UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Reconhecimento de Linguagem Brasileira de Sinais usando Sensores EMG

Proposta de Trabalho de Graduação

Aluno: José Paulo Henrique de Melo Fernandes (jphmf@cin.ufpe.br)
Orientador: Ricardo Bastos C. Prudêncio (rbcp@cin.ufpe.br)
Co-Orientadora: Veronica Teichrieb (vt@cin.ufpe.br)

1. Contexto

De acordo com o censo de 2010 do IBGE[1] cerca de 9.7 milhões de brasileiros declaram ter alguma deficiência auditiva, representando aproximadamente 5,1% da população do país. Destes mais de 2 milhões têm grande dificuldade de ouvir ou não conseguem ouvir nada. Esta parcela da população convive diariamente com pessoas que não entendem a segunda língua oficial do Brasil[2] e por isso tem dificuldade de interagir com uma sociedade que anda a passos lentos para acolhê-los em todos os âmbitos da cidadania. Como exemplo, em 2013 apenas 7 das 53 universidades federais disponibilizavam cursos de graduação em LIBRAS e apenas 3% dos professores que lecionavam LIBRAS na educação básica tinham graduação na modalidade[3].

Com vistas a facilitar a inclusão desses cidadãos e aumentar o uso da linguagem brasileira de sinais, várias iniciativas foram se desenvolvendo durante os anos. O uso das Tecnologias Assistivas[4] tem levantado questões importantes sobre como o uso de tecnologias contemporâneas têm influenciado a vida de deficientes auditivos[5].

Uma parte dessas tecnologias visa tornar mais fácil o entendimento de LIBRAS para leigos, facilitando a comunicação entre deficientes auditivos e aqueles, enquanto que outras pretendem fornecer conteúdo de qualidade para pessoas que têm algum tipo de deficiência auditiva[6]. Com relação às tecnologias que tentam "traduzir" a linguagem brasileira de sinais podemos classificá-las em 3 grupos, diferenciando em como os sinais são coletados. Há o uso de luvas especiais[7], o uso de câmeras e métodos de Visão Computacional[8] e sensores EMG[9] (Eletromiograma).

Apesar dos avanços nas pesquisas com luvas e visão computacional, a necessidade de equipamentos grandes e intrusivos torna difícil sua aceitação no uso diário. Por isso, o uso de sensores EMG dispostos em um bracelete que se assemelha a um acessório de moda, foi avaliado como melhor opção para transpor a barreira da aprovação do público em estudo.

2. Objetivo

O objetivo desse trabalho é utilizar o algoritmo de aprendizagem de máquina Random Forest em dados fornecidos por oito sensores EMG dispostos em forma de um bracelete usado no braço. Os dados serão pré processados para a retirada de ruído e descoberta de características que facilitam o treinamento. Ao final do experimento é esperado que a máquina consiga reconhecer com margem razoável, baseada em medidas encontradas na literatura, um conjunto de sinais em Libras.

3. Cronograma

Atividade	Setembro		Outubro		Novembro		Dezembro	
Pesquisa Bibliográfica								
Implementação de software para aquisição e pré-processamen to dos dados.								
Implementação de algoritmo Random Forest e tunning de parâmetros.								
Aquisição de dados com maior abrangência de características e treinamento de máquina de aprendizagem.								
Escrita do Relatório Final.								
Preparação e apresentação de Trabalho de Graduação.								

4. Bibliografia

- [1] Instituto Brasileiro de Geografia e Estatística. **Censo Demográfico: Resultados Preliminares da Amostra.**Disponível

 em:

 http://www.ibge.gov.br/home/estatistica/populacao/censo2010/resultados_preliminares_amostra.shtm

 Acesso em: 12 set. 2016.
- [2] FERNANDO HENRIQUE CARDOSO. **LEI Nº 10.436, DE 24 DE ABRIL DE 2002.** Disponível em: http://www.planalto.gov.br/ccivil_03/leis/2002/L10436.htm. Acesso em: 12 set. 2016.
- [3] INEP. **Microdados Censo Escolar.** Disponível em: http://portal.inep.gov.br/basica-levantamentos-acessar>. Acesso em: 12 set. 2016.
- [4] WIKIPEDIA. **Tecnologias Assistivas.** Disponível em: https://pt.wikipedia.org/wiki/Tecnologia_assistiva. Acesso em: 12 set. 2016.
- [5] COSTA, Juliana Pellegrinelli Barbosa. Tecnologia Assistiva apoiada em Libras: em questão a relação do sujeito surdo em contexto de novas práticas sociais da contemporaneidade. Reverte-Revista de Estudos e Reflexões Tecnológicas da Faculdade de Indaiatuba, n. 13, 2015.
- [6] Instituto Nacional de Educação de Surdos INES. **APLICATIVOS.** Disponível em: http://www.ines.gov.br/2013-10-27-13-26-37>. Acesso em: 12 set. 2016.
- [7] LI, Kehuang; ZHOU, Zhengyu; LEE, Chin-Hui. Sign Transition Modeling and a Scalable Solution to Continuous Sign Language Recognition for Real-World Applications. **ACM Transactions on Accessible Computing (TACCESS)**, v. 8, n. 2, p. 7, 2016.
- [8] STARNER, Thad; WEAVER, Joshua; PENTLAND, Alex. Real-time american sign language recognition using desk and wearable computer based video. **IEEE Transactions on Pattern Analysis and Machine Intelligence**, v. 20, n. 12, p. 1371-1375, 1998.

[9] WU, Jian et al. Real-time American sign language recognition using wrist-worn motion and surface EMG sensors. In: **2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)**. IEEE, 2015. p. 1-6.

5. Assinaturas

José Paulo Henrique de Melo Fernandes Estudante

> Ricardo Bastos C. Prudêncio Orientador

> > Veronica Teichrieb Co-Orientadora