

Federal University of Pernambuco
Center of Informatics

BSc Computer Science

CEPSwift: Complex Event Processing
Framework for Swift

Undergraduate thesis

George Belo Guedes

Recife
December, 2017

	
	

Federal University of Pernambuco
Center of Informatics

BSc Computer Science

CEPSwift: Complex Event Processing
Framework for Swift

Thesis submitted to the Center of
Informatics of the Federal University of
Pernambuco as partial requirement for the
degree of Bachelor of Science in Computer
Science.

Author: George Belo Guedes

(gbg@cin.ufpe.br)
Supervisor: Kiev Santos da Gama

(kiev@cin.ufpe.br)

Recife
December, 2017

To all those who went through my life,
and contributed in some way to my essence

Acknowledgements
It is really hard to thank everyone that helped me to get here. College was a

scary period of my life and it was not easy to pass it through. Sometimes I thought
about throwing it all in the air and giving up, but I ended up finding strength to go on.
Some people were crucial during this long way, but I probably won’t remember
someone or won’t have enough space to credit them all. Never the less, I would like to
specially thank some people who were close to me all time along this journey: my
parents, Cristina and Genilson, who never thought twice about investing in my
education; my girlfriend, Marina, for all the affection and support; and my supervisor,
Kiev, for introducing me to complex event processing and for all the patience and help
during this work.

As Rocky Balboa said on Rocky movie “Let me tell you something you already
know. The world ain't all sunshine and rainbows. It is a very mean and nasty place and
it will beat you to your knees and keep you there permanently if you let it. You, me, or
nobody is gonna hit as hard as life. But it ain't how hard you hit; it's about how hard
you can get hit, and keep moving forward. How much you can take, and keep moving
forward. That's how winning is done. Now, if you know what you're worth, then go out
and get what you're worth. But you gotta be willing to take the hit, and not pointing
fingers saying you ain't where you are because of him, or her, or anybody. Cowards do
that and that ain't you. You're better than that.”

“Don't look back. You're not going that way.”
― Unknown

Abstract

Complex Event Processing (CEP) is a branch of event processing that has been gaining

prominence in recent years. CEP allow to process event flows, enabling the definition

and detection of high-level situations of interest, usually from a manipulation or

combination of low-level simple events. CEP systems have great benefits such as being

highly distributed and extremely loose coupled. Similarly to this kind of systems,

reactive programming languages involves the same steps for detection, elaboration and

propagation of changes to the interest parties. Despite the similarities, an integration

between these two areas has been little explored. This work proposes the construction of

a framework to perform Complex Event Processing in Swift, called CEPSwift, using as

support a reactive programming framework.

Keywords: Complex Event Processing, Stream Processing, Event-Driven Architecture.

	
	

Resumo

Processamento de Eventos Complexos (Complex Event Processing - CEP) é um ramo

de Processamento de Eventos que vem ganhando destaque nos últimos anos. CEP

permite processar fluxo de eventos, possibilitando a definição e detecção de situações

de interesse de mais alto nível, normalmente através de uma manipulação ou

combinação de eventos simples de mais baixo nível. Sistemas CEP apresentam grandes

benefícios como serem altamente distribuídos e extremamente desacoplados dos outros

componentes. Similarmente a esses tipos de sistemas, linguagens de programação

reativa apresentam as mesmas etapas para detecção, elaboração e propagação de

mudanças para as partes interessadas. Apesar das semelhanças, uma possível integração

entre as áreas vem sendo pouco explorada. Este trabalho propõe o desenvolvimento de

uma biblioteca para processamento de eventos complexos em Swift intitulada

CEPSwift, utilizando como suporte um framework de programação reativa.

Palavras-chave: Processamento de Eventos Complexos, Processamento de Streams,

Arquitetura Orientada a Eventos.

	
	

List of Figures

Figure 1- Simple Event Processing Flow with layers exemplification	16	

Figure 2 - Complex Event Processing mechanism	...	18	

Figure 3 - Reactive Languages mechanism	..	22	

Figure 4 - CEPSwift high-level architecture	..	25	

Figure 5 - CEPSwift UML classes diagram	...	28	

Figure 6 - Model class that represents the accelerometer data reading	32	

Figure 7 - EventManager instance for AccelerometerEvent	..	33	

Figure 8 - Rules definition using CEPSwift to detect shake moviments	33	

Figure 9 - Rules for shake detection using pure RxSwift	...	34	

Figure 10 - Model class that represents the pedometer update event	...	35	

Figure 11 - Model class that represents the pedometer location event	35	

Figure 12 - EventManager instances for PedometerEvent and LocationEvent	35	

Figure 13 - Rules definition using CEPSwift library to detect walk movements	36	

Figure 14 - Rules to detect walk movements using pure RxSwift	..	37	

	
	

List of Tables

Table 1 – Complex event processing common operators. Summarized from Cugola and
Margara, 2013 [4]	...	19	

Table 2 - Analysis of similarities and differences of key aspects. Summarized from Cugola and
Margara, 2013 [4]	...	23	

Table 3 - Implemented operators	..	30	

	
	

List of Acronyms

CEP Complex Event Processing

RL Reactive Languages

API Application Programming Interface

IDE Integrated Development Environment

LOC Lines of Code

	
	

Contents
1.	 Introduction	..	12	

1.1	 Motivation	..	12	

1.2	 Goals	..	13	

1.3	 Structure of the document	...	13	

2.	 Background	...	15	

2.1	 Event-driven Architecture	...	15	

2.2	 Complex Event Processing	...	17	

2.2.1	 Operators	...	19	

2.2.2	 Applications	..	20	

2.3	 Reactive languages and CEP	...	21	

3.	 Proposal	..	25	

4.	 Implementation	...	27	

4.1	 Technologies	..	27	

4.2	 Technical Approach	...	27	

4.2.1	 Event and EventManager	...	28	

4.2.2	 EventStream and ComplexEvent	...	29	

4.2.3	 Implemented operators	..	30	

5.	 Use case	...	32	

5.1	 Shake movements detection	...	32	

5.2	 Walk movements detection	..	34	

5.3	 Discussion	..	37	

6.	 Conclusion	...	39	

6.1	 Considerations	...	39	

6.2	 Future work	...	40	

7.	 References	...	41	

	
	 	

12	

1. Introduction

Event-Driven Architecture (EDA) is a computational software architecture in which the

program flow is defined by events. Although the area has been studied since the 1990s,

recently there has been a significant increase of interest on the part of the industry and

academia [1]. This growth is mainly due to the increasing number of applications that are

based on this principle, such as mobile applications, client-server architectures, web systems,

chat systems, among others. This paradigm allows an application to be written in a simple

way, defining a set of events and reactions according to the occurrence of each of them.

Parallel to the increase of interest in EDA, there was a notable growth in the area of

Complex Event Processing (CEP) [1]. CEP is a technique used to process events, where the

main goal is to define and detect situations of interest, usually through a combination of

simple events. This way, it is possible to set rules and trigger actions when a particular pattern

is encountered.

One of the first patterns of message propagation focused on notification filtering is the

publish-subscriber pattern (pub-sub). The idea is that anyone who has an interest in receiving

event notifications subscribes, not knowing who will publish. Similarly, event sources will

post the occurrence of an information item on a channel, not knowing who will receive it, and

who is subscribed will be notified. There is a crucial difference between this pattern and CEP:

while the former allows only the enrollment in events of a certain type, individually [2], the

second allows to take into consideration the history of events or even the relationship between

different types of events, arriving from diverse sources. This way, CEP can be seen as an

extension of the pub-sub pattern [3], allowing those who sign up to express rules that infer

complex patterns by combining two or more events.

1.1 Motivation

In complex event processing, the composition of events is defined by the programmer. He

defines how to select, manipulate and combine these events. Usually, existing frameworks for

complex event processing are based on query languages to define rules (queries), which

makes its usage unintuitive for people who do not have experience with SQL-like languages.

It is crucial that a language for CEP might be expressive [4] and its API also be intuitive,

making it possible to create rules and patterns even by people who are not experts in the field.

	
	 	

13	

Efforts have been made in the area [7] in order to provide modeling and more intuitive

languages.

Both reactive languages (RL) and CEP provide a declarative way of defining entities.

Although there are some differences, both involve the same steps for the detection,

elaboration and propagation of changes that occur in the sources to the interested parties. Still,

there is little study in the area and the two communities are distant, with no knowledge

exchange and an integration between both would benefit the two areas [4]. Also, according to

[4], a possible approach for integration between the two areas is to add to the RLs the

possibility to operate on past values and support to common CEP operations such as filtering,

pattern detection and window concept.

1.2 Goals

This work proposes a framework called CEPSwift. The main goal is to make event

generation and stream handling easier in Swift and also provide complex event processing

capabilities. By the lack of studies done in the area and the complementary relationship

between reactive languages and CEP [4], libraries that give support to reactive programming

in Swift are reused to build the CEP solution.

Swift is an open-source language, widely used to develop mobile applications for iOS

platform. These applications are inherently event driven. In addition, there is growing interest

by the industry in server applications built in Swift [6].

Along with the construction of CEPSwift framework, this work has the following specific

goals:

• Perform a study of complex event processing area;

• Establish a parallel between CEP and reactive languages;

• Implement and demonstrate a case of use of the CEPSwift framework through a

practical application example;

• Provide CEPSwift as an open-source library framework for the community,

encouraging contributions from others developers.

	

1.3 Structure of the document

This document is structured as follow:

	
	 	

14	

• Chapter 2 gives a background of a few areas that are important to the

understanding of this work: First, there is an overview about event-driven

architecture, later complex event processing is discussed and last the

relationship between reactive languages and complex event processing;

• Chapter 3 discusses about the framework proposal;

• Chapter 4 discusses about the implementation of the proposal;

• Chapter 5 illustrates two use cases of the framework;

• Chapter 6 discusses the conclusions and future work.

	
	 	

15	

2. Background

This chapter discusses about the most important background topics involving CEP. First,

there is a discussion about Event-driven Architecture; then, Complex Event Processing is

discussed; finally, there is an overview about the relationship between Reactive Languages

and CEP.

2.1 Event-driven Architecture

Event-driven Architecture is a computational software architecture where programs are

event-based.	The definition of an event is straightforward: an event is a generalization of a

notable thing that happens and that is interest in the domain. For example, to an e-commerce

company, each order is an event of interest. The term event is often used to refer to the event

definition but also to each instance of an event. It is important to notice the temporal aspect

present on this kind of architecture, in which each event is associated to a timestamp and the

order of the events is defined by the time of their occurrences.

EDA applications can be built with four logical layers [14], each one with their own

responsibilities in order to have a well modularized system:

• Event generator: This logical layer can sense the occurrence of something of

interest and is responsible for representing this into an event. It is important to

notice here that “something of interest” can be nearly anything that can be

sensed. Examples of event generators are an e-commerce system or physical

sensors;

• Event channel: This layer is responsible for transporting standard well formatted

events between the event generator and the event processing layer;

• Event processing: The event processing layer receives the event and evaluates it

against event processing rules to execute the proper reactions. These rules and

reactions are defined by the interest parties. For example, in an e-commerce

system, an event of “product ID with low stock” can trigger reactions like

“Notify department”;

• Downstream event-driven activity: Many activities can be initiated by a single

event occurrence or a correlation of events. This can be a push by the event

	
	 	

16	

processing or even a callback that is executed when the event of interest takes

place.

Figure 1- Simple Event Processing Flow with layers exemplification

Source: Michelson, Brenda M. "Event-driven architecture overview." Patricia Seybold Group 2 (2006).

In the event-driven architecture there are three general styles of event processing: simple

event processing, stream event processing and complex event processing. It is important to

notice here that these three styles often appear together in an application that uses EDA and

they are not in any way mutually exclusive:

• Simple Event Processing: In this style, when an event of interest occurs a proper

reaction is initiated. It does not take into consideration correlation between events

of the same type that had occurred before;

• Stream Event Processing: In stream event processing, there is an interest to

keep receiving continuously events of a same type. Both events of interest or

ordinary events can occur and all of them are stored in streams;

• Complex Event Processing: In complex event processing, there is an interest to

extract a certain behavior from the occurrence of a combination of events from

different sources and then react according. This style is the focus of this work.

The event-driven architecture has great benefits like being inherently highly distributed

and extremely loose coupling. The highly distributed characteristic arises from the fact that

anything can be seen as an event and they exist practically everywhere. So, when building an

	
	 	

17	

application, it is easy to have micro-services connected. The extremely loose coupling

characteristic arises from the fact that the producer does not need to know who is consuming

the events and neither the consumer needs to know who is producing the events. Typically,

EDA have real time needs and thus the work and information flow happens asynchronously.

	

2.2 Complex Event Processing

The concepts of timeliness and flow processing are crucial to explain the need for a new

class of systems that are capable of processing data-flows in real time [3]. In traditional

database management systems (DBMSs), data is persistently stored and indexed before it is

available for query and this does not fit the needs of real time event processing applications.

Complex event processing arises from this requirement and can be seen as a branch of event

processing [8] where the goal is to define and detect situations of interest, usually through a

combination of simple events, and react to them as quickly as possible.

Events can relate to each other by many aspects such as time, causality or aggregation [9].

New events can be generated by observing the relationship between a set of events. These

new events are often referred as complex events [9]. Thus, CEP provides a way of detect

patterns by filtering, correlating, contextualizing and analyzing data provided by different

sources, taking in consideration the order of the events. For example, in the context of a credit

card company, each credit card purchase can be seen as an event. A purchase event can have

many attributes such as a flag indicating if the purchase was online or face-to-face, the

location of the beneficiary establishment and the timestamp. For each credit card client, there

will be a stream of purchase events. The credit card company can use CEP to keep listening to

purchases of each client and block the credit card if two face-to-face purchases happens in a

short period of time and in a long range of distance, where the period of time and range of

distance are variables defined by the system.	Figure 2 illustrates the CEP mechanism by using

the credit card company example.

	

	

	

	

	

	

	
	 	

18	

	

	

Figure 2 - Complex Event Processing mechanism

	

	

According to Eckert and Bry [12], there are four aspects to be considered as requirements

for an event query language:

• Data extraction: Events contain important data. It is crucial for a query language

to be able to access this information in order to react to them, to enrich other data

or even to generate new events;

• Composition: It is important to join individual events from different sources,

combining their occurrence in order to obtain high-level situations;

• Temporal relationship: The temporal aspect is crucial in event processing

systems. It should be possible to express in the rules temporal conditions such as

defining an interval for the occurrence of an event or a sequence of events in a

particular order;

• Accumulation: It should be possible to query for accumulator operators such as

maximum, minimum or average over a certain finite slice (or window).

Additionally, two types of rules can be defined to perform CEP operations: deductive

rules, where new events are defined based on event queries, regarding the occurrence and

correlation of a set of events; and reactive rules, where it is specified how the system should

react to the occurrence of single events or complex events, usually with a procedure that will

be executed.

	
	 	

19	

2.2.1 Operators

Complex event processing operators are the core of a CEP engine. It is through the

operators that the rules will be expressed, identifying situations of interest by correlating

events in different aspects. Firing conditions can be written using the CEP operators and when

the conditions hold, actions defined will be taken. These conditions are usually defined as

patterns that match portions of events in a certain stream, using logical operators, content and

timing constraints.

CEP engines allow users to express rules in different paradigms and can even use more

than one in the same system [3]. The most commons paradigms used are declarative, which

usually includes languages derived from relational languages like relational algebra or SQL;

imperative, which usually offers visual interfaces to define rules and detecting; and pattern-

based, where rules are separately specified the conditions and procedures that will be

executed.

Cugola and Margara in [3] define classes of CEP operators as illustrated in Table 1.

Table 1 – Complex event processing common operators. Summarized from Cugola and Margara, 2013 [4]

	
	 	

20	

2.2.2 Applications

The increase of applications that use Event-driven Architecture and the need of

monitoring IT systems due to legal, contractual or operational concerns has led to a

significantly increase of event generation in computer systems. In this kind of application

there is a need to manage and process the occurrence of events in an automatic and systematic

way [12]. Complex event processing has been widely used for this purpose in many areas

such as:

	
	 	

21	

• Business Activity Monitoring: In business activity monitoring, the focus is to

identify problems and opportunities as quickly as possible. The application of CEP

in this area allows the extraction of performance indicators that can be used to

improve the business and fix problems;

• Sensor networks: Sensors can read data from physical world. Often there is a

need of combine data from different sources and analyze the behavior of a certain

measure during a period of time;

• Market data: The prices of stock or commodity in market data can be considered

as events. In trading algorithms, there is a need to analyze the prices continuously

in order to recognize trends early and react to them automatically, excluding the

need to have a person checking prices and making decisions.

	

2.3 Reactive languages and CEP

Reactive languages provide an abstraction to model values that change over time. These

values can be anything such as variables, clicks, user inputs, properties, data structures and so

on. They deal with data streams asynchronously and propagate the changes to those who are

interested. For example, in a social network there is a “likes” counter for each post. This

counter updates according to how many users clicked on the like button of that post. On the

mobile application front-end, there will be a UI component that will display the value of the

“likes” counter. Using reactive languages on the app, every time the counter is updated, the

change is instantly reflected on the UI component. This is the reactive way to propagate

signals of change. The RL mechanism is illustrated in Figure 3.

This solution contrasts with the Observer pattern and is considered as a better way of

dealing with values that changes because it can give more composability and increases the

readability of applications [4]. RLs emerged from purely functional languages but later were

introduced in several other types of languages. Nowadays, there are various extensions that

enable reactive programming in different programming languages. A very famous one that

has been widely used in big companies such as Netflix is the ReactiveX [5] library, which

provides a reactive framework for several mainstream programming languages.

	

	
	 	

22	

Figure 3 - Reactive Languages mechanism

	

By comparing the CEP mechanism from Figure 2 and the RL mechanism from Figure 3 it

is possible to notice that they both involve the same steps of execution. The main difference is

that complex event processing focuses on event occurrences. Each time a new event is

generated the CEP engine is notified and a set of rules is processed to check if a certain

pattern is encountered. If it is, this is propagated to the interest parties and they can react

accordingly. Reactive languages focus on the change of a value and not in event occurrences.

Every time a value is changed the reactive framework updates the value and propagates a

signal of change. All the variables that depend on the value that just changed have their values

updated.

Margara and Salvaneschi in [4] identified five main steps on the reactive behavior:

• Observation: This phase is when a fact of interest takes place. In a customer

service center, for example, observation happens each time a new case arrives;

• Notification: After the event happened, it is encoded to a notification;

• Processing: The notification triggers an action;

• Propagation: The result of the actions is propagated to the interested parties;

• Reaction: The interested parties receive the results and react according.

Both RLs and CEP go through the same five steps of the reactive cycle, although with

some differences on each phase. In CEP engines, in the observation phase, the sources

observe and propagate the occurrence of an event. In RLs, the focus is on a signal that

represents the changes of a value. In CEP, event notifications happen explicitly and is usually

pushed from the sources to the processing component. There is a set of rules that defines how

to manipulate and combine events to produce the desired results. In contrast, in RLs, the

	
	 	

23	

notifications are implicit. The processing phase is defined by an expression that specifies how

the result should be based on the value change. The propagation also happens explicitly in

CEP systems and implicit in RLs, but in both the results are propagated to all interest parties.

After delivering the results, CEP systems do not impose any limitations on reactive phase.

External clients receive the results and can react in any way they want; in RLs, the reaction is

always defined by a change into a value.

Margara and Salvaneschi in [4] also provide a more detailed analysis of some general key

aspects of CEP and RLs that are summarized in the table below:

Table 2 - Analysis of similarities and differences of key aspects. Summarized from Cugola and Margara, 2013 [4]

	
	 	

24	

	

Although there are differences between CEP and RLs, there is a lot in common between

them: they involve the same execution steps and have a lot in common in some key aspects.

But despite these similarities, [4] points it out that research in the areas have been carried

separately by the two communities. The communication between them should be stimulated

because each community can benefit from results and techniques successfully applied to each

other. According to [4], one way to integrate them both is to extend RLs expressions to

operate over past values of a signal and also support all common CEP operators.

	
	 	

25	

3. Proposal

This work proposes a framework called CEPSwift. The main goal is to make event

generation and stream handling easier in Swift, and also provide complex event processing

capabilities. The choice of Swift is also justified on the fact that, at the moment this work is

being written, there are no complex event processing solutions built for Swift. Moreover,

Swift is an open-source language that is continuously improving and is widely used to build

mobile applications that, in their nature, are event-oriented. Also, there is a great increase of

interest by the industry in server applications built in Swift [6]. The benefits of complex event

processing are even bigger in server applications that often deal with a massive quantity of

data and also require high performance, in real-time (or near real-time).

By the absence of studies in integrating reactive languages and CEP, the complementary

relationship and the potential of integrating them [4], libraries that give support to reactive

programming in Swift are reused to build the CEP solution. It is important to make it clear

that CEPSwift, at first, is an implementation of just a subset of CEP operators because of the

scope and time available for the work. Some other factors of choice are listed in the next

chapter.

At first, the main entities and the API architecture were, in a high-level, modeled as

follows to guide the development process:

Figure 4 - CEPSwift high-level architecture

	
	 	

26	

The EventManager class was designed to be responsible for notifying the occurrences of

new events. The EventStream class was designeded to be responsible for applying CEP

operators. This class should enable easy composition of the rules in the same way reactive

languages work. In order to combine events from different sources, another entity was

created: ComplexEvent.

	
	 	

27	

4. Implementation

This chapter presents an overview of the CEPSwift library implementation. First there is a

discussion about the technologies used in the implementation process and later about the

technical approach of the solution. All code is available in GitHub1 as an open-source library

under MIT license and on CocoaPods,2 a dependency manager for Swift.

4.1 Technologies

All classes in CEPSwift library were written in Swift 4.0. Internally, RxSwift framework

was used to add reactive programming capabilities to the developed API. RxSwift is a generic

abstraction of computation expressed through an interface called Observable<Element>. The

main idea is to deal with asynchronous operations and data streams. There are others

frameworks that enable reactive programming in Swift but RxSwift was chosen because it is

an open-source extension for Swift of the well-known reactive programming library

ReactiveX [5] that is continuously improving with new releases.

The IDE used in the project was Xcode, Apple’s Official IDE for Mac and iOS

development. Also, during the library implementation phase, GitHub was used for versioning

the code and to host the source files. CocoaPods was used to add RxSwift as external

dependency and, later, to distribute CEPSwift as a library. Also through CocoaPods, Quick

framework was added to the project to help the writing of unit tests for each CEP operator

implemented.

4.2 Technical Approach

CEPSwift library consists of four main entities: Event, EventManager, EventStream and

ComplexEvent. There are other auxiliary classes, but they are not as important as these three

to understand the architecture of the solution. Figure 5 illustrates an UML diagram of all

CEPSwift classes and each class implementation and design decisions are explained in the

following subsections.

																																																													
1	Available	at	<https://github.com/guedesbgeorge/CEPSwift>	
2	Available	at	<https://cocoapods.org/?q=cepswift>	

	
	 	

28	

Figure 5 - CEPSwift UML classes diagram

4.2.1 Event and EventManager

The Event entity is a protocol (Swift protocols are equivalent to interfaces). This decision

was made because it makes sense to have an event protocol or, in other words, a protocol that

every class that models a well-formatted event should conform to. To conform with the

protocol, the class must have a timestamp attribute that should be initialized inside the

constructor, that way keeping the temporal aspect. Other attributes can be added to the

protocol in the future as needed like, for example, an identifier or a string describing the

source. However, this must be done carefully to not cause backward compatibility issues.

The EventManager is a generic class that, as the name says, manages the occurrences of

an event. The application class where the events will be generated should hold an instance of

the EventManager<MyEvent>, where MyEvent is a model class that conforms to the Event

protocol and represents the event of interest. Any time a new MyEvent occurs, it should be

added to the EventManager by just calling the addEvent function. Using this instance, the user

can get an EventStream instance, where he can describe rules in order to extract patterns of

the event occurrences and high-level situations of interest.

	
	 	

29	

4.2.2 EventStream and ComplexEvent
The idea of mixing reactive programming with complex event processing is to use the

functional paradigm when creating rules and subscribing to events. In practice, by using the

EventManager instance, the user can have access to an EventStream, which is a class that

represents a stream with all occurrences of an event. Every time the user has an EventStream

he can call a CEP operator function implemented in the library and this will return a new

EventStream instance that holds only the events that satisfy the rule applied. The user can

easily compose different rules by applying the operators one after the other, nesting the rules.

Later, he can subscribe to that EventStream and pass a completion as parameter that will be

executed every time a new event that satisfy that condition arrives.

This gives great power to an event-driven application because the class that knows about

the occurrence of an event publishes them by adding to the EventManager. Other classes that

need to extract high-level situations can define rules and trigger actions when the rules are

satisfied by just holding an instance of the associated EventStream, keeping the code

modularized and the all components independent.

The initial idea was to implement a protocol called Streamable with all CEP operators that

the EventStream should conform, in order to make it easier change the internal support

framework for reactive programming later in future tests. But this was not possible because

Swift does not allow to create a protocol of a generic type and have inside the protocol

functions that return the same type that conforms with the generic protocol. This was

necessary because each CEP operator in EventStream returns a new instance of EventStream

with all the events that satisfy the condition. The way of achieving that is by using a pattern

called “type erasure”, but it is not intuitive and neither easy to implement in a short time, so

this will be left as future work.

The ComplexEvent class is required in order to merge different instances of EventStream

that can have different event types. When merging two different EventStreams, the result is a

ComplexEvent that allows the subscription by passing a callback function that will be

executed when all the events happens in a certain interval of time.

	
	 	

30	

4.2.3 Implemented operators

The implemented operators are available through the EventStream class. The choice of

which ones would be implemented in the library involved factors such as available time,

implementation complexity and operator relevance through analysis of others CEP

frameworks. The classes of CEP operators listed in Table 1 were analyzed and other library

implementations were studied. The implemented operators are illustrated in Table 3, grouped

by their respective classes.

Table 3 - Implemented operators

	
	 	

31	

	
	 	

32	

5. Use case

This chapter describes two use cases of the CEPSwift library. First, a simple one that

detects shake movements and later a more difficult one that detects if the user is walking. For

each of them, there is a discussion about the problem and the requirements involved and then

the solution using the developed API is presented. Also, there is a brief comparison of how

the solution looks like if it was implemented without using the library, just by using pure

reactive programming.

5.1 Shake movements detection

The problem addressed in this use case is simple: the detection of a simple shake

movement by using accelerometer data from the mobile device. The accelerometer sensor

provides the acceleration force value along the x, y and z axis and it is available from Apple

CoreMotion native library.

The main idea of the solution is to check if there is a big difference between two

consecutive accelerometer readings. This difference is set through a threshold value. In this

use case, each accelerometer reading is considered as an event. Figure 6 shows the definition

of a model class that conforms with the event protocol that models the event of interest.

Figure 6 - Model class that represents the accelerometer data reading

	

After defining the event model class, an instance of the EventManager should be

created. Every time a new acceleration reading arrives, the value should be added to the

manager (Figure 7).

	
	 	

33	

Figure 7 - EventManager instance for AccelerometerEvent

	

One can now define a high-level situation “device shake detected” by looking for two

consecutive accelerometer force readings with a difference between them that exceeds a

threshold previously defined. Using CEPSwift library, the rules can be defined by applying

the followedBy operator and checking if the absolute value of the difference between the

previous and the current accelerometer reading is higher than 1. The rule definition is

illustrated in Figure 8.

Figure 8 - Rules definition using CEPSwift to detect shake moviments

Figure 9 shows how the code would be if the same rules were written by using pure

reactive programming with RxSwift, to contrast with how they look by using CEPSwift in

Figure 8. For simplicity, the lines of code (LOC) metric was used to compare both codes. The

solution using CEPSwift has 7 LOC and the solution that uses pure RxSwift has 21 LOC,

three times greater. The reason why the code is longer lies on the fact that reactive

frameworks does not make it possible to work with previous values easily. In order to achieve

this behavior, the observable structure from RxSwift API had to be manipulated.

	
	 	

34	

Figure 9 - Rules for shake detection using pure RxSwift

	

	

5.2 Walk movements detection

The problem addressed in this use case is an iOS application capable of identifying if a

user is walking or if he is not walking by combining data from the pedometer sensor and GPS,

both data available from Apple native libraries. The application must guarantee that the user is

walking and not driving a car or riding a bicycle, for example. The difficulty arises from the

fact that, if it is considered only the pedometer data, one can easily just shake the phone and

this will make the pedometer sensor increment the number of steps even if the user is standing

still, because it is based on motion. On the other hand, if it is considered only GPS speed data,

one can get on a car on a slow speed and this will seem like the user is walking.

The main idea of the proposed solution is to combine the data occurrences from both

sensors. In this case, two different kind of events are defined. First, a pedometer data event,

which is a basically an update of the pedometer sensor from the native iOS CoreMotion

library. This event holds attributes such as number of steps, distance and start date of the

measurement. The model class that represent this first type of event is defined in Figure 10

and conforms with the Event protocol. The other kind of event is a location data event, which

is basically an update of the CoreLocation GPS data, and holds attributes such as latitude,

longitude and speed (Figure 11).

	
	 	

35	

Figure 10 - Model class that represents the pedometer update event

Figure 11 - Model class that represents the pedometer location event

After defining the model classes that represents the event of interest, an instance of

EventManager for both events should be created on the application view controller class.

Then, whenever we receive a pedometer update or a GPS data update we create an event and

add to the EventManager (Figure 12).

Figure 12 - EventManager instances for PedometerEvent and LocationEvent

	
	 	

36	

One can define a high-level situation of interest “user is walking” by checking if the

pedometer data keeps increasing the number of steps continuously. This can be easily done by

using the followedBy operator, passing as parameter a predicate that checks if the current

number of steps is higher than on the event immediately before. But, as mentioned before, this

does not guarantee that the user is walking because he may just be shaking his phone.

Combined with this we want to check if we also receive an update from the GPS data and

check if the speed is between an established threshold, that delimits a normal walking speed

for human beans. This can be achieved by using the filter operator. The merge operator can be

used to combine the occurrences of both events.

Another high-level situation of interest is “user is not walking”. This can be easily extract

by checking if the GPS speed data is less than a minimum walking speed, which means that

the user is probably standing still, or higher than a maximum walking speed, which means

that the user is probably running, cycling or even driving a car. This also can be achieved by

using the filter operator.

The rules that detect both high-level situations of interest described before are illustrated

on Figure 13.

Figure 13 - Rules definition using CEPSwift library to detect walk movements

Figure 14 shows how it would be the code if the same rules were written by using pure

reactive programming with RxSwift. The solution using CEPSwift has 5 LOC and the

solution that uses pure RxSwift has 35 LOC, seven times greater.

	
	 	

37	

Figure 14 - Rules to detect walk movements using pure RxSwift

5.3 Discussion
In this chapter two use cases of the CEPSwift library were shown. First, a simpler one to

detect shake movements was discussed. Even though it is a simple application, CEPSwift

library made it easier to define rules and detect high-level situations, in contrast with using

just a reactive framework to build the same solution, where the implementation would be

much polluted with boilerplate code. Later, a second use case was discussed to detect walk

movements. This use case was more complicated than the previous one because the proposed

solution combined events from different sources and composed different rules to guarantee

that the user is walking. As previously noted, the solution using just the reactive framework

had a higher LOC than using CEPSwift library.

It is important to notice that in both use cases the followedBy operator was used. This

operator allows to handle and manipulate previous events occurrences and this behavior is not

usually built in reactive programming. CEPSwift library implements this behavior by

manipulating the observable class of RxSwift and exposing only the function and the desired

result, making CEP operation easier in Swift. In the future, other metrics besides LOC such as

	
	 	

38	

complexity can be used to compare the solutions using CEPSwift and pure reactive

programming.

	

	 	

	
	 	

39	

6. Conclusion

Complex Event Processing is a technique used to process events, where the main goal is

to define and detect situations of interest, usually through a combination of simple events.

This way, it is possible to set rules and trigger actions when a particular pattern is

encountered. Reactive languages and CEP have a complementary relationship and both

involve the same execution steps and have a lot in common in key aspects.

6.1 Considerations

The main goal of this work was to implement common complex event processing

operations in Swift in order to facilitate stream handling and event generation in Swift. The

proposed API is called CEPSwift. First, it was given a background of event-driven

architecture, CEP and the complementary relationship between reactive languages and

complex event processing.

Despite the similarities presented between RLs and CEP, the research in both areas have

been carried separately by the two communities. One way to integrate them both is to extend

RLs expressions to operate over past values of a signal and also support all common CEP

operators. This approach was explored during the implementation of CEPSwift library.

The choice of which operators would be implemented in the library involved factors such

as available time, implementation complexity and operator relevance. The classes of CEP

operators listed in table 1 were analyzed and other libraries implementations were studied.

Finally, it was implemented six operators: filter, followedBy, map, merge, window and max

and min.

Two use cases of CEPSwift library were demonstrated in order to illustrate practical

examples of the API usage. The same solution for the proposed problems in the use cases

were written without the library and using only RxSwift. In both cases the code using only

RxSwift was longer (in terms of lines of code) and consisted basically on boilerplate code.

	
	 	

40	

6.2 Future work

Usability test and performance test
The proposed API is a tool that offers support for stream handling, event generation and

complex event processing operations in Swift. Therefore, it is crucial to conduct usability

tests in order to check if the library usage and methods are intuitive enough. These tests can

show what aspects need to be improve and can guide the work that need to be done in new

releases.

Complex event processing has real-time (or near real-time) requirements. Performance

tests need to be conducted in order to verify if this requirement is being met. Other reactive

libraries can be integrated to the project as support framework in order to compare with

RxSwift performance.

New operators

Complex event processing has many classes of operators that make stream handling easier

and helps to extract high-level situations, as described in table 1. Six operators were

implemented but there is plans of implementing more in new releases.

Swift server-side support

Swift is an open-source language that is continuously improving and is widely used to

build mobile applications that, in their nature, are event-oriented. But also, there is a great

increase of interest by the industry in server applications built in Swift. The benefits of

complex event processing are even bigger in server applications that often deal with a massive

quantity of data and also requires high performance, in real-time (or near real-time).

Therefore, changes need to be done in the API in order to add compatibility with Swift server-

side and scalability is an important factor that should be focused and analyzed.

Use of design metrics to measure code quality

Design metrics such as Weighted Methods per Class (WMC), Coupling Between Object

classes (CBO), Response For a Class (RFC) and Number of Children of a Class (NOC) are

capable of measure the quality of an object-oriented code [13]. These metrics can be used to

analyze CEPSwift software quality and also to indicate possible refactoring in new releases.

Also, studies involving complexity and other metrics besides LOC can be conducted to

compare the use case solutions that use CEPSwift and pure RxSwift to define CEP rules.

	
	 	

41	

7. References

[1] PASCHKE, Adrian; KOZLENKOV, Alexander; BOLEY, Harold. A homogeneous
reaction rule language for complex event processing. arXiv preprint arXiv:1008.0823, 2010.

[2] AGUILERA, Marcos K. et al. Matching events in a content-based subscription system. In:
Proceedings of the eighteenth annual ACM symposium on Principles of distributed
computing. ACM, 1999. p. 53-61.

[3] CUGOLA, Gianpaolo; MARGARA, Alessandro. Processing flows of information: From
data stream to complex event processing. ACM Computing Surveys (CSUR), v. 44, n. 3, p.
15, 2012.

[4] MARGARA, Alessandro; SALVANESCHI, Guido. Ways to react: Comparing reactive
languages and complex event processing. REM, 2013.

[5] ReactiveX, RxSwift Project. Retrieved November 28th 2017, from
<https://github.com/ReactiveX/RxSwift>.

[6] Swift.org, Server APIs Project. Retrieved November 28th 2017, from
<https://swift.org/server-apis/>.

[7] TEYMOURIAN, Kia; PASCHKE, Adrian. Enabling knowledge-based complex event
processing. In: Proceedings of the 2010 EDBT/ICDT Workshops. ACM, 2010. p. 37.

[8] KOTA, Venkata Krishna et al. Secure Complex Event Processing Framework. In:
Advance Computing Conference (IACC), 2017 IEEE 7th International. IEEE, 2017. p. 156-
160.

[9] ROBINS, D. Complex event processing. In: Second International Workshop on Education
Technology and Computer Science. Wuhan. 2010. p. 1-10.

[10] Luckham, David. 2002. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Pearson Education, Inc.

[11] SABOOR, M.; RENGASAMY, R. Designing and developing Complex Event Processing
Applications. Sapient Global Markets, 2013.

[12] ECKERT, Michael; BRY, François. Complex event processing (CEP). Informatik-
Spektrum, v. 32, n. 2, p. 163-167, 2009.

	
	 	

42	

[13] BASILI, Victor R.; BRIAND, Lionel C.. ; MELO, Walcélio L. A validation of object-
oriented design metrics as quality indicators. IEEE Transactions on software engineering, v.
22, n. 10, p. 751-761, 1996.

[14] MICHELSON, Brenda M. Event-driven architecture overview. Patricia Seybold Group,
v. 2, 2006.

Signatures

George Belo Guedes

(Author)

Kiev Santos da Gama

(Supervisor)

