

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO

Otimização do elemento estrutural para contagem automática de ovos do Aedes Aegypti em imagens de armadilhas de ovos

PROPOSTA DE TRABALHO DE GRADUAÇÃO

Aluno: Diógenes dos Santos Silva (dss4@cin.ufpe.br)

Orientador: Leandro Maciel Almeida (Ima3@cin.ufpe.br)

Área: Processamento de Imagem

Recife, 8 de abril de 2017

Resumo

O Aedes Aegypti é um mosquito responsável pela transmissão dos vírus da Zika, Chikungunya e Dengue, sendo este último o responsável por mais de 1.500.000 casos em todo o Brasil no ano de 2016. Devido à falta de uma vacina e tratamentos efetivos, a única forma de reduzir a proliferação do vírus é a redução dos criadouros do mosquito. Um dos métodos mais eficientes para a detecção e vigilância de mosquitos são as *ovitrampas*. A contagem dos ovos dos mosquitos nessas armadilhas são extremamente importantes, porém essa contagem ainda é feita de forma não-automática. Este trabalho tem como objetivos replicar os métodos utilizados para a contagem de ovos em *ovitrampas*, bem como otimizar o elemento estrutural utilizado nesses métodos.

O Aedes Aegypti é um mosquito originário do continente africano, mais precisamente do Egito, e teve sua disseminação para as regiões tropicais e subtropicais em meados do século XVI devido as grandes embarcações que levavam escravos para estas regiões, os primeiros relatos do mosquito no Brasil datam do final do século XIX e início do século XX.

O Aedes Aegypti é o responsável pela transmissão dos vírus da Zika, Chikungunya e Dengue, sendo este último o responsável por mais de 1.500.000 casos em todo o território nacional no ano de 2016 segundo os dados do ministério da saúde. O vírus da dengue pode se manifestar em seres humanos de quatro maneiras distintas, dentre essas a febre hemorrágica é o tipo mais grave e pode levar o indivíduo à morte.

Cada mosquito pode viver em média 30 dias e as fêmeas chegam a colocar entre 130 a 200 ovos. Os ovos necessitam de água para eclodirem, portanto, as fêmeas optam por pôr seus ovos em recipientes que possuam a capacidade de reter água, como por exemplo garrafas vazias, pneus e caixas d'água descobertas.

Na falta de uma vacina e tratamentos efetivos, a única forma de redução da proliferação do vírus é a redução dos criadouros do mosquito. Dentre os vários métodos existentes de detecção e monitoramento, o uso de armadilha de ovos (ovitrampas) tem sido um dos mais eficientes. As armadilhas consistem em recipientes pretos preenchido parcialmente com água e uma palheta áspera de madeira instalada verticalmente em seu interior.

A contagem de ovos nestas armadilhas fornece dados importantes para que agências do governo e programas de controle de doenças desenvolvam planos de ações para o controle da expansão de casos da dengue. Esta contagem é normalmente feita de forma manual, visual e não-automática [1].

Objetivos

Este trabalho tem como principais objetivos a replicação dos métodos de contagem automática de ovos em imagens de *ovitrampas* propostos no artigo de Carlos et al [1], bem como a otimização do elemento estrutural (imagem em formato de ovo de mosquito) utilizado como elemento base para a contagem automática de ovos nos métodos citados. Dado que o elemento estrutural é um fator importante para o cálculo da quantidade de ovos em uma determinada imagem, este trabalho dará maior ênfase na otimização deste elemento para uma melhora dos resultados obtidos no artigo de referência [1].

Cronograma

Atividade Revisão bibliográfica																
	Período															
	Março		Abril			Maio			Junho				Julho			
																-
Replicação do artigo																
Implementação do elemento estrutural																
Avaliação dos resultados		-	W													
Escrita do TG																
Preparação da apresentação			30													

Referências

- [1] C. A. B. Mello et al., "Image Segmentation of Ovitramps for Automatic Counting of Aedes Aegypti Eggs." in 30th Annu. International Conf. of the IEEE Enginnering in Medicine and Biology Society, Vancouver, 2008, pp. 3103-3106.
- [2] "Casos da dengue. Brasil, Grandes regiões e Unidades Federadas. 1990 a 2016". [Online]. Disponível em: http://portalsaude.saude.gov.br/index.php/situacao-epidemiologica-dados-dengue. (Acesso em 8 de abril de 2017).
- [3] "Mosquito Aedes aegypti". [Online]. Disponível em: http://mosquito.saude.es.gov.br/aedes-aedypti. (Acesso em 8 de abril de 2017).

Possíveis Avaliadores

Carlos Alexandre Barros Melo

Cleber Zanchettin

Recife, 12 de fibril de 2017

Nome

(Aluno)

Nome

(Orientador)