
Universidade Federal de Pernambuco

Centro de Ciências Exatas e Naturais

Centro de Informática

Ciência da Computação

João Lucas Mendes de Lemos Lins

An Engine For The Hobby Game Dev: Simplifying game creation through
application of data-driven design an modularity on the engine level

Trabalho de Graduação

Recife
15 de Dezembro de 2017

João Lucas Mendes de Lemos Lins

An Engine For The Hobby Game Dev: Simplifying game creation through
application of data-driven design an modularity on the engine level

Trabalho de Graduação apresentado ao Pro-
grama de Graduação em Ciência da Com-
putação da Universidade Federal de Per-
nambuco, como parte dos requisitos neces-
sários à obtenção do título de Bacharel em
Ciência da Computação.

Orientador: Giordano Cabral Eulalio

Recife
15 de Dezembro de 2017

João Lucas Mendes de Lemos Lins
An Engine For The Hobby Game Dev: Simplifying game creation through application of

data-driven design an modularity on the engine level/ João Lucas Mendes de Lemos Lins. –
Recife, 15 de Dezembro de 2017-

48 p. : il. (algumas color.) ; 30 cm.

Orientador: Giordano Cabral Eulalio

Trabalho de Graduação – Universidade Federal de Pernambuco
Centro de Ciências Exatas e Naturais
Centro de Informática
Ciência da Computação , 15 de Dezembro de 2017.
IMPORTANTE: ESSE É APENAS UM TEXTO DE EXEMPLO DE FICHA CATALOGRÁFICA.

VOCÊ DEVERÁ SOLICITAR UMA FICHA CATALOGRÁFICA PARA SEU TRABALHO NA
BILBIOTECA DA SUA INSTITUIÇÃO (OU DEPARTAMENTO).

João Lucas Mendes de Lemos Lins

An Engine For The Hobby Game Dev: Simplifying game creation through
application of data-driven design an modularity on the engine level

IMPORTANTE: ESSE É APENAS UM
TEXTO DE EXEMPLO DE FOLHA DE
APROVAÇÃO. VOCÊ DEVERÁ SOLICITAR
UMA FOLHA DE APROVAÇÃO PARA SEU
TRABALHO NA SECRETARIA DO SEU
CURSO (OU DEPARTAMENTO).

Trabalho aprovado. Recife, DATA DA APROVAÇÃO:

Giordano Cabral Eulalio
Orientador

Professor
Convidado 1

Professor
Convidado 2

Recife

15 de Dezembro de 2017

To all the unsung stories in the night. We will listen!

Agradecimentos

To all that talked to me, advised me and shared with me their stories, this project
could not be done without you.

Special thanks go to Leo Falcão, multi-media storytelling researcher for the
Universidade Católica de Pernambuco, for sharing his inordinate amount of experience
in storytelling with us, and to all the users of the GameDev chat, for sharing with us
their experiences. Though the concepts here are my own, the user interfaces you see
throghout the project were created by Pedro Barroca; without him, this document would
be a lot drabber.

Important to note is that, though my name is in the cover, this work is a culmina-
tion of years of work by people way more dedicated and talented than me, and what I
am, I owe to them.

Finally I would like to thank all my family and friends, for without their support, I
would not be here today.

Epígrafe

Resumo

Abstract

Lista de tabelas

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Sumário

1 Introduction . 12

2 Context . 15
2.1 Making games is hard . 15

3 How does these problems affect hobby developers? 18

4 Exploring The Problems . 21
4.1 The Depth Problem . 21
4.2 The Breadth Problem . 23

5 The Solution . 25

6 The Prototype . 27
6.1 The Model . 27
6.2 The Architecture . 32
6.3 The Culture . 38

7 Resultados e Discussão . 42

8 Future Developments . 43

9 Conclusão . 44

Referências . 45

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

12

1 Introduction

The games industry is one of the fastest growing in the world.(ENTERTAINMENT
SOFTWARE ASSOCIATION, 2014) Coming from humble beginnings, it long surpassed
film and music(NATH, 2016; CHATFIELD, 2009) and become probably the most impor-
tant media industry of today. In doing so, we’ve created vast support structures that favor
the development of games as a profession, ranging from university courses to specific
middleware that greatly ease the strain of development for specific teams. Despite that
we never really think about how such developments affect the hobby developer.

The hobby developer has long been a tricky subject. While they are an essential
part of the industry, nobody seems to pay much attention to them. Solution developers
targetting game development seem to expect solving a problem for the larger industry
will eventually have the same effect for non-professional developers. We’ve found that
is not always true, as the circumstances surrounding the developer greatly influence
the effectiviness of such solutions. While studying for this project, we’ve found several
resources created for solving the problems that ail game development, but very few that
focus on the specific needs or the hobby game developer. Probably because of their
status as products, most of these solutions tend to focus the professional side of game
development where the exdenditure of money can be better justified. Meanwhile, there
exist problems that are endemic to the hobby developer background, like lack of training
in the skills necessary for game development, or the need for a better collaboration
framework, and these remain largelly unaddressed. The result is that while game
development has evolved into a more and more diverse and in-depth area throughout
the years, the accessibility of the hobby developer to this depth has remained limited.

Which is odd, if we stop to think about it. From the beginning creating games
was a leasure project, before it became a commercial one. Games used to be made for
friends and family, for the fun of creating them, way before they’ve become a means
for earning a living(KENT, 2001). This unassuming place is where the practice began,
way before that was any way to make money out of them. In a historical sense, the
games industry wouldn’t be here today if it were not for the work of hobby developers in
establishing the imporance of games to our society.(FLOYD et al.,)

It is easy to forget given the huge industry games have become, but most game
developers today are actually hobbyist, not processionals. Verifying such a suspicion
may be hard since these are the people who go largely unseen in surveys and census,
but we are able to make some good guesses. ESA’s 2016 survey of the industry counted
65,678 direct employees working in the games industry in the United States(the largest
gaming market worldwide)(ASSOCIATION, 2017). While that might seem like a big
number, a single game developer focused site(gamedev.net) has over 3 times that many

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 1. Introduction 13

users at 240,029(GAMEDEV. . . ,). Itch.io, a 5 year old platform focused on the hobby
game developer has a catalogue of 83,457 free games created non-professionally with
no intention of profit(ITCH.IO,). That is over 4 times the amount of games released
on Steam(the major distribution platform on PC) in it’s 13 years of market, with a
catalogue of 19,845 games(LLC,). That doesn’t even account for the possible hundreds
of thousands more in the dark corners of the internet, or that are simply never shared.

These represent people making games for their children, their friends, or just for
their own amusement with no interest of every making any money out of the endeavour.
They might be often regarded as a lower grade of developer, the ones that don’t put on
the effort to go pro, but that is not fair representation. Much as your cousin that plays
on a sports team might never go play for the major leagues or your husband that does
glassblowing on weekends might never drop his job to become a professional glass-
blower, these are the people who are interested enough in games to make something for
themselves without the incentive of monetary gain, and that love always shows through
in their projects.

It is important to remember the importance of non-professional developers for the
industry in general so that we can be better motivated to support them. These reasons
may not be obvious at a first glance, but it is directly related to quite a few aspects that
make the games great(FLOYD et al.,):

• First, it is important to remember that non-professional game development is
part of the road towards professional game development. While not all non-
professional game developers will eventually end up in the industry, it is safe
to say that all professional game developers were hobby developers at some
point. Creating games non-professionally represents an important stepping
stone in an industry such as this that puts so much value on hands-on experi-
ence.(FOERTSCH et al., 2017; CHIRONIS, 2015)

• Second, without the pressure of having to turn on a profit, hobby developers are
more open to explore crazy new concepts that might be too risky for a commercial
venture. No matter how strict or lax the company rules, all commercial games
are first and foremost products, and this results a(maybe even unconscious)
pressure to better weight your risks. Making crazy new stuff is a lot easier when
no one’s job is in the line.(ÐÔNG, ; ROHRER,)

• Third, hobby game developers can go into incredibly niche subjects. For the same
reason as outlined above, non-professional developers are able to create games
based on really specific and often personal subjects. The experiences enabled
by these games are not perfect, and often not even fun, but they represent points
of view that are seldom explored in other media.(KHONSARI,)

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 1. Introduction 14

With this work we propose we give those people more attention, creating a solu-
tion that focuses on fulfilling their specific needs towards game development. To achieve
that, we’ve decided that we must first look towards forming a better understanding of
who the hobby game developer is, and how specific problems of game development
manifest in their unique environments. Doing so is hightly difficult not only due to the
scarcity of good papers on game development in general(FLOYD et al., 2016; HAGGIS,
2017), but also because this low profile public has largely gone unnoticed by most rese-
archers in the area. As such, this project relies heavily on surveys and direct contact
with the many non-professional development communities around the net in its effort for
identifying the problems that particularly affect them.

In our search to better understand the needs of the hobby developer, we first
need to understand how they relate the needs of the games development in general. To
do that, in Chapter 2 we establish a context and revision the most common problems
that affect the process of professional video game development, as documented by
the academia. Then, on Chapter 3 we come back to the hobby developer, establish
how those larger problems affect them specifically. These problems are then further
explored on Chapter 4, in which we discuss them in more specific terms. Following this
exploration of the problem and the context surrounding it, we then move on to looking
for a solution to address it. Chapter 5 defines how we’ve achieved that through the
use of a new paradigm in game engine architecture, and Chapter 6 goes into further
detail in regards to its implementation. Finally, Chapter 7 describes the results of our
solution so far, Chapter 8 discusses possible future projects that could be explored
in this architecture, and Chapter 9 closes off the paper with our thoughts on how the
engine architecture impacts the game development landscape.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 2. Context 16

Figura 1 – Figure 1: On the left, the entire development team of Squaresoft on the release of
Final Fantasy in 1987.

On the right is the production team of Square Enix Europe in 2014.

http://jpninfo.com/21060 e http://www.tombraidercollection.com/single-post/2014/09/11/Square-Enix-Eu
rope-leaves-its-offices-of-Wimbledon

Regardless of that investment, making games has become harder, not easier.
Sure, with years of experience and millions of dollars behind us, we’ve solved some of
the problems that plagued the early days. We’ve created specialized hardware made
exclusively for attending the demands of the gaming market and we’ve developed a
library of techniques and good practices to make creating games more efficient. And
yet still, we fail.

Unseen64.net serves as a memorial to all the games that have been cancelled
after a public release, containing records of thousands of games that will never see the
light of the day(UNSEEN64.NET,). Even then, those account only for the games which
had open publicity before their cancellation, many more probably lie in the darkness,
never to be seen or heard from but for the developers who worked on it.

Certainly, corporate decision higher up on the hierarchy of the behemoths that
game companies now have become might be to blame for this tragedy(and don’t mistake
the loss of any game for anything else), but not all of it.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 2. Context 17

In February of 2004, Jonathan Blow, a famous programmer and video game
designer, posted an often cited article entitled “Game Development: Harder Than
You Think” (BLOW, 2004). In it, Blow outlines what he considers to be the major
problems hampering modern video game development, mostly from the view of a game
programmer, though the views in the piece extend to much wider trends in the gaming
industry. The article divides the problems into two major categories, that while not
entirely not entirely distinct(as admitted by the author himself), does serve as a good
didactic structure for discussing the problem.

Not to repeat the the article, here we briefly summarize both categories:

• Problems due to project size and complexity: These relate to the increase in
knowledge necessary to make a modern game. While a game in the early days
was made from very simple components the demands of modern game design
mean that dozens of interlocking parts are necessary. This relates not only to
the way programmers need to know graphics programming, audio programming,
multi-platform development, etc. but also to how many new people with different
expertises need to be integrated into a modern project, and how this affects
productivity.

• Problems due to highly domain-specific requirements: These relate to how over
the years the art of making games has grown not only in width but also in depth.
Programmers these days are required to know highly specialized techniques, built
over decades of iteration on how to build AI, physics simulations and graphics.
Once again, these ideas relate not only to programmers, as writers, and artists
have come to found in games uniquely specialized challenges that require
consideration.

While great strides have been made to remedy these issues since Blow‘s article,
these problems still represent a large problem in game making.

In this article we intend to present our own attempt at addressing these problems,
with one particular twist. The games industry is a deeply secretive one, especially
when it comes to their interactions with the academia. That said, in our research for
solutions for these problems, we noticed a general lack of attention given(even for
industry standards) to a particular subset of the developer community that is greatly
harmed by these problems; the hobby developers.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

18

3 How does these problems affect hobby developers?

In trying to reach out to this demographic we’ve created a survey questioning
about past experiences with game development and released it on forums, chats and
mailing lists. The full survey can be found in Appendix 1, along with the full list of
webpages where it was posted and it’s results. The survey ran for 21 days, and collected
661 responses during that time. We know that while this is nowhere near close to the
escope of the whole demographic group, the extensive breadth of the survey should
better represent the vast array of experiences through many insular communities inside
the main demographic. This makes us confident this is a trustworthy representation of
the group, even though our numbers were limited. To compliment the surveys, we’ve
also reached out to individuals of those communities online, through chats, forums posts
and skype interviews. This was a great resource in better understanding them, helping
us to get a feel for the community more than numbers on a survey ever could, and
motivating us in our quest to try and them. For any researcher intending to work in this
area, we greatly recommend they do their own field research, as the community is very
approachable, and very willing to help us better understand their plight. The following
section outlines the results of these forays into the hobby game developer community.

The survey showed that only about 65% of interviewed developers actually ever
got a game project to a release state. Of the ones that failed to do so, about one
third have never even got time to take the project out of paper. When approached, the
developer’s complaints led us to think back to Blow’s problems once again.

Large Complexity. No developer is good at everything, and these in particular
struggle to work without the wealth of insider expertise the industry keeps to themsel-
ves(though platforms like GDC Vault are starting to change that). More importantly, with
little time available to study even their own area, the lone developer is in even deeper
trouble when it comes to learning other areas. While talented individuals capable of
doing everything from programming to pixel art exist, that is a rare exception. Most
hobby developers will either collapse under the weight of trying to learn the disciplines
on their own, or they will look for external help, be that through a partner, or a contract.

A few developments in recent years have been of great use in easing this problem
for the hobbyists:

• Major community sites have become a great help in providing training, contacts
and encouragement.(gamedev.net, gamekodo, /r/gamedev, gamedev, stack)

• Online teaching platforms have helped disseminate the necessary knowledge,
enabling self-teaching no matter where in the world.(Pluralsight, GDCVault)

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 3. How does these problems affect hobby developers? 19

• Looking For Group is now a feature supported by most major sites, that allows
users to advertise their projects and skills to those interested.(/r/INAT, game-
dev.net, itch.io)

These platforms alleviate the problem, but do not solve them. The very nature of
hobby projects as discussed above often goes against this help. The niche nature of
some of these projects also make it hard to find a partner sometimes and their weird
and innovative nature will often require a deeper understanding of programming and
game design than general tutorials and how-tos can provide. Third party tools also help
with these problems, but they are usually expensive and create a new problem of their
own which we will explore next.

Specialization Requirements. Let’s not make fools of ourselves saying that the
availability of reasonably “open” third party general engines wasn’t one of the greatest
developments in the history of game-making. Given how complicated a simple 3D
render pipeline can be, it is easy to see the worth of not having to create one from the
ground up yourself. The amount of time saved by these engines(and other third party
middleware) is enough to be worth thousands of dollars, gladly paid by game producers
in exchange for a quicker release cycle. The use of these tools greatly reduces the time
spent on tech.(BLOK-ANDERSEN, 2015)

However it is important to understand that “greatly reducing” is not the same as
“totally removing”. Even if we disconsider the engine design requirements that puzzle
even profissional developers, we can’t be too quick to dismiss the time required to learn
to use third party tools. While reducing a time to deployment on a game from 2000 to
800 man-hours might sound amazing for a studio, 800 hours remain too expensive for a
lone developer.

Becoming accustomed with a large engine like Unreal(EPIC GAMES, INC,) or
CryEngine(CRYTEK GMBH,) is not a feat for one weekend. These are complex systems
that require a lot of dedication to master. Each modern engine contains their own unique
graphics pipeline, scripting language, support library(not counting the thousand and
one quirks we must get used to for proper functioning). Understanding such engines
has become such a large endeavour that there are even commercial textbooks devoted
entirely to teaching their systems.(BUSBY; PARRISH; WILSON, ; GUNDLACH; MARTIN,
)

A great beam of hope in recent years has been the Unity Engine(UNITY TECH-
NOLOGIES, c). Released in 2004 and putting a heavy focus on accessibility, the engine
has had great success in “democratizing game development”(ROWLAND; CLARKE,
2011)(a title we would gladly have stolen for the title of this project, had they not used
it first). Since its first release, the engine has grown to become the most widely used

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

21

4 Exploring The Problems

In this section we relate how we explored the problem and the hypotheses made
and tested through direct interaction with the community. Finally we summarize our
conclusions before moving on to our solution on the next section.

When dealing with complicated issues such as these it is often a good practice
to break them down into smaller components. Here, once again Blow’s categorization
comes in handy.

4.1 The Depth Problem

The information on the surveys first instigated us to take a closer look at the tools
available. More specifically, how they were being used and how they are seen by our
public.

To achieve that we interviewed community members in online chats and looked
at discussion boards in community sites on technology. What we found out was that for
a great number of users, games were their first contact with programming. This view is
coherent with previous surveys attempting to profile the interests of computer science
studies.(RANKIN; GOOCH; GOOCH, 2008)

It is rewarding to see that games are actually a major force in driving people
towards our field, but we cannot forget that not all of these developers will ever see
a formal programming course in their lives. Actually, most won’t. When interviewing
users, we saw that most of their learning was based on the resources mentioned in the
previous chapter(mostly written tutorials and how-to videos). This creates a problem of
specificity.

While “programming” might be seen as a singular area for the gaming culture, it
actually involves dozens of specific disciplines, each with their own well of knowledge. It
is difficult to find a single man capable of working on all areas of programming required
to make a modern game. Studios solve this by hiring multiple personel under the
“programmer” role with different specialties, but finding(and specially, managing) such a
team is impractical for the hobby developer.

Then comes the solution of “programming-free”(most are actually “programming-
light”) game makers. Gamemaker, RPG Maker, Stencyl and StoryNexus (STENCYL,
LLC, ; YOYO GAMES LTD., ; ENTERBRAIN, INC, ; FAILBETTER GAMES,) are good
examples of software friendly to the non-professional developers. Their interfaces allow
the user to create commercial-grade games with little programming. Perhaps more
important than that, most are free to use and publish games in.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 4. Exploring The Problems 22

However, when asked about such tools, users often said that they didn’t use
such tools. When questioned on why, the most common responses were either:

1. Couldn’t find the time to learn them.

2. They didn’t fit the game they wanted to make.

This brought to light shortcomings of such software as they exists right now.

The first seems to relate to a failing in user experience. Let’s not be mistaken
that these are powerful engines, capable of the hundred of functions necessary to make
a commercial-grade game. The problem then becomes: “How do you tuck all of these
neat features away in a way that is unobtrusive to the user, but lets them find what they
want?”

Then comes the second problem. To provide a better user experience, engine
developers will start to favor certain aspects of their software, creating a more narrow,
and specific kind of software made to attend a certain genre. This business decision
would be enough to solve the problem if there were enough engines being created to
cover all genres(which there are not)(ANDERSON et al., 2008). And then again, there
still would be the problem of games that transcend genre; those masterpieces that typify
their own new genres.

This creates something of a see-saw problem. Do you provide a better, more
directed experience, like with RPG Maker, or do you provide a more general, but more
difficult to learn one like Stencyl?

In our vision, neither. Upon analysis, we found that this isn’t really a problem of
finding the right balance. If we look further down the line we will see that this is actually
a problem of encapsulation.

In trying to balance flexibility with information density, we’ve created a program
that satisfies neither one, nor the other. When thinking about this problem we asked
ourselves: “What is would the best program to create my game be like?”. The solution
we reached was: “One that has exactly the things I need and nothing else”. Then
it becomes clear how this conundrum can be solved through modularity. If we break all
tools that make those programs into their own modules, we become able to assemble
the perfect editor for the creation of any game.

This modularity also enables us to be more flexible. Instead of trying to come up
with a software that fulfills all possible permutations of what constitutes a “platformer”
we can now work on specific features that make up a game. We can create a module
for health, a module for physics, a module for side scroller-graphics, etc. This idea is
related to the component design pattern(NYSTROM, ; FOLMER; GROUP,), but taken
on an engine level, where the features of the engine itself are components.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 4. Exploring The Problems 23

As we will see later, this approach will introduce certain problems that will be
solved in our discussion of the prototype in Chapter 6.

4.2 The Breadth Problem

When we approached people, instead of finding a large amount of generalists, we
instead discovered that most of them are actually very centered in specific areas. We’ve
found writers that couldn’t code, artists that couldn’t create narratives and programmers
that didn’t know the first thing about art. Their projects would then end up in one of two
categories:

Either the would create projects that focused on their strong points and had less
or no requirements towards their weak points.

Or they would collaborate with other members of the communities they could
find or outsource freelance work.

The first is is a clear limitation, and while those are not always good, it introduces
an unforeseen risk into the project. Some people we interviewed have indeed been
incentivized to learn new skills through this limitation and ended up falling in love
with them. However, the opposite was also true. When interviewing developers, some
admitted to entirely dropping projects because they lost interest once they’ve reached
the parts of development they were not good at. This is not necessarily a failing in their
resolve. It isn’t fair to expect people to love all parts of game development after all.

The second option becomes a quest to find collaborators. This is where the
“Looking for group” resources mentioned in Chapter 3 come in. If we look at those sites
right now, we can see several posting of people looking for writers, programmers and
artists. What we do not find, however, is a listing looking for producers.

It might be easy to overlook the importance of a producer in a game. After all,
they don’t actually produce anything that goes into the final game, right? But that is a
mistake. A game is a very complicated product, requiring collaboration of people from
very different background working together on the same (hopefully)holistic project. A
producer is the one responsible for making sure all those parts fit just right.(CHANDLER,
2013)

Producers over time have created an entire science relating to the organization
of the processes of game development itself. What is worked on when. How to maximize
efficiency for the team. How to maintain focus. How to avoid feature creep. These are
all very important answers for getting any game out of the door, and failing to properly
address them is often the reason hobby projects fail.

From what we saw, it just isn’t common for hobby developers to think in these

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 4. Exploring The Problems 24

terms. Indeed for small teams, some of these questions can be overlooked. The problem
comes once the development grows in scope. Without training on how to work together,
adding people to the project of a loner developer represents more of a liability than a
strength.

If people know how to work together and can depend of each other, everything
is peachy. But if that is not the case, each person on a team actually becomes a point of
failure for the whole project. This truth is represented community-wide as a feeling that
it is “difficult to work with others”. We believe this, along with the very personal nature of
these projects to begin with, are the main reasons why this community has so many
one or two men projects.

This represents a problem of dependencies on the human level, and as far as
we’ve looked, we’ve found no system specifically designed to address it. Sure there
are project management software and web applications out there that could be perfect
for managing this kind of problem, but the existence of those(and sometimes even the
need for them) might not be obvious for a developer that doesn’t come from a project
centered background.

It is of our opinion that the solution to this problem is to embed project manage-
ment knowledge and tools into the platform itself, so as to become obvious for the user
the need for them. If the intention of a game-making platform is indeed to see projects
succeed, we need to look past providing the tools for creating software and start looking
at the tools to make teams.

Here is the point we have to mention the importance of independence in pro-
jects. While games remain a deeply collaborative effort, reducing dependencies is
good(KANODE; HADDAD, 2009; GREGORY, 2014). Probably the greatest breakth-
rough in this department in the last 20 years comes to the shift towards data-driven
engines.(BLOW, 2004; GREGORY, 2014) Within this framework, programmers can
focus on working with engine features, while designers and artists can create gameplay
code directly that is then interpreted by the engine dynamically. This frees time from
both sides by allowing them to work independently, maximizing time use.

This characteristic is doubly as important in the hobby game-dev circles, where
a steady level of engagement is essential for the continuation of the project.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

25

5 The Solution

Given our exploration of the subject, and our interpretation of the problems that
afflict them, we’ve come up with a few changes to the modern paradigm of engine
design that we believe should greatly improve completion rates of hobby games.

In looking for solutions for the problems that ail the hobby community we’ve come
across two concepts that we believe will be essential in solving this problem: modularity
and data-driven design. The first part of our solution relates to using modularity to its
fullest extent, creating an engine that is completely modular with exception of some
very small integration modules. We further free up this framework through the use of
data-driven concepts. By allowing modules to be interpreted as data to be consumed, it
enables us to interpret the game editor environment dynamically, thus making modules
more than simple libraries.

Through this approach, we combine the strengths of both approaches to create
a very flexible, very powerful engine, that remains easy to comprehend, keeping only
the necessary tools for the game you are currently making. The data-driven aspects
also enable us to load or reload these tools at runtime, accounting for the case in which
the design of the game changes in the middle of a development session.

It amazes us that such a project was never tried in the past. Modularity has
been an essential aspect of computer science for a very long time, and data-driven
technologies have been very present in most modern game technologies, yet, there has
never been a fully modular data-driven engine.

The reason to shy away from this might to be due to the focus of game program-
mers on performance. One of the drawbacks of such a framework is that it becomes
very hard to control the control flow within the application. This means that there is no
way to absolutely guarantee a return within the delta-time required to churn out those
60 frames per second(GREGORY, 2014).

There also comes the problem of integration. Without knowledge of what parts
are online at the time, it becomes very difficult to enforce well behaved communica-
tion between modules. Solving this problem also causes more overhead that further
exacerbates realtime problem.

We do not believe that has to be the case, but even if it is, we believe it to
be a worthwhile trade-off in this instance. Not all games are played in real time, and
we believe the benefits brought in by this framework would be greatly advantageous
for the development non-realtime games. Turn-based strategy games, classic RPGs,
management sims and text adventures are a few examples of the genres that would not
suffer from the delta-time problems.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 5. The Solution 26

This modularity also gives us an opportunity to let people work the in a language
that is natural to their task. Since all modules are independent and focus on very specific
features, they can be programmed with a design language that fits their charge, instead
of fitting to overarching design decisions made for the whole program. This will hopefully
make working with them even more intuitive, and will open the doors to what we believe
to be the greatest innovation of this project; a shift in the way we build tools.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 29

game feature. These feature modules comprise a combination of the code required
that allows such game features to exist and the rules programmed into them by the
designers. These modules consume data, much like in the old architecture, but more
importantly, they use the engine, not the contrary.

Figura 3 – Figure 3: Our modular architecture.

This shift not only represents a more game-centric approach to engine design,
but more importantly it also enables us to change the way engine editors are presented.
If we look at Figure 3, we can see that “content” isn’t really just one kind of data. This
content includes sprites, animations, AI automata, story events, etc. So far all of these
resources had to be formatted to fit the engine, but now that we decoupled the way the
engine functions from the way the game runs, we are free to do with them what we will.

Content production has long been known as the bottleneck of this industry. In
a game course, more than 90% of development man-hours are actually spent on (SMITH,
)content. With recent attempts at procedural generation failing to reach expectations,
we present this freedom as another solution to this problem.

If in the past content creation had been made to fit with engine development,

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 31

engine proper, a different part of the module is activated which will consume content
and enact the feature on the game itself as specified.

One such example from our prototype is our EventGraph module. For it’s crea-
tion we worked closely together with Multimedia Narrative professor and Storytelling
Researcher Leo Falção. With his help we were able to identify best practices for visuali-
zation and authoring of branching storylines. With this knowledge in hand we were then
capable of creating mock-up prototypes of how the user experience of this tool would
be, and only then we worked on creating the actual implementation.

Figura 5 – Figure 5: The EventGraph module was created with the help of specialists to make
sure it is ideal for the task. This is the kind of quality we expect from any new feature

module.

This top-bottom approach to software creation isn’t new. Indeed it is the recom-
mended approach for games(FULLERTON, 2008). But due to the necessity of a base
engine to work on usually meant this approach was only applicable to game design
aspects. Now that each part of an engine is it’s own self sufficient module, we hope to
remove this limitation, and see more top-bottom development of features.

Low-Level Modules. Of course an engine wouldn’t be complete without low level
modules. These represent memory allocators, data-base managers, render modules,
etc. These are the modules that offer services necessary to make features work.

Since these modules are very intricate and usually unseen for most relevant top
level choices, we’ve decided to leave them inaccessible to the regular user. This ensures
two things; first it ensures good use of these modules, since the user can only interact
with them through a regulated interface(the feature modules); second, it ensures that
the interface remains clear for the lay user, hiding most of its complexities through a
layer of abstractions.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 32

Once coupled with the Writ website discussed on the Culture section, this also
ensures that these modules will only get better and more efficient with time. With revision
after revision.

Don’t be mistaken, though. A major focus of Writ is on being a didactic expe-
rience, so that people can use it as a platform for bigger projects. As such, low-level
modules are not exempt from the module creation rules discussed on the Culture sec-
tion. It is specifically due to their complexity that it is imperative that they have good
documentation.

On our Writ prototype we also removed the need for feature modules to be
coupled with specific modules. We do this by making all feature modules create a list
of “commands” that need to be executed by someone with their current configuration.
Once that is done, at run-time, our dependency injection module is then capable of
making sure some module is capable of executing the command.

Leveraging Reusability. When working with a third party data-driven engine,
each game project will usually yield dozens if not hundreds of scripts related to making it
work along with your game rules. The lack of a model to look at game feature engineering
means those scripts end up incredibly coupled. This hampers the reusability of such
code.

By providing a clear way to look at game feature development, we hope to
mitigate this coupling effect. Our model enforces a modular abstraction on the feature
level. This reminds people that “a full module in the Writ model is an auto-sufficient unit”.
With this we hope to incentivize code reuse and sharing, which will be further discussed
on section 6.3.

Conclusion. As we can see, the modular framework affords us great freedom in
the way we conduct development. The most important part of this freedom, however, is
what it can do to the priorities of game development..

On our Writ model we propose to put content creation and tool development on
the spotlight, counting on reusability and open source development to ease the strain
this puts into software development.

This is of course, not the only way to leverage the freedom offered by modularity,
and once this platform is released we look forward to seeing all the innovative ways
people choose to work.

6.2 The Architecture

It is clear from the beginning that this framework creates quite a few problems
from the architecture perspective.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 33

• Dealing with dependencies. First we see from (GREGORY, 2014) that depen-
dencies are an extremely complicated part of engine design. A regular game
engine can be a deeply coupled system, and if we do not take care to properly
isolate their modules, it can lead to some serious problems.(NYSTROM, ; GRE-
GORY, 2014) And yet here we are defending the use of an unknown amount of
modules, on an unknown amount of configurations.

• Inter-module Communication. Whenever we encapsulate a module, along we
it we must also define the interfaces that will be used to communicate with it.
This presents a challenge not only for figuring out how to access these modules,
but also to how data is going to be passed between them.

• Control Flow.The problem discussed on Chapter 5 about controlling the flow
of the application makes a return here. Not only this problem impedes us from
maintaining a regular deltatime, but it also creates risk of an update method
never actually stopping. In such a flexible system, how do we guarantee a call
actually returns?

We will move through these problems one at a time, following the engine’s boot
sequence and solving them each on their own time. By the end we will have a final
architecture diagram for our completely modular Writ engine.

Modules as data. First, we would like to explain how loading Writ works. We’ve
gone through many iterations on how to dynamically load modules. In some of them,
each module was a separate application, in others they were directly injected into the
code of the Game Loader by the editor application. The version we went with in the end
is a bit more flexible.

Taking cues from data-driven design again, each module is loaded into the
engine and interpreted as a python script. This approach is good for it allows us the
flexibility of running live code, but also bad in that it could lead to performance problems
if not dealt with properly. To do that, we use a memory allocator module to allocate
python bytecode directly into the memory, and enforce the existence of a liveReload
method both on the main engine and on all modules. Once a reload is called on the
engine, it will call the reload method of the module, giving it a last chance to save its
current state, before being reloaded by the allocator.

This choice to maintain modules as live-data is also very useful for debugging,
as it allows live coding.

Initialization. For proper initiation, most modules will need to read data regarding
their configurations. This is done through reading their configuration files and serializing
them into an Config object that is part of each module’s initialization routine.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 34

Though initialized and loaded, the modules aren’t ready to be started yet. Before
that can happen we have to resolve our dependencies.

Dependency Injection. From the very beginning we knew that if we wanted a
truly modular system, we would end up having to put some form of dependency injection
at the core of the engine.

In software engineering, dependency injection is practice of using one module
to satisfy the dependencies of another module. The way this is done tends to vary,
but DI is a great way to ensure decoupling between a service provider and a service
consumer. The way we use DI in Writ is thought a module we call Caretaker. The
Caretaker is one of the core modules initialized on boot and it serves a few important
functions to the engine.

The Caretaker ensures all functions required for the running of the game are
executed by someone. It does this by reading a file generated by the editor upon commit
that lists services that need to be fulfilled. At this point in the boot sequence, all required
modules should already have been loaded by the GameLoader, so the Caretaker first
looks if a command has a suggested module associated, if doesn’t, the Caretaker asks
every module in the list of loaded modules if anyone is capable of taking responsibilities
for that service through an offer(“service”, “signature”) mandatory function. If no module
is capable of fulfilling that service the Caretaker throws an error asking the user whether
it would like the engine to download the missing module, or whether they would prefer
to abort. After all dependencies are resolved the Caretaker fills a dictionary with all
commands associations(Figure 6).

Figura 6 – Figure 6: The dictionary maps function names to first order functions.

The Caretaker ensures all unexpected functions are forwarded to their proper

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 35

services. Any module, upon failing to execute a function that is not on it’s namespace,
forwards the command to the Caretaker. The Caretaker then looks in it’s dictionary
for an entry containing that function. If it finds an entry, it forward the function to the
responsible module, and waits for the response to send back. If it doesn’t find any entry,
it once again goes through the module list and asks if any can take the responsibility. If
no module takes the responsibility, it throws an error.

Data Management. At about this point, modules might want to start receiving
data. One of the core modules initiated was an I/O module that carries file associations
from the editor. These file associations link which files belong to which service, and
forward them using the newly set up Caretaker.

To guarantee this process, any module capable of receiving data must implement
a data-loading function. From there on the data is responsibility of the module, though it
can be requested again from the I/O module if lost.

This is a good point to talk about data types in the Writ engine. As mentioned
previously, type mismatching is a real risk in a system that dynamically associates
tasks with modules with different implementations. This means we have two possibly
solutions. We enforce data types we think are appropriate for the task through an
standard protocol. Alternatively, we could also enforce abstract data types instead, and
leave the implementation up to the module creators. What we come up with is a middle
ground between these two approaches.

Data types in Writ are not final, instead they can be augmented with module
specific data-types. Though communication between modules is all done through
standard data types(to ensure module compatibility), we allow each module to define
their own additional data types, and store and retrieve them from a common data pool.
Along with this, all data moving through modules is enclosed in a content container
structure figure 7, that contains an unique sourceid that identifies the origin point of
the data. If the original data was read from the hard-drive, it is assigned an unique id
when read by the I/O module. When receiving a standard type that lacks information
to perform their work, the module can then ask for any supplementary file associated
with that id. This means modules can supplementary information for their specific need
provided by the editor, while maintaining a standard minimum for compatibility. If the
data was created by a module, it’s id contains a reference to the creator module. If the
module knows some modules that consume their data need extra information beyond
the regular data type, it can enclose this data in a container and send it to a shared
pool, where the other module can retrieve it.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 36

Figura 7 – Figure 7: Therepresentation of a “data” container.

Through this means, data types can be extended to supply the individual needs
of specific implementations, but it is also worth noting that standards aren’t set in
stone. While it may be rare; with time, new revisions to the standard protocol might be
released, allowing us to better supply the needs of the community. For the meantime in
which some practice is not widely accepted, these supplementary data types should be
enough.

Ensuring a proper update order. Another problem of uncertain dependences is
in regards to how they affect the main game loop. In a monolithic engine, a single game
loop will be enforced in the game’s main.(NYSTROM,)In this loop, it is imperative that
all udate() functions are called in precisely the right order to their respective modules.

This problem was a head scratcher for us for quite some time. We tried defining
update phases, like in Unity3D(UNITY TECHNOLOGIES, b), but we have no way to
ensure which modules should update first in case there are multiple supposed to run in
the same phase. Then we tried strong typing a dependency tree into each of them, but
since dependencies are so fluid and we enable the community to create new modules,
we couldn’t ever be certain that our dependency tree would be final.

To remedy that loaded a hierarchy tree for each phase unto our web platform,
and every time an unknown module is added into the engine or into the editor, it asks the
online platform for an update. To do that we also must enforce that each new released
module is carefully tested to find out where it fits in the dependency tree. As a side-effect
of this, any new version of a module is also considered a new unknown module.

This is far from a perfect solution, but we’ve found no other way to ensure a
proper update loop is maintained. As such, checking this dependence tree is the last
part of our boot sequence. Regardless, since we had the trouble to include a networking
module, we’ve used it for the Auto-publish function discussed on the next section,

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 37

Maintaining stable game loops. At this point we have all modules properly set
up, communicating properly between themselves, and with all the data they need to
work. We’ve also ensured a proper update order, but how do we ensure those updates
actually return to our main?

The problem here is that since flow within the program can go from one module
to another, there is no way to know what other modules will be called. In such conditions,
it is very easy to create a program where two modules just keep looping back and forth
between themselves and the flow never actually returns. In one such tests, the program
become completely unresponsive to the user, which is hardly an acceptable effect. One
of the suggested solutions were threads, but those would open a whole different can of
worms we didn’t have time to deal with in time for this project.

To solve this issue in a timely manner for the delivery of the project we’ve added a
call stack and a timer to the Caretaker. This means that as a call is made, the Caretaker
records the time and if the current call exceeds the time limit(5000ms) it propagates an
error back when the next call to it is made.

Hopefully in the future we will be able to develop a threaded implementation of
Writ and we will be better prepared to cope with this issue.

It is worth noting, however, that threads do not necessarily solve the deltatime
issue. While threads can guarantee a timely return, they can not ensure the processes
actually finish in that time. This means that even with threads, Writ might suffer from
missed frames. In modern engine design, the only way to ensure this doesn’t happen is
through careful crafting of the engine components down to the lowest level, which is
something we cannot guarantee.

A proposed solution is to make use of certification to guarantee only fine tuned
modules are allowed for real-time games, but the effects of such a decision on the
hobby game community and our architecture would have to be studied before making
any commitment.

Conclusion. In following the boot sequence we’ve not only discovered all the
minimal aspects required by such an engine, but also proved that most of the superficial
problems can indeed be overcome with a little application of software engineering,
Below in [figure number] is a final diagram of the core parts of the engine.

A more complete diagram including the modules created for the text adventure
features can be found in the addendum along with a complete set of requirements.

Further improvements to this architecture are discussed on Chapter 8, regarding
future projects.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 38

Figura 8 – Figure 8: The core architecture diagram for the engine.

6.3 The Culture

After all the discussion on models and architectures, what is left if to discuss how
these ideas affect people, and how this should be supported by the platform.

First and foremost, this was a project for hobbyists, by a group of hobbyists.
Therefore it is only natural that the entire project will be entire free and open source. But
we don’t think this is enough.

When we considering helping the non-professional dev community, it became
clear that not all problems could be solved by software alone. There are problems,
such as teaching developers how to properly work together, that cannot be solved by
modularity. What we need to solve those is a culture of free good spirited collaboration,
which is where the open source community comes in.

But we couldn’t just release Writ and leave people to sort themselves out. We’ve
noticed that this system put us in a perfect position to foster this newfound Writ Commu-
nity from its infancy. Grabbing hold of this opportunity we created the Writ website, and
designed it to direct people towards responsible game production habits.

Using (TEXTADEVNTURES.CO.UK,) as inspiration, our site stands as a central
platform for users to find games and modules, release their own and discuss what has
been going on. Taking advantage of the networking module on the core modules, we’ve
implemented an auto-publish feature that can be accessed through the engine itself or
editor. With it users can publish their newly created games to our website with a single

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

Capítulo 6. The Prototype 41

community and it wouldn’t be right to exclude them from anything.

This is a community based on solidarity and friendship. The willingness to help
each other and work together. And the happiness of seeing each other succeed.

This project will ultimately become what the community makes makes of it, and
we are under no misgiving that it’s fate is in good hands.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

42

7 Resultados e Discussão

This project represents a shift in the way game engines are built. We hope that
it’s characteristics will be enough to solve or alleviate the problems of Breadth and
Depth, but whether or not that actually happens yet remains to be seen.

To trully be able to measure the effects of the introduction of such a tool in an
established market requires time that escapes the scope of this paper. The community
will need time to grow and to get used to the new model, and it is uncertain how the
platform will be accepted by the larger community.

So far we’ve only openned the platform to a few chosen alpha testers from the
community, seeking to further refine our tools before any major releases are attempted.
Listening to the feedback of these individuals, we see that our current offerings are
favorable to their productivity. Users cite the ease of working on their projects without
the need to code as a major boon of the platform. Users also lament the current scarcity
of modules.

As noted in Chapter 6, this first foray into our new architecture was limited to a text
adventure engine and supporting systems. This means that other than our UIDesigner
module and a rudimentary MusicManager module, most interactions with the player
are completely text driven. This limits the kinds of games that can be created right now,
though not as much as you’d think. Users on the platform already managed to create
simple puzzle games like chess and tic-tac-toe through clever uses of the UIDesigner,
and one of the current ongoing projects is a tavern management simulator. Regardless,
we intend to develop more modules before a full release of the platform, if only to make
obvious that this platform is not only limited to text games, but could be used to develop
all kinds of games in the future.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

43

8 Future Developments

As mentioned previously, we are not entirely convinced non-realtime applications
is the limit of this architecture. There are several angles through which we can possibly
solve this problem. One option would be to increase the granularity of each module, the
flow inside individual modules easier to predict. Another suggested solution is to better
curate a selection of real-time ready modules with greatly optimized code. However at
this point these possibilities remain unexplored.

We also hope to soon bring multithreading to the system. We know for certain
that it would help with a few of the problems discussed on Chapter 6, and it might bring
about other benefits relevant to finally making the jump to real-time. Multithreading will
probably also introduce a cadre of new dependence problems. To deal with those we
plan to introduce an oversee module to ensure business rules between modules and
ward against deadlocks and starvation. This however requires deeper study on how
what these business rules will be and how they will be enforced within the architecture.

Finally, we feel like our approach to game development is different enough from
what is out there to warrant further study. One particular topic we are interested in is on
how this new paradigm will affect the community one year from now, once the platform
has gained more traction. It should also be interesting to see which aspects of these
results will be due to the implementation of the platform, and which will relate directly to
the paradigm presented here.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

44

9 Conclusão

Hobby game development was always at the heart of this project. We feel that for
too long this aspect of game making has gone unnoticed and unloved. With this project,
we’ve made an effort to reach out to them and to understand the particularities of their
position. We did so not with the intention of creating a product or selling an idea, but of
helping those who have little to get a little more out of their effort.

We firmly believe this is the place of academia in the games industry. To look out
for the little guys and develop solutions without eyes on profit, and in doing so, better
the community as a whole. That is why even if all else proposed in this project fail, we at
least managed to bring awareness to the importance of the hobby developer, and that
is a reward in its own right.

We see this project not as a great innovation in engine design, but as the
culmination of several trends that have been going on for a very long time. In it, we’ve
taken the ideas of modular design, data-driven architecture, and user-centered design
and applied them to their fullest extent in the area of engine design, creating the world”s
first completely modular and data-driven engine.

More than a creating a software, however, this paper proposes a new way to
look at engines. And with this proposition, we hope to cure two major problems that
greatly affect the hobbyist game development community: the large expenditure of time
in learning new skills and the difficulty to work in teams.

We hope to soon bring the platform live, so we can marvel at the things people
are capable of doing together.

More than that, we hope to bring people together, in working towards their
dreams, for this is what gaming is all about.Você precisar comprar esse documento para remover a marca d'água.

Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

45

Referências

ALEX. textadventures.co.uk – the new Quest Games Archive. 2006. Disponível em:
<https://blog.textadventures.co.uk/2007/02/09/new-quest-games-archive/>. Acesso em:
10/12/2017.

ANDERSON, E. F. et al. The Case for Research in Game Engine Architecture.
In: FUTURE PLAY ’08, 2008, Toronto. Toronto: ACM, 2008. p. 228 – 231. ISSN
978-1-60558-218-4. Disponível em: <https://dl.acm.org/citation.cfm?id=1497031>.
Acesso em: 10/12/2017.

ASSOCIATION, E. S. Analyzing the American Video Game Industry 2016. 2017.

BLOK-ANDERSEN, R. The Benefits and Challenges of Supporting Third-Party
Developers in Eve Online. In: GDC 2015, 2015, San Francisco. UBM Tech. San
Francisco, 2015.

BLOW, J. Game Development: Harder Than You Think. Magazine Queue,
ACM, New York, NY, USA, v. 1, n. 10, February 2004. Disponível em: <http:
//queue.acm.org/detail.cfm?id=971590>. Acesso em: 10/12/2017.

BUSBY, J.; PARRISH, Z.; WILSON, J. Mastering Unreal Technology, Volume I. [S.l.]:
Sams Publishing.

CHANDLER, H. M. The Game Production Handbook. 3. ed. [S.l.]: Jones & Bartlett
Learning, 2013. ISBN 1449688098.

CHATFIELD, T. Videogames now outperform Hollywood movies. The Guardian, 2009.
Disponível em: <https://www.theguardian.com/technology/gamesblog/2009/sep/27/
videogames-hollywood>. Acesso em: 10/12/2017.

CHIRONIS, K. From Student To Designer/Writer. In:
HTTPS://WWW.GDCVAULT.COM/PLAY/1021994/FROM-STUDENT-TO-DESIGNER-
WRITER, 2015, San Francisco. UBM Tech. San Francisco, 2015.

COBBETT, R. From shareware superstars to the Steam gold rush: How indie conquered
the PC. PC Gamer, 2017.

CRYTEK GMBH. CryEngine. Disponível em: <https://www.cryengine.com/>. Acesso
em: 10/12/2017.

DIGIPEN. Digipen Course Catalog. Disponível em: <https://www.digipen.edu/
coursecatalog/>. Acesso em: 10/12/2017.

ENTERBRAIN, INC. RPG Maker. Disponível em: <http://www.rpgmakerweb.com/>.
Acesso em: 10/12/2017.

ENTERTAINMENT SOFTWARE ASSOCIATION. Games: Improving The Economy.
2014. Disponível em: <http://www.theesa.com/wp-content/uploads/2014/11/Games_
Economy-11-4-14.pdf>. Acesso em: 10/12/2017.

EPIC GAMES, INC. Unreal Engine. Disponível em: <https://www.unrealengine.com>.
Acesso em: 10/12/2017.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

https://blog.textadventures.co.uk/2007/02/09/new-quest-games-archive/
https://dl.acm.org/citation.cfm?id=1497031
http://queue.acm.org/detail.cfm?id=971590
http://queue.acm.org/detail.cfm?id=971590
https://www.theguardian.com/technology/gamesblog/2009/sep/27/videogames-hollywood
https://www.theguardian.com/technology/gamesblog/2009/sep/27/videogames-hollywood
https://www.cryengine.com/
https://www.digipen.edu/coursecatalog/
https://www.digipen.edu/coursecatalog/
http://www.rpgmakerweb.com/
http://www.theesa.com/wp-content/uploads/2014/11/Games_Economy-11-4-14.pdf
http://www.theesa.com/wp-content/uploads/2014/11/Games_Economy-11-4-14.pdf
https://www.unrealengine.com

Referências 46

FAILBETTER GAMES. StoryNexus. Disponível em: <http://www.storynexus.com/s>.
Acesso em: 10/12/2017.

FLOYD, D. et al. Non-Professional Game Dev - The Joy of Making - Extra Credits.
Disponível em: <https://www.youtube.com/watch?v=m4p7T9O_tqg>. Acesso em:
10/12/2017.

FLOYD, D. et al. Integrating Academia - Experimenting for Better Games. 2016.
Disponível em: <https://www.youtube.com/watch?v=b6Y6YNhyxOI>. Acesso em:
10/12/2017.

FOERTSCH, G. et al. Killer Portfolio or Portfolio Killer. In: GDC 2017, 2017, San
Francisco. UBM Tech. San Francisco, 2017.

FOLMER, E.; GROUP, G. E. R. Component based game development: a solution to
escalating costs and expanding deadlines? In: CBSE’07 PROCEEDINGS OF THE
10TH INTERNATIONAL CONFERENCE ON COMPONENT-BASED SOFTWARE
ENGINEERING, Medford, MA, USA. Medford, MA, USA: Springer-Verlag. p. 66 – 73.
ISSN 978-3-540-73550-2. Acesso em: 10/12/2017.

FULLERTON, T. Game Design Workshop: A Playcentric Approach to Creating
Innovative Games. 2. ed. [S.l.]: Morgan Kaufmann, 2008. ISBN 0240809742.

GAMEDEV.NET. Disponível em: <https://www.gamedev.net/>. Acesso em: 10/12/2017.

GIANTBOMB. Colossal Cave Adventure Credits. Disponível em: <https:
//www.giantbomb.com/colossal-cave-adventure/3030-19301/credits/>. Acesso em:
10/12/2017.

GIANTBOMB. Ms. Pacman Credits. Disponível em: <https://www.giantbomb.com/ms-
pac-man/3030-6332/credits/>. Acesso em: 10/12/2017.

GREGORY, J. Game Engine Architecture. 2. ed. [S.l.]: A K Peters/CRC Press, 2014.
ISBN 1466560010.

GUNDLACH, S.; MARTIN, M. K. Mastering CryENGINE. [S.l.]: Packt Publishing.

HAGGIS, M. Studying the value of games at GDC 2017. Gaming Horizons, 2017.
Disponível em: <https://www.gaminghorizons.eu/studying-the-value-of-games-at-gdc-
2017/>. Acesso em: 10/12/2017.

ITCH CORP. Itch.io Docs - Pricing. Disponível em: <https://itch.io/docs/creators/pricing#
pay-what-you-want-pricing>. Acesso em: 10/12/2017.

ITCH.IO. The List of Free Games on Itch.io. Disponível em: <https://itch.io/games/free>.

KANODE, C. M.; HADDAD, H. M. Software Engineering Challenges in Game
Development. In: 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION
TECHNOLOGY: NEW GENERATIONS, 2009. IEEE Conference Publications. [S.l.],
2009. p. 260 – 265.

KENT, S. L. The Ultimate History of Video Games: From Pong to Pokemon–The Story
Behind the Craze That Touched Our Lives and Changed the World. 1. ed. [S.l.]: Three
Rivers Press, 2001. ISBN 0761536434.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

http://www.storynexus.com/s
https://www.youtube.com/watch?v=m4p7T9O_tqg
https://www.youtube.com/watch?v=b6Y6YNhyxOI
https://www.gamedev.net/
https://www.giantbomb.com/colossal-cave-adventure/3030-19301/credits/
https://www.giantbomb.com/colossal-cave-adventure/3030-19301/credits/
https://www.giantbomb.com/ms-pac-man/3030-6332/credits/
https://www.giantbomb.com/ms-pac-man/3030-6332/credits/
https://www.gaminghorizons.eu/studying-the-value-of-games-at-gdc-2017/
https://www.gaminghorizons.eu/studying-the-value-of-games-at-gdc-2017/
https://itch.io/docs/creators/pricing#pay-what-you-want-pricing
https://itch.io/docs/creators/pricing#pay-what-you-want-pricing
https://itch.io/games/free

Referências 47

KHONSARI, N. 1979 Revolution: Black Friday. Disponível em: <https://en.wikipedia.org/
wiki/1979_Revolution:_Black_Friday>. Acesso em: 10/12/2017.

LLC, S. Steam Platform games catalog. Disponível em: <http://store.steampowered.
com/search/?sort_by=Released_DESC&tags=-1&category1=998>. Acesso em:
10/12/2017.

NATH, T. Investing in Video Games: This Industry Pulls In More Revenue Than Movies,
Music. NASDAQ.com, 2016. Disponível em: <http://www.nasdaq.com/article/investing-
in-video-games-this-industry-pulls-in-more-revenue-than-movies-music-cm634585>.
Acesso em: 10/12/2017.

NEWZOO. Global Games Market Report. 2017. Disponível em: <http://resources.
newzoo.com/hubfs/Factsheets/Newzoo_Global_Games_Market_Report_Factsheet.
pdf?hsCtaTracking=fb39be06-d968-42e5-9671-d0522fc3421f|3fbe5531-c71b-417d-
9b11-749d0ccb14f7>. Acesso em: 10/12/2017.

NYSTROM, R. Game Programming Patterns. 1. ed. Genever Benning. ISBN
0990582906. Disponível em: <http://gameprogrammingpatterns.com/component.html>.
Acesso em: 10/12/2017.

RANKIN, Y.; GOOCH, A.; GOOCH, B. The impact of game design on students’ interest
in CS. In: GDCSE ’08, 2008, Miami, Florida. ACM. Miami, Florida, 2008. p. 31 – 35.

ROHRER, J. Passage. Disponível em: <https://en.wikipedia.org/wiki/Passage_(video_
game)>. Acesso em: 10/12/2017.

ROWLAND, A.; CLARKE, C. Unity Technologies Lands $12 Million in Series B Funding
Led by WestSummit Capital and iGlobe Partners. Market Wired, 2011. Disponível
em: <http://www.marketwired.com/press-release/unity-technologies-lands-12-million-
series-b-funding-led-westsummit-capital-iglobe-partners-1540593.htm>.

RUSSELL, S. SpaceWar! 1962. Disponível em: <https://en.wikipedia.org/wiki/
Spacewar!> Acesso em: 10/12/2017.

SAIL, L. F. FullSail Course Catalog. Disponível em: <https://www.fullsail.edu/resources/
brochure-file/full-sail-catalog.pdf>. Acesso em: 10/12/2017.

SMITH, Z. In game development, what’s the ratio of time spent programming
to non-programming tasks like asset creation? - Quora. Disponível em: <https:
//www.quora.com/In-game-development-whats-the-ratio-of-time-spent-programming-
to-non-programming-tasks-like-asset-creation>. Acesso em: 10/12/2017.

STENCYL, LLC. Stencyl. Disponível em: <http://www.stencyl.com/>. Acesso em:
10/12/2017.

STIM, R. Fair Use Overview. Disponível em: <https://fairuse.stanford.edu/overview/fair-
use/>. Acesso em: 10/12/2017.

TEXTADEVNTURES.CO.UK. Textadevntures.co.uk. Disponível em: <Textadevntures.co.
uk>. Acesso em: 10/12/2017.

UNITY TECHNOLOGIES. Unity Fast Facts. Disponível em: <https://unity3d.com/public-
relations>. Acesso em: 10/12/2017.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

https://en.wikipedia.org/wiki/1979_Revolution:_Black_Friday
https://en.wikipedia.org/wiki/1979_Revolution:_Black_Friday
http://store.steampowered.com/search/?sort_by=Released_DESC&tags=-1&category1=998
http://store.steampowered.com/search/?sort_by=Released_DESC&tags=-1&category1=998
http://www.nasdaq.com/article/investing-in-video-games-this-industry-pulls-in-more-revenue-than-movies-music-cm634585
http://www.nasdaq.com/article/investing-in-video-games-this-industry-pulls-in-more-revenue-than-movies-music-cm634585
http://resources.newzoo.com/hubfs/Factsheets/Newzoo_Global_Games_Market_Report_Factsheet.pdf?hsCtaTracking=fb39be06-d968-42e5-9671-d0522fc3421f|3fbe5531-c71b-417d-9b11-749d0ccb14f7
http://resources.newzoo.com/hubfs/Factsheets/Newzoo_Global_Games_Market_Report_Factsheet.pdf?hsCtaTracking=fb39be06-d968-42e5-9671-d0522fc3421f|3fbe5531-c71b-417d-9b11-749d0ccb14f7
http://resources.newzoo.com/hubfs/Factsheets/Newzoo_Global_Games_Market_Report_Factsheet.pdf?hsCtaTracking=fb39be06-d968-42e5-9671-d0522fc3421f|3fbe5531-c71b-417d-9b11-749d0ccb14f7
http://resources.newzoo.com/hubfs/Factsheets/Newzoo_Global_Games_Market_Report_Factsheet.pdf?hsCtaTracking=fb39be06-d968-42e5-9671-d0522fc3421f|3fbe5531-c71b-417d-9b11-749d0ccb14f7
http://gameprogrammingpatterns.com/component.html
https://en.wikipedia.org/wiki/Passage_(video_game)
https://en.wikipedia.org/wiki/Passage_(video_game)
http://www.marketwired.com/press-release/unity-technologies-lands-12-million-series-b-funding-led-westsummit-capital-iglobe-partners-1540593.htm
http://www.marketwired.com/press-release/unity-technologies-lands-12-million-series-b-funding-led-westsummit-capital-iglobe-partners-1540593.htm
https://en.wikipedia.org/wiki/Spacewar!
https://en.wikipedia.org/wiki/Spacewar!
https://www.fullsail.edu/resources/brochure-file/full-sail-catalog.pdf
https://www.fullsail.edu/resources/brochure-file/full-sail-catalog.pdf
https://www.quora.com/In-game-development-whats-the-ratio-of-time-spent-programming-to-non-programming-tasks-like-asset-creation
https://www.quora.com/In-game-development-whats-the-ratio-of-time-spent-programming-to-non-programming-tasks-like-asset-creation
https://www.quora.com/In-game-development-whats-the-ratio-of-time-spent-programming-to-non-programming-tasks-like-asset-creation
http://www.stencyl.com/
https://fairuse.stanford.edu/overview/fair-use/
https://fairuse.stanford.edu/overview/fair-use/
Textadevntures.co.uk
Textadevntures.co.uk
https://unity3d.com/public-relations
https://unity3d.com/public-relations

Referências 48

UNITY TECHNOLOGIES. Unity Manual - Execution Order of Event Functions.
Disponível em: <https://docs.unity3d.com/560/Documentation/Manual/ExecutionOrder.
html>. Acesso em: 10/12/2017.

UNITY TECHNOLOGIES. Unity3D. Disponível em: <https://unity3d.com/pt/>. Acesso
em: 10/12/2017.

UNSEEN64.NET. An archive of lost and cancelled games. Disponível em:
<https://www.unseen64.net/beta-and-cancelled-videogames/>. Acesso em:
10/12/2017.

YOYO GAMES LTD. GameMaker. Disponível em: <https://www.yoyogames.com/
gamemaker>. Acesso em: 10/12/2017.

ÐÔNG, N. H. Flappy Bird. Disponível em: <https://en.wikipedia.org/wiki/Flappy_Bird>.
Acesso em: 10/12/2017.

Você precisar comprar esse documento para remover a marca d'água.
Documentos de 10 páginas são gratuitos.

You need to buy this document to remove the watermark.
10-page documents are free.

https://docs.unity3d.com/560/Documentation/Manual/ExecutionOrder.html
https://docs.unity3d.com/560/Documentation/Manual/ExecutionOrder.html
https://unity3d.com/pt/
https://www.unseen64.net/beta-and-cancelled-videogames/
https://www.yoyogames.com/gamemaker
https://www.yoyogames.com/gamemaker
https://en.wikipedia.org/wiki/Flappy_Bird

