
FEDERAL UNIVERSITY OF PERNAMBUCO
CENTER OF INFORMATICS

BACHELOR IN COMPUTER ENGINEERING

FIDEP - A Fault Injection Framework for
Dependability Analysis on Cloud

Computing Systems

Vandi Alves de Lira Neto

Bachelor’s Dissertation

Recife
December 2016

FEDERAL UNIVERSITY OF PERNAMBUCO
CENTER OF INFORMATICS

Vandi Alves de Lira Neto

FIDEP - A Fault Injection Framework for Dependability
Analysis on Cloud Computing Systems

Dissertation presented to the Program of Graduation in
Computer Engineering, Center of Informatics, Federal Uni-
versity of Pernambuco, as a partial requirement for the
achievement of Bachelor’s degree in Computer Engineer-
ing.

Advisor: Prof. Dr. Paulo Romero Martins Maciel

Recife
December 2016

I devote this work to my family. My father Vandi, my
mother Joselia, my sister Nayane. And especially to

Marcele for all the support and comprehension that she
showed me, during all this time.

Acknowledgements

I thank God for his grace. Also thanks to my colleagues in UFPE. In particular my advisor
Paulo, thank you so much for all the guidance and patience.

iv

It is not knowledge, but the act of learning, not possession but the act of
getting there, which grants the greatest enjoyment

—CARL FRIEDRICH GAUSS

Abstract

In the last years, cloud-based infrastructures represent noticeable choices to host diverse ap-
plications ranging from social networks to scientific computing. A prominent cloud service
corresponds to IaaS (Infrastructure as a Service), which delivers computing resources through
virtual machines (VMs). Important IaaS providers apply service level agreements (SLA) to
define the quality of service levels and penalties related to service outages. In this context,
IaaS providers need to guarantee the contracted availability as defined in the SLA clauses. This
work proposes a fault injection framework for cloud computing systems in order to support de-
pendability studies combined with service monitoring; The framework is specifically designed
for developers who are implementing fault injection tools for Linux-based cloud computing
systems. It is also presented an experimentation of the proposed framework for the target sys-
tem Eucalyptus Cloud System. It is proposed a Reliability Block Diagram (RBD) model to
the adopted infrastructure, the model is generic enough to be extended for other arrangements.
Results show that the availability simulated with the RBD model is within the confidence inter-
val of the experimental availability calculated with the support of the fault injection tool. It is
also presented another case study that applies a Stochastic Petri Net (SPN) model to represent
the infrastructure and to estimate the availability of the service provided by Eucalyptus, the
results also presented coherence, due to the availability estimated by the SPN model falls into
the experimental confidence interval of availability.

Keywords: Fault Injection Framework, Cloud Computing, Infrastructure as a Service, De-
pendability Evaluation, Eucalyptus Cloud

vi

Contents

1 Introduction 1
1.1 Context and Motivation 1
1.2 Objective and Contributions 2
1.3 Related Works 2
1.4 Structure 4

2 Foundations 5
2.1 Object Oriented Frameworks 5

2.1.1 Frameworks Characterization 6
2.1.2 Frameworks Development 7

2.2 Performance Evaluation 8
2.2.1 Performance Measurement 9

2.3 Dependability 11
2.3.1 Dependability Equations 11
2.3.2 Confidence Interval of Availability 12
2.3.3 Continuous Time Markov Chain 13
2.3.4 Stochastic Petri Nets 14
2.3.5 Reliability Block Diagram 17

2.4 Cloud Computing Systems 18
2.4.1 Eucalyptus Cloud System 20

2.5 Fault Injection Techniques 21
2.5.1 Hardware Implemented 23
2.5.2 Software Implemented 24

3 The Framework - FIDEP 25
3.1 Conceptualization 25

3.1.1 Fidep’s features 28
3.2 Implementation 29

3.2.1 Java EE - Integration 29
3.2.2 Spring framework 29
3.2.3 Apache Maven 30
3.2.4 Fidep Architecture 30

3.2.4.1 Fault Monitoring Module 31
3.2.4.2 Random Number Generation Module 31
3.2.4.3 Communication Module 32

vii

CONTENTS viii

3.2.4.4 Finite State Machine 32

4 Case Studies 36
4.1 Eucalyptus Availability Study 36

4.1.1 Testbed Description 37
4.1.2 Availability RBD Model 38
4.1.3 Results 38

4.2 Web Service Availability Study 39
4.2.1 Testbed Description 40
4.2.2 Availability SPN Model 41
4.2.3 Results 43

5 Conclusions 46
5.1 Future Works 46

List of Figures

2.1 Elements of a Petri Net 14
2.2 Example of a Petri Net 15
2.3 RBD example: Series 17
2.4 RBD example: Parallel 18
2.5 Eucalyptus Components 22

3.1 Flowchart 26
3.2 Fidep Classes 33
3.3 State Machine 34
3.4 Hardware Controller Test 35

4.1 Components of the test bed - Case Study I 37
4.2 RBD model of the target system 38
4.3 Components of the test bed - Case Study II 40
4.4 SPN model of the target system Node Controller 1 41
4.5 SPN model of the target system Node Controller 2 41
4.6 SPN model of the Eucalyptus front services 42
4.7 SPN model of the target system - VMs dependency 42
4.8 Basic component - SPN submodel 43

ix

List of Tables

4.1 Parameters of the Experiment Scenario 39
4.2 Transition attributes associated with a component 42
4.3 Submodels for representing no redundancy components 42
4.4 Transitions of the VM life-cycle model 43
4.5 Condition to enable the immediate transitions 44
4.6 Parameters of Scenario B 44
4.7 Uptimes and Downtimes from the experiment 45
4.8 Availability Evaluated from the Experiments 45

x

CHAPTER 1

Introduction

This chapter provides a brief explanation of cloud computing systems and also of the depend-
ability concept. It highlights the importance of the dependability evaluation in order to develop
more reliable systems. Then it presents the motivation of this work, as well as the objectives
and expected contributions. Finally, the related works are disclosed and then it is exposed the
remaining structure of the presented dissertation.

1.1 Context and Motivation

The evolution of computer systems is the result of advances in research that aims to provide
to the users new easy to use systems, diversified systems, reliable systems, low-cost systems
and high-performance systems. For a system to meet such characteristics its developers have to
be careful and attentive since the earliest stages of the development process until the system’s
implementation.

Dependability is a concept that includes attributes such as availability, reliability, opera-
tional safety, security, maintainability, testability and performability [54]. The use of some of
these attributes in studies contributes to building systems that are justifiably more reliable.

A priority for the current systems is the assurance that the services provided are extremely
reliable; Such assurance has become a key requirement for the new systems being developed.
Thus, dependability assessment studies can and should be applied to obtain estimates of the
behavior of the systems in production.

One way to conduct a system’s dependability study is through the workload action. The
use of a workload contributes to reveal any previously not noticed flaws that may exist in
the system’s components. Another way to conduct a dependability evaluation is through fault
injection; The fault is injected and then the system’s behavior is observed.

Fault injection tools can be applied in order to know the dependability levels of services
provided under different scenarios; But a software designed to test a particular system, may not
necessarily be used to act on a different system. For the designing of such tools it is necessary to
implement a set of methods for the purpose of establishing means for communicating with the
target system, for generating and controlling events, or even a way that allows random requests
to the system; Random although based on a known statistical distribution. Accomplishing such
tasks requires time since it is necessary to encode all the necessary methods, test, correct any
errors, and test again.

We are surrounded by services provided on the cloud, thus cloud computing is an ascending
paradigm; We use cloud computing more and more every day [5]. Companies known as cloud

1

1.2 OBJECTIVE AND CONTRIBUTIONS 2

providers are companies that provide cloud services to other companies or to final users [39].
Therefore, in such context of cloud computing, the motivation and the need for dependabil-

ity studies is presented, independently in academic ways, or inside big corporations, because
such companies need to provide reliable services.

1.2 Objective and Contributions

This work has as a general objective the implementation of a fault injection, repair and moni-
toring framework - the framework is called Fidep, which stands for Fault Injection framework
for Dependability analysis; Such framework is capable of providing a high level interface to
support the development of fault injection tools for Linux[57] based cloud computing systems,
such as Eucalyptus [12], OpenNebula [55], OpenStack [56], Apache CloudStack [23] and other
Linux based cloud computing systems. Besides the framework development, this work also im-
plements a fault injection tool for the Eucalyptus platform [12], and the developed tool uses the
proposed framework, Fidep, in order to show that the framework indeed makes it easier to im-
plement fault injection tools; Eucalyptus is a cloud computing system that provides the level of
Infrastructure as a Service (IaaS). The developed fault injection tool is then used to perform an
availability evaluation on the Eucalyptus environment, such study is disclosed in the chapter 4
of this dissertation.

1.3 Related Works

Fault injection tools have been largely adopted for the evaluation of dependable systems. This
section presents other works involving fault injection techniques to evaluate the dependabil-
ity of systems. The injection of failures in systems contributes to evaluating at least two of
the dependability properties: availability and reliability. It is also presented works involving
availability evaluation on cloud computing systems, such like Eucalyptus Cloud.

[70] describe fault injection techniques; Such work presents five main techniques: (1)
Hardware-based fault injection; (2) Software-based fault injection; (3) Simulation-based fault
injection; (4) Emulation-based fault injection; (5) Hybrid fault injection. The before-mentioned
paper also made some comparisons about the best technique to be used given a particular prob-
lem; besides presenting some tools in the literature that fall under each presented technique,
description and method of operation, in addition to the strengths and weaknesses of each tech-
nique.

A Software-based tool is presented by [41] called WS-FIT (Web Service - Fault Injection),
this tool injects faults in the network layer to test systems based on the SOAP protocol via
SOAP messages changes when signing and encryption are being used.

[21] demonstrates the use of a hybrid mode of fault injection techniques by using the coop-
eration between simulation and emulation. This paper presents the FITSEC tool (Fault Injection
Tool Based on Simulation and Emulation Cooperation), based on Verilog and VHDL; This tool
was developed in order to support the entire system design process.

[68] presents a fault injection tool for real-time embedded systems, called DDSFIS (Debug-

1.3 RELATED WORKS 3

based Dynamic Software Fault Injection System). The authors validated the effectiveness and
performance of DDSFIS adopting real world experiments.

In [13] the authors present a benchmark for performance tests in databases for cloud-based
systems. The authors defined a set of benchmarks and report results for four widely used
databases (e.g., MySQL). Although the proposed benchmark also intends to be a tool for eval-
uating availability in databases for cloud systems, only performance and elasticity aspects are
addressed in the work.

[58] initiate the study of fault injection into Eucalyptus cloud [12] with Eucabomber, which
is a fault injection tool specific for the Eucalyptus Cloud System; Despite the important contri-
bution, this version does not consider dependencies between components and also user-oriented
metrics are not taken into account.

Other representative works adopt dependability models for evaluating cloud computing en-
vironments. In [27] a performability analysis for cloud systems is presented, in which the
authors quantify the effects of workload variation, failure rate and system’s capacity on ser-
vice quality. In [4] the authors investigate software aging effects on Eucalyptus framework,
and they also propose a strategy to mitigate such issues during the system’s execution. [9]
describes a system design approach for supporting transparent migration of virtual machines
(VMs) by adopting local storage for their persistent state; The approach is transparent to mi-
grated VMs, and it does not interrupt open network connections during VM migration. [64]
presents an experiment that quantifies the effect of VM live migrations in the performance of
an Internet application. Such study helps data center designers to plan cloud infrastructures
satisfying service level agreements.

[15] presents a study on warm-standby mechanisms in Eucalyptus-based private clouds;
Results demonstrate that replacing machines by more reliable counterparts would not produce
significant improvements in system availability, whereas some fault-tolerance techniques can
indeed increase dependability. [34] adopts a modeling approach for virtualized systems, which
utilizes fault trees and CTMC. Fault trees are adopted on an upper level and CTMC in a lower
level; The work’s main contribution involves cloud system evaluation considering VM live
migration. In [45] the authors present an evaluation technique to determine the parameters
that cause the greatest impact on the availability of mobile cloud systems. The work adopts
a combined evaluation of results from three sensitivity analysis techniques which complement
each other; Results show that availability can be effectively improved by changing a reduced
set of parameters.

The framework presented in this work considers fault injection and repair also in the VM
life-cycle operations and dependency between cloud components e.g. the dependency between
the Cloud Controller and the Node Controller (in the Eucalyptus environment), and also another
dependency example is the dependency between the hardware and the operating system of the
infrastructure that hosts the cloud system. The availability results contemplate user perspective,
in which the service is available as long as the contracted VMs are operational. Additionally,
a Reliability Block Diagram (RBD) model [59] is proposed in the Case Study (chapter 4) to
evaluate availability in IaaS clouds. An experiment is conducted by adopting the fault injection
tool which was implemented using the proposed framework; And the experiment results (real-
world environment) were compared with the results obtained from the RDB model.

1.4 STRUCTURE 4

1.4 Structure

For better organization and understanding, this work is organized as follows: Chapter 2 con-
tains the foundations and all the background information needed for a better understanding of
this work; Chapter 3 covers the conceptualization, implementation, and all the technical de-
tails about the proposed and developed framework; Chapter 4 covers case studies where the
proposed framework is indeed used to implement a fault injection tool for the Eucalyptus sys-
tem, the same chapter also discusses the dependability study of the Eucalyptus platform and
discloses the results; Chapter 5 concludes this dissertation and proposes some future directions
of this work.

CHAPTER 2

Foundations

This chapter presents the fundamental concepts over which this Bachelor’s dissertation was
produced. First, the Object Oriented Frameworks concept is presented, then the Performance
Evaluation concept is disclosed; After that, the Dependability concept is introduced, as well
as the basic metric equations needed for a better understanding of this work. Afterward, Con-
tinuous Time Markov Chain definitions are disclosed, following it is revealed the definition of
Stochastic Petri Nets as well as Reliability Block Diagram.

Another important theoretical basis is Cloud Computing Systems, and also one application
of such concept, regarding the IaaS approach, which is the Eucalyptus platform, because it will
be used during the experimental phase of the proposed framework in Chapter 4 case study.
Afterward, it is presented the Fault Injection definition and its main categories: Hardware
Implemented fault injection techniques, and Software Implemented fault injection techniques.
That completes the necessary knowledge to understand the proposed framework in Chapter 3.

2.1 Object Oriented Frameworks

There are several definitions of frameworks, in the context of object orientation. According to
[67] framework can be defined as a set of concrete and abstract classes with their relationships
and constraints, designed for a specific application domain. While for [47] framework can be
defined as a set of classes that incorporates an abstract project of solutions to a family of related
problems.

Briefly, an object-oriented framework can be understood as a set of concrete and abstract
classes that provide a partial implementation of a system or part of it for a given problem
domain. A framework consists of classes that have relationships whose objects interact with
one another, unlike a library that contains a set of classes that can be used separately . Another
difference between libraries and frameworks resides in the way they are implemented, whereas
libraries are implemented primarily focusing on reuse, frameworks do not just reuse code, but
also significant parts of a project [47].

Object-oriented frameworks, or simply frameworks, can be recognized as generators since
they are intended to be used as a foundation for the development of a series of applications
belonging to the same application domain. Embedded into the source code, they determine the
application architecture and redefine the project parameters, allowing the developer to devote
himself to the specific details of the software being developed [67].

The emergence of object-oriented programming brought with it some concepts such as
inheritance, polymorphism, interface, among others that made it possible to create frameworks.

5

2.1 OBJECT ORIENTED FRAMEWORKS 6

These elements are basic for building the avowed hot-spots of a framework. Hot-spots are
flexibility points in the framework that require complementation, where developers add their
code by specifying the functionality of the software in production [46].

A framework should be simple enough for the developer to understand and should offer
flexible methods so that some of their characteristics can be changed by redefining methods.
Frameworks are quite attractive for providing agile systems development through the reuse
process, often called the instantiation process [46].

According to [46], the main objectives of a framework are related to maintaining the or-
ganization’s knowledge about the application domain within the organization; Minimizing the
amount of code needed to deploy applications that belong to the same problem domain; And
possible adaptations to specific application needs, such as through a subclass.

Object-oriented frameworks have some advantages and disadvantages. Among the advan-
tages, it is presented the following:

• Alleviation of developed lines of code if the functionality required by the application and
the functionality offered by the framework belong to the same domain;

• The framework code is already written and debugged;

• Frameworks offer not just code reuse, but also design reuse [46].

Among the disadvantages of object-oriented frameworks are:

• Challenges in the development of frameworks, since experience in the field of applica-
tion, is necessary;

• Complex detection of hot-spots;

• Implementation and means to validate a framework are not mild.

2.1.1 Frameworks Characterization

An object-oriented framework can be characterized by different dimensions. The most im-
portant dimensions, according to [46], are the problem domain that the framework covers, its
internal structure and how the framework can be used.

Three are the realms of a framework: application framework, domain framework, and sup-
port frameworks. The designated application frameworks encapsulate functionalities that can
be applied to different domains. An example of this type of framework are the frameworks
for building graphical interfaces. Domain frameworks capture knowledge and experience in
a particular problem domain. An example of such type of framework are the frameworks for
multimedia; And finally, support frameworks provide services for a low-level system such as
device drivers.

The internal structure of a framework is related to the concepts of software architectures.
[46] describes the framework architectures as:

2.1 OBJECT ORIENTED FRAMEWORKS 7

• Layered architectural framework: helps structure applications that can be decomposed
into groups of subtasks with different levels of abstraction;

• Architectural Framework Pipes and filters: can be used to structure applications that can
be divided into several fully independent subtasks; Those tasks must be executed either
in a sequential or in a parallel order;

• MVC (Model-View-Controller) architectural framework: defines a framework for inter-
active applications that separate the user interface from its functional core;

• Architectural Framework PAC (Presentation-Abstraction-Controller): suitable for struc-
turing software systems that are highly interactive with human users;

• Reflective architectural framework: used for applications that need to consider a future
adaptation to changes in the environment, technology, or requirements; Although without
an explicit modification of its structure and implementation;

• Architectural micro-kernel framework: suitable for systems that offer different points of
view about their functionalities and, which often have to be adapted to the new require-
ments of systems;

• Architectural framework blackboard: helps structure complex applications that involve
several specialized subsystems for different domains;

• Architectural framework broker: Distributed structure software systems in which com-
ponents interact decoupled through remote operations calls on a client and/or server.

An object-oriented framework can be used in two ways. Either the user derives new classes
from it or instantiates and combines existing classes. The first approach is called directed ar-
chitecture or focused inheritance. The main approach is to develop applications based on the
inheritance mechanism. Users of the framework implement adaptations through class deriva-
tion and operations override. The second approach, instantiation and combining, is referred
to as data-driven or composition-focused frameworks. The adaptation of the framework to the
needs of the application implies reusing the composition of an object. The way objects can be
combined is part of the framework description, but what the framework does depends on which
object the user passes into the framework. A data-driven framework is generally easy to use,
however, it is limited.

2.1.2 Frameworks Development

The development of an object-oriented framework requires considerable effort, but the benefits
during the software development process often justify the initial effort, since a complete appli-
cation or a significant part of it can be built from a framework. Constructed to reuse both the
code and the most significant parts of a project, frameworks can be implemented in two ways.
The first form is based on the deep domain analysis, while the second form is the result of the

2.2 PERFORMANCE EVALUATION 8

knowledge acquired during the development of several applications that belong to the same
domain.

The first way is very similar to software development, starting with extensive domain re-
search, among other things. In this form of development examples of instances can be obtained
through books or people with extensive knowledge of the domain studied. These instances are
collected and analyzed in order to collect common parts and parts that may change.

The second form of development of a framework is relative to the knowledge acquired by
the developers during the process of implementation of several software belonging to the same
family. Based on the knowledge acquired, a generic design can be developed separating the
common and specific parts.

Both of the above-mentioned forms of development present drawbacks. In the first form,
it is possible to mention the cost of development since the first application instantiated is usu-
ally not commercial but developed as a form of validation of the framework. While in the
second form, design defects of previously developed applications will be passed on to the next
applications instantiated from the framework.

2.2 Performance Evaluation

Performance Evaluation is taken as an art [31]. And like all artwork, it can not be produced
mechanically. Each evaluation requires a great knowledge of the system to be modeled, as
well as a careful selection of the methodology, the workload, and the tools to be applied. Per-
formance evaluation can be used, for example, whenever you want to compare two or more
systems and find the best for a given set of applications, decide which is the best alternative
of design among several options, amidst others [31] [40]. Even if there are no alternatives,
evaluating the performance of systems can help determine the quality of their activities, and
if improvements are indicated. Experiments involving performance evaluation of systems can
be employed at each stage of the life cycle of a computational system [31] , [52]. However,
the cycle in which the system currently is influences the choice of the technique to be used to
carry out the studies. Performance evaluation has three major sets of techniques: techniques
based on numerical/analytical modeling, techniques based on simulation modeling, and tech-
niques based on measurement. Techniques based on numerical/analytical modeling describe
the system in a mathematical form [40]. These techniques are generally used when the system
does not yet exist or is not available at the moment of the study. The time period required
to obtain the results turns this technique very attractive, because it occurs quickly. A simple
analytical/numerical model can provide an agile overview of the behavior of the system or one
of its components. Although analytical models are approximated, they are accepted because
the models themselves can be used to explore design alternatives. This is sufficient to estimate
approximately the expected behavior and performance. The time to build a model is relatively
brief, as is the cost of its development.

Techniques based on simulation modeling are established on abstract models of the system,
so they can be used at any stage of the system’s life cycle. Such techniques require a consid-
erable investment of time in the model derivation, design, and coding of the simulator. The
simulator can be easily modified to study the impact of changes made to any component of the

2.2 PERFORMANCE EVALUATION 9

simulated system. The complexity and level of abstraction employed in a simulator may vary
according to the system. With simulations, it may be possible to search the space of the param-
eter values for optimal combination. Simulation modeling is more flexible, more accurate, and
has greater credibility when compared to analytical/numerical modeling [52].

Unlike techniques based on numerical/analytical modeling and simulation, the measurement-
based techniques can only be used when something similar to the proposed system already ex-
ists, even if it is a prototype [31]. Among the techniques presented, this is undoubtedly the one
with the highest cost; Since it requires real equipment and time. The results obtained through
this technique can be quite variable since the defined parameters, as well as the workload, can
influence the results of the experiments. The credibility of the results obtained through this
technique is regarded as the most reliable. In addition, the results are probably the biggest
justification when considering the costs involved in their use.

Sometimes it is quite useful to use two or more techniques at the same time. For example,
one can use analytical/numerical modeling techniques and simulation together in the same
evaluation to validate the results obtained. [31] has three validation rules:

• Results obtained by simulation are not reliable until they have been validated by analyti-
cal/numerical modeling or by measurement;

• Results obtained through analytical/numerical modeling are not reliable until they have
been validated by simulation or measurement;

• Results obtained through measurement are not reliable until they have been validated by
analytical/numerical modeling or by simulation.

The third mentioned rule is commonly ignored. Measurements are susceptible to errors, as
are the other techniques. The only requirement for validation is that the results should not be
counter-intuitive. This method of validation is called expert intuition and is commonly used in
simulation models.

Two or more techniques may be used sequentially. For example, a simple analytical model
can be used to find the appropriate range for system parameters and the simulation subse-
quently used to study performance in that range. This reduces the number of simulation runs
considerably and results in a more productive use of resources.

2.2.1 Performance Measurement

The measurement of computational systems essentially involves the monitoring of the system
being studied while under the influence of workload. To achieve expressive results, the work-
load must be carefully selected. This load can be real or synthetic [22]. The actual workload is
observed in a real system in production. This type of load is usually not the most suitable for
carrying out performance studies due to not being repeatable [31], the size of the load may not
be considerable, the data may have undergone many disturbances, or, for reasons of accessibil-
ity. Instead, a synthetic charge, the characteristics of which are similar to the actual charge, can
be applied repeatedly and in a controlled manner.

2.2 PERFORMANCE EVALUATION 10

The main reason for using synthetic workloads is that it is a representation or model of the
actual workload. Some other reasons for using a synthetic workload are ease of modification;
The simplicity of being converted to different systems due to its small size; And the load-
generating application may also have built-in some measuring capability.

In the measurement technique, different types of metrics are generally required, depending
on the nature of the system being tested [52]. The different measurement strategies have their
basis the concept of the event, where this is a change in the state of the system. The precise
event definition depends on the metric being measured [40]. For example, an event can be
defined to be a reference to the memory, a disk access, a network communication, a change in
the internal state of the processor, or the combination of other sub-events. From the event type
point of view, these metrics can be organized into one of the following categories [40] [52]:

• Event Count Metrics: This category includes metrics that are simply counting the number
of times that a given event occurs. For example, number of read/write requests on a disk
storage;

• Auxiliary event metrics: Records the values of secondary system parameters, whenever
a particular event occurs. For example, to determine the average number of messages
in the queue that are sent to the buffer of a communication port, one must register the
number of messages in the queue each time a message has been sent or removed from it.
Thus, the events to be monitored will be the number of messages in and out of the queue;

• Profile: is an aggregate metric used to characterize the overall behavior of a program or
an entire system. Typically, it is used to identify where the program or system is spending
the most run-time.

The strategy used to measure the performance of the metric of interest can be decided based
on the classification of the type of event discussed above, where the main strategies are [52]:

• Event-driven: Registers the information needed to calculate the performance metric
whenever the events of interest occur. This strategy has the advantage that the gener-
ated overhead occurs only in the data record. On the other hand, if monitored events
occur quite frequently, then such characteristic becomes a disadvantage;

• Tracing: This strategy is based on recording more data than just a single event. This
results in the need for more storage space when compared to the event-driven strategy;

• Indirect: This strategy is used when the metric of interest can not be measured directly.
In this case, one must find another metric that can be measured directly, from which the
desired metric can be deduced;

• Sample: This strategy is based on recording the state of the system in time intervals the
metric of interest. The sampling frequency determines the measurement overhead.

2.3 DEPENDABILITY 11

2.3 Dependability

The dependability of a system can be understood as the ability to provide a range of services
with a certain level of confidence [59]. In fact, dependability is also related to concepts such as
fault tolerance and reliability. Without loss of generality, the reliability is the probability that
the system will provide a set of services for a certain time period [37]. In fault tolerant sys-
tems, reliability gives the probability of operation even when there are defective components.
Availability is also another important concept, which quantifies the mixed effect of the fault
and repair processes in a system. In general, availability and reliability are related concepts
they differ in the fact that the availability may consider repairing components that have failed
[19].

Metrics can be calculated using combinatorial models, such as Reliability Block Diagram
(RBD), or models based on states, for example, SPN (RBD is the model adopted in this study).
RBDs allow to represent networks of components and also to establish closed form equations.
However, RBD designs have drawbacks for handling faults and repairs of the dependencies;
Such cases are often found in the representation of maintenance policies and redundant mech-
anisms, especially those based on dynamic redundancy methods. It should also be noted that
the RBD could be evaluated through simulation; Simulation is adopted whenever distributions
more complex than the exponential distribution are used in the model.

2.3.1 Dependability Equations

For instance, if a designer is interested in calculating the availability (A) of a given device or
system. It is needed the time to failure (TTF) and the time to repair (TTR). Considering that
the uptime and downtime are not available to the designer, then the most affordable way is the
average value. If the designer needs only the average value, so the metrics commonly adopted
are the mean time to failure (MTTF) and the mean time to repair (MTTR) (other central tendency
measures can also be adopted). However, if the designer is also interested in the variability of
the availability, then the standard deviation of the time to failure (sd(TTF)), and its repair time
standard deviation (sd(TTR)) give an estimate of the variation of the availability.

Availability (A) is obtained by analysis or simulation of the steady state. It is given by the
following equation:

A =
MT T F

MT T F +MT T R
(2.1)

Another useful concept is the instantaneous availability, which indicates the availability for
a given time instant (t), defined by:

A(t) =
µ

µ +λ
+

λ

µ +λ
e−(µ+λ)t (2.2)

Where µ indicates the repair rate (1/MTTR), and λ represents the failure rate (1/MTTF). It
is considered that the failure time and the repair time obey exponential distributions.

Assume f(t) is a probability density function. Thus, through the analysis or transient simu-
lation, the reliability (R) is obtained. So the MTTF can be calculated as the standard deviation

2.3 DEPENDABILITY 12

of time to failure (TTF):

MT T F =
∫

∞

0
R(t)dt =

∫
∞

0
t f (t)dt (2.3)

sd(T T F) =

√∫
∞

0
t2 f (t)dt− (MT T F)2 (2.4)

It should be borne in mind that, for the computation of the reliability of a particular ser-
vice or system, the respective service repair activity should not be represented. In addition,
considering the unavailability calculation which is given by UA = 1−A, and Equation 2.2, the
following equation is derived:

MT T R = MT T F×UA
A

(2.5)

So, the standard deviation of the repair time (TTR) can be calculated as follows:

sd(T T R) = sd(T T F)×UA
A

(2.6)

In this work it is considered the availability of the system. The experiment disclosed in
chapter 4 estimates the availability from the user point of view, which is the availability of the
virtual machine services.

2.3.2 Confidence Interval of Availability

It is presented the approach to calculate the confidence interval of availability[65].
The failure rate is λ and the repair rate is specified by µ . Consider ρ as being the ratio

λ /µ . If it is assumed that n failure and repair events were observed during the experiment, then
the total failure time is Sn and the total repair time is Yn. Therefore, the maximum-likelihood
estimator for λ is defined by the Equation 2.7.

Λ̂ =
n
Sn

(2.7)

A 100x(1 - α) confidence interval for λ is given by Equation 2.8.

(C2
2n;1−α

2

2Sn
,
C2

2n; α

2

2Sn

)
(2.8)

An analogous process is performed estimate µ Equation 2.9.

M̂ =
n
Yn

(2.9)

Thus, the 100x(1 - α) confidence interval for µ is given by Equation 2.10.

(C2
2n;1−α

2

2Yn
,
C2

2n; α

2

2Yn

)
(2.10)

2.3 DEPENDABILITY 13

Consequently, the maximum-likelihood estimator for the ratio λ /µ is ρ̂ and it is defined by
Equation 2.11.

ρ̂ =
Λ̂

M̂
=

n
Sn
n

Yn

=
Yn

Sn
(2.11)

The 100x(1 - α) confidence interval for ρ is given by (ρl , ρu) through F-distribution prob-
ability function as specified in Equation 2.12.

ρl =
ρ̂

f2n;2n; α

2

and ρu =
ρ̂

f2n;2n;1−α

2

(2.12)

Finally, the maximum-likehood estimator to availability is Â = 1/(1+ ρ̂). Since the avail-
ability A is a monotonically decreasing function of ρ , the 100x(1 - α) confidence interval for
A is: (1

1−ρu
,

1
1−ρl

)
(2.13)

2.3.3 Continuous Time Markov Chain

Markov chain is a mathematical model proposed in 1906 by Andrey Markov [43] which cor-
responds to a type of stochastic process that has some special properties. This theory opened
possibilities for the study of stochastic processes in various fields of applications, such as eco-
nomics, meteorology, physics, chemistry and telecommunications. Particularly in computer
science this formalism is quite convenient for describing and analyzing dynamic properties of
computer systems [8]. Markov chain can be viewed as a fundamental technique for perfor-
mance analysis and dependability analysis; Markov chain is the basis over other techniques are
constructed [49]. In queuing theory, a queue may be reduced to a Markov chain and analyzed
and, in addition, some major theorems of this theory are proved by Markov models [35].

To define the concept of continuous time Markov chain, initially will be presented the defi-
nition of stochastic process:

A stochastic process is defined by a family of random variables Xt : t ∈ T , where each
random variable Xt is indexed by a parameter t and the set of all possible values of Xt represent
the state space of the stochastic process.

Generally it is defined the t parameter as the time parameter, but just if it satisfies the
condition: T ⊆ R+ = [0,∞). If the set T is discreet, the process is classified as discrete time,
otherwise, it is continuous time. Likewise, the state space S can be discrete or continuous,
dividing stochastic processes into two groups: discrete state and continuous state. A discrete
space stochastic process can be called a chain.

A discrete state stochastic process is called a Markov Process if it satisfies the following
property:

A stochastic process Xt : t ∈ T is a Markov process if for all 0 = t0 < t1 < ... < tn < tn+1
and for all Si ∈ S, the probability P(Xtn+1 ≤ Sn+1) depends only on the last value of Xtn , but
do not depend on the previous values Xt0,Xt1, ...,Xtn−1 . In other words, this property states that

2.3 DEPENDABILITY 14

once a system is in a particular state, then the transition to the next state depends only on the
current state where the system is. The history of the previous states does not matter and is not
remembered, so this property is also called the memory-less property.

Just as the stochastic processes in general, we divide the Markov chains into two classes ac-
cording to the time parameter: DTMC (Discrete Time Markov Chain), and CTMC (Continous
Time Markov Chain). The main difference between these two classes is that in the CTMCs
the transitions can occur at any moment in time; While in DTMCs the transitions can only be
performed at discrete points in time.

A Markov chain can be represented as a state diagram where the vertexes represent the
states, and the arcs of the diagram represent possible transitions between the states. Transitions’
weights have a meaning which varies if the chain is discrete or continuous time. In a DTMC,
the weight of an arc from a state Si to S j represents the probability that once the system is in
the state Si, a transition occurs to the state S j in the next time interval. Consequently, this value
should be less than 1, and the sum of all weights of arcs leaving a Si state also must not exceed
1.

In CTMCs, the weight of the arc represents the rate of migration from a state Si to a state S j.
The inverse of this value corresponds to the average time spent in the state Si. The memory-less
property of Markov chains implies that this time should be driven by a distribution with this
same property [8].

The only continuous time distribution to present such property is the exponential distribu-
tion. For DMTCs, the discrete distribution with such property is the geometric distribution.

2.3.4 Stochastic Petri Nets

The Petri Nets concept was conceived by Carl Adam Petri in his doctoral thesis entitled Kom-
munikation mit Automaten (Communication with Automatons) and presented at the University
of Bonn in 1962 [53]. Since then, this formalism has been used in different areas, such as
computer science, electrical engineering, physics, among others.

The graphical representation of the Petri Nets is composed by: Places (Figure 2.1 (a)),
Transitions (Figure 2.1 (b)), Arcs (Figure 2.1 (c)) and Tokens (Figure 2.1 (d)). The state vari-
ables are represented by the places and the actions performed by the system are represented by
the transitions [42] . Directed arcs interconnect these two components, places, and transitions.
The distribution of tokens, or marks, in the Petri Net places, determine the current state of the
system or the amount of a given resource available.

Figure 2.1 Elements of a Petri Net

2.3 DEPENDABILITY 15

Next, in Figure 2.2, it is presented a model of a Petri Net in which the operation of a
web service is modeled. The places represent the states of the service, either the service is
operational or the service is down, while the transitions represent the actions, which may be
a random failure in the service or a service repair (could be a restart). In the initial state the
service is operational, that is, functioning normally; This is represented by the token in the
corresponding place, as shown in Figure 2.2 (a). At this point, the only possible transition
will be the failure transition; Once the failure transition is triggered, the token goes to the
corresponding place of the service down. At this point, the only available transition is the
repair, Figure 2.2 (b), which once triggered takes the token back to its initial position, ie, the
service is operational again.

Figure 2.2 Example of a Petri Net

Initially, the Petri Nets proposed by Adam Petri did not have the time as notation due to the
difficulties that specific parameter of the time would bring to the analysis of the models. Early
work including time in Petri Nets was Merlin and D.J Faber [50] and J.D Noe and G.J Nutt
[51].

There are different ways of embedding time into Petri Nets: by associating it with the
location and type of time associated with it. As for location, time can be associated with places,
transitions, and tokens. However, in most models, only transitions are associated with time.
This is due to the fact that transitions represent activities, which in turn are actions that take
some time to complete. But it is important to mention that choosing the location to associate
time is typically a personal choice and also depends on the type of system being modeled [62].
Regardless of the type of location in which the notion of time will be used, several types of
time can be modeled in a timed Petri Net: it can be deterministic, interval, or stochastic. Older
models used deterministic times which in turn are simple to analyze. However, they limit their
applicability. Thus, more recent authors use non-deterministic, ie, stochastic models [62] [42].

2.3 DEPENDABILITY 16

By allowing the addition of time in Petri Nets, other concepts such as the degree of ha-
bilitation emerge. This concept determines the number of times a particular transition can be
triggered on a given markup before becoming disabled. Timing semantics indicate how many
shots can be done per unit of time in a transition, as seen below:

• Single-server (SS): Only one token is hurled at a time, that is, the capacity of one place
per transition is 1.

• Multiple-server: It is possible to perform n shots at a time, that is, the capacity of one
place per transition is an integer textitn.

• Infinite-server (IS): You can do endless shots at once.

SPNs add time to Petri Nets formalism. This time is stochastic and exponentially distributed
for timed transitions. In addition, there are immediate transitions, in which there is no asso-
ciated time. The two types of transitions may have different levels of priority between them.
However, immediate transitions have priority over tripping over timed transitions. Once the
input arcs reach enough tokens and it becomes enabled, it must be triggered even if a timed
transition is also enabled.

Formally, SPNs can be defined in several ways. In this work we adopt the definition ac-
cording to [26] presented below:

An SPN is defined by the 9-tuple SPN = (P, T, I, O, H, Π, G, M0, Atts), where:

• P = {p1,p2,...,pn} is the set of places. n is the amount of places;

• T = {t1,t2,...,tm} is the set of timed and immediate transitions, P∩T= /0. m is the amount
of transitions;

• I ∈ (Nn→ N)n×m is the matrix representing the input arcs, which may depend on mark-
ings;

• O ∈ (Nn → N)n×m is the matrix representing the output arcs, which may depend on
markings;

• H ∈ (Nn→ N)n×m is the matrix representing the inhibitory arcs, which may depend on
markings;

• Π ∈ Nm is the vector that associates the priority level with each transition;

• G ∈ (Nn→ {true, f alse})n is the vector that associates a guard condition related to the
marking of the place at each transition;

• M0 ∈ (Nn) is the vector that associates an initial marking of each place (initial state);

• Atts = (Dist,Policy,Concurrency,W)m comprises the set of attributes associated with the
transitions:

2.3 DEPENDABILITY 17

Dist ∈ Nn→ F is a probability distribution function associated with the time of each tran-
sition, but F ≤ ∞. This distribution may be marking dependent;

Policy ∈ {prd, prs} defines the memory policy adopted by the transition, where prd stands
for preemptive repeat different, default value, which is identical to enabling memory policy;
whereas prs stands for preemptive resume, which corresponds to the age memory policy;

Concurrency ∈ {ss, is} is the concurrency degree of the transitions, where ss represents the
single server semantics and is represents the infinite server semantics;

W ∈ R+ is the weight function, which associates a weight (wt) with the immediate transi-
tions and a rate λt to the timed transitions.

The SPN models describe the activities of systems by means of reachability graphs. These
can be converted into Markovian models, which are used for quantitative evaluation of the
analyzed system. Performance measurements are obtained through simulations and steady-
state and transient analyses based on the Markov chain embedded in the SPN model [8].

The labeled SPNs and having a finite number of places and transitions in their structure
are isomorphic to the Markov chains [44]. The isomorphism of a SPN model with a Markov
chain is obtained from the reduced reachability graph, which is given by eliminating the volatile
states, the label of the arcs with the rates of the timed transitions, and the weights of the imme-
diate transitions.

2.3.5 Reliability Block Diagram

Reliability Block Diagram (RBD) is a combinatorial model; It was initially proposed as a tech-
nique for calculating the reliability of large and complex systems using intuitive block diagrams
[59]. In general, block diagrams provide a graphic depiction of the system’s components and
connectors; Which may be adopted to determine the overall state of the system. The RBD’s
structure establishes the logic interaction between the components defining which combina-
tions of active elements are able to sustain the operation of the system, in other words, it
defines the combinations of the active components that are capable of maintaining the system
running. This technique has also been extended to calculate the dependability metrics such as
availability and reliability.

The blocks are generally organized using the following compositions: series, parallel,
bridge, blocks k-out-of-n, or a combination of those approaches.

Figure 2.3 RBD example: Series

Figure 2.3 shows an example in which the blocks are arranged in series and Figure 2.4
shows an example in which the blocks are arranged in parallel.

In the series arrangement, if a single component fails, the whole system does not work
anymore. Assuming a system with n elements, reliability (R) is given by:

2.4 CLOUD COMPUTING SYSTEMS 18

Figure 2.4 RBD example: Parallel

Rs(t) =
n

∏
i=1

Ri(t) (2.14)

where Ri(t) is the reliability of the bi block.
For a parallel arrangement, see Figure 2.4, at least one component must be operational for

the entire system to be running. Taking into account n components, the system’s reliability is
given by:

Rp(t) = 1−
n

∏
i=1

1−Ri(t) (2.15)

where Ri(t) is the reliability of the bi block. For other examples and more closed form
equations, the reader should refer to [37].

2.4 Cloud Computing Systems

Cloud computing is a computing model in which resources such as processing power, net-
working, storage, and software are offered over the Internet and can be accessed remotely [5].
This model allows users to get the resources elastically, and at a low cost; All the services are
delivered in a similar way to traditional services such as water, gas, electricity and telephone
[18]. Among the many existing cloud computing definitions in the literature, it is presented the
definition proposed by [63]:

Clouds are a great set of easily usable and accessible virtualized resources such
as hardware, deployment platforms and/or services. Such services can be dy-
namically reconfigured to a variable workload, allowing optimum utilization of
resources. This feature set is typically exploited by a pay per use model, or pay as
you go model, in which guarantees are offered by the infrastructure provider via
customized Service Level Agreements (SLA).

Cloud computing is a new computing paradigm, but it was built based on existing technolo-
gies such as virtualization, grid computing, and utility computing. The computational resources
of a grid are provided to customers as virtual machines (VMs) through virtualization of a data

2.4 CLOUD COMPUTING SYSTEMS 19

center infrastructure, in such a manner that each customer only pays for the amount of resources
consumed, instead of paying a flat fee (utility computing).

This computer model has several features that turn out to be attractive to many corporations.
For instance, if a company would like to launch a service on the Internet, it can simply rent a
set of VMs from a cloud service provider and then host its service on the VMs, without having
to maintain their own server infrastructure [66].

The above features of cloud computing model help to reduce the time to market of their
products/services and thus making it more competitive. Moreover, the elastically provisioning
of cloud resources allow the system to adapt to abrupt changes in the workload without the
need for sizing the used infrastructure. As an example, we can consider a portal for academic
services (same as the Sig@ UFPE1); During registration and vestibular times, the volume of
hits increases dramatically compared to the rest of the year; An administrator of such a system
could allocate a greater number of more powerful VMs during this time of the year in order to
meet such demand, however during the rest of the time of the year, when the number of hits is
lower, it could be used modest VMs to save power and money.

The big advantage is that the service provider does not need to oversize a data-center infras-
tructure to support the peaks in workload, which as a consequence will be underutilized during
most of the time. To illustrate this fact, Amazon - which these days is a major corporation in
the cloud computing segment - used around 10% of the capacity of its data center, which had
been designed to withstand peak times that in fact were not very common [29].

We can classify the computational clouds into two aspects. The first aspect relates to the
cloud user’s perspective and who maintains the infrastructure, by such point of view we can
classify as a cloud [66]:

• Private: Cloud infrastructures designed to be used by a single organization. A private
cloud infrastructure can be provided by an external agent, or it can be managed by the
own company. This kind of cloud is often chosen by organizations that have very sen-
sitive data, e.g. banks, government agencies, military agencies; That happens because
usually it is not allowed that such confidential data be entrusted to third parties, in this
case the third parties would be public cloud providers. The disadvantage of this approach
in comparison with public clouds is the requirement of the initial investment in buying a
proprietary server farm [66], just like the traditional model without the use of the cloud.
However, we also count on the benefits of consolidation and resource management by
the company, which allows a more efficient use of resources [69];

• Public: Public clouds are maintained by cloud service providers which offer their com-
puting resources to other organizations and/or users. This type of cloud reflects more
the unique benefits offered by cloud computing than the private clouds. Unlike a private
cloud, the initial investment in infrastructure is zero, it is not necessary to acquire servers
nor any other equipment itself. Public clouds are usually offered by large data-centers
that have a computing power much higher than a private cloud. Thus, if the volume of
accesses to a service increases dramatically, then it is possible to allocate more virtual-
ized resources in order to adapt to the new workload. Another advantage is to delegate to

1https://siga.ufpe.br/ufpe/index.jsp

2.4 CLOUD COMPUTING SYSTEMS 20

the cloud provider the responsibility for infrastructure management and for maintaining
the combined SLA [11]. The disadvantage of this type of cloud is the lack of control over
data, network and security settings; Which prevents some corporations from using this
type of cloud, especially those that deal with highly sensitive data, already cited above;

• Hybrid: It is a combination of the public and the private cloud models with the goal to
overcome the limitations of each approach. The advantage of this model is to provide
the best of both models. The organization’s critical data can be kept on the private part
of the cloud, while it is possible to scale the service through the immense capacity of
a public cloud. The disadvantage is a greater complexity in the cloud management and
also the challenge of determining the optimal partitioning between the public and private
components [66].

The other aspect on which the cloud computing can be classified is as its business model:

• Infrastructure as a Service (IaaS): Through the use of virtualization, this business model
partitions the resources of a data-center among users on the form of virtualized resources.
In this business model, usually the user pays for the service according to the capacity
allocated to the VM and according to the amount of time that the VM remains running.
The user is responsible for maintaining the software stack in which the services will run;

• Platform as a Service (PaaS): In this business model, the service provider abstracts the
VM and the operating system, and offers to the user a high-level software platform.
This model has the advantage of a transparent scaling of hardware resources for the
performance of the user services [63];

• Software as a Service (SaaS): This business model is geared to ordinary Internet users,
rather than developers and system administrators. In this model, software and data gen-
erated by users are stored in the cloud and can be accessed from any computer connected
to the Internet through a Web interface.

In addition to these main models described above, there is also the Data as a Service (DaaS)
model [60], in which the cloud offers its customers a secondary storage service, ensuring high
availability and data integrity. A DaaS can be seen as IaaS or SaaS, depending on the context in
which it is used. Consider as an example the storage and backup service in the cloud Dropbox.
The service that Dropbox [2] provides for its members can be seen as SaaS or DaaS. However,
Dropbox uses the storage service from Amazon S3 [1] to store the data of its customers. From
the standpoint of Dropbox, Amazon storage service may be considered as IaaS.

2.4.1 Eucalyptus Cloud System

Eucalyptus stands for (Elastic Utility Computing Architecture Linking Your Programs To Use-
ful Systems). It is a software that implements scalable styles of IaaS for private and hybrid
clouds [12], it also provides an interface compatible with EC2 and S3 services provided by
Amazon [6]. Such compatibility allows the user to run applications both on Amazon and Eu-
calyptus without modification.

2.5 FAULT INJECTION TECHNIQUES 21

The Eucalyptus platform uses the virtualization [12](hypervisor) from the underlying com-
puter system to allow flexible allocation of resources, divorced from specific hardware. The
Eucalyptus architecture is comprised of five high-level components, each with their own web
interface, they are Cloud Controller (CLC), Node Controller (NC), Cluster Controller (CC)
Storage Controller (SC), and Walrus. The following is a brief description of these components.

• Cloud Controller (CLC): It is the access point to the cloud infrastructure. This component
uses its web interface to receive requests and interact with the rest of the components. The
CLC is responsible for monitoring the availability of resources in various components of
the infrastructure, resource arbitration and also the monitoring of the running instances
(VMs)[15].

• Node Controller (NC): Runs on each node i.e. physical machine and it manages the VM
lifecycle operation on the node. This component performs queries to find out if physical
resources are available, for example, the number of CPU cores (Central Processing Unit),
the size of main memory, and also to probe the instances’ state within that node [32].

• Cluster Controller (CC): Manages one or more NCs. This component gathers informa-
tion about a set of VMs and VM execution times in specific NCs. The CC performs four
basic functions: requests instance (VM) execution to the NCs; controls the overlay vir-
tual network comprises a set of VMs; gather information about a set of nodes, and report
its status to the CLC [32].

• Storage Controller (SC): This component provides permanent storage to be used by the
instances (VMs). This component implements access to networked storage block, similar
to that provided by Amazon Elastic Block Storage (EBS) [6]. The main functions of the
SC are persistent creation of EBS; allow the creation of snapshot volumes; and provide
block storage protocols to AoE (ATA over Ethernet) or iSCSI (Internet Small Computer
System Interface) for the instances.

• Walrus: It is a storage service based on a filesystem compatible with the Amazon S3 [1].
Can be used by VM images in addition to serving as a repository for VM file systems,
ramdisks and Linux kernel images that are used to instantiate i.e. start VMs in the cloud
physical nodes by the NC [32].

Figure 2.5 shows the layers with the respective Eucalyptus components as an overview of
the Eucalyptus platform architecture [12].

2.5 Fault Injection Techniques

Computer systems need to maintain proper operation even in the presence of faults. However,
a system does not always performs correctly the function for which it was designed. The
causes and consequences of deviations from the expected operation by the system are called
dependability factors, comprising [70]:

2http://www8.hp.com/us/en/cloud/helion-eucalyptus-overview.html

2.5 FAULT INJECTION TECHNIQUES 22

Figure 2.5 Eucalyptus Components. Source: Eucalyptus Official Documentation2

• Fault: is a physical defect, imperfection or flaw that occurs within some hardware or
software component [70];

• Error: it is a deviation from the system accuracy, being a manifestation of a failure. A
fault during processing can lead to a modification in the system state, which is considered
an error [70];

• Failure: is the non-execution of some action that was expected by the system [70].

When a fault causes an incorrect change in the system state, an error occurs. Although the
fault is located in the source code or located in the circuit, multiple errors can be generated and
propagate in the system. When fault tolerance mechanisms detect an error, there are several
actions that can be initiated in order to deal with the error and contain it. Otherwise, the system
possibly has a malfunction.

There are two types of faults: hardware and software.

• Hardware Fault: They may arise during system operation and can be classified according
to the length, they can be permanent, transient or intermittent. Permanent faults are irre-
versible and usually are caused by a damage to the physical component; transient faults
are caused by specific environmental conditions, such as electromagnetic interference or
radiation; intermittent faults are caused by hardware instability. This last type of failure
can be repaired, for instance by replacement of components.

• Software fault: They are consequences of incorrect design, incorrect specification or
incorrect design code time. However, many of such faults are latent in the source code of
the software and only occur during system operation, especially under a high or unusual

2.5 FAULT INJECTION TECHNIQUES 23

workload. Since being a result of poor design, it can be assumed that all software faults
are permanent. Interestingly, practice shows that, despite their permanent nature, their
behavior is transient, i.e. when a bad system behavior occurs, the fault may not be seen
again, even when great care is taken to repeat the situation in which it occurred.

Some of the hardware and software faults can be overcome when they are discovered in
early stages of the development process, or in testing systems. The faults that are not removed
from the system can affect the dependability of the system.

The dependability evaluation is usually done using fault injection. Fault injection corre-
sponds to artificially insert faults into a system and then evaluate their behavior on the inserted
faults [61]. Hardware faults are easily injected by hardware devices designed for such task or
even applications built with such purpose [70]. In both cases, disturbances may be caused such
as changing bits or for example bit misses. In this case, the choice of method for fault injection
can determine the type of hardware failure, according to the classification described above.
Software failures are usually the main cause for system operation interruption. This type of
failure can be inserted into the system by applications called fault injectors. Such applications
can be built to achieve both operating systems or specific programs/services.

For injecting faults in computer systems, some techniques may be employed. The fault
injection techniques are classified into five categories [70]: hardware-implemented fault injec-
tion, software-implemented fault injection, simulation-based fault injection, emulation-based
fault injection and hybrid fault injection. However, this work will only discuss the hardware-
implemented fault injection and software-implemented fault injection. These two techniques
are the subjects of the following subsections.

2.5.1 Hardware Implemented

Hardware implemented fault injection requires an additional hardware to insert faults on the
target system. This type of fault injection allows disturbances to be entered into the system at
the physical level of the machine. Depending on the fault and the location where it should be
injected, the hardware fault injection techniques can be divided into two categories [70]:

• Contact: the hardware injector has physical contact with the target system by introducing
electric current variation in the chip of the system under test;

• Contact-less: the injector does not have direct physical contact with the system under
test. In this category, faults are introduced by means of external sources that produce
some physical phenomena such as, electromagnetic interference and ion radiation.

Regardless of the used category, there are some benefits of using the hardware implemented
fault injection technique, they have access to sites that are not accessible by other techniques,
experiments are considered fast, and tests can be performed close to real time. The use of
this technique also entails some drawbacks such as high risk of damage to the system under
test; low portability and low control over faults; another drawback is reduced system behavior
observation during testing.

2.5 FAULT INJECTION TECHNIQUES 24

2.5.2 Software Implemented

Software implemented fault injection is a more flexible approach than the hardware imple-
mented approach, as it allows to simulate faults both in hardware, and applications such like
operating systems [70]. This technique involves modifying the operating status of the software
that is running on the target system.

Such technique is divided regarding the injected faults, into two categories [70]: Compila-
tion time or during execution time. To inject faults while compiling the software instructions
should be modified before the program image is loaded and executed. In this category, faults
are injected through changes in the source code or assembly code of the target application.
Thus, when the modified program runs then the faults are also activated. Note that the change
in application source code can derail the software permanently.

In order to insert a fault during executing time it is required an additional mechanism to
introduce the faults on the target system. This category can be divided according to the form
how faults are inserted, they are:

• Time-out: the simplest of the methods. This method uses a timer (hardware or software)
for controlling the injection of faults. When the predetermined period of time ends then
the fault is injected;

• Exception/trap: in this case, hardware or software exceptions transfer the control to the
fault injector, where faults are inserted whenever a particular event or condition occurs.
The call to the fault injector must be inserted into the source code of the target application;

• Code Insertion: instructions are added to the target software to allow the fault to be
triggered before certain commands. Unlike the compile time fault injection, this method
just adds instructions to the system without modifying the existing source code.

Some benefits in choosing the software implemented fault injection are: experiments can
be performed close to real time, does not require special hardware, and it is of low complexity
and low cost of implementation. In contrast, some difficulties may be encountered in the use
of this technique such as: require source code modifications, it has limited observation and
limited controllability, and it is not possible to inject faults in locations that are not accessible
via software.

This work proposes a framework for software implemented fault injection, in execution
time, that injects faults by using a time-out method.

CHAPTER 3

The Framework - FIDEP

This chapter presents the proposed framework Fidep. Fidep is a framework designed to be
supportive on dependability studies; Fidep stands for Fault Injection repair and monitoring
framework for DEPendability studies for cloud computing systems. First the conceptualization
is discussed, after the framework features; Followed by the implementation details, Java EE
integration, as well as the developed framework architecture and its modules.

3.1 Conceptualization

Fidep is a framework for building fault injection tools for studies in the areas of performance
evaluation and system dependability. Developed in Java [16], the framework has methods that
can aid in the development of fault injection programs, the generation of synthetic events, such
as creation and event control, such like faults and repairs. Thus, it is up to the development team
to work out which failure and/or repair event will be produced, and choose how the application
should interact with the target system. Flexibility is favored through the choice of one of the
options that Fidep provides for creating and controlling fault / repair events.

Some object-oriented software programming terms will be constantly found throughout
this work, such as class, abstract class, constructor, inheritance, instance, repeat loop, method,
abstract method, object, package, subclass, superclass, thread, among others. The definitions of
those terms will not be discussed in this work because this nomenclature is considered standard
in projects involving object oriented programming. The meaning of each term can be found in
rich detail in [16].

Once the problem was defined and the functionalities that the framework should contain
were chosen, the Fidep design process was started. The sequence of steps followed to achieve
the purpose of this work is illustrated by the flowchart present in Figure 3.1.

The first activity of the flowchart addresses the choice of the programming language used
in the development of the framework. Considering the breadth, flexibility, and reusability of
the framework, it was decided to use the Java language [14]. Another aspect that influenced the
choice of this language was that it allows the construction of several types of applications, being
mobile, corporate, among others. One of the most important features of Java is its portability:
an application can run on different platforms and operating systems, as long as it supports Java
virtual machine, aka JVM.

The second activity of the flowchart refers to the choice of the programming environment
used to encode the framework. During this step, the Eclipse Integrated Development Environ-
ment [20] was selected.

25

3.1 CONCEPTUALIZATION 26

Figure 3.1 Flowchart of the activities adopted during the implementation of the framework.

The third activity in the flowchart comprises the definition of the architecture. In this stage,
the Fidep architecture was defined and documented with the aid of class and sequence diagrams.
This step is extremely important because it guided the step by step to be adopted during the
implementation process of the framework. In a later activity, the documentation was expanded
with the addition of Javadoc [36].

The fourth activity of the flowchart addresses the implementation of the framework. In
this step, all the coding part related to the Fidep occurred, through the Eclipse programming
environment, all classes and methods selected to integrate the framework were created.

The fifth activity corresponds to the test of the implemented methods. In this step all the
methods that compose the framework were tested aiming to verify if they performed the activ-
ities for which they were expected to.

The sixth activity is related to validation of the framework. This activity is essential because
it aims to analyze the effectiveness of the framework through the reduction in the effort of
coding tools. In this activity, a tool was developed with the intention of injecting faults into
the target system, which for this case study was chosen to be the Eucalyptus Cloud; Chapter 4
presents two case studies, which were performed using the developed tool.

The seventh and last activity presented in the flowchart is aimed at analyzing the efficiency
of the tool built from Fidep. Through the results obtained in case studies, where these involve
evaluating the availability of the system against the occurrence of failures. Chapter 4 describes
in more detail how this step was performed.

3.1 CONCEPTUALIZATION 27

Fidep is a framework that assists in the construction of fault-generating tools, with the op-
tion of repair, that emulates the absence of operations in the cloud system managed by cloud
computing platforms. This framework was designed to support reliability and availability stud-
ies. The faults caused by the tools derived from the Fidep framework must always be transient
faults, that is, the fault simulates a possible state of interruption of the execution of the sys-
tem so that the fault can be repaired. The disturbances caused by the insertion of the faults
in the cloud system are aimed at affecting the execution of the high-level components (of the
Eucalyptus for example), as well as the physical infrastructure that houses the cloud computing
system. The repair action aims to recover the system from any faults caused by the injector
itself. The repair is only performed after the insertion of the faults, which implies that the tool
does not repair a fault that was not injected by itself.

Fault tracing and repair, upon request, occurs after a period of time at random. Further
details on inserting faults and repairs are given below.

Fidep supports the execution of events in the following modes of operation:

• Hardware Faults: This operating mode emulates hardware faults through the device hi-
bernation mechanism, for example, server, desktop;

• Hardware Faults and Repairs: This operating mode includes both faults and hardware-
related repairs. After the fault is injected the developer must inject the repair event which
is a timer that waits for the time set at the time of hibernation. This operating mode
requires the target machine to support and allow the Linux rtcwake standard, rtcwake is
used to bring the system to a suspendable mode that can be configured by parameters
and set a time for the system to return to its normal state of operation, rtcwake is amply
discussed by [3].

• Software Faults: Faults in high-level components of the target system are included in this
operating mode. The tool must act directly, suspending or terminating the execution of
a target system process selected by the user/developer. It is noteworthy that in the same
machine one can inject more than one type of software fault.

• Software Faults and Repairs: The difference between this operating mode and the previ-
ous one is that it not only acts causing faults but also performing the repair. The repair is
performed by restoring the target system processes that had previously been terminated
by the fault injection tool.

The framework enables the combination of more than one mode of operation previously
described in a single experiment. This combination characterizes the possible scenarios of an
experiment. In order for 100% of the functionality to be used, Fidep is currently restricted to
environments that use the Linux operating system [57], but since Fidep was developed in Java
[14], it is portable and can be adapted to run in other environments. However, the framework
can be adapted to allow more elaborate fault events. Faults related to the suspend operation of
the hardware can also be modified. In this case, the developer may add other hardware faults
through software, such as loss of cached data.

3.1 CONCEPTUALIZATION 28

The core of the framework consists of two fundamental parts: communication module and
random number generation module. The connection module is responsible for providing com-
munication between the fault injector and the target machine. The connection is established
using the SSH2 [7] protocol that allows commands to be sent directly to the Linux operat-
ing system shell on the servers that compose the cloud (target system). The random number
generation module is responsible for generating pseudo-random numbers that follow some of
the available probability distributions. The tool uses these values as the time interval for the
occurrence of events. The probability distributions will be detailed later.

The Fidep development process was marked by some design choices. The first choice was
related to the protocol to be used to establish the communication between the framework and
the system being tested. The SSH2 [7] protocol was chosen because of the possibility of send-
ing commands that would cause software flaws in addition to software repairs. Subsequently,
a solution was found that could inject faults and repairs on the target machines. The solution
chosen to perform this task was the Linux rtcwake [3] standard. The main reason for this choice
is because rtwake is standard on the Linux kernel.

3.1.1 Fidep’s features

The high level functional software requirements of the framework are: to be compatible with
the major linux distributions; to be capable of injecting faults on the most used cloud computing
systems, IaaS providers under Linux which are: Eucalyptus[12], OpenNebula[55], OpenStack[56],
CloudStack[23]. The framework is designed to be used by developers and/or scientists who
need a flexible and easy way to conduct a fault injection experiment in one of the above cited
cloud computing systems. The fault injector focuses on high-level components; the physical in-
frastructure and virtual machines. It is important to state that the framework provides the basic
functionalities that are common to fault injectors, although the specific commands that simulate
a fault will vary among the different target systems; as an example of use of the framework, it
is implemented a fault injection tool for the Eucalyptus system[12].

As a suggestion of use the developer could create a component class to represent a high-
level entity in the real system that can either fail or repair and be implemented as Hardware-
Component or SoftwareComponent. Each component is associated with a DistributedFunction
which controls event generation times. HardwareComponent represents hardware components
and is independent of other components, since hardware itself will fail independently of other
components, although the user has the flexibility to implement a fault injector just for the Soft-
wareComponent.

Fidep features are: To inject and repair (the injected faults) ; Embedded custimizable scripts
for monitoring the target system, using the SysStat library[28]. The monitoring scripts should
run on each machine to be monitored and the developer is responsible for the correct interpre-
tation of its results.

3.2 IMPLEMENTATION 29

3.2 Implementation

The Fidep framework is designed to be flexible; Fidep provides the main functionalities that
are needed to implement fault injection tools, which are: event generation, network communi-
cation, and makes easier the random number generation.

The fault injection logic is based on components. Fidep was implemented by taking advan-
tage of the compiled functions which will be discussed in the next subsections.

3.2.1 Java EE - Integration

Nowadays Web applications already have fairly complicated business rules. To codify these
many rules represents a great job yet. In addition to these rules, also known as functional
requirements of the application; There are other requirements that must be achieved through
the infrastructure, which could be for instance: persistence in the database, transaction man-
agement, remote access, web services, thread management, HTTP connection management,
object caching, the web session management, load balancing, among others; These are called
non-functional requirements.

If we are also responsible for writing code that deals with all those other non-functional
requirements, then we would have much more work to do; In accordance with that, a number
of specifications that when implemented can be used by developers to take advantage and reuse
all this ready-made infrastructure; Such ready-made infrastructure is the implementation of the
Java EE [14].

The Java EE (Java Enterprise Edition) consists of a series of very detailed specifications,
giving a recipe and how to implement software that makes each of these infrastructure services
[14].

According to [14] Java Platform, Enterprise Edition (Java EE) is the standard in community-
driven enterprise software; Java EE is developed using the Java Community Process, with con-
tributions from industry experts, commercial and open source organizations, Java User Groups,
and countless individuals. Each release integrates new features that align with industry needs,
improves application portability, and increases developer productivity.

Fidep is integrated into a Java EE Web project. Fidep source code is well documented,
by the use of JavaDoc[36], which makes it easier for the developer/user to understand and
to extend the framework. The framework also provides a template web interface, which was
implemented using Java Server Faces (JSF)[30], such web interface intends to provide a more
friendly interaction with the user, but it is important to notice that it is not mandatory to use the
web interface, the user can use all the functionalities direct into a new class and print out the
results on the java console. Such Independence is possible thanks to the Model-View-Controller
design pattern[38].

3.2.2 Spring framework

It was also used the Spring Framework[33]. The Spring Framework is an open source applica-
tion framework and inversion of control container for the Java platform. The framework’s core
features can be used by any Java application, but there are extensions for building web applica-

3.2 IMPLEMENTATION 30

tions on top of the Java EE platform. Fidep’s development takes advantage of 3 main modules
of the Spring framework: The first one is the inversion of control container, which is responsi-
ble for the dependency injection; the second is the Data access framework, which handles all
the database operations and by using the Spring Data with hibernate is it possible to use any
database manager without having to modify the source code of the application, because it uses
a higher level entity, the only change needed is in the java connector configuration; Finally, the
third module used was the model-view-controller framework[33].

3.2.3 Apache Maven

Maven simplifies the build process from the source code. It is a one time configuration tool
provided by Apache [48]. The Maven tool is used to build and manage the Fidep Java project,
it makes the build process easy, because it provides a uniform build system; it also provides
guidelines for best practices development; it also allows transparent migration to new features.
Maven is responsible for managing and downloading all the dependencies of the Fidep project,
which makes it easy[48] for a developer to use the Fidep framework. Dependency management
in Maven encourages the use of a central repository. Maven comes with a mechanism that the
project’s clients can use to download any dependency required for building the project from
a central repository. This allows users of Maven to reuse dependencies across projects and
encourages communication between projects to ensure that backward compatibility issues are
dealt with.

The Figure 3.2 shows the principal files/classes of Fidep Framework, it is possible to un-
derstand the model view controller design pattern being applied; The packets are divided into
controller, converter, enums, exception, model, model.repository, support, and view.

3.2.4 Fidep Architecture

Fidep provides random generation of events that emulate faults in high-level components. The
purpose of these events is to simulate an action or a set of steps which leads to an unavailable
state in the target component. Fidep is also capable of executing repair events in the target
environment, however, the framework only supports repairing the system if the fault event was
already generated by Fidep. To simulate real system behavior, the events of fault and repair
follow randomly distributed times supported by the FlexLoadGenerator package [24].

Fidep’s architecture design supports faults/repair generation in the following categories:
Infrastructure, the events generated in this category simulate hardware failures. These fail-

ures are implemented by hibernation commands to the Operating System (OS), which actually
stop the activity of the machine for a limited time period. When the hibernation time is ex-
ceeded, all previous states of the system return to normal function, thereby performing a repair.

Considering the Eucalyptus Components, such mode is focused on interacting with the
high-level Eucalyptus components previously mentioned. Fault events of this type are enacted
by Eucalyptus component processes employing the service commands for Linux distributions.
These commands act by stopping or starting processes of the selected component and may
exhibit dependencies with associated hardware. Although it is possible to not associate a hard-
ware component to an execution, it is highly recommended to do so if running parallel studies

3.2 IMPLEMENTATION 31

on the same machine. This association is recommended to ensure a realistic scenario and a
fault-free execution of the injection tool.

Considering the Virtual Machines interactions with the client service, which is represented
by VMs, present dependencies with data center status. In other words, there is a connection
with the eucalyptus Cloud Manager (the Cloud Controller) and the AWS Java API is employed
to connect with Eucalyptus [12]. Therefore, in order to run failure scenarios on virtual ma-
chines, user credentials and access to the controller endpoint are required, as well as infor-
mation regarding virtual machine service (i.e. image-id, virtual machine type). The injection
of fault events is simulated with cloud environment terminate routines, and repair events are
likewise simulated with creating new virtual machine routines.

Each component functions at the same time, so it is possible to specify a wide range of
scenarios and generate multiple failure/repair tracks to the same component, machine or vir-
tual machine. Dependencies are represented by directly linking each entity with its associated
dependencies and it is the responsibility of the developer/tester to define these scenarios pro-
grammatically.

3.2.4.1 Fault Monitoring Module

This module is composed by two main sub-components: the event logger and the methods that
check if a specific component of the target system is alive, in other words, if the component is
actually responding and performing correctly. The developer should be able to configure all the
parameters used by the framework, Fidep is flexible and customizable so that the user is able
to define different scenarios to be tested.

3.2.4.2 Random Number Generation Module

The random number generation library is responsible for assisting in management between
the occurrence of event triggers. The library generates samples with random values based on
some of the main existing probability distributions, both continuous and discrete, through the
application of random variable generation techniques [17]. The most widely used probability
distributions in the areas of performance evaluation and dependability of computational systems
are implemented in this library: Erlang, Exponential, Lognormal, Normal, Pareto, Triangular,
Weibull and Uniform (continuous), And Geometric and Poisson (discrete). In addition to the
mentioned distributions, this library also has the Empirical distribution implemented.

This library comes from the kernel present in WGCap - Workload Generator for Capacity
Advisor, a tool designed by [25], without undergoing any changes to its coding. To that end,
only the packages, and their respective classes have been preserved, referring to instructions
for the operation of each probability distribution, control, and I/O information. The package
responsible for the GUI, Graphical User Interface, was discarded because it was not necessary
for use in Fidep. The generation of random numbers through the probability distributions
functions promoted by the WGCap kernel has been extensively tested and its effectiveness is
proven, as discussed in [24].

3.2 IMPLEMENTATION 32

3.2.4.3 Communication Module

Fidep implements a generic communication module which can be used in order to send com-
mands and receive outputs from the machines and components of the tested. Such communi-
cation module implements a Secure Shell (SSH); SSH is is a cryptographic network protocol
for operating network services securely over an unsecured network[7]. The communication
module is used to send the commands that inject the faults, as well as to send the repairing
commands. This module has to be customized with the specific commands to the specific
Linux distribution that the developer is using inside the testbed.

3.2.4.4 Finite State Machine

Each component has its own state machine in order to manage the four states that are possible
during the life cycle of fault injection experiments: 1- Component Up/Running, 2- Framework
waiting to inject the fault, 3- Component Down/Failed, 4- Framework waiting to repair.

• Running: In this state the component is up and running; The fault injection tool is able
to generate a pseudo random time according to the specified probability distribution, and
set up a timer in order to inject the fault. After the random time is generated the state
machine goes to the next state.

• Timer-Inject-Failure: In this state the component is still running, and the injection tool is
waiting for the timer event, when the time is over then the fault is injected; And then the
state machine goes to the next state.

• Failed: In this state the component is down, which means that the fault was already
injected and the injector tool may now generate another random time, but now the timer
is set to perform the respective repair command. After the random time is generated the
state machine goes to the next state.

• Timer-Repair: In this state the component is still failed, and the injection tool is waiting
for the timer to end in order to inject the repair command to the component, and then the
component will be up and running again, which brings the state machine to the very first
state again.

It is responsibility of the developer to handle the exceptions that may arise according to the
needs of the experiment to be performed.

The heart of a state machine is the transition table, which takes a state and a symbol, to a
new state. That is just a two-index array of states. For sanity and type safety, the states and
symbols are declared in Fidep as enumerations.

The Figure 3.3 shows an example of the implemented state machine for the Eucalyptus
Node Controller Component; It depicts the actions performed through the four possible states
and it allows any customizations needed by the developer/user.

Figure 3.4 shows an example of a test performed in order to assess the behaviour of the
hardware controller component, the test intended to stress the implemented state machine and
analyze the behavior. After the test the result is that the controller is stable and it did not show
any type of instability.

3.2 IMPLEMENTATION 33

Figure 3.2 Overview of the core Java classes

3.2 IMPLEMENTATION 34

Figure 3.3 Overview of a sample state machine method for the Node Controller Component

3.2 IMPLEMENTATION 35

Figure 3.4 Hardware Controller Component Test

CHAPTER 4

Case Studies

In this chapter tow case studies are presented. The proposed framework Fidep is used in order
to develop a fault injection repair and monitoring tool which is designed and compatible with
Eucalyptus version 3.x; Afterwards, an availability evaluation is performed with the support of
the fault injection tool implemented, for this case study the performed experiments measures
the availability of Eucalyptus’ capability to provide virtual machines (VMs), because that is the
main service provided by an IaaS such as Eucalyptus; Then the test bed of the experiment is de-
scribed, also the availability RBD model and finally the results of the experiment are disclosed.
The second case study is performed varying the scenarios, also instead of a RBD model, it is
proposed a SPN model to represent the target system, and the availability is estimated from the
user’s point of view, which means that a web service running inside the virtual machine is taken
into account.

4.1 Eucalyptus Availability Study

The framework instantiation or experimentation is a fault injection tool for the Eucalyptus Plat-
form [12]; Eucalyptus was chosen because it is widely adopted and it is a renowned academic
cloud platform.

By adopting the Fidep framework, the implementation of the fault injection tool is very
straightforward. The developer has to previously know and test the Eucalyptus platform’s ba-
sic commands; Such basic commands for all the components basically start, stop and list the
component. In this case the Eucalyptus platform provides the Euca-tools and the command
euca-run-instances to start a new VM, euca-terminate-instances to shutdown a given VM, and
euca-describe-instances to list all the VMs and their status.

The before-mentioned commands are just for the virtual machines components; But there
are also other components, such like the Cloud Controller, Cluster Controller, Storage Con-
troller, and so on; Thereby the developer must know and test all the start/stop/list commands,
so that it is possible to communicate with the correct component in a proper way. Those com-
mands will be used by the communication module of Fidep in order to inject and repair the
faults. For the high-level components it can be used the Linux service command.

The main goal of this study is to measure the availability of the service; The service from
the user’s point of view is the system’s capability of instantiating new virtual machines, in
other words, the availability of Eucalyptus is determined if the user can still start a new virtual
machine after terminating any other already running virtual machines. This experiment shows
how reliable is the Eucalyptus capability of providing new VMs. In order to perform this study

36

4.1 EUCALYPTUS AVAILABILITY STUDY 37

it will be used the fault injection tool that was implemented. A fault injection and monitoring
based strategy encompasses a workload generator, which is a random fault and repairing activ-
ities generator; a fault injector, a system monitor and the target system. The role of the fault
injector is to inject the faults into the target system. The workload generator generates com-
mands, faults and repairing actions previously configured, and drives the fault injector, whilst
the system monitor observes the target system status and behavior and collects data. In this
case, the target system is Eucalyptus.

The failure and repair commands are injected into the target system at run-time. To compute
the time between failures and repair, the monitoring module has a clock that records downtime
between event activations. As previously explained, system behavior is observed considering
two possible states: UP when it is working properly and DOWN, when it is not. Thus, the
state of the system oscillates between UP and DOWN according the respective probability
distribution of failure and repair.

4.1.1 Testbed Description

The test environment consists of three machines Figure 4.1. An Eucalyptus front-end (Com-
puter 1) which consists in four components: Cloud Controller (CLC), Cluster Controller (CC),
Storage Controller (SC), Walrus; A fault injector, repair and monitor (Computer 2), which runs
the fault injection tool and keeps track of the experiment by storing all the logs; Computer 3
run the Node Controller (NC) which controls the physical resources and provides the virtual
machines (VMs) with the KVM hypervisor [12].

Figure 4.1 Components of the test bed - Case Study I

The Eucalyptus version used in this experiment is Eucalyptus 3.3, running over a CentOS
6. All the physical machines have the same configurations, with 8 GB RAM, Intel i3 Processor

4.1 EUCALYPTUS AVAILABILITY STUDY 38

and 500 GB hard disk. The environment was isolated by using a single Gigabit Switch to
connect all the machines.

At the end of the experiment there will be a log containing an assortment of UP and DOWN
strings. Each of these entries is a measure of server status at a given time. Therefore, it is
possible to approximate this discontinuous data to continuous data by normalizing the values
between points, and finally estimate the confidence interval of availability. By using Equation
2.11, it is possible to calculate the ρ estimator from the number of UP (uptime or Sn) and
DOWN (downtime or Yn) entries in the log file. The number of errors (n) is easily calculated
by comparing the number of UP and DOWN states. Adopting the ρ estimator, the n number of
faults, and the confidence level (α), the availability can be computed with the Equations 2.12
and 2.13.

4.1.2 Availability RBD Model

In this subsection it is presented the availability model that represents the target system within
the proposed testbed environment; For the purposes of this experiment, the service is the capa-
bility to provide a virtual machine, thus from the Eucalyptus’ user point of view if Eucalyptus
system fails to deliver a new virtual machine, then the monitor module considers that the service
is down, otherwise if the virtual machine is instantiated without any issues, then the service is
up and running. The maximum number of running virtual machines is taken into account during
the whole experiment.

Figure 4.2 RBD model of the target system

Figure 4.2 shows the RBD model. Each block represents one hardware component or soft-
ware component; from the begin label the Hw1 represents the physical hardware of the com-
puter 1; the OS1 represents the operating system from the computer 1; the CLC represents the
Cloud Controller component from Eucalyptus; the CC represents the Cluster Controller from
Eucalyptus; the Hw2 represents the hardware from the computer 3; the OS2 represents the op-
erating system from the computer 3; the NC represents the Node Controller component from
Eucalyptus; and the VM represents the virtual machine instantiated within the KVM hypervi-
sor, managed by the Node Controller. The computer 2 with the Fidep and the fault injection
tool is not part of the cloud system, thus it is not represented in the model.

4.1.3 Results

Here it is discussed the results from the RBD model as well as is disclosed a comparison be-
tween the model results and the experiment’s results. The case study purpose is to verify the
impact of distinct failures and repairs in this environment. The scenario considers one virtual

4.2 WEB SERVICE AVAILABILITY STUDY 39

machine to assume the service operational. The experiment did not include a backup instance
to user service. The experiment employed exponential distributions to represent mean time
to fail (MTTF) and mean time to repair (MTTR). Finally, the results were compared with the
respective results obtained from RBD model. Faults were injected in all testbed components,
including the physical machine hardware. This case study aim to evaluate the service avail-
ability (running VMs) considering the cloud environment behavior. The scenario employs real
estimated parameters, accelerated by 1000, for Eucalyptus high-level components and hard-
ware [15] (see Table 4.1).

Component Experimental MTTF Experimental MTTR Real MTTF Real MTTR

Hardware 31536 s 6 s 8760 h 100 min
Cloud Controller 2838 s 1 s 788 h 1 h
Cluster Controller 2838 s 1 s 788 h 1 h
Node Controller 2838 s 1 s 788 h 1 h
Virtual Machine 10414 s 1 s 2893 h 15 min

Table 4.1 Parameters of the Experiment Scenario

The experiment was executed during a 24 hours period, and it was repeated twice. The log
files generated by the monitoring module shows a total up-time of the system of 23,93 hours,
that means that the Eucalyptus was responding correctly and it was able to run a virtual machine
for the majority of the time of the experiment; thus the remaining 4,2 minutes were downtime,
which means that Eucalyptus was not able to run a virtual machine for such period. During the
24 hours of experiment a total of 14 faults were generated, injected and repaired.

The RBD model estimated availability for the system was 0.9935857; After straightening
the data from the log file, by calculating the availability and confidence interval, the result is the
following confidence interval of availability (0.993420433 , 0.998626244). As the estimated
availability, from the RBD model, is contained in the confidence interval of availability from
Fidep’s experimentation, then there is no evidence to reject the hypothesis that the results are
equivalent for this case study.

4.2 Web Service Availability Study

This section presents the adopted Eucalyptus infrastructure and the proposed availability model.
Although the depicted model is presented for a specific Eucalyptus configuration, it is generic
enough to be extended for other arrangements. The SPN model presented in this subsection
was proposed by [10]. An experiment is performed in order to to assess Eucalyptus availability,
but the virtual machines life cycle is also taken into account, which means that there will be
different scenarios and each scenario will determine the number of virtual machines that must
be running/available in order for us to consider that the service is operational.

4.2 WEB SERVICE AVAILABILITY STUDY 40

4.2.1 Testbed Description

The test environment consists of four machines Figure 4.3. A fault injector and monitor (Ma-
chine 4). Front-end (Machine 1) that contains the Eucalyptus Cloud Controller (CLC) and
Cluster Controller (CC). Machines 2 and 3 execute Eucalyptus Node Controller (NC and KVM
hypervisor) and host virtual machines.

The Eucalyptus version used in this experiment is Eucalyptus 3.3, running over a CentOS
6. All the physical machines have the same configurations, with 8 GB RAM, Intel i3 Processor
and 500 GB hard disk. The environment was isolated by using a single Gigabit Switch to
connect all the machines.

Figure 4.3 Components of the test bed - Case Study II

All servers are on the same private network and the fault injection tool can access other
components/machines using SSH connection. The computer 4 also controls the monitoring
scripts. With this testbed environment, faults can be injected in the main Eucalyptus resources
(e.g., physical and virtual machines), as well as service status can be traced by means of moni-
toring scripts.

Once again, it is important to understand that at the end of the experiment there will be a
log file; Such log file was generated by the monitoring scripts. The log file contains an group
of UP and DOWN lines. Each of these entries is a measure of the service status at a given time.
Hence, it is possible to approximate this discontinuous data to continuous data by normalizing
the values between points, and finally estimate the confidence interval of availability of the
service. By using Equation 2.11, it is possible to calculate the ρ estimator from the number
of UP (uptime or Sn) and DOWN (downtime or Yn) entries in the log file. The number of
errors (n) is easily calculated by comparing the number of UP and DOWN states. Adopting
the ρ estimator, the n number of faults, and the confidence level (α), the availability can be
computed with the Equations 2.12 and 2.13.

4.2 WEB SERVICE AVAILABILITY STUDY 41

4.2.2 Availability SPN Model

This section presents the SPN availability model for representing the proposed testbed environ-
ment. This model is divided into five main parts: Eucalyptus Front-End Services for modeling
CC, CLC and Frontend hardware (Machine 1) Figure 4.6; NC1 SERVER Figure 4.4 and NC2
SERVER Figure 4.5 for representing the hardware and software of Machines 2 and 3; VMS
NC1 and VMS NC2 that correspond to running VMs on Machines 2 and 3 are all represented
by the model depicted in Figure 4.7. As the components of Machine 4 (Fault injection tools
and monitoring scripts) are not part of the cloud system, so these entities are not represented in
the model. The source of the Figures 4.6, 4.4, 4.5, 4.7 is [10].

Figure 4.4 SPN model of the target system Node Controller 1. 1

Figure 4.5 SPN model of the target system Node Controller 2 1

Components with no redundancy mechanisms or dependency relations, e.g. NC hardware,
are represented as submodels Figure 4.8, which are composed of two states and two transitions.
Assuming CC as the represented component in the Figure 4.8, this submodel might be in two
states, it can be operational (CC_UP) or it can be failed (CC_DOWN). Transitions CC_F and
CC_R denote respectively the component’s failure action and the component’s repair action.

This submodel has two parameters, yet not shown in Figure 4.8, namely X_MTTF and
X_MTTR, which represent delays associated to transitions X_F and X_R, respectively. The
Table 4.2 depicts the attributes related to these transitions. In this context, a component is
working if there is no tokens in place X_DOWN. Therefore, to represent a failed component,

4.2 WEB SERVICE AVAILABILITY STUDY 42

Figure 4.6 SPN model of the Eucalyptus front services 1

Figure 4.7 SPN model of the target system - VMs dependency 1

the number of tokens in X_UP must be zero. Table 4.3 shows the submodels adopted in Figures
4.6, 4.4, 4.5, and, 4.7 for representing components with no dependency relations.

Transition Delay Description
X_F MTTF Component failure event
X_R MTTR Component repair event

Table 4.2 Transition attributes associated with a component

Submodel’s name Description
NC_HW1 NC1’s hardware
NC_SW1 NC1’s software
NC_HW2 NC2’s hardware
NC_SW2 NC2’s software
FE_HW Front end’s hardware

CC Cluster controller hardware
CLC Cloud controller hardware

Table 4.3 Submodels for representing no redundancy components

In Figure 4.7, VMS_NC1 and VMS_NC2 submodels represent the set of VMs that run on
NC1 and NC2 servers, and whenever a dependent device, e.g. underlying hardware, fails, then

4.2 WEB SERVICE AVAILABILITY STUDY 43

Figure 4.8 Basic component - SPN submodel 1

the respective VMs fail too. VMS_NC1 and VMS_NC2 are two analogous behavior, then just
VMS_NC1’s structure will be detailed bellow. VMS_NC1 is composed of places VM1_UP,
VM1_DOWN, VM1_STRTD and VM1_RDY. These places denote, respectively, the amount of
VMs in states operational, failed, starting, and waiting for request. The Place VM_REQUESTs
represent a number of requested VMs, which can be executed on NC1 or NC2 server.

Exponential transitions VM1_DET_FAIL, VM1_F and VM1_STRT model the fault detec-
tion time, failure and starting activities related to NC1 virtual machines, see Table 4.4. The as-
sociation with the underlying infrastructure is carried out by immediate transitions EXT1_FAIL
and VM1_START, and the respective guard conditions of such transitions are shown in Table
4.5. It is important to state that the virtual machine stops working whenever the respective
physical machine fails. To start a VM, the respective physical machine, NC, CC, CLC and
front-end machine must be operational. Therefore, EXT1_FAIL fires if the respective physi-
cal machine fails. Transition VM1_START denotes the opposite idea, in the sense that virtual
machines start only if the required infrastructure is operational.

Transition Delay Description
VM1_F VM1_MTTF VM fault event

VM1_DET_FAIL Detection_Time VM fault detection event
VM1_STRT VM_Start_Time VM Start event

Table 4.4 Transitions of the VM life-cycle model

The variables X, M and N represent respectively the number of requested VMs, the max-
imum number of running VMs on NC1 and NC2 servers. Considering the presented environ-
ment, the values of M and N are the same and equal to four. The availability is calculated based
on the total amount of virtual machines running in both node controllers. Consequently, the
availability is estimated as P{(#V M1_UP+#V M2_UP)≥ X}.

4.2.3 Results

The case study purpose is to verify the impact of distinct failures and repairs in this environ-
ment, and show that it is possible to employ a fault injection tool to evaluate diverse scenarios

4.2 WEB SERVICE AVAILABILITY STUDY 44

(in this case A and B). Each scenario presents two testing rounds. The first round considered
only one VM to assumes the service operational (A1 and B1) and the second scenario assumes
two VMs (A2 and B2), which means that in the second scenario if there is just one of the
virtual machines running then the service is not considered to be operational. No experiment
included a backup instance to user service and both employed exponential distributions to rep-
resent mean time to fail and mean time to repair. Finally, the results were compared with the
respective results obtained from the previously mentioned SPN models.

Transition Condition

VM1_START

(#NC_HW1_UP > 0) AND (#NC_SW1_UP > 0)
AND (#CC_UP > 0) AND (#CLC_UP > 0) AND
(#FE_HW_UP > 0) AND (#V M1_RDY > 0) AND
(#V M_REQUESTs > 0)

EXT1_FAIL
(#NC_HW1_UP = 0) AND (#V M1_UP +
#V M1_STRTD) > 0

Table 4.5 Condition to enable the immediate transitions

Faults were injected in all testbed components, including the physical machine hardware.
This case study aims to evaluate the service availability, which means the running VMs, consid-
ering the cloud environment behavior. The experimental study consists of two distinct scenar-
ios. Each scenario was submitted for two testing rounds. The first scenario (A) employs real
estimated parameters (accelerated by 1000) for Eucalyptus high-level components and hard-
ware [15] see Table 4.1.

Scenario B, as detailed in Table 4.6, is a hypothetical case where the MTTF is closer to the
MTTR value. Therefore, a lower value for availability would be expected. In a real situation, it
would be expected that a higher availability value would be demonstrated in the situation where
there is less reliance on virtual machines.

Component Experimental MTTF Experimental MTTR Real MTTF Real MTTR

Hardware 5600 s 1200 s 1555 h 333 h
Cloud Controller 7200 s 1200 s 2000 h 333 h
Cluster Controller 5600 s 600 s 1555 h 166 h
Node Controller 1 3600 s 600 s 1000 h 166 h
Node Controller 2 2700 s 300 s 750 h 83 h
Virtual Machine 2700 s 900 s 750 h 250 h

Table 4.6 Parameters of Scenario B

Table 4.7 shows uptime and downtime results of the experiments executed over a 24 hour
period. As expected, the scenarios running more virtual machines to serve the client’s applica-
tion lost more time with faults. This behavior is easily understood since each VM is another
component that the user’s application depends on and therefore faults here would further impact
the total downtime.

4.2 WEB SERVICE AVAILABILITY STUDY 45

It is important to highlight that the measured values occur over a small time frame and so
if scaled up even the difference of 2 minutes between A1 and A2 would have a major impact
on the user’s service. In Scenario B, with smaller differences between repair and failure times,
this behavior is even more apparent. In this case, a comparison of B1 (dependent on one VM)
with B2 (dependent on two VMs) exhibits an increase in downtime of over 266 percent.

Scenario Number of VMs Uptime Downtime

A1 1 23,93 h 4,2 min
A2 2 23,89 h 6,6 min
B1 1 21,98 h 121,2 min
B2 2 18,66 h 320,4 min

Table 4.7 Uptimes and Downtimes from the experiment

Scenario Number of Faults Confidence Interval of Availability Estimated Availability

A1 14 (0.993420433 , 0.998626244) 0.9935857
A2 20 (0.987658509 , 0.993537325) 0.9879326
B1 9 (0.807462045 , 0.965819035) 0.8279075
B2 20 (0.650996494 , 0.867691751) 0.7921259

Table 4.8 Availability Evaluated from the Experiments

In Table 4.8, the data has been straightened by calculating the availability and confidence
interval. As predicted, Scenario B produced lower availability values and greater confidence
intervals than scenario A. Due to the low rate of failure in Scenario B1, the impact of one more
dependence was greater than it was in scenario A. The last column provides the availability
metric estimated with the respective SPN model. As the estimated results by the SPN models
are contained in the results confidence interval, then there is no evidence to reject the hypothesis
that the results are also equivalent for this case study.

CHAPTER 5

Conclusions

Although the creation of event generation and fault injection tools is not the main activity
during the design process of a new software product, it must be taken into account that the need
to implement such functionalities can lead to delays in the delivery of the software system. One
of the ways to minimize this disorder is through the use of frameworks.

This work presented Fidep which is a framework for linux based Cloud computing systems;
By using this framework a developer is able to implement a fault injection repair and monitoring
tool for linux distributions; Also by adopting Fidep the developer is able to implement a fault
injection tool that intends to provide support for dependability evaluations.

For the development of the framework, initially, the literature was sought the necessary
knowledge of how to develop a framework, its positives, and negatives, main differences be-
tween frameworks and libraries, means of implementation, flexibilization through hotspots and
validation forms.

It was shown that the Fidep framework can be of important assistance to the cloud provider
administrator in the support of calculation of dependability metrics by supporting availability
prediction and providing more information concerning SLAs for future users. This work also
demonstrated how to adopt RBD as well as SPN models for representing IaaS cloud environ-
ments. Therefore, cloud designers can decide which technique, modelling or fault injection,
should be adopted to evaluate dependability in their IaaS cloud environments.

The case studies results show how Fidep can be used to test the Eucalyptus cloud envi-
ronment and be an important tool for supporting maintenance operation plans and architectural
changes beneath the infrastructure. The results show that either model-based and fault injection
techniques can be adopted to support dependability evaluation in IaaS systems.

5.1 Future Works

Considering the limitations of this work, there are several improvements to be done. The in-
tention is to look at other component types within the Cloud System’s infrastructure that have
not been explored at this time; for example, the hypervisor process within the OS; another ex-
ample that can be affected by faults is the networking equipment. Another point to be taken
into account in the future work is the new concept of hybrid clouds, as well as distributed data
centers, a further intention is to expand the study of virtual machines life-cycles to incorporate
migration activities, because fault injection techniques can be utilized to perform analysis in
virtual machine migrations.

46

Bibliography

[1] Amazon S3 (2013). Amazon simple storage service (amazon s3). http://aws.
amazon.com/s3/.

[2] Dropbox (2013). Dropbox. http://www.dropbox.com.

[3] Marc D Alexander and Peter A Woytovech. Using rtc wake-up to enable recovery from
power failures, June 18 2002. US Patent 6,408,397.

[4] Jean Araujo, Rubens de S Matos, Paulo Romero Martins Maciel, and Rivalino Matias.
Software aging issues on the eucalyptus cloud computing infrastructure. In SMC, pages
1411–1416, 2011.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

[6] Amazon AWS. Amazon web services (amazon aws). http://aws.amazon.com/.

[7] Daniel J Barrett and Richard E Silverman. SSH, the Secure Shell: the definitive guide. "
O’Reilly Media, Inc.", 2001.

[8] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S Trivedi. Queueing net-
works and Markov chains: modeling and performance evaluation with computer science
applications. Wiley-Interscience, New York, 1998.

[9] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald Schiöberg. Live
wide-area migration of virtual machines including local persistent state. In Proceedings
of the 3rd international conference on Virtual execution environments, pages 169–179.
ACM, 2007.

[10] Jonathan Brilhante, Bruno Silva, Paulo Maciel, and Armin Zimmermann. Dependability
models for eucalyptus infrastructure clouds considering vm life-cycle. In 2014 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pages 1336–1341.
IEEE, 2014.

[11] J Carolan and S Gaede. Introduction to cloud computing architecture, sun microsystems
inc. white paper. Sun Microsystems Inc., Santa Clara, 2009.

47

BIBLIOGRAPHY 48

[12] Eucalyptus Cloud. Official documentation for eucalyptus cloud. http://docs.
hpcloud.com/eucalyptus.

[13] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM sympo-
sium on Cloud computing, pages 143–154. ACM, 2010.

[14] Oracle Corporation. Official documentation java ee - overview. http://www.
oracle.com/technetwork/java/javaee/overview/index.html.

[15] Jamilson Dantas, Rubens Matos, Jean Araujo, and Paulo Maciel. An availability model
for eucalyptus platform: An analysis of warm-standy replication mechanism. In Systems,
Man, and Cybernetics (SMC), 2012 IEEE International Conference on, pages 1664–1669.
IEEE, 2012.

[16] Paul Deitel and Harvey M Deitel. Java™ for Programmers. Prentice Hall Professional,
2011.

[17] Luc Devroye. Sample-based non-uniform random variate generation. In Proceedings of
the 18th conference on Winter simulation, pages 260–265. ACM, 1986.

[18] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile cloud
computing: architecture, applications, and approaches. Wireless communications and
mobile computing, 13(18):1587–1611, 2013.

[19] Charles E. Ebeling. An Introduction to Reliability and Maintainability Engineering.
Waveland Press, Inc., 1997.

[20] IDE Eclipse. Eclipse foundation, 2007.

[21] Alireza Ejlali, Seyed Ghassem Miremadi, Hamidreza Zarandi, Ghazanfar Asadi, and
Siavash Bayat Sarmadi. A hybrid fault injection approach based on simulation and emu-
lation co-operation. page 479. IEEE, 2003.

[22] Paul Fortier and Howard Michel. Computer systems performance evaluation and predic-
tion. Digital Press, 2003.

[23] The Apache Software Foundation. Apache cloudstack: Open source cloud computing.
https://cloudstack.apache.org/.

[24] Hugo ES Galindo, Erica AC Guedes, Paulo RM Maciel, Bruno Silva, and Sérgio ML
Galdino. Wgcap: a synthetic trace generation tool for capacity planning of virtual server
environments. In Systems Man and Cybernetics (SMC), 2010 IEEE International Confer-
ence on, pages 2094–2101. IEEE, 2010.

[25] Hugo ES Galindo, Wagner M Santos, Paulo RM Maciel, Bruno Silva, Sérgio ML Galdino,
and José Paulo Pires. Synthetic workload generation for capacity planning of virtual
server environments. In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE Interna-
tional Conference on, pages 2837–2842. IEEE, 2009.

BIBLIOGRAPHY 49

[26] Reinhard German. Performance analysis of communication systems with non-Markovian
stochastic Petri nets. John Wiley & Sons, Inc., 2000.

[27] Rahul Ghosh, Kishor S Trivedi, Vijay K Naik, and Dong Seong Kim. End-to-end per-
formability analysis for infrastructure-as-a-service cloud: An interacting stochastic mod-
els approach. In Dependable Computing (PRDC), 2010 IEEE 16th Pacific Rim Interna-
tional Symposium on, pages 125–132. IEEE, 2010.

[28] Sebastien Godard. Sysstat utilities home page, 2010.

[29] Robert D. Hof. Jeff bezos’ risky bet. http://www.bloomberg.com/bw/
stories/2006-11-12/jeff-bezos-risky-bet. Accessed: 2015-12-22.

[30] James Holmes and Chris Schalk. JavaServer faces: the complete reference. McGraw-Hill,
Inc., 2006.

[31] Raj Jain. The art of computer systems performance analysis: techniques for experimental
design, measurement, simulation, and modeling. John Wiley & Sons, 1990.

[32] D Johnson, K Murari, M Raju, RB Suseendran, and Y Girikumar. Eucalyptus beginner’s
guide–uec edition, css corp. 2010, 2010.

[33] Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob Harrop, Thomas
Risberg, Alef Arendsen, Darren Davison, Dmitriy Kopylenko, Mark Pollack, et al. The
spring framework–reference documentation. Interface, 21, 2004.

[34] Dong Seong Kim, Fumio Machida, and Kishor S Trivedi. Availability modeling and
analysis of a virtualized system. In Dependable Computing, 2009. PRDC’09. 15th IEEE
Pacific Rim International Symposium on, pages 365–371. IEEE, 2009.

[35] Leonard Kleinrock. Queueing systems, volume i: theory. 1975.

[36] Douglas Kramer. Api documentation from source code comments: a case study of
javadoc. In Proceedings of the 17th annual international conference on Computer docu-
mentation, pages 147–153. ACM, 1999.

[37] Way Kuo and Ming J Zuo. Optimal reliability modeling: principles and applications.
John Wiley & Sons, 2003.

[38] Avraham Leff and James T Rayfield. Web-application development using the mod-
el/view/controller design pattern. In Enterprise Distributed Object Computing Confer-
ence, 2001. EDOC’01. Proceedings. Fifth IEEE International, pages 118–127. IEEE,
2001.

[39] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: Comparing pub-
lic cloud providers. In Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC ’10, pages 1–14, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 50

[40] David J Lilja. Measuring computer performance: a practitioner’s guide. Cambridge
university press, 2005.

[41] Nik Looker, Malcolm Munro, and Jie Xu. Ws-fit: A tool for dependability analysis of
web services. pages 120–123. IEEE, 2004.

[42] Paulo RM Maciel, Rafael D Lins, and Paulo RF Cunha. Introdução às redes de Petri e
aplicações. UNICAMP-Instituto de Computacao, 1996.

[43] Andrey Andreyevich Markov. Extension of the law of large numbers to dependent quan-
tities. Izv. Fiz.-Matem. Obsch. Kazan Univ.(2nd Ser), 15:135–156, 1906.

[44] Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and Giu-
liana Franceschinis. Modelling with generalized stochastic Petri nets. John Wiley &
Sons, Inc., 1994.

[45] Rubens Matos, Jean Araujo, Danilo Oliveira, Paulo Maciel, and Kishor Trivedi. Sensi-
tivity analysis of a hierarchical model of mobile cloud computing. Simulation Modelling
Practice and Theory, 50:151–164, 2015.

[46] M Mattsson. Object-oriented frameworks-a survey of methodological issues”, licentiate
thesis, department of computer science, lund university, coden: Lutedx/(tecs-3066)/1-
130/(1996). Technical report, also as Technical Report, LU-CS-TR: 96-167, Department
of Computer Science, Lund University, 1996.

[47] Michael Mattsson and Jan Bosch. Framework composition: Problems, causes and so-
lutions. In Technology of Object-Oriented Languages and Systems, 1997. TOOLS 23.
Proceedings, pages 203–214. IEEE, 1997.

[48] In Maven. Apache maven project, 2011.

[49] Daniel A Menasce, Virgilio AF Almeida, Lawrence W Dowdy, and Larry Dowdy. Per-
formance by design: computer capacity planning by example. Prentice Hall Professional,
2004.

[50] Philip Merlin and David Farber. Recoverability of communication protocols-implications
of a theoretical study. IEEE transactions on Communications, 24(9):1036–1043, 1976.

[51] Jerre D Noe and Gary J Nutt. Macro e-nets for representation of parallel systems. IEEE
Transactions on Computers, 100(8):718–727, 1973.

[52] Mohammed S Obaidat and Noureddine A Boudriga. Fundamentals of performance eval-
uation of computer and telecommunications systems. John Wiley & Sons, 2010.

[53] Carl Adam Petri. Kommunikation mitautomaten. Bonn: Institut für Instrumentelle Math-
ematik, Schriften des NM, (3), 1962.

[54] Dhiraj K Pradhan. Fault-tolerant computer system design. Prentice-Hall, 1996.

BIBLIOGRAPHY 51

[55] OpenNebula Project. Opennebula - flexible enterprise cloud made simple. http://
opennebula.org/.

[56] OpenStack Project. Openstack - open source cloud computing software. https://
www.openstack.org/.

[57] Mark Shacklette. Linux operating system. Handbook of Computer Networks: LANs,
MANs, WANs, the Internet, and Global, Cellular, and Wireless Networks, Volume 2, pages
78–90, 1995.

[58] Débora Souza, Rubens Matos, Jean Araujo, Vandi Alves, and Paulo Maciel. A tool for
automatic dependability test in eucalyptus cloud computing infrastructures. Computer
and Information Science, 6(3):57, 2013.

[59] Kishor S Trivedi, Steve Hunter, Sachin Garg, and Ricardo Fricks. Reliability analysis
techniques explored through a communication network example. 1996.

[60] Hong-Linh Truong and Schahram Dustdar. On analyzing and specifying concerns for data
as a service. In Services Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific,
pages 87–94. IEEE, 2009.

[61] Juliano C Vacaro and Taisy S Weber. Injeção de falhas na fase de teste de aplicações
distribuídas. Anais do Simp. Bras. de Eng. de Software, SBES, pages 161–176, 2006.

[62] Wil MP Van Der Aalst, Kees M Van Hee, and Hajo A Reijers. Analysis of discrete-time
stochastic petri nets. Statistica Neerlandica, 54(2):237–255, 2000.

[63] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the
clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review,
39(1):50–55, 2008.

[64] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Cost of
virtual machine live migration in clouds: A performance evaluation. In Cloud Computing,
pages 254–265. Springer, 2009.

[65] Wendai Wang and Dimitri B Kececioglu. Confidence limits on the inherent availability
of equipment. In Reliability and Maintainability Symposium, 2000. Proceedings. Annual,
pages 162–168. IEEE, 2000.

[66] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications, 1(1):7–18, 2010.

[67] Tiange Zhang, Xiaochun Xiao, and Leqiu Qian. Modeling object-oriented framework
with z. In Computer Science and Computational Technology, 2008. ISCSCT’08. Interna-
tional Symposium on, volume 2, pages 165–170. IEEE, 2008.

BIBLIOGRAPHY 52

[68] Yunjia Zhang, Bin Liu, and Qing Zhou. A dynamic software binary fault injection system
for real-time embedded software. In Reliability, Maintainability and Safety (ICRMS),
2011 9th International Conference on, pages 676–680. IEEE, 2011.

[69] Ming Zhao and Renato J Figueiredo. Experimental study of virtual machine migration
in support of reservation of cluster resources. In Proceedings of the 2nd international
workshop on Virtualization technology in distributed computing, page 5. ACM, 2007.

[70] Haissam Ziade, Rafic A Ayoubi, Raoul Velazco, et al. A survey on fault injection tech-
niques. Int. Arab J. Inf. Technol., 1(2):171–186, 2004.

