estimated LOC to inspect is halved compared to the previous analysis results. These estimates suggest 96% improvement in testing efforts compared to random testing strategy. In order to catch 70% of the defects,
the second model proposes to investigate only 3% proportion of the all code. Note that, this model has been externally validated that it can detect the same number of defective modules, while yielding significantly lower false alarm rates. The decrease in estimated investigation effort stems from the decreased false alarm rates.

6. Conclusions

In this study we investigate how to predict fault-prone modules in a large software system. We have performed an average case analysis for the 25 projects in order to determine the characteristics of the implemented code base and observed that there were contradicting measurements with the company objectives. Specifically, the software modules were written using relatively low number of operands and operators to increase modularity and to decrease maintenance effort. However, we have also observed that the code base was purely commented, which makes maintenance a difficult task.

Our initial data analysis revealed that a simple rule-based model based on recommended standards on static code attributes estimates a defect rate of 15% and requires 45% of the code to be inspected. This is an impractical outcome considering the scope of the system. Thus, we have constructed learning based defect predictors and performed further analysis. We have used a cross-company Nasa data to learn defect predictors, due to lack of local module level defect data.

The first analysis confirms that the average defect rate of all projects was 15%. While the simple rule-based module requires inspection of 45% of the code, the learning based model suggested that we needed to inspect only 6% of the code. This is from the fact that rule-based model has a bias towards more complex and larger modules, whereas learning based model predicts that smaller modules contain most of the defects.

Our second analysis results employed data adjusted with CGBR framework, which is externally validated not to change the median probability of detection and to significantly decrease the median probability of false alarm. The second analysis improved the estimations further and suggested that 70% of the defects could be detected by inspecting only 3% of the code.

Our future work consists of collecting local module level defects to be able to build within-company predictors for this large telecommunication system. We also plan to use file level code churn metrics in order to predict production defects between successive versions of the software.

References


