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I met a traveller from an antique land
Who said: Two vast and trunkless legs of stone
Stand in the desert... near them, on the sand,

Half sunk, a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,
The hand that mocked them and the heart that fed:

And on the pedestal these words appear:
‘My name is Ozymandias, king of kings:

Look on my works, ye Mighty, and despair!’
Nothing beside remains. Round the decay
Of that colossal wreck, boundless and bare
The lone and level sands stretch far away.

(Ozymandias - Percy Byshe Shelly)





Abstract
In Machine Learning, ensemble methods have been receiving a great deal of attention.
Techniques such as Bagging and Boosting have been successfully applied to a variety of
problems. Nevertheless, such techniques are still susceptible to the effects of noise and
outliers, which might be present in the training data. Both outliers and noisy instances
are intrinsically likely to be misclassified, regardless of the choice of classifier. We propose
a new method for the generation of pools of classifiers, based on Bagging, in which the
probability of an instance being selected during the resampling process is inversely pro-
portional to its instance hardness. The goal of the proposed method is to remove noisy
data without sacrificing the hard instances which are likely to be found on class bound-
aries. We evaluate the performance of the method in fifteen public data sets, and compare
it to the performance of the Bagging and Random Subspace algorithms. Our experiments
show that the accuracy of the proposed method is at least as good as that of the original
Bagging algorithm, the second best performing algorithm in our test, and in some cases
is significantly better than that of Bagging.

Key-words: ensemble methods. Bagging. noisy data. instance hardness.
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1 Introduction

1.1 Motivation

In Machine Learning, ensemble methods [1] are techniques that combine multiple
predictors trained independently, using a combination of the outputs of each predictor
as the final output. This is in contrast to traditional Machine Learning methods, which
train a single classifier on the whole of the training set. The rationale behind this shift
in paradigm is that, by utilizing ensemble techniques one can expect to obtain a pool
of predictors with complementary competences. The pools generated can thus obtain
performances gains over strategies that employ a single classifier, given that finding the
single optimal model for a problem may be exceedingly difficult.

One ensemble learning method that has enjoyed widespread adoption is the boot-
strap aggregating algorithm [2], or simply, Bagging. The algorithm relies on creating an
ensemble of N classifiers trained on N training sets, sets which are created from the
original training set. These training sets are generated by sampling uniformly and with
replacement from the original training set.

The use of Bagging is interesting when the data sets available are small, noisy,
or both [3]. In general terms, it can be expected that the classifiers produced by the
Bagging algorithm will have complementary competences, making the decisions of the
system better than those of a single classifier trained on the whole training set [2].

The main motivation behind the work presented here is that, while ensemble learn-
ing may offer performance gains, they can’t completely avoid two common problems in
Machine Learning: noise and outliers. Simply described, outliers are those examples that
are considerably different from most members of its class, while noisy instances are in-
stances that have had its value changed from its true value. It is important to note that
when noise is discussed in this work, we mostly mean sources of noise that cannot be
removed by calibration.

We focus on noise and outliers due to their influence on classifiers. It is possible that
in the presence of noise, outliers, or both, the training process of a classifier can become
unstable or prone to overfitting [4], regardless of the use of ensemble techniques. This is
particularly concerning in the case of algorithms that place greater weight on misclassified
instances during the training process, such as AdaBoost [5], since it’s possible that the
model will be strongly adjusted so as to correctly classify instances that do not represent
the underlying distribution of the data. In these scenarios, one would expect to observe a
significant decrease in the generalization accuracy of the model.
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Nevertheless, there are techniques that seek to remove noisy instances from a data
set, as a means to alleviate the previously mentioned problems. One such technique is
the Edited Nearest Neighbor Rule [6], which filters the data set, removing those instances
that are not correctly classified using a k-Nearest Neighbors classifier. Still, noise removal
techniques might cause undesired side effects on the training set, such as the removal of
examples that are not noise or a dramatic removal of examples in the boundaries between
classes.

Parallel to the concept of noise we have the concept of instance hardness, or the
difficulty in classifying an instance. The hardness of an instance can be understood as the
likelihood that it will be incorrectly classified [7]. The difficulty in classifying an instance
may be used as proxy to the probability that such instance is noisy or an outlier. In this
manner, instance hardness measures may be used as a foundation for techniques which
aim to selectively remove instances from the training set.

1.2 Objective

Armed with the concepts of outliers, noise and instance hardness, it is natural to
question whether it would be possible to use some measure of instance hardness to remove
the troublesome instances mentioned previously from a training set. One would expect
that once those instances are removed, the training process would become more stable,
leading to better generalization accuracy.

In this vein, we propose in this work a method based on Bagging, which seeks to
remove outliers and noisy instances from the training set, while still preserving instances
which are not truly noise, or instances that are on the border of classes. We decided to base
our work on the Bagging algorithm due to its superior performance in noisy scenarios, as
explained previously.

The core idea of this method is to modify the process by which the bootstrapped
training sets are created in the Bagging algorithm. Instead of picking examples with
uniform probability, the probability of an instance being picked is now defined to be
inversely proportional to its hardness.

In order to illustrate the concepts discussed so far, Figure 1.2.1 shows a binary
classification problem in which the data are subject to noise. The examples in blue belong
to the negative class, while the examples in red belong to the positive class. The examples
in green are also part of the negative class, though they are distributed differently from
the rest of the examples. This illustrates the concept of outliers.

The examples follow a uniform random distribution. The negative examples are
distributed in the interval (0;1) in the x-axis and in the interval (0;1) in the y-axis. The
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examples in the positive class are distributed in the interval (1.5;2.5) in the x-axis and
in the interval (-0.5;0.5) in the y-axis. Any example labeled as positive which does not
follow the distribution defined for the positive class is incorrectly labeled, and therefore
is noise. The same is true for the negative class. Noise was added to 20% of the instances
to demonstrate its effects.

Figure 1.2.1 – Noisy distribution. The examples in blue belong to the negative the class,
while the examples in red belong to the positive class. The examples in
green are outliers belonging to the negative class.

Figure 1.2.2, on the other hand, illustrates the result of an ideal noise removal
technique.

Figure 1.2.2 – Ideal noise removal.

Once the noise is removed, it becomes clear that the problem is linearly separable,
and thus, easily learnable.

The proposed method was conceived with this ideal noise removal scheme in mind.
It is necessary to note, though, that in our method, the instances are selected in a proba-
bilistic manner. This means that even hard instances may be selected. It is indeed desirable
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that hard instances may be selected, since they may be instances in the border between
classes.

1.3 Methodology
In order to asses the effectiveness of the proposed method, we compared it with

well-established ensemble learning methods. We added artificial noise to the class labels
of a data set, and then trained classifiers on this noisy data. The accuracy of each method
was measured in several public datasets, and a statistical analysis of the results was
performed, in order to ascertain whether or not the proposed method achieved superior
generalization accuracy.

Furthermore, we conducted an analysis of the distribution of instance hardness
values for noisy and non-noisy instances, on the same data sets which were used to evaluate
the accuracy of the classifiers. This analysis was aimed at determining precisely how the
noise would affect the hardness of the instances, beyond the simple assumption that noisy
instances are harder.

1.4 Structure of this document
This work is organized as follows. In Chapter 2, we present basic concepts per-

taining to ensemble methods, noise and outliers, data complexity measures and instance
hardness. We also present related works which will serve as a foundation upon which our
work is built, and also as a benchmark for comparison with our method. In Chapter 3,
we detail the proposed method, giving precise definitions for our method for determining
instance selection probabilities, as well as presenting each step of our pool generation
algorithm. In Chapter 4, we further explain our experimental methodology, including the
data sets used and the statistical methods applied. We then present our results and dis-
cuss their implications. Finally, in Chapter 5 we present a summary of our findings and
suggest possible future lines of investigation.
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2 Background and Related Works

In this chapter, we present an overview of the concepts utilized throughout this
document, as well as the theoretical foundation upon which our work is built. We also
use this chapter to give a brief summary of other works related to our own.

2.1 Ensemble methods
Ensemble methods, classifier ensembles or multiple classifier systems are a family of

Machine Learning methods that focus on creating systems composed of multiple classifiers,
with the objective of achieving better performance than what would be possible with a
single classifier.

In these systems, multiple classifiers are trained on the same training set, or on
partitions of the same training set. The final output of the system is given by some
combination of the outputs of the individual classifiers. The core idea that guides ensemble
methods is that systems composed of diverse classifiers, with complementary strengths,
can achieve better performance than individual classifiers.

In [8], the authors propose a taxonomy of multiple classifier systems. This taxon-
omy is based on the three phases of multiple classifier systems:

1. Pool generation: The process of generating the pool (the set) of classifiers that
will be part of the system. The authors distinguish between homogeneous and het-
erogeneous systems, depending on whether all classifiers in the system are of the
same type.

2. Selection: The selection of which classifiers will be used to calculate the output
of the pool. In dynamic classifier selection schemes, a subset of the pool is chosen
to predict the class of each test instance. Under static selection schemes, once the
final pool is chosen, it remains unchanged. It can be said that some methods eschew
selection altogether, since all trained classifiers are included in the final pool.

3. Integration: The combination of the outputs of each classifier in the pool to give
the final classification of an instance. This can be done by combining either the
predicted class labels, or by combining the predicted class likelihoods for each class,
when available.

Our work focuses on the pool generation phase. In the taxonomy of [8], our work
would be classified under homogeneous, data set based pool generation methods.
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2.1.1 Diversity in ensembles

As mentioned previously, one of the central assumptions of ensemble methods is
that the classifiers being generated are diverse amongst each other. A detailed exposition
on the importance of diversity and the different methods which can be used to ensure
diversity is presented in [9].

In [9], the authors argue that in data sets with small or very large amounts of
data, multiple classifiers systems would be able to perform better than single classifiers -
in the former case by taking advantage of bootstrapping methods, and in the latter case
by partitioning the training set, and training different classifiers in each subset.

Furthermore, the authors posit that training different classifiers with different ini-
tializations might help the system in overcoming local optima in the training process.

While these first two arguments might appeal to intuition, the authors in [9] point
out that there are proofs in the regression literature relating the diversity of ensembles
and their generalization error, such as in [10] and [11]. There are also analytical results
that show that classifier ensembles outperform any individual member of the pool [12],
under certain assumptions. Nevertheless, the authors of [9] also concede that there’s no
universally agreed upon measure of diversity for classifier ensembles, and no analytical
results that directly relate ensemble diversity and classification accuracy.

2.1.2 Seminal ensemble algorithms

In [9], the authors list two major topologies for multiple classifier systems - parallel
and serial topologies. The authors also point out that parallel topologies are predominant
in the literature.

Parallel topologies are defined as those where every classifier is fed the same input
data, and the output of the system is given by weighing the outputs of each classifier. In
contrast, serial topologies are those where the inputs are fed to the classifiers in sequence.
It might be case in serial topologies that the next classifier in the sequence is only used
if some condition is met. Therefore, there is no guarantee that all classifiers in the pool
will be used.

The most frequently applied algorithms based on sequential topologies are Boost-
ing algorithms [13]. In particular, the AdaBoost algorithm [5] enjoys widespread adoption.
The central idea of the AdaBoost algorithm is to train in multiple steps a set of predictors,
in which each predictor is specialized on the examples for which the previously trained
predictor has the highest error.

Turning our attention to parallel topologies, we can cite the Random Subspace
algorithm, proposed by Ho in [14]. The Random Subpace algorithm partitions the feature
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set of the examples, training individual classifiers for different subspaces of the feature
set.

Finally, we discuss the method of bootstrap aggregating (Bagging), first developed
by Breiman [2] as a method to develop robust ensembles based on weak learners. Our work
is based on the Bagging algorithm.

The original Bagging algorithm creates m new training data sets from an original
training data set T . Each new training set is created by sampling examples uniformly
and with replacement from T . The bootstrapped training sets are then used to train m
instances of a base predictor (e.g. a Perceptron or a Decision Tree), one for each of the
generated sets. These predictors are pooled together in the testing phase as one single
predictor, subject to some voting scheme chosen by the user. The Bagging algorithm aims
to create a pool of predictors which are competent in different regions of the feature space.

2.1.2.1 Adaptations to Bagging

The success of Bagging has lead to many modified versions of the original method
have been proposed, mostly to deal with shortcomings of the original algorithm under
specific scenarios.

Breiman himself proposed in [15] a modification to Bagging aimed at reducing the
error of regressors. The modified algorithm relies on repeatedly applying Bagging to the
same training set, but each time training the pools on the residual errors of the instances
not chosen by the bootstrapping process in the previous step.

Several works based on Bagging are focused on dealing with the problem of im-
balanced data sets. Li proposes in [16] partitioning the data points not belonging to the
minority class into disjunct, equal sized sets, with as many elements as the minority class.
These sets are then each used to train a different classifier, which are combined into a
pool. The majority vote rule is used to decide the output of the pool.

In the same vein, Wang and Yao introduced in [17] SMOTEBagging. SMOTE-
Bagging uses SMOTE [18] to generate several training sets on which to train the pool of
classifiers. Each new training set is first balanced, both by repeated sampling from the
minority class and generation of new instances through SMOTE.

Another technique that makes use of SMOTE is SMOTE-ICS-Bagging, proposed
by Oliveira et al. in [19]. The technique is based on ICS-Bagging, a method proposed
in the same paper. ICS-Bagging generates at each training step a pool of K classifiers
trained using Bagging. However, it only adds to the final pool one classifier per step, the
one classifier amongst all K that when added to the pool results in the highest overall
fitness of the pool, where the fitness of the pool is defined as a weighted average between
the accuracy and the diversity of the pool.
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2.2 Ensemble learning, noise and outliers
The work presented here deals extensively with noise. Another recurring theme in

this document is the concept of outliers. Therefore, it is important that we clarify our
definitions of both noise and outliers.

The first definition we need to present is that of an outlier. An outlier is considered
to be a instance that is very different from the other members of its class. Since outliers
are not similar to most members of their class, they can be difficult to correctly classify.

Noise, on the other hand, is understood to be a data point that has had its value
changed from its original value. The most common processes by which the value of a data
point might be modified are mistakes in a measurement or an inherent uncertainty in the
measurement. In either case, we are referring to a change in the value of the data point
which is not due to systematic error, and therefore cannot be removed via calibration.

While the concepts of noise and outlier may at first sight appear somewhat similar,
in this work we call an outlier those examples that, though they are different from other
examples in their class, are still part of the underlying distribution. Noise, however, is
that which does not belong to the actual underlying distribution.

In this work, we focus on label noise, as opposed to noise that acts on the features
of instances. By label noise we mean any process that changes the label of an instance (as
presented to a learning algorithm) from its true value. A rather comprehensive treatment
of label noise can be found in [20]. We adopt their taxonomy of label noise types, which
can be summarized as follows:

1. Noisy completely at random: The process which changes the label of an instance
has no correlation to either the label or the features of the instance.

2. Noisy at random: The process which changes the label of an instance is dependent
on the true label of the instance.

3. Noisy not at random: The process which changes the label of an instance is
dependent on both the true label of the instance and the features of the instance.

Our work mainly deals with the first type of noise, as instances are randomly
selected to have their labels changed, and the new label is also chosen at random from
the set of possible labels in the data set (the original label being excluded).

2.2.1 The effects of noise

In [20], the authors summarize published results which suggest that label noise
adversely affects both the performance of models and their complexity. The most relevant
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results are briefly discussed in this section.

Okamoto and Nobuhiro establish in [21] theoretical results which relate the level
of noise present in a training set and the performance of a k-Nearest Neighbors classifier.
Bi and Jeske show in [22] that normal discriminant analysis and logistic regression are
also affected by noise, though to a smaller degree.

There are also empirical results regarding the effects of noise on different learning
algorithms. In [23], the authors investigate the effect of label noise on regularized linear
regression methods (logistic regression, ridge regression and Support Vector Machines),
and conclude that all the methods investigated are strongly affected by the presence of
label noise.

Of particular interest to our work are the results that relate the presence of label
noise with the performance of Boosting algorithms [24], [25], [4]. Not all Boosting algo-
rithms are affected by the presence of noise in the same way, but a common theme in these
works is the clear negative effect of noise on the performance of the AdaBoost algorithm.

Finally, it is interesting to point out that in [24], the authors conclude that in
situations in which a substantial level of noise is present, the Bagging algorithm tends to
outperform Boosting algorithms.

2.3 Data complexity measures and Instance Hardness

The evidence so far presented shows that some situations might make the process
of training a classifier harder, and may result in a diminished generalization performance.
In particular, we point out the situations in which there is class imbalance, noise, outliers
or some combination of these factors. In [7], Smith et al. investigate which instances tend
to be classified incorrectly, and how these instances affect the data set as a whole. These
instances would be considered “hard” instances.

Once again in [7], the authors discuss works which deal with data complexity mea-
sures, such as the work in [26], which uses complexity measures on the data set to evaluate
situations in which one learning algorithm might outperform another. Nevertheless, Smith
et al. concede that there is no universally accepted data complexity measure.

In [7], the authors note that most data complexity measures are calculated over
the whole data set, ignoring the fact that some instances may very well be harder than
others. For example, in [27], the authors note that instances on the border between classes
are inherently harder to classify correctly. These instances are nevertheless fundamental,
since they are necessary for the classifiers to be able to correctly learn the separation
between classes.

In this context, Smith et al. propose measures which evaluate the difficulty of
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a instance on an individual level, called its instance hardness. The authors adopt an
empirical definition of instance hardness, which corresponds to the probability that an
instance will not be classified correctly. Several measures are proposed to quantify the
hardness of an instance, among them measures based on the class likelihoods predicted
by a k-Nearest Neighbors classifier, model complexity measures, and the relations between
the number of examples in each class of the problem.
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3 Proposed Method

As detailed in the previous chapter, the method proposed in this work is based on
Bagging [2].

Our motivation in proposing changes to Bagging is that, while it may offer accuracy
gains, its sampling process is still subject to the effects of noisy data or outliers. Since
examples are drawn uniformly to create the new training sets, noisy examples and outliers
are as likely to be picked as examples which are neither noise nor outliers. Therefore, it
is possible that some of the bootstrapped training sets might have a high proportion of
noise, outliers or both. When presented with such training data, some classifiers may
either overfit the noisy data or to fail to learn at all, thereby reducing the generalization
accuracy of the final system.

To alleviate this issue, we propose a modification to the sampling process used in
the Bagging algorithm. Our motivations in proposing this new method are twofold:

1. We would like to avoid adding noisy examples and outliers to the bootstrapped sets
too frequently.

2. We also would like to avoid completely removing “hard” instances, as they might
be instances on the boundary of classes, which are naturally hard. Removing these
instances might mean losing information about such boundaries.

Thus, we adopt a probabilistic approach. We use the concept of Instance Hard-
ness to define the probability of including an instance from the training set in one of
the bootstrapped sets. More specifically, we use the k-Disagreeing Neighbors measure,
introduced in [7] as a measure of the hardness of the instance. Our reasons for choosing
the k-Disagreeing Neighbors measure will become clear shortly, once we have defined and
explained it.

The k-Disagreeing Neighbors (kDN) measure is defined as the fraction of the k
nearest neighbors of a sample that do not share its class label. Formally, the kDN hardness
kDN(x) of an instance x , whose k nearest neighbors are denoted by kNN(x), is defined
as:

kDN(x) = |x
′ | x′ ∈ kNN(x) ∧ label(x′) 6= label(x)|

k
(3.1)

Where label(x) is the class label of example x.
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From the definition, kDN(x) takes on values in the interval [0, 1], evenly spaced
by 1

k
.

The k-Disagreeing Neighbors measure was chosen as it is easily interpretable, since
its value can be understood by simply inspecting the neighborhood of the instance, and is
consistent with the intuitive notion of how much an instance “fits in” with its neighbors.
Furthermore, the kNN classifier used in measuring the instance hardness does not require
training, a step which could possibly increase the the cost of measuring the hardness.

Armed with the definition of the kDN measure, we can now present our method,
shown below in pseudocode.

Algorithm 1: The pool generation algorithm
Input : The training set T

The pool size m
The bootstrapped set size nb
The base predictor C
The value of k for the kDN measure
A boolean ptype

Output: The trained pool P
1 begin
2 Initialize the pool P as the empty set
3 foreach x ∈ T do
4 Calculate kDN(x)
5 end
6 foreach x ∈ T do
7 p(x) = normalize(x, T, ptype) ; /* The selection probability of the

instance */

8 end
9 for i from 1 to m do

10 Initialize the training set Ti as the empty set
11 for j from 1 to nb do
12 Add an instance xj ∈ T to Ti, sampled with replacement according to p
13 end
14 Train the classifier Ci (an instance of C ) using Ti
15 Add Ci to the pool P
16 end
17 end

Lines 3 to 5 of Algorithm 1 show the process of calculating the hardness of the
instances, according to (3.1).
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Our primary aim in measuring the hardness of an instance is to pick “hard” ex-
amples with a smaller probability than that of “easy” examples during the bootstrapping
process, as shown in lines 6 to 8 of Algorithm 1. The normalization procedure will be
explained separately, once we have presented the two methods for calculating selection
probabilities.

The first method attributes probabilities which are inversely proportional to the
instance hardness. Let n be the number of examples in the training set T . We define the
function f(xi) of an instance xi ∈ T :

f(xi) = 1
n

+ (1− kDN(xi)) (3.2)

The first term in (3.2) attributes a sort of “uniform probability” to all instances
of the training set. This ensures that even instances with a kDN value of 1 are given a
chance to be selected, as an attempt to avoid the issue of instances that are altogether
discarded. The rationale behind this decision is to preserve possible hard instances in the
boundary of classes.

We then normalize the value of f(xi) by the sum over all xi ∈ T to obtain the
probability of the instance being selected, plinear(xi):

plinear(xi) = f(xi)
n∑
i=1

f(xi)
(3.3)

The normalization is used to ensure that plinear is a proper probability distribution.
This is necessary for the proper functioning of computational implementations of the
procedure of chosing with replacement.

Our second method for attributing probabilities explores the use of the Softmax
function [28] as an alternative means to normalize the probability.

The Softmax function was adopted since it is widely used as a means to turn the
output of a learning machine into class probabilities, most often in the context of Neural
Networks. We define the Softmax probability psoftmax(xi) of an instance being selected as:

psoftmax(xi) = e1−kDN(xi)

n∑
i=1

e1−kDN(xi)
(3.4)

In this formulation, the issue of instances with null probability is naturally resolved,
since the Softmax function only takes on a value of zero in the limit where k goes to infinity.
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Armed with these definitions, we can now present the normalization procedure.

Algorithm 2: The instance selection probability normalization procedure
Input : An instance x The training set T
Output: The selection probability p(x)

1 begin
2 if ptype then
3 Calculate plinear(x) ; /* The selection probability of the instance

*/
4 else
5 Calculate psoftmax(x)
6 end
7 end

Depending on the value of ptype, we normalize the selection probabilities according
to either (3.3) or (3.4).

Once these probabilities have been calculated, we proceed to generate the boot-
strapped training sets as in the original Bagging algorithm. Drawing with replacement
from a probability distribution given by either (3.3) or (3.4) , m bootstrapped training
sets are generated (lines 11-13 of Algorithm 1), and m instances of a base predictor are
trained (lines 14-15 of Algorithm 1).

It is important here to note that while the original Bagging algorithm was con-
cerned with predictors in general, i.e. both classifiers and regressors, the work here pre-
sented is focused on classifiers. This means that we are dealing with pools of classifiers,
and the output of the ensemble at test time will be a class label.

It should be noted that this restriction is due to our choice of hardness measure.
It should be possible to adapt the method for regression, by using a measure of instance
hardness that does not depend on the class of the instance as the ones in [7] do.
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At test time, the predicted class label for an instance is calculated as follows:

Algorithm 3: The pool generation algorithm
Input : The trained pool P

The size of the pool m
A test instance x
A voting scheme V for the predictions of the pool

Output: The predicted class label of x, ypred(x)
1 begin
2 Initialize the set of pool predictions Y to the empty set
3 for i from 1 to m do
4 Calculate the class label yi(x) of x predicted by classifier Ci in the pool.
5 Add yi(x) to Y
6 end
7 Calculate ypred(x) as the result of V (Y )
8 end

Each classifier in the trained pool outputs a class prediction for the test instance
x. The predictions are then weighed under some voting scheme (e.g. Majority Vote) to
give the final output of the pool, ypred(x). The value ypred(x) is the one considered when
evaluating the performance of the pool.
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4 Experiments and Discussion

In this chapter, we compare the performance of the proposed method against that
of commonly used pool generation methods. We also evaluate the effect of noise on the
hardness of an instance.

4.1 Experimental design
In order to assess the effectiveness of pool generation methods, we compare their

accuracy on several public data sets, which will be described shortly. The proposed method
was compared with the Bagging and Random Subspace algorithms. In order to obtain a
baseline, the performance of a single instance of the base classifier chosen to compose the
pools was also evaluated. Furthermore, both variations of the procedure for determining
selection probabilities were considered; these were treated as separate methods and also
compared with each other.

We adopted a 5-fold cross-validation approach to partition the data sets, with 4
of the folds in each partition being used for training and the last for testing. The mean
accuracy over the folds for each pool generation algorithm was measured. The cross-
validation procedure was repeated 10 times, and the average and standard deviation of
the mean accuracy were measured.

4.1.1 Experimental parameters

For all the pool generation methods, one must specify the following parameters:

• The pool size m.

• The base classifier C.

• The bootstrapped set size nb.

• The voting scheme V .

In order to minimize variability between classifiers and try to ensure a fair experi-
mental procedure, all pool generation methods were evaluated using the same parameters.
The chosen parameters were:

• m = 50.

• C is the Perceptron.
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• nb = |T |.

• V is the Majority Vote Rule.

Where T is the training set, and |T | is its cardinality.

We chose the Perceptron as the base classifier since Breiman pointed out [?] that
Bagging usually achieves better results when weak learners are used.

The Majority Vote rule was chosen due to its widespread usage in the ensemble
literature.

There is one extra parameter for the Random Subspace algorithm, which is the
maximum size of the reduced feature set. In our work, we set the maximum size to be
50% of the original feature space dimension.

4.1.2 Data sets

The following public data sets were used in our experiments. All data sets were
obtained from the UC Irvine Machine Learning Repository [29], except for the Glass and
Satimage data sets, obtained from the KEEL-data set repository [30], and the make_moons
data set, which is a synthetic data set available in the scikit-learn Python package [31].

Table 4.1.1 – The data sets used in the experiments

Data set # of examples Dimensions # of classes
Pima 768 8 2
WDBC 569 30 2
CTG 2126 21 3
Ionosphere 351 34 2
Liver 345 6 2
Satimage 6435 36 7
Yeast 1484 8 10
Glass 214 9 6
Vowel 528 9 11
Haberman’s Survival 306 3 2
Vertebral Column 310 6 2
Blood Transfusion 747 4 2
E. Coli 336 7 8
Indian Liver Patient Database (ILPD) 579 10 2
make_moons 1000 2 2

Since both the kNN algorithm and the Perceptron algorithm can be affected by
the presence of features which have very different scales, we perform feature-wise scaling
on all data sets, in order to have all features lie on the [0, 1] interval. This is done by
subtracting each feature of each data point from the minimum value of the feature, and
dividing by the range in which the feature lies.
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4.1.3 Assessing the effect of noise

One of the main motivations of this work is to investigate the effects of noise on
the accuracy of pools of classifiers. The method we have proposed is heavily focused on
dealing with the effects of noisy instances in the training data. Therefore, it is paramount
that we conduct our experiments in a manner that allows us to systematically evaluate
the effects of noise on the data.

In order to control the noise on the data sets and to be able to observe the behavior
of the classifiers and pools under different noise conditions, we adopted the following
procedure for adding noise to the data sets: For each instance x ∈ T , where T is the
training set, its class label has a probability prchange of being changed to one of the other
classes present in the data set. Another way to put this is that the expected fraction of
elements that will have its label changed is prchange.

In this work, we evaluated all algorithms for values of prchange in the set {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
The case prchange = 0 is the noise-free scenario.

4.1.4 Methods for statistical analysis

In order to analyze the statistical significance of our results, we follow the rec-
ommendations of [32] for evaluating multiple classifiers over several data sets. We use
the Friedman test [33], which ranks classifiers by accuracy, the classifier with the highest
accuracy having the highest rank. Our null hypothesis is that all classifiers are equivalent,
or, more precisely, that their mean ranks over the data sets are not different. We chose a
p-value of 0.05, therefore rejecting the null hypothesis if p < 0.05.

To evaluate whether there is a significant difference between a pair of classifiers,
we perform the Nemenyi post-hoc test [34]. The test calculates a value called the critical
difference, denoted here by CD, where for a comparison between k algorithms over N ,
CD is defined as:

CD = qα

√√√√k(k + 1)
(N)

where qα is the critical value for significance level α. If the difference between the ranks
of two algorithms is greater than the value of CD, then they are said to be different with
a significance level of α.

We present, for each noise scenario, the result of the Friedman test, and the Critical
Differences Diagram, proposed in [32]. The critical difference diagrams make it easy to
visually determine which classifiers are significantly different.
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4.2 Results
In this section, we present the results of our experiments. The analyses are grouped

by noise scenario, as this makes it easier to understand how the proposed algorithm be-
haves under different circumstances. Following each set of results, we present our com-
ments on them. We first present the comparison of the accuracy achieved by the pool
generation algorithms under different noise scenarios. We then present an analysis of
the distribution of Instance Hardness values for several data sets, contrasting the values
observed in the noisy and noise-free examples.

4.2.1 Accuracy

In order to obtain a baseline of results, our first evaluation is concerned with the
performance of the classifiers under a noise-free scenario.

Table 4.2.1 – Mean and standard deviation of the mean
accuracy over the folds for each classifier, at
a noise level of 0%. The best values (highest
mean) are shown in bold.

Data Set Perceptron Random
Subspace

Bagging Proposed
(Linear)

Proposed
(Softmax)

pima 68.60± 2.49 65.34± 3.18 76.93± 0.70 76.94±0.49 76.68± 0.64
wdbc 93.47± 1.85 94.14± 1.32 97.29±0.36 97.12± 0.25 97.08± 0.40
ctg 85.15± 1.37 85.71± 1.32 88.59±0.28 88.10± 0.23 88.05± 0.41
ionosphere 74.90± 8.83 76.38± 7.09 86.61±1.24 84.62± 0.81 86.01± 1.34
liver 59.80± 2.91 57.68± 1.02 65.83± 1.60 66.90±0.81 66.26± 1.84
satimage 75.76± 2.96 75.90± 2.66 82.84± 0.16 82.90±0.17 82.82± 0.16
yeast 41.47± 2.95 32.11± 4.30 56.62± 0.85 57.57±0.42 56.92± 0.76
glass 47.19± 4.76 46.24± 3.14 57.44± 2.34 58.56±1.02 57.61± 1.79
vowel 32.49± 1.98 26.54± 2.63 51.82±1.17 48.01± 0.90 48.98± 1.44
haberman 70.91± 3.79 69.35± 4.71 74.68±0.69 74.05± 0.94 73.92± 0.62
vertebral 76.45± 2.08 71.03± 1.77 81.94±1.15 80.68± 0.78 80.87± 1.17
transfusion 67.57± 4.04 68.13± 5.90 78.55± 0.55 78.42± 0.42 78.57±0.30
ecoli 63.80± 2.51 61.50± 4.55 76.97± 1.32 77.22± 0.54 77.54±1.00
ilpd 61.66± 5.80 63.18± 6.74 71.22±0.69 70.81± 0.72 71.16± 0.50
make
moons

85.36± 1.00 75.33± 3.04 88.39± 0.56 88.65±0.30 88.32± 0.45

Mean 66.97 64.57 75.71 75.37 75.39
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Figure 4.2.1 shows the critical differences diagram:

Figure 4.2.1 – Critical Differences Diagram for the noise-free scenario

For this scenario, the Friedman test rejected the null hypothesis with a p-value of
2.6933× 10−9.

When there is no noise added to the training instances, the proposed method does
not perform any better than the original Bagging algorithm. Nevertheless, it does not fare
any worse, either. These results fall in line with our previous expectations. The proposed
method was specifically designed with noisy data sets in mind, or data sets with a large
fraction of outliers. As such, it is expected that it will show its best results under these
conditions, conditions which the first experiment does not satisfy.

However, this result also shows that the proposed method is not outperformed
by the original Bagging algorithm. This suggests that the the classifiers in the pools
generated by our algorithms are able to learn at least as well as the ones in the pools
generated by the original Bagging algorithm. Given that the crucial difference in the pool
generation procedure between the two sets lies in how the bootstrapped sets are chosen,
this in turn indicates that the bootstrapped sets created by our algorithm as “good” as
the ones generated by the Bagging algorithm. This is an indirect but important piece of
evidence that points towards the correctness of one of our initial assumptions: that the
kDN hardness measure is effective in distinguishing noisy data from noise-free data. This
is because, should the kDN measure consider noise-free data points as hard, we would
have bootstrapped sets were these data points would be underrepresented, something that
would not happen under the original Bagging algorithm. In that case, we would expect
to see the proposed method fall short of the accuracy of the original Bagging algorithm.

Furthermore, in this noise-free context, we can also note that both Bagging and
our proposed method offer significant performance gains over a single instance of the base
classifier. In contrast, the Random Subspace algorithm shows a lower value for the average
accuracy than the single classifier in all but four of the data sets, and also larger values
for the standard deviation, which in turn indicates high variability of the performance.
This may caused by too drastic a reduction of the feature set, considering our data sets
have relatively low-dimensional feature sets.
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Having established a baseline of performance, we now analyze the noisy scenarios.

Table 4.2.2 – Mean and standard deviation of the mean
accuracy over the folds for each classifier, at
a noise level of 10%. The best values (high-
est mean) are shown in bold.

Data Set Perceptron Random
Subspace

Bagging Proposed
(Linear)

Proposed
(Softmax)

pima 64.67± 5.12 57.90± 5.54 75.76± 0.52 76.60±0.56 76.15± 1.09
wdbc 80.41± 9.25 83.99±10.21 95.55± 0.55 96.94±0.35 96.45± 0.51
ctg 76.06± 7.52 72.01± 9.85 87.55± 0.48 87.76±0.38 87.70± 0.35
ionosphere 69.42±10.00 67.51± 9.96 85.44±1.70 84.13± 1.07 84.73± 1.30
liver 60.70± 0.99 58.32± 0.68 63.07± 2.36 63.57± 2.11 64.49±2.22
satimage 67.64± 6.26 66.44± 8.01 81.04± 0.34 82.53±0.23 81.79± 0.33
yeast 34.96± 5.36 27.58± 5.61 55.07± 0.71 57.16±0.58 56.47± 0.68
glass 41.74± 6.44 39.82± 6.19 54.95± 1.79 56.35± 1.58 57.68±3.28
vowel 28.59± 2.68 22.45± 3.07 48.12±1.44 46.57± 1.42 46.41± 1.51
haberman 69.08± 5.74 69.78± 5.16 73.99±0.84 73.86± 0.53 73.40± 0.96
vertebral 71.71± 3.19 66.97± 3.43 80.39± 2.20 80.48± 1.26 81.00±1.44
transfusion 63.25± 9.30 60.26± 9.99 77.94± 0.78 78.27±0.35 77.98± 0.34
ecoli 56.19± 8.07 52.96± 7.43 76.28± 1.55 76.43± 0.69 76.81±1.27
ilpd 59.78± 5.89 59.36± 6.29 70.05± 1.31 70.29± 1.24 70.52±1.35
make
moons

75.78± 6.50 67.82± 4.26 87.54± 0.64 88.28± 0.60 88.38±0.56

Mean 61.33 58.21 74.18 74.61 74.66

Table 4.2.3 – Mean and standard deviation of the mean
accuracy over the folds for each classifier, at
a noise level of 20%. The best values (high-
est mean) are shown in bold.

Data Set Perceptron Random
Subspace

Bagging Proposed
(Linear)

Proposed
(Softmax)

pima 59.39± 5.30 54.04± 4.95 74.21± 2.29 75.38±1.57 74.70± 0.98
wdbc 74.40±11.68 76.93±11.92 92.72± 1.24 95.66±0.74 95.20± 0.73
ctg 65.24± 9.62 60.05±18.09 86.21± 0.45 87.65±0.27 86.75± 0.42

Continued on next page
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ionosphere 60.11±10.28 58.11± 6.93 82.45± 1.65 82.57± 1.63 82.97±2.37
liver 58.55± 4.40 56.29± 4.71 62.75±2.39 62.29± 2.83 62.64± 2.93
satimage 53.69± 5.57 56.19± 5.92 79.61± 0.51 82.29±0.13 80.75± 0.37
yeast 31.54± 4.07 24.06± 4.75 54.75± 1.11 56.85±0.40 55.42± 0.71
glass 38.69± 7.78 35.60± 7.00 53.10± 2.34 55.57±1.91 54.96± 2.02
vowel 24.51± 3.01 19.11± 2.76 43.83± 0.88 46.07±1.22 45.25± 2.06
haberman 66.64± 3.09 68.74± 4.58 73.44± 1.12 73.89±0.43 73.69± 0.49
vertebral 67.68±10.57 64.71±10.19 77.48± 2.69 78.32± 1.76 79.00±1.70
transfusion 58.75± 9.22 58.46± 9.68 77.09± 0.90 77.58±1.36 77.20± 0.72
ecoli 51.18± 7.82 46.45±11.18 74.90± 0.82 76.22±1.08 75.75± 1.49
ilpd 57.26± 7.30 57.67± 9.31 69.86± 1.54 70.10±1.21 69.74± 1.75
make
moons

67.19± 9.35 62.67± 7.40 86.20± 1.07 88.09±0.54 87.26± 0.96

Mean 55.65 53.27 72.57 73.90 73.42

Table 4.2.4 – Mean and standard deviation of the mean
accuracy over the folds for each classifier, at
a noise level of 30%. The best values (high-
est mean) are shown in bold.

Data Set Perceptron Random
Subspace

Bagging Proposed
(Linear)

Proposed
(Softmax)

pima 55.93± 6.66 50.22± 6.65 71.45± 2.04 74.49±1.44 73.84± 1.92
wdbc 66.36± 9.93 69.92±11.85 88.05± 2.90 92.70±1.58 91.46± 2.07
ctg 52.91±14.24 48.25±16.96 85.48± 0.42 86.64±0.59 85.98± 0.50
ionosphere 56.82± 6.42 54.24± 6.64 77.69± 4.98 80.15±2.41 80.06± 2.24
liver 56.70± 3.67 56.64± 4.59 58.14± 2.45 59.68±3.00 58.84± 3.48
satimage 46.87± 5.17 48.07± 6.28 77.76± 0.62 81.59±0.34 79.42± 0.32
yeast 26.81± 7.21 19.91± 5.93 53.13± 1.23 56.57±0.65 54.68± 0.87
glass 31.55± 8.40 26.65± 6.26 52.13± 2.81 54.90±2.33 54.02± 3.48
vowel 22.87± 2.30 17.33± 2.47 40.55± 1.43 44.77±1.85 42.48± 1.16
haberman 57.38±12.53 56.85±16.95 71.02± 2.17 72.52±1.54 71.74± 2.21
vertebral 66.13±10.48 64.58±10.48 73.87± 3.77 75.65±1.81 74.35± 3.10
transfusion 57.46±10.10 56.63± 9.54 75.11± 3.27 75.55± 2.96 76.14±3.56
ecoli 47.28± 9.61 41.89±13.08 73.81± 1.63 75.62±1.14 74.85± 1.20
ilpd 55.89± 8.11 54.77±10.06 65.50± 3.72 67.84±1.65 66.75± 3.00

Continued on next page
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make
moons

58.96± 6.78 59.18± 4.69 84.85± 1.94 86.55±0.73 85.87± 0.62

Mean 50.66 48.34 69.900 72.35 71.37

Table 4.2.5 – Mean and standard deviation of the mean
accuracy over the folds for each classifier, at
a noise level of 40%. The best values (high-
est mean) are shown in bold.

Data Set Perceptron Random
Subspace

Bagging Proposed
(Linear)

Proposed
(Softmax)

pima 51.10± 7.83 46.03± 5.74 66.28± 4.09 69.38±1.90 66.86± 4.06
wdbc 58.15±10.69 56.32±10.46 75.81± 4.14 81.62±4.55 79.12± 5.21
ctg 42.46±17.70 36.43±17.00 82.47± 0.85 85.14±0.65 83.85± 0.73
ionosphere 53.43± 4.94 51.78± 5.62 66.25± 5.98 73.05±4.26 71.03± 4.05
liver 55.91±4.56 55.04± 6.06 55.83± 4.11 55.65± 3.99 55.65± 1.88
satimage 39.63± 7.65 39.36± 8.14 75.55± 1.37 80.65±0.34 77.84± 0.61
yeast 25.38± 7.24 17.81± 6.50 50.15± 1.68 55.64±0.61 53.75± 0.87
glass 24.85± 7.18 21.64± 6.46 48.93± 3.25 54.00±2.76 53.19± 3.37
vowel 19.83± 2.57 15.16± 1.93 38.01± 1.22 42.89±1.52 39.37± 1.68
haberman 51.30±15.74 47.14±17.49 61.60± 9.16 66.28±6.60 64.61± 5.57
vertebral 62.16±11.73 61.19±13.21 64.03± 3.95 66.48± 4.48 66.68±2.98
transfusion 53.05±12.23 54.34±10.63 64.61± 7.85 73.00±4.80 69.38± 4.69
ecoli 41.93± 9.49 33.88±10.35 71.55± 2.28 73.63±1.59 72.52± 1.44
ilpd 55.30± 8.69 53.69±10.91 59.38± 2.76 63.78±4.43 63.48± 3.05
make
moons

56.85± 9.27 55.85± 6.67 78.36± 2.04 84.02±1.36 81.70± 2.46

Mean 46.09 43.04 63.92 68.35 66.60

The Friedman test rejected the null hypothesis in all four noise levels, with p-values
of 3.8499× 10−10, 9.6280× 10−11, 1.0532× 10−11, and 1.7848× 10−11.

When analyzing the results for noisy scenarios shown in tables 4.2.2 to 4.2.5 ,
the observed behavior changes, and the proposed method tends to have the highest mean
accuracy, mostly in its linear variant. In most cases, when the linear variant of the proposed
method is not the method with the highest accuracy, it takes second place, behind the
Softmax variant of the proposed method.

Figures 4.2.2 to 4.2.5 show the critical differences diagram for the four noise levels:
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Figure 4.2.2 – Critical Differences Diagram for the 10% noise level

Figure 4.2.3 – Critical Differences Diagram for the 20% noise level

Figure 4.2.4 – Critical Differences Diagram for the 30% noise level

Figure 4.2.5 – Critical Differences Diagram for the 40% noise level

Figure 4.2.2 shows that at noise levels of 10% and 20%, there is no significant
difference between the proposed method and the original Bagging algorithm. This again
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shows that at lower noise levels, the proposed method does not offer an advantage over
Bagging, but does not perform any worse, either.

However, for the noise levels of 30%, and 40%, we can observe there is a significant
difference between the proposed method in its linear variant and the original Bagging
algorithm. This indicates that our method is particularly suited to dealing with higher
noise level. However, we can observe that there is not a significant difference between the
proposed method in its Softmax variant and the Bagging algorithm.

Even though the results show that there is no significant difference between the
two variants of our method, we still attempt to tease out the effects that lead to one
variant having a higher accuracy in a data set. When analyzing the scenarios in which the
Softmax variant has a higher mean accuracy than the linear variant, three data sets stand
out. In three different noise levels the Softmax variant has higher mean accuracy in the
Liver, Vertebral Column and Indian Liver Patient Database data sets, most notably in the
20% and 30% noise levels, where this higher accuracy is observed for all three data sets.
These data sets share in common the fact that they are all binary classification problems,
have a relatively small number of examples and low dimensionality of the feature space.
This, however, is not conclusive evidence, since the Pima and Haberman’s Survival data
set also exhibit similar characteristics, but do not share the same behavior. Also, it must
be noted that the differences are small.

One can also observe the accuracy of all the methods decreasing, as expected.
Nevertheless, if we observe the original Bagging algorithm and our proposed method in
its two variants, we see a gradual fall in the mean accuracy, where its value drops by no
more than two percentage points which increase in the noise level. That is, until we move
from noise level of 30% to 40%, when we see a drop of about 4 percentage points. This
already points to a change in regime which will be more clear in our next analysis.

We now turn our attention to the last noise level analyzed.

Table 4.2.6 – Mean and standard deviation of the mean
accuracy over the folds for each classifier, at
a noise level of 50%. The best values (high-
est mean) are shown in bold.

Data Set Perceptron Random
Subspace

Bagging Proposed
(Linear)

Proposed
(Softmax)

pima 46.27± 2.51 42.85± 4.69 54.74±6.05 51.49± 8.24 53.90± 7.54
wdbc 49.00± 7.53 48.04±12.06 51.71±5.71 50.41± 8.22 51.28± 6.78

Continued on next page
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ctg 43.92±16.03 30.87±21.20 76.21± 3.66 82.11±1.22 81.04± 1.80
ionosphere 46.84± 7.21 50.60±6.08 47.26± 9.02 45.74± 8.52 44.25± 7.53
liver 52.00± 6.22 53.22±7.22 50.09± 3.79 49.25± 2.70 49.28± 3.81
satimage 34.01± 8.47 31.35± 8.34 72.91± 2.24 79.40±0.35 75.69± 0.55
yeast 19.65± 7.20 15.28± 6.71 47.17± 1.25 54.25±0.96 49.89± 1.60
glass 23.47± 5.99 19.15± 6.15 44.59± 3.59 47.81±4.68 46.58± 3.89
vowel 16.33± 2.20 12.40± 2.20 33.16± 2.36 39.67±1.33 35.97± 1.04
haberman 40.24± 7.71 39.99± 8.43 51.70±6.61 51.59± 8.37 51.34±11.05
vertebral 55.71±11.73 58.65 ±

14.15
47.29± 6.56 46.39± 8.32 46.48± 9.14

transfusion 50.97±10.65 51.86±7.34 51.52± 9.73 48.71± 9.56 51.77± 7.93
ecoli 32.39±10.12 26.29±11.98 63.83± 3.23 70.51±2.76 68.41± 3.13
ilpd 56.16±7.54 53.35±11.36 50.75± 3.45 50.00± 4.06 50.83± 6.77
make
moons

47.26± 9.53 46.67± 5.21 50.69 ±
11.32

45.14±13.54 49.34±10.31

Mean 40.95 38.70 52.91 54.16 53.74

First of all, it should be noted that, at this noise level, there’s basically no useful
information left in the data. We nevertheless conducted these experiments to evaluate
how the different methods would behave under such extreme conditions.

This was the only scenario in which the Friedman test did not reject the null
hypothesis, with a p-value of 0.1712. This means that there is no significant difference
between the classifiers, something that is further confirmed by observing the critical dif-
ferences diagram.

Figure 4.2.6 – Critical Differences Diagram for the 50% noise level

The second most important observation is that the performance of all methods
has degraded to an extreme. In some binary classification data sets, for several of the
proposed methods, the accuracy is worse than that of random guessing. In these cases,
the accuracy indicates that the classifiers have failed to learn anything at all.
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Turning our attention back to the analysis of the mean accuracy over the data sets,
we see a drop of more than 10 percentage points for the original Bagging algorithm and
our method, when compared to the mean accuracy at a noise level of 40%. This indicates
that a change in regime has occurred, to one where the noise is so high that the classifiers
fail to learn.

Furthermore, one can observe that the Random Subspace algorithm has the highest
accuracy in five of the data sets, something which had not occurred in any occasion so
far.

Even if we did not expect our method to perform well under these conditions,
further analysis offered valuable insight into one of the mechanisms that cause this drop
in performance. For this analysis, we defer the reader to the next subsection, where we
evaluate the change in the distribution of the values of the kDN measure as the noise level
increases.

4.2.2 The behavior of the kDN measure at different noise levels

Though the analysis of the accuracy of the different methods at varying noise levels
already allows us to gain some level of insight, it does not show us the whole picture. In
order to obtain a better understanding into the problem of working with noisy data, and
also better understand how our own method behaves under different circumstances, we
measured the values of the kDN instance hardness for varying levels of noise.

We used the same methodology as adopted in the experiments involving the accu-
racy of the classifiers, performing 10 repetitions of the 5-fold cross-validation. In fact, we
applied the same seeds to the random number generator as used in the first experiment,
which means the data are exactly the same for both experiments.

We recorded the kDN measure value for every data point in the training set, for
each partition and each repetition, for all the data sets. We then calculated the average and
the standard deviation of the values for each noise level in the set {10%, 20%, 30%, 40%, 50%}.
In order to keep this exposition brief, we only present a subset of the results here.

The results can be better understood by first noting whether the problem is one
of binary classification or of multiclass classification. To illustrate this, let us first look at
the results for two binary classification data sets.
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Figure 4.2.7 – Instance Hardness values - WDBC Data set

Figure 4.2.8 – Instance Hardness values - Ionosphere Data set

Figures 4.2.7 and 4.2.8 show the distribution of noisy and non-noisy instances at
different levels of noise. At a noise level of 10%, it is expected that approximately 10% of
instances will have had noise added to them. The distribution of the instance hardness of
the noisy instances is calculated on these 10% of the instances. Likewise, it is expected
that 90% of the instances will not have had noise added to them, and the distribution of
the instance of the non-noisy instances will be calculated on these 90% of instances.

The first thing one can observe when analyzing Figure 4.2.7 and Figure 4.2.8
is that the hardness of noisy and non-noisy instances seems to truly be different, in
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particular at lower noise levels. However, as the noise level increases, the distinction
gradually disappears.

The first mechanism which causes the distinction to vanish is the increase in the
hardness of noise-free instances. This can be understood by noting that, as the noise level
increases, the more likely it is that even instances in the center of classes will end up with
neighbors who had their class label changed to the opposite class. Therefore, the number
of neighbors with a disagreeing class label increases, increasing the value of the instance’s
hardness.

The second, more counterintuitive mechanism is the decrease in the hardness of
noisy instances. This can be explained by observing that, at lower noise levels, a noisy
instance is likely to be surrounded by non-noisy instances of the opposite class. This means
that it will have a high hardness value. However, as the noise level increases, it is possible
that some of its neighbors will also have their labels changed, therefore decreasing the
number of disagreeing neighbors, and the instance’s hardness.

We now focus on multiclass problems, where we see a different kind of behavior.

Figure 4.2.9 – Instance Hardness values - E. Coli Data set
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Figure 4.2.10 – Instance Hardness values - Vowel Data set

Here, we also observe a gradual blurring of the distinction between noisy and noise-
free instances. However, we do not observe as pronounced a drop in the hardness of the
noisy instances.

Let us analyze what happens when a neighbor x′ of a noisy instance x has its class
label changed. In a multiclass problem, the label of x′ can change to any of the other class
labels in the problem. Assuming there are c possible labels, there is only a 1

c−1 probability
that the class label of x′ will be changed to the same class label as x. There is, however,
a probability of c−2

c−1 that the label will be changed to one that is different from that of x.
In the second case, the hardness of x will not change at all. This is in stark contrast to
binary problems, where a change in label can only result in the decrease the hardness of
x, as explained previously.

4.2.3 The distribution of the hardness in noisy vs. non-noisy instances

As explained in the previous subsection, we recorded the values of the instance
hardness for all training examples in our experiment. While our previous analysis is suffi-
cient to show the effects of the noise level on the values of the kDN measure, it does not
show the complete picture. Since we only displayed the mean and standard deviation of
the hardness, we may not have enough information to accurately compare the distribu-
tion of hardness values for noisy and non-noisy instances. Therefore, in this subsection
we present box plots that show the contrast between the hardness values of noisy and
non-noisy instances.

Again, for the sake of brevity, we limit ourselves in the number of figures included
in this analysis. There are potentially 75 figures which could be presented, as there are
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fifteen data sets, and five different noise levels (excluding the noise-free context). We
include here only the box plots at a noise level of 10%, for the same data sets analyzed
in the previous subsection. The results are shown in Figures 4.2.11 to 4.2.14.

Figure 4.2.11 – Distribution of Instance Hardness values - WDBC Data set

Figure 4.2.12 – Distribution of Instance Hardness values - Ionosphere Data set
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Figure 4.2.13 – Distribution of Instance Hardness values - E. Coli Data set

Figure 4.2.14 – Distribution of Instance Hardness values - Vowel Data set

The first noteworthy phenomenon is that, since the values of the kDN measure are
discrete, the values of the median and the quartiles may coincide. The same is possible
for the values of the quartiles and the upper or lower adjacent. It is even possible that
one adjacent, one quartile and the median will have the same value. This is clearly visible
on Figure 4.2.13 and Figure 4.2.14.

Looking at the box plots, we can see a much more nuanced picture than in our
previous analysis. The medians of the distributions for noisy and noise-free instances
tend to be far apart from one another. Furthermore, the quartiles show us that most
instances of both subsets lie in specific ranges of hardness values, and these ranges tend
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to not overlap for noisy and non-noisy instances. This is yet another piece of evidence
that indicates that the kDN measure is highly effective in discriminating noisy instances
from non-noisy instances.
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5 Conclusions and Future Work

In this work, we proposed a new method which combines data complexity measures
and ensemble methods to achieve better performance on scenarios which involve noisy
data. More specifically, our method leveraged the k-Disagreeing Neighbors measure of
instance hardness to modify the bootstrapping process of the Bagging algorithm.

The proposed modification to Bagging aimed to avoid adding noisy examples to
the training datasets as much as possible, since several works in the classification literature
pointed to the adverse effects of noise. Nevertheless, we adopted a filtering approach that
was probabilistic in nature, in order to preserve examples that are inherently hard, such
as examples on the border of classes. We proposed two different methods of calculating
instance selection probabilities during the construction of the bootstrapped training sets.
Both approaches were based on a measure of instance hardness, with one being linear in
nature and the other making use of the Softmax function.

We performed experiments on fifteen publicly available datasets, comparing our
method with the Random Subspace and Bagging algorithms, widely used in the literature.
We also compared the ensemble algorithms with a single classifier, in order to obtain a
baseline of performance.

Our experiments show that for noise-free scenarios and for noise levels of 10% and
20%, the performance of our algorithm was similar to that of the of the original Bagging
algorithm. However, at noise levels of 30% and 40%, our algorithm is the best performing
method, and there is a significant difference between the linear variant of our method and
the Bagging algorithm, the second best performing method. This results suggests that
our algorithm is better suited than Bagging to dealing with high label noise levels.

We were also able to observe that at a noise level of 50%, there is in effect no useful
information left for the learning process. The performance of all algorithms was heavily
degraded, and there was no significant difference between the algorithms.

An analysis of the distribution of the hardness of the instances was also performed.
We were able to observe that it becomes progressively harder to distinguish noisy from
non-noisy instances, as the noise level increases. Nevertheless, we still observed a difference
in instance hardness values for noisy and non-noisy instances, which supports our initial
hypothesis that instance hardness measures are useful in estimating which instances might
be noise.
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5.1 Future Work
There are quite a few possibilities which can be investigated based on the work

here presented. We present here the ones we consider most immediately applicable.

The first possible line of inquiry is investigating the use of instance hardness mea-
sures other than the k-Disagreeing Neighbors measure. This opens up possibilities to
prioritize removing different types of noise. More broadly, it would be interesting to in-
vestigate the use of instance hardness measures not based on class labels. This is because
these measures are better suited to classification problems, precluding the development
of techniques focused on regression, or even approaches focused on generative methods.

Another possibility for investigation is combining ensemble methods other than
Bagging with data complexity measures. In particular, Boosting techniques seem partic-
ularly like to benefit from a proper treatment of noisy data, given our discussion of the
effect of noisy on algorithms such as AdaBoost.

Finally, while our work was focused on static combination methods, one could
also attempt to combine data complexity measures with dynamic selections schemes.
This could be achieved by using the data complexity information to choose the most
appropriate subset of classifiers for hard data, or by weighing the data points in such a
manner that noisy data would have less of an effect in the dynamic choice of the classifiers.
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