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Summary 

Background Subtraction aims to separate what in a video is foreground (moving objects) 

from the background. So this project aims to extend the IncPCP from (Rodriguez and 

Wohlberg 2015) that already is implemented in MATLAB with implementations in C++ and 

C++/CUDA versions speeding this application up and becoming possibly in real time without 

deterring the accuracy of the current method. 

This project is going to evaluate and compare the original version of IncPCP and ours two 

versions regarding accuracy (F-measurement) and speed (FPS (Frames per Second)). For this 

purpose this project uses datasets with ground truth. 

In the path to accomplish this goal are expected 6 deliverables: a CudaGemm function, a 

CudaSVD function, an IncSVD function in GPU and in CPU and an IncPCP algorithm in 

GPU and in CPU. 

From these 6 deliverables, all of them but IncPCP using CUDA were delivered with good 

quality. All the other 5 deliverables are working with the precision expected and faster than 

the MATLAB version. The IncPCP in C++ is 152% faster than MATLAB and even without 

being the goal of this project is 17% more accurate than MATLAB. The IncSVD is also 

faster, something between 2x and 3x, when comparing GPU and CPU versions. The IncPCP 

using CUDA itself is not faster as expected, but with good precisions, in fact, being 50% 

slower. 
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1. Introduction 

Background Subtraction detection aims to separate what in a video is foreground (moving 

objects) from the background. In Figure 1 is shown a general view of how it works. A proper 

background subtraction should only highlight relevant movement; in the case in Figure 1 the 

water movement is not relevant. For accomplishing that the background model should avoid 

all not desired changes in the foreground, including movements, light changes, jitter or other 

kinds of noise. 

!  

Figure 1: General scheme of a background subtraction. Image obtained from (Maghsoumi et el 2015). 

It is a valuable tool for many kinds of applications, like vehicles navigation and surveillance, 

and automatic tools in graphics software. Those applications require a real time solution. As 

an example, in Figure 2 it is possible to see an automatic traffic analyser that internally uses a 

background subtraction algorithm to detect cars movement. 

!  

Figure 2: Example of a background subtraction algorithm for automatic traffic analysis. Image obtained from 
(Ferreira 2016). 

1. Goals 
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This work intends to extend a previous work on background subtraction detection made by 

Rodriguez and Wohlberg (2016) called IncPCP (Incremental Principal Component Pursuit), 

translating the algorithm already implemented in MATLAB® (code could be download from 

Rodriguez and Wohlberg (2015a)) to C++, and after adding CUDA (Nvidia, 2016), to this 

using the GPU as a coprocessor. This way, we intend this software to become faster and 

possibly real time, without any loss of accuracy in regards of the original algorithm.  

C++ is a language that combines both low-level and high-level programming features and 

allows us to explore more efficiently the CPU making the software possibly faster. CUDA is 

a framework that permits the use of GPUs for general purpose computation. Thus, it became 

possible to use those massive parallel hardware with a larger throughput than a CPU with the 

same price. 

2. Outline 

In next  section  1.3 the reader are going to be introduced about the general state of the art of 

background subtraction and what is the position  of this algorithm. In Section 2 the system 

itself produced by us, the original  system  in MATLAB and the algorithm are explained. The 

flags explained in Section 2 are important as parameters to algorithm that is going to be 

explaend at the end in Section 2.6.3. In Section 3 we see a fee about the system organization. 

Finally in Section 4 the results, about correctness and timing of all  the system and subparts.   

3. General Description 

PCP (Principal Component Pursuit) is considered the state-of-the-art for video background 

modelling (Rodriguez and Wohlberg 2016). It is an algorithm that models the background of 

a video as a low-rank matrix as , where (number of rows, columns and depth or channels, 

respectively) and is the number of frames analysed. The PCP finds the background and 

foreground solving the optimization problem in Equation (1).  and  are the video input and 

foreground, respectively, and they have the same dimensions as , so 

(1)
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PCP algorithms are used as online and offline methods. The offline methods process an entire 

video in batch, analysing all the frames at once. An online method processes each new frame 

based on a background model and so can accept video streams. The online method can have a 

static or adaptive background model. Our implementation is an online algorithm what fits 

best to those applications this monograph has mentioned before. 

PCP algorithm requires a partial SVD (Singular Value Decomposition) (HARTLEY, R., 

ZISSERMAN, A. 2004) evaluation, as can be seen in Equations (2) and (3). This significant 

mathematical operation makes this algorithm’s timing and memory consuming, since from an 

input , where m is the number of pixels of image and n the timing parameter, it has to keep in 

memory three matrices that together consumes  as output from a full SVD (2) and just after 

reduces to a partial SVD (3). In an online version of the PCP, this full SVD operations are 

done for each new frame computing the  last frames (as  being a memory parameter), without 

any data reutilization.  

Where for full-size SVD:  

● is the complex or real  matrix input, 
●  is an  unitary matrix, 
●  is an  diagonal matrix with non-negative real number on the diagonal, and 
● is an  unitary matrix, the conjugate transpose of . 

Moreover, a fixed rank factorization is a partial SVD with rank equal to  and it is going to be: 

 (3)

Where for r rank SVD: 

● M is the complex or real m × n matrix input, 
● r is an integer input for the rank that should be less than or equal to ), 
●  is an  unitary matrix, 
●  is an  diagonal matrix with non-negative real number on the diagonal, and 
● is an  unitary matrix, the conjugate transpose of . 

The multiplication from the output from Equation (2) by the full SVD always give the input 

itself, when the multiplication of output terms from Equation (3) always return an r-rank 
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matrix with the most  principals components from M. What depending on the  chosen and the 

level of redundancy from input could be a good approximation or a rough simplification.  

Rodriguez and Wohlberg (2016) work made possible to compute an SVD based on a previous 

SVD from the last frame keeping or increasing the rank in this operation, without the need for 

recomputing all SVD and after reducing the rank. This allows us to save memory (keeping a 

low rank all time) and time (reutilizing already computed data). The input memory usage is 

just  floating points from the current frame, and the output memory usage is going to be just 

floating points considering a 1-rank evaluation is) floating points, which delivers an 

incredible economy of memory and processing. They called this mathematical operator 

IncSVD (Incremental Singular Value Decomposition). The IncSVD is what makes possible 

the IncPCP to exist and be faster than other algorithms. In section 4.3 we discuss more about 

IncSVD. 

Since we will implement two versions of IncPCP, one in C++ and another in C++ with 

CUDA, we also need to develop an IncSVD with and without GPU support. To accomplish 

that we need an SVD and a GEMM (General Matrix Multiply) from BLAS (Basic Linear 

Algebra Subprograms) standard (Netlib, 2016). Since those functions are not part of CUDA 

module in OpenCV, this project is going to wrap those functions as OpenCV-like functions 

with input and output as OpenCV CUDA Matrices. Those functions are implemented in 

cuSOLVER and cuBLAS libraries respectively, which are low-level libraries. Summing up 

all the deliverables this project had produced that have an external relevant usage are: 

● IncPCP  
● CUDA IncPCP 
● IncSVD 
● CUDA IncSVD 
● CUDA SVD (Wrapper) 
● CUDA GEMM (Wrapper) 

Rodriguez and Wohlberg MATLAB version outputs a matrix with floating points that 

indicates how much each pixel is likely to pertain to foreground. This project is going to 

introduce a threshold operator as Hu et al. (2015) have done to produce a binary mask as 

output and analyse the F-measurement (also called F1-score, is a metric that combines 

precision and recall) (Wikipedia, 2016a)  comparing with a binary ground truth that are 
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included in dataset. To best fit the threshold, a subprogram is going to test all datasets varying 

threshold and keep the one with maximum F-measurement. 

The accuracy and speed of Rodriguez’s and Wohlberg’s algorithm was shown by themselves 

and other research such as Hu et al. (2015). In Hu and colleagues comparison using nine 

datasets with five online methods and two offline methods, all of them based on PCP or the 

PCP itself, IncPCP was the faster, and being as much accurate as the original PCP and a less 

accurate in regard to other three methods.  

This project is going to evaluate and compare the original version of IncPCP and our two 

versions regarding accuracy (F-measurement) and speed (FPS (Frames per Second)). For this 

purpose this project uses datasets in (Li et al. 2013) and (Unknown 1).  
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2. System Description 

Since programming in CUDA directly without a CPU version is a venturesome approach, we 

had firstly developed an IncPCP using just C++ and OpenCV (Open Computer Vision) and 

deliver a C++ stable version without any optimization in GPU. We expect in that process that 

even this C++ only version is going to be faster than Rodriguez’s and Wohlberg’s (2016) 

MATLAB version. After this, CUDA optimization started to bebe included in the C++ code 

to allow the software to use the GPU as a coprocessor, becoming possibly faster than the 

previous version.  CUDA is used in three ways, OpenCV functions in CUDA module, CUDA 

low-level functions in some library (CuSolver and cuBLAS) and CUDA kernels totally 

programmable in this project. This way, this project delivered two working versions of this 

Background Subtraction Algorithm, one in CPU and another in GPU using CUDA functions.  

As internal components to produce IncPCP algorithm, we had produce the IncSVD 

mathematical operator introduced by Rodriguez and Wohlberg (2015a) and implemented by 

themselves in MATLAB. This module is a useful tool itself to many other applications. So as 

their module is a valuable tool to MATLAB environment, this implementation in pure C++ 

and C++ with CUDA functions is also relevant to those environments (C++ and CUDA) or 

even more useful if faster than their MATLAB version.  

Moreover, since IncSVD needs to call an SVD as part of their operations, it is required an 

SVD version for CPU and GPU in C++. OpenCV includes a CPU version of SVD, but does 

not include this function in their CUDA module, so this project is going to wrap this feature 

directly from CuSolver. The same situation happens with GEMM (General Matrix Multiply) 

in BLAS standard (Netlib, 2016) NVidia, 2016b) and so this project produces its own 

wrappers from cuBLAS Library. Both wrappers are going to be OpenCV-like and it will be 

possible to work with OpenCV CUDA Matrices in a similar way that this library usually 

implements.  
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Summing up all the deliverables this project is going to produce that has some application 

outside the own project is: 

● IncPCP 
● CUDA IncPCP 
● IncSVD  
● CUDA IncSVD 
● CUDA SVD  
● CUDA GEMM  

This project includes furthermore code to internal purposes, as small operations, testing, 

integration, controlling, timing and checking accuracy that is not something interesting 

outside this project. A short list of the main relevant internal modules are: 

● Find Files – Find files and folders in the File System warping the internal Windows Functions 
● Images From Folder 
● Cuda IncPCP Functions 
● Accumulators  
● Tictoc  
● Binary Confusion Matrix  
● Tests  
● Scripts  
● Utils 
● Cuda Utils 

2.1.SVD 

The SVD mathematical operator as defined in (2) and (3) has implementations in many 

languages, like C++, Java, MATLAB, Python and others. The OpenCV CPU and MATLAB 

operation have an economic size parameter, which if true returns a smaller output in some 

situations with the same accuracy as the full version, as can be seen in Equation (4). 

Where for full-size SVD:  

● is the complex or real  matrix input, 
●  is an  unitary matrix, 
●  is an  diagonal matrix with non-negative real number on the diagonal, and 
● is an  unitary matrix, the conjugate transpose of . 

          

This reduces memory usage and rather than the rank-r version does not change the resulting 

multiplication, just removing some leading columns from U and V that will never affect the 
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output since  is a diagonal matrix, and so just the first min (m,n) columns from w have values 

different than zero. In the version we are going to use in C++ the  output is not given as a 

matrix but as a w vector that is a column vector with the diagonal values from . MATLAB 

version always returns a dense matrix, even if just the diagonal has values different than zero.  

A characteristic from SVD is that the eigenvalues are in the w diagonal in the descending 

order, so to produce a low-rank matrix we have to force to zero some of the last eigenvalues 

as Equation (3) in the partial SVD. 

2.2.CUDA SVD 

Since CUDA module in OpenCV does not have an SVD function, this project is going to 

provide a wrapping from cuSOLVER functions cusolverDnSgesvd and cusolverDnDgesvd, 

single precision and double precision versions respectively.  

This module is a class called CudaSVD in cuda_svd.h and cuda_svd.cpp files. 

Moreover, it was implemented as a class also to manage the cuSolver handle and the buffers 

that need to operate the SVD.  

cuSOLVER works as a column major library, expecting that a column is closer in memory 

than the rows, what is different from what is expected from a C++ program and also the 

OpenCV library that has CPU and GPU matrices in row major. This difference between who 

writes the matrix and this operator makes the appearance that this library reads the input as 

they are transposed and writes the output as transposed matrices as well. To keep this module 

compatible without the need of manually transposing input and output, in the wrapper the U 

and V outputs are passed to cuSolver functions swapped. Working as a transposed 

multiplication applied to SVD formula in Equation (2) lead to Equation (5). Because  is a 

diagonal matrix   and because cuSolver views the matrices as they were transposed we could 

conclude Equation (6).  

 =      (5)  

Where  

(6) 
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Where  is the column major version from some data or operation.  =  and both just renaming 

matrices in the internal operations. 

2.3.GEMM Wrapper 

CUDA module in OpenCV includes a GEMM function in its headers and documentation, but  

an OpenCV build version with cuBLAS is difficult to find, and due to the lack of time in this 

project, it was preferable to implement the wrapper rather than compiling the entire OpenCV. 

This wrapper is also a class and not just a function to manipulate the lifetime of the cuBLAS 

handle.  

cuBLAS, similarly to cuSolver, works in column major order and applies the same strategy. 

As happens with CUDA SVD module, we also called the internal functions with swapped 

operators aiming to work outside the wrapper as a row-major multiplication.  

2.4.IncSVD 

IncSVD functions that could be downloaded from Rodriguez (2015) were implemented in 

MATLAB in the "incSVD" subfolder. These operations are explained in Rodriguez and 

Wohlberg (2015) paper, which contains a full algebraic proof. 

This module has three operations in three files, rank1IncSVD.m, rank1DwnSVD.m and 

rand1RepSVD.m. In our implementation, we kept these three operations as three methods 

from the IncSVD class in inc_svd.h and inc_svd.cpp files. 

2.4.1.Rank1IncSVD 

In MATLAB this function’s signature is: 

!  

Where Uo, So and Vo are the old SVD that will increase one column, curFrame is the new 

column and flag is a Boolean that indicates if the rank of the output SVD should be the same 
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as the input or higher. The return value is U, S, and V that correspond to the new SVD with 

one more column than the previous one. 

Internally this function calls some matrix manipulators with Uo, So, Vo and curFrame as 

multiplication, sum and a smaller SVD with size just as r × r where r is the rank from the 

previous SVD (the rank is the size of the diagonal from So). This way, even if this SVD in 

Uo, So, Vo represents a large matrix, in case this is a low-rank matrix with a small r these 

operations are fast. Moreover, it always reuses data from the previous SVD to make the new 

one. As an example in the IncPCP algorithm, the fixed rank parameter is usually one, and just 

sometimes a small value like two or three. This method always returns a reduced in memory 

usage SVD.  

In their implementation, the first column added in the SVD has an special treatment and it is 

done with the QR factorization. 

2.4.2.Rank1DwnSVD  

In MATLAB this function`s signature is: 

!  

Where Uo, So, Vo are the previous SVD computed, k is the column this function is going to 

remove. U, S, and V are the new SVD without that column and thresh is a floating point that 

indicates the error introduced by removing the column. These functions in MATLAB never 

alters the rank. 

2.4.3.Rank1RepSVD 

This function`s signature in MATLAB is: 

!  
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Where Uo, So, Vo are the old SVD already computed, k is the column that this function 

replaces. CurFrame is a not used parameter and remove will increase readability of this peace 

of code. The newFrame input is the column to be placed in the kth column. The return value 

is the new SVD. 

2.4.4. IncSVD class 

Our C++ implementation is a class and its most important methods are:  

!  

The SVD class from OpenCV keeps internally the three output values and they are slightly 

different from what MATLAB returns, u (same as U in MATLAB), w (just the diagonal from 

S) and vt (transposed V). This way, to reconstruct the original matrix, firstly a proper size s 

matrix should be allocated and put w as the diagonal matrix and then u × s × vt multiplied . 

This IncSVD follows the same approach, with these three variables as internal elements. The 

methods u, w, vt access those internal values. Each one of these operations Inc, Dwn and Rep 

changes the internal SVD (represented by those 3 OpenCV matrices). 

The Inc method works as the rank1IncSVD and equally has the option of always increase 

(increment_rank), always keep the same rank as it is (keep_rank) and an additional behaviour 

made called adaptively_rank. When the input has the adaptively flag the function just 
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increases if the rank has a new singular value that represents perceptually in the final matrix 

at least threshold. The contribution value is the ratio between new eigenvalue and the sum of 

all old eigenvalues. So it became possible to use this class as incremented one column in the 

internal SVD but also to increase rank if more than 1% of magnitude is introduced for this 

new value, or any other percentage.   

The Dwn method does the same as rank1DwnSVD, and just has one col parameter since Uo, 

So and Vo are internal. This method has a few differences in comparison to the MATLAB 

implementation, which could reduce the rank in this operation. This only happens in a 

specific context when the removed column changes the value of  (the same as  to less than the 

current rank. IncPCP usage in MATLAB never reduces the rank since this function are in a 

less general use, where the rank is always one or a small value, as two or three. The 

rank1RepSVD done by authors from IncPCP method similarly to the previous function. The 

only difference is the absence of the "curFrame" (current frame) parameter because even in 

MATLAB this parameter appears in the signature but it is not used any place inside the 

function.  

One final small difference is the MATLAB version initialization of the IncSVD with a QR 

factorization making it faster and could be used in the particular case of a single column. 

Since OpenCV does not have this mathematical operator and because of the lack of time in 

the project I did not install another library to use this operator. I have used a reduced in 

memory usage SVD version, which produces the same result, but slower. This does not 

compromise so much our implementation since this just runs once at each video in IncPCP, 

but a future work is to add QR factorization to it. 

2.5.CUDA IncSVD 

Our implementation comprises the class CudaIncSVD in the files cuda_inc_svd.h and 

cuda_inc_svd.cpp. The most relevant methods for this class are shown as follows: 
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!

It shows a similar behaviour compared to IncSVD. Internally, all functions have the same 

operations, but in GPU, some modifications are needed. This class has also used the CUDA 

module in OpenCV, the CUDA SVD Wrapper, and CUDA GEMM Wrapper.  

A specific behaviour of this class is that the initialization is done in CPU in the common SVD 

class in OpenCV. This is done since CUDA SVD Wrapper does not compute a simplified 

operator, and since the first column to be added is probably very long and calculating a full 

size is a non optimal solution, the initial data is downloaded to CPU again, computed in CPU 

and then uploaded back to GPU (all three matrices). CudaIncPCP does all other operations in 

GPU, and since initialization is done just once in an IncPCP video, this does not affect so 

much our timing. But as the IncSVD it is a future work introduce QR factorization in this 

operator, and cuBLAS library has this operator.  

2.6.IncPCP and CUDA IncPCP  

This is the highest hierarchy module in the project hierarchy that can be found in 

inc_pcp.h and inc_pcp.cpp as a class called IncPCP. This class includes the CUDA 
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and non-CUDA versions of the algorithm, and a single flag decides which implementation 

runs.  

The original MATLAB version had been downloaded from the professional web page from 

one of the creators at the beginning of this project at October 2015 (Rodriguez 2015) and is a 

function with the following signature: 

!  

Our proposed version comprises a class with its main functions listed as follows, with 

basically one constructor, one destructor and the main method that is similar to 

incrementalPCP in MATLAB. 
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!

In both versions we have a path to the input (“basedir” or “input_directory”), a rank that is 

the low-rank background model, the number of inner loops that the algorithm tries to 

converge the foreground and the windows frames (winFrames, or the  memory parameter), 

the number of frames to be kept in background model, and both of them have a structure with 

flags input (in C++ as an Inherence from IncPCP_Flags, and in MATLAB by parameter).  

Since this algorithm has several configurations and different configurations to run to we are 

going to firstly discuss the flags from the original version in comparison to the proposed 

version in 2.7.1 and 2.72 sections. 

2.6.1.Flags in Original Version 

The “myFlags” parameter should be initialized with one of four pre-set configurations 

provided by the incAMFastPCPinputPars function; they are “default”, “default_cuda”, 

“ti_standard”, “ti_search” and “none”.  The “ti_standard” and “ti_search” versions are 

implementation of an algorithm called IncAMFastPCP that is translational and rotational 

jitter (Rodriguez, P., Wohlberg 2015 2) and is not the focus of this project to reproduce this 

part of the algorithm. The “default_cuda” is the same as “default” but uses MATLAB CUDA 

toolkit to optimize some functions, and also was developed by the authors. The “none” pre-

set permits a fully manual configuration. In each of the configurations, values can be changed 

by the user. 
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Observing the “default” configuration output below, we could understand what 

configurations are available using this algorithm. 

!   

● showFlag: a Boolean value that controls if output is shown or not. The images shown are 
three, input, foreground and background. 

● grayFlag: a Boolean value that if true reads the images in grayscale, if not reads as 
colourful. 

● saveFlag: a Boolean value that if true saves the same output from showFlag in the file 
system, but the foreground is stored twice as image and as a matrix. 

● Lambda: An internal value to algorithm behaviour, this will be explained after. 
● fullInit: a Boolean value that if true initializes the algorithm completely before finding a 

foreground, what means that the first “winFrames” will not produce any foreground. The 
rank should only be greater than one if fullInit is true. 

● stepInit: if fullInit is true they ignore stepInit – 1 images between each image. For 
example, with stepInit = 5, and winFrames = 30, the algorithm is going to initialize with the 
images 1,6,11,16,…151. Otherwise, if fullInit is false it does not affect the program.  

● sparseGT: Sparse Ground Truth, in floating points, was used by the authors to show that 
IncPCP is closed to PCP itself, do not is relevant for this project. 

● L0 and S0: Optional initial foreground and background. 
● backgroundThresh: Threshold floating point that indicates if two follow foregrounds are 

so different that could be considered unstable.  
● backgroundStable: Integer number of frames that the algorithm expects the foreground to 

be stable. 
● url: if true indicated that baseDir is a URL path and not a folder with images. 
● frameNoff: an Integer offset to ground truth in the authors experiments, and is not so 

relevant in this project since is used to prove equivalency between IncPCP and PCP what we 
already consider truth. 

● From TI until alphaThresh are parameters related to TI versions that are not the focus of 
this project.  

● cudaFlag: if true runs in CUDA MATLAB toolkit. 
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● vecFlag: If true runs each frame as a vector in the background model, this model just 
focus on this flag true all the time. 

● adaptShow: If true the shown images are normalized based on all the past, what could be 
more visualise understandable, if not they are normalized with fixed values. 

2.6.2.Flags in this Project 

The flags in this project can be found in inc_pcp_flags.h and inc_pcp_flags.cpp files in the 

IncPCP_Flags structure. These files have mainly two sections: the first one is the original 

flags version from imshow  to adapt_imshow. Some of the parameters were not translated to 

C++ and are commented in the code snippet above representing not implemented features 

from the MATLAB version. Two flags from the original version have been slightly modified: 

imshow  and imsave.  Moreover, other new flags were introduced in this project, from 

cv_bit_depth  to fprint_threshold_vs_measuarement, to provide new features. The new 

features introduced are controlling the floating-point precision of operations and the binary 

foreground production and measurement. 
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!  

The following list just comments the flags that had a different behaviour or are introduced in 

this project, so explaining the introduced new features that this project has when comparing 

with MATLAB one: 

● imshow: It is quiet similar to showFlag but is not a Boolean, but an integer where each bit 
means a different image, and so allows us to control exactly what images to show. Rather 
than three images in the original version this version hade 5 possible outputs in this mode.  

● imsave: Similar to saveFlag and equally to imshow is not Boolean, but an integer with each 
bit control a particular image. The images that could be saved are not exactly the same then 
shown ones. Rather than four images the original version have, this version have six 
different imagens and eight possible controls, two extra controls allows just to save a picture 
in some context, as an example, foreground_mat_when_has_ground_truth, that as the 
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name indicates just save the foreground as matrix (not as a picture) when this frame has a 
ground truth. 

● cv_bit_depth: Controls with single or double precision is going to be used, what is a new 
feature from this version. 

● make_binary_foreground: A Boolean that if true produces the binary foreground 
applying a threshold. 

● threshold_foreground: The threshold manually given to produces the binary 
foreground. 

● auto_threshold_foreground: If true find automatically a foreground based on the first 
frame find in ground truth, choose a threshold to maximize the F-measurement.  

● analize_every_ground_truth: If true and auto_threshold_foreground is also true 
automatically adjust the F-measurement for each ground truth found. 

● std::string directory_ground_truth: Possible path to ground truth. 
● compute_f_mesuarement: Computa, the F-measuarement for each ground truth found, 

allowing the user to now the precision of the system while running. 
● fprint_threshold_vs_mesuarement: A Boolean that if true when trying to find the best 

threshold to optimize the F-measurement (just if auto_threshold_foreground is true) 
print the threshold values and correspond F-measurement in a file. Could be used for 
debugging or understanding the relation between threshold and F-measurement. 

And one more comment about the features that this project has and MATLAB does not is the 

fullInit flag. Even existing in both of them the MATLAB version fails if this flag is true, 

what is probably a software degeneration between versions that introduces some small 

mistakes in this feature. However, since this code is still understandable, we had implemented 

it in the C++ and C++ with CUDA versions. 

2.6.3.Algorithm 

The aim of this algorithm is the optimization of the functions in Equation (1). The solution is 

to optimize the problem with two parameters. One numeric solution is in permutating the 

optimized equations (5) and (6) in loop, for innerLoops (parameter for the algorithm) times. 

      (5) 

               (6) 

Where L is the current background estimation, S is the current foreground estimation and D is 

the current frame as a column. 

The first step of the algorithm is to read the frames in order, reshaping each one to become a 

column matrix with size m × 1 where (number of rows, columns and depth or channels, 

respectively). 
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If full initialization is active, the algorithm reads winFrames jumping stepInit between each 

frame until completely winFrames. And so for each frame read the IncSVD function is called, 

if the current rank is smaller than the parameter rank they increase the rank in this operations 

if not they keep the rank as it is. At the end of this initialization, each element from V matrix 

receives the average from its column, so mixing every column to become its own mean, as 

shown in Equation (7).   

(7)

Where m is the number of columns. 

Otherwise, if full initialization is not active, the algorithm just initializes with an SVD from 

the first frame as a column, or in MATLAB version they initialize with an optimization 

version that produces the same result. Computing a QR-decomposition as in Equation (8) and 

seting U as Q, S as R and V as a 1 × 1 matrix with just a number one. This is possible 

because an orthogonal matrix is the real equivalent of a unitary matrix in complex numbers 

(Wikipedia 2016b) and an upper triangular matrix with size 1 × 1 is also a diagonal matrix 

and in this case this fits the SVD requirement in Equation (2). 

           (8)  

After initialization, we are always going to have three matrices representing the background, 

they are,  where m is the number of values in a frame,  is the fixed rank adopted and n is the 

number of frames inserted. If full initialization is done, n is equal to winFrames; if not, n is 

equal to one. The background is descripted by Equation (9) and the current background (what 

means just the last frame in the background) is described as Equation (10) and is called L. 

∑           (9) 

∑                   (10) 

Now, for each new frame, the algorithm calls first IncSVD with the current frame as a 

column and does not increase the rank.  

!  25

   



After  that  for  innerLoops  times,  the  algorithm  tries  to  optimize  Equations  (6)  and  (7) 

estimating  L  and  S  in  the  permutation.  So  in  each  iterator  first  estimate  L  (current 

background) using (10). After  the shrink operator is as in Equation (11) and   is a parameter 

in Flags. After estimate L the algorithm uses RepSVD to replace the rank-th column with D – 

S, and so repeat another iteration.

                             (11) 

Where A is a matrix and  is a double. Sing is the operator that returns minus one, zero or one 

depending on the signal. The used functions are all of them element wise. 

After innerLoops iterations, the algorithm checks the stability of the background calculating 

the average from the absolute difference from this L and the L from the last frame and setting 

this value as local distance. So current local distance divided by the previous local distance is 

set to Lfrac. After backgroundStable frames if the Lfrac is greater than 

backgroundStable the background is reinitialized with just the current frame. 

Finally, for this frame if the number of columns in the background (n or number of rows in 

V) is greater than or equal to winFrames the last frame is removed from the background with 

the DwnSVD function removing the oldest frame. And so repeat the procedure after 

initialization. 

2.7.Internal Modules 

2.7.1.Find Files 

Using Windows API from file system gives some facilities to looking for files in a folder 

recursively or not with some filters. 

2.7.2. Images From Folder 

Using the previous module provides an interactive way to look just in pictures in a folder. 
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2.7.3.Tictoc 

Provides the same interface as tic and toc MATLAB functions. Warping some Windows 

timing functions they calculate the timing from a tic and a toc with milliseconds of precision 

ttoc. 

2.7.4.Binary Confusion Matrix 

Analyse the output of an expected result (Ground Truth) and the algorithm result and given 

true positive, true negative, false positive and false negative. Based on these four numbers 

a lso provide recal l , speci f ic i ty, and f -measurement . Can be found in 

binary_confusion_matrix.h and binary_confusion_matrix.cpp. 

2.7.5.Tests 

In tests.h and tests.cpp is a set of developing tests. Usually, they test a function or 

class isolated and show the result or if they pass the test. Usually black box testing, some 

random input in the module and after comparing the output if the expected one. For CUDA 

functions often computing in CPU the same computations and check if both are equal. They 

also have timing testing of some modules.  

2.7.6.Scripts 

Scripts module is present in scripts.h and scripts.cpp. Those functions that act as 

scripts with a configuration to run the IncPCP or other feature from this project with a real 

input, as a dataset, or a set of inputs, as a folder full of the dataset. Could be used for testing 

but at a high level and does not test module by module but an entire feature with a real input.  
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3. System Implementation 

All this project including the system implementation, research papers, literature review and 

presentation has been made available in a git repository that can be found in https://

bitbucket.org/Djeefther/el600. The following structure is used: 

❖ CudaProject – The project itself 
➢ CudaProject 

▪ hdr – C++ Headers  
▪ src – C++ Source 

❖ incPCP – Rodriguez`s and Wohlberg`s implementation in MATLAB, additionally some testing 
files made by this project 
➢ incSVD – Incremental SVD functions in MATLAB  

❖ Results – Experimental results 
❖ Other folders 

In the current version the code has more than 9000 lines summing up .cpp, .h .cu and .cuh 

only.  

The development environment chosen is a computer with Windows 7 or higher, Visual Studio 

2013, CUDA 7.5 Toolkit and OpenCV 3.0 installed. The Visual Studio 2013 is the newest 

version compatible with CUDA, since CUDA Toolkit has a compiler inside that needs to be 

compatible with the IDE. The machine to run the project should have a CPU middle-end or 

above (as an i5-3470) and an NVIDIA GPU with CUDA capability 2.0 or greater and with 

fair or good computation power as a GTX 690.  

The OpenCV download was a build by third party with CUDA 7.0 at (Saharsh, B 2015).   

OpenCV was chosen as library because it allows to open, show and save images, process 

numeric computations and to easily manipulate matrices in C++ with a good performance. 

OpenCV was firstly made in C++ to CPU only applications but since the 2.0 version includes 

some CUDA wrappings from CUDA libraries (as cuBLAS, cuSPARSE, and CuSolver) that 

allow an easy way to use that CUDA functions without low-level functions, memory 

allocations, and deallocations. This set of features is called as "CUDA" in 3.0 version and 
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inside the code is the "opencv::cuda" namespace. This module provides several operations 

that a CPU matrix in OpenCV (called just as Mat) has to their GPU matrix (called GpuMat) 

with the similar or identical interface. Sometimes these operations are just CUDA already 

developed libraries, sometimes as OpenCV own CUDA kernels implementations. However, 

some operations that this project needs are implemented in CUDA libraries but are not in 

CUDA OpenCV module. This is the case of SVD and GEMM (are part of the library but not 

build in my version) operation and because of that we developed our wrappers.  
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4. Results and Discussion  

4.1.Method for computational performance tests 

All the timing tests were done using the fastest versions of MATLAB, C++ and CUDA codes, 

running as release and if a C++ code detached from Visual Studio.  Show or save flags were 

deactivated when they existed.  The target computer was used only for the algorithms being 

tested. In MATLAB the time was computed using the tic and toc functions and in C++ our 

Tictoc class with similar behaviour was used. When comparing GPU and CPU, when 

possible, speedup with and without the upload and download time are given. In timing tests 

in GPU CudaDeviceSynchronize (NVidia) is always called after the operation and before the 

toc command to ensure the timing is correct. All timing tests were done at least three times to 

check if they are consistent values. In almost all operations CPU and GPU versions usually 

have initializing time, so when this was noticed before the real timing test the same function 

was called without timing to initialize possible internal handles. In GPU usually this handles 

are explicit and also this timing is taking as outside comparison. Speedup greater than one 

means GPU is faster than CPU or CPU is faster than MATLAB versions. The speedup 

comparison with upload and download timing, is not always a fair comparison because it is 

not always relevant since in some context it is not necessary one upload and one download 

for each operations, rather are done many followed operations for one upload and one 

download. 

The computer used for the results computation is a desktop with Windows 10 64 bits with an 

i7-processor @ 3.50 GHz with 4 cores and 8 threads (by Hyper-Threading), 64.0 GB of 

memory and three GTX 780 Ti graphic card (what by design our CUDA code just uses one 

graphic card as accelerator).  

4.2.Method for numerical precision tests 

Numeric precision comparison of a  matrix is usually done using the compare2mat function 

available in the utils module. This function is configurable to show different comparisons 
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from Absolute Difference from two matrices, Absolute Relative Difference from two matrices 

and Square Difference from two matrices. For each one of these evaluations are shown 

maximum, minimum and average values. Sometimes Relative Difference is cruel when the 

expected value is so close to zero, but is useful with big values that a difference of some units 

means perceptually almost nothing. 

4.3.CUDA GEMM  

In the tests module in test.h and tests.cpp files there is a function to 

!  

This function tests the CudaGemm multiplying a matrix with size_a × size_b with a matrix 

with size_b × size_c, both randomly initialized with values from 0 to 1. This function 

supports test using single and double precision. In GPU the same operation is called with 

GEMM from OpenCV in CPU and two outputs are comparable using a compare2Mat 

function developed in this project. After operations in GPU and before toc command this 

function calls CudaDeviceSynchronize to ensure that the timing is correct.  

The output test is shown in Figure 3, that firstly shows the Absolute and Relative Difference 

from CPU and GPU, and they are small enough to be considered numerically equal. After 

that there are two timings about initialization in CPU and GPU and after the timing of each 

one follows the speed up greater than one meaning the GPU version is faster. 

speed_up_total_time considers the upload and download timing.  

GEMM is an operator that allows us to transpose the inputs, so manually this function was 

tested varying the four combination from transposed and non-transposed in both input no 

timing or output change had been notice. 
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Figure 3: CudaGemm test with double precision (a) and single precision (b) both of them with matrix sizes  equal to 
1000 in all  three parameters. 

4.4.SVD 

This test is a simple testing using SVD already developed in OpenCV, the function 

test_cv_svd in tests module.  This function initializes a matrix with M × N call SVD and 

reconstruct the original input multiplying all the outputs and compare the two matrix with 

compare2mat function. This functions was used just to understanding the usage of this 

operator and was not really needed since was an already approval function from OpenCV 

committee. 

After the initial output with a full size SVD result be printed a for starts that after each enter 

the program reduce the rank of the output and shows the new comparison and eigenvalues. 

The input choose used was various, from random values to some matrix depending on index 

formulas as (11). In the case of random input to a good reconstruct the rank should min(N,M) 
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and so just a full SVD good representing the input. To some index dependency formulas as 

low-rank matrix good represent the input, since the input is full of redundancy that random 

values do not have. As an example, rank equal to 3 yet represent with good precision (bellow  

absolute error) the input with size equal to 10 × 11. 

 , where A is the matrix input in the SVD               (11) 

4.5.Datasets 

This project comparison between the original version of IncPCP and ours two versions about 

accuracy (F-measurement) and speed (FPS (Frames per Second)). To provide that a right 

input is not random values or formula based, but real datasets videos. For this purpose this 

project use the same datasets as (Hu et al. 2015) and (Rodriguez and Wohlberg 2015) used, 

they are (Li et. al. 2013) and (Unknown 1) respectively. The first one used nine datasets all of 

them with binary mask ground truth and resolution small or medium size between (160 × 

120) and (320 × 256). The second paper we found three datasets without ground truth but 

with median to high between (320 × 256) and (1920 × 1088). This two packages of datasets 

share one dataset, and another one was not used in this test so become ten datasets, in each 

we have 8 of them with ground truth.  

4.5.1.Bootstrap 

120 × 160 images with 3057 frames, crowd scene with people walking and or stopped. 

Contains ground truth. In figure 7 some examples frames. 

! ! !  

Figure 7: Frames from Bootstrap 

!  33

   



4.5.2.Campus 

128 × 160 images with 439 frames, waving trees. Contains ground truth 

! ! ! . 

4.5.3.Curtain 

128 × 160 images with 523 frames, fountain water, after sometime two persons come in front 

of it. Contains ground truth. In figure 8 some examples frames. 

! ! !  

Figure 8: Frames from Curtain 

4.5.4.Escalator 

128 × 160 images with 3417 frames, moving escalator with some periods with many people 

in and others not. Contains ground truth. 

! ! !  

4.5.5.Fountain 

128 × 160 images with 523 frames. Fountain water. Contains ground truth. 
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! ! !  

4.5.6.Hall 

144 × 176 images with 1546 frames. Crowd scene. Contains ground truth. 

! ! !  

4.5.7.Lobby 

128 × 160 images with 1546 frames. Few people are walking and after switching light. 

! ! !  

4.5.8.Shopping Mall 

256 × 320 frames with 1286 frames, crownd scene. 
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! ! !  

4.5.9.WaterSurface  

160x128 images with 633 frames of water and a person walking towards. 

! ! !  

4.5.10.Lank3 

640 × 480 images with 400 images. Superior visualization from a large street with some cars. 

Do not contains ground truth.  

! ! !  

4.5.11.Neovision3 

1920 × 1088 images from 900 items. Superior or view of one square with a fountain inside. 

The street the around the plaza have people and biking walking.  Do not contains ground 

truth.  
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! ! !  

4.6.IncPCP qualitative view 

It is possible to view an output from our implementation in Figure 9 by the single precision 

C++ version, however all our three versions in C++ and the MATLAB version will return an 

indistinguible visual result. 

!  

Figure 9: IncPCP bootstrap input and outputs. (a) the input, (b) the background, (c) the foreground (d) binary 
foreground (after threshold) 

4.7.CUDA SVD 

In tests module it is possible to find test_CudaSVD and test_CudaSVD_timing, testing the 

wrapper of the CUDA SVD function. The first function is similar to test_cv_svd and just 

outputs that the reconstructed input (by multiplying the outputs) and the numeric comparison 

with compare2mat function with a very similar result. 

The second test shows the timing difference and as well reconstructing error difference 

between CPU and GPU in Figure 4. 
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!  

Figure 4: Precision and time comparison between SVD and Cuda SVD, all times are in seconds, the input size was 
1000 × 1000. 

Varying the size of this test and also produce some MATLAB tests to the SVD function we 

produced the Figure 5 about timing in C++, CUDA and MATLAB comparison. 

!  

Figure 5: Timing tests of Full SVD function in MATLAB, C++ and CUDA. Smaller is best. The X-axis means the size 
from a square input, and the y-axis the time in seconds. 

As expected CUDA version is faster than C++ version, but surprising MATLAB function is 

much faster, what contradicts the common timing comparison between MATLAB and C++. 

The algorithm used in SVD from MATLAB is proprietary and not easy to guess why is faster 
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than C++ and GPU,  but is visible in analyses that they have a concededly greater numeric 

error, what possible reflects in our  result in section of accuracy of our algorithm be  17% 

greater. Probably MATLAB algorithm approximate the factorization less iterations than other 

versions. 

4.8.IncSVD 

To test this class three test functions were introduced: test_incremental_svd_inc_svd, 

test_incremental_svd_dwn_svd  and  test_incremental_svd_rep_svd.  All of them are 

available in tests.h and tests.cpp files and possible to test with double and single precision. 

Each one of them testing one of the methods from IncSVD class, showing the reconstruction 

error for the iterative version (IncSVD) and batch version (SVD) for the same operation. 

The first test increments successively columns (random or not initialized) using Inc method 

from IncSVD and concatenates them in another matrix that in the end runs a batch SVD 

version after comparing both of them. One example of double precision with each column 

size equal to 10 and 10 colomns added using Equation in (11) in Table 1 to single precision 

test and Table 2 to double precision in the lines called “Inc”.  

The second test initializes a matrix with an initial value and randomly starts to remove a 

column from this matrix and uses the Dwn method. For an initial matrix with 10 × 10 

initialized with Equation  (11) we have a result after 5 removed columns with double 

precision in Table 1 and single precision in Table 2, both in “Dwn” lines. 

The third test to replace columns works as the test before initialized with an initial size and 

randomly choose one column to replace. For a 10 × 10 initial matrix initialized with random 

values after 5 replaces we have a result in Table 1 to double precision and Table 2 to single 

precision in “Rep” lines. 

And so we could see that 
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Table 1: Iterative and Batch Error with double precision 

Double precision

Iterative Reconstruct Error

Absolute Relative

max min avg max min avg

Inc 2.021E-11 0 2.131E-12 1.776E-07 0 1.776E-09

Dwn 5.68E-13 0 1.44E-13 2.27E-06 0 4.54E-08

Rep 2.70E-13 0 8.81E-14 3.36E-14 0 3.09E-15

Batch Reconstruct Error

Absolute Relative

max min avg max min avg

Inc 1.14E-13 0 1.85E-14 3.85E-07 0 1.85E-14

Dwn 8.53E-14 0 2.15E-14 1.26E-07 0 2.53E-09

Rep 1.14E-13 0 2.88E-14 7.57E-14 0 1.83E-15
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Table 2 Iterative and Batch Error with single precision 

4.9.CUDA IncSVD 

The CUDA version has three similar tests with the same parameters and conditions, 

test_incremental_svd_cuda_inc_svd,  test_cuda_incremental_svd_rep_svd  a n d 

test_cuda_incremental_svd_rep_svd. The batch version compared is the same as IncSVD, 

the CPU one from OpenCV. In similar configurations about initialization and sizes could be 

found in Table 3 and 4 for double and single precision. 

Single Precision

Iterative Reconstruct Error

Absolute Relative

max min avg max min avg

Inc 1.526E-04 0 3.305E-05 6.414E+00 0 6.414E-02

Dwn 5.34E-05 0 1.36E-05 1.58E+00 0 3.16E-02

Rep 1.06E-04 0 3.05E-05 1.06E-04 0 2.35E-06

Batch Reconstruct Error

Absolute Relative

max min avg max min avg

Inc 6.10E-05 0 1.14E-05 2.65E+00 0 2.65E-02

Dwn 3.81E-05 0 9.31E-06 1.54E+00 0 3.09E-02

Rep 4.58E-05 0 1.10E-05 4.53E-06 0 4.62E-07
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Table 3: Iterative and Batch Error with double precision from CudaIncSVD 

Double precision

Iterative Reconstruct Error

Absolute Relative

max min avg max min avg

Inc 4.345E-11 0 4.581E-12 1.776E-07 0 1.776E-09

Dwn 1.330E-12 0 4.318E-13 2.27E-06 0 4.54E-08

Rep 2.970E-12 0 9.692E-13 3.36E-14 0 3.09E-15

Batch Reconstruct Error

Absolute Relative

max min avg max min avg

Inc 4.661E-12 0 7.600E-13 3.855E-07 0 1.854E-14

Dwn 1.833E-13 0 9.878E-13 1.26E-07 0 2.53E-09

Rep 5.912E-12 0 1.499E-12 7.57E-14 0 1.83E-15
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Table 4: Iterative and Batch Error with single precision from CudaIncSVD 

4.10.IncSVD Time comparison 

The test_timing_cuda_and_nor_cuda_inc_svd  tests a timing comparison between them. 

The parameters are the number of rows in the IncSVD simulation, the number of columns 

inserted and number of columns removed, after the same number of columns inserted are 

going to be removed. To a simulation with 640 × 480×3 (VGA colourful) 30 columns be 

inserted and 30 columns replaced an output from this tests as Figure 6 is found in the end and 

double precision. 

Single Precision

Iterative Reconstruct Error

Absolute Relative

max min avg max min avg

Inc 3.281E-04 0 7.107E-05
6.414E+0

0 0 6.414E-02

Dwn 1.148E-04 0 2.915E-05 1.58E+00 0 3.16E-02

Rep 2.236E-04 0 6.405E-05 1.06E-04 0 2.35E-06

Batch Reconstruct Error

Absolute Relative

max min avg max min avg

Inc 1.312E-04 0 2.442E-05
2.653E+0

0 0 2.653E-02

Dwn 1.183E-03 0 2.886E-04 1.54E+00 0 3.09E-02

Rep 2.289E-04 0 5.722E-05 4.53E-06 0 4.62E-07
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!  

Figure 6: Timing comparison with IncSVD and CUDAIncSVD 

4.11.IncPCP Threshold and F-measurement analyses 

All tests about accuracy and timing are going done with default configuration from MATLAB 

implementation and the corresponding parameters in C++. 

The subprogram find_best_threshold  open an output directory for any of the 3 

implementations and analyse the best threshold for each data set and for all of them 

individually optimize the best F-measurement. This program looks for best threshold with 

two criteria analyse the first ground truth of each data set and the average of all ground truth.  

Using this program from the output of IncPCP MATLAB, IncPCP with single and double 

precision and CudaIncPCP with double precision. 
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Figure 10: Threshold vs F-measurement for Shopping Mall data set frame number 433 
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Table 5: IncPCP C++ double Precision threshold and F-measurement for all datasets 

One example of thresholding optimize from just one frame is given Figure 7, as is possible to 

see varying threshold initially all pixels are considering true and after becoming more restrict 

the F-measurement increase until a maximum value and become to decrease. This 

subprogram find the best F-measurement not for just one frame, but for all data sets. For C++ 

double precision version the Table 5. 

Where in the columns bellow Best Avg All Frames we see the number 0.075 the best 

threshold to fit the average for all ground truth in all datasets, bellow that two sub columns 

the evaluators All ground truth and just the first. In the other field Best First Frame is the 

value of threshold 0.078 to fit the average of all first ground truth. The blanket columns are 

from datasets without a ground truth. The percentage numbers are F-measurement. 

Code C++ (double precision)

Threshold Description Best avg All Frames Best First Frame

Threshold 0.075 0.078

Avaliation
Avg All 
Frames

First 
Frame

Avg All 
Frames

First 
Frame

Bootstrap 160x120 58.94% 72.00% 59.09% 71.71%

Campus 160x128 27.19% 30.06% 27.86% 30.77%

Curtain 160x128 51.11% 85.46% 50.40% 84.98%

Escalator 160x130 37.12% 47.27% 37.66% 47.46%

Fountain 160x128 63.02% 56.63% 63.02% 56.87%

hall 176x144 46.39% 74.92% 46.53% 75.89%

Lobby 160x128 47.46% 70.45% 46.59% 69.43%

ShoppingMall 320x256 70.71% 68.80% 70.49% 68.79%

lank3-rgb 640x480  

neovision3 1920x1088  

Mean   50.24% 63.20% 50.21% 63.24%
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The Table 6 shows the same data from IncPCP with single Precision. Looks like identical 

values but analysing them more precision in between 6th and 8th decimal case they have minor 

difference about F-measurmen. 

Table 6 : IncPCP C++ single Precision threshold and F-measurement for all datasets 

In Table 7 we could see CudaIncPCP with double precision.  

Code C++ (single precision)

Threshold Description Best avg All Frames Best First Frame

Threshold 0.075 0.078

Avaliation
Avg All 
Frames

First 
Frame

Avg All 
Frames

First 
Frame

Bootstrap 160x120 58.94% 72.00% 59.09% 71.71%

Campus 160x128 27.19% 30.06% 27.86% 30.77%

Curtain 160x128 51.11% 85.46% 50.40% 84.98%

Escalator 160x130 37.12% 47.27% 37.66% 47.46%

Fountain 160x128 63.02% 56.63% 63.02% 56.87%

hall 176x144 46.39% 74.92% 46.53% 75.89%

Lobby 160x128 47.46% 70.45% 46.59% 69.43%

ShoppingMall 320x256 70.71% 68.80% 70.49% 68.79%

lank3-rgb 640x480  

neovision3 1920x1088  

Mean   50.24% 63.20% 50.21% 63.24%
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Table 7 Cuda IncPCP C++ double Precision threshold and F-measurement for all datasets 

In table 8 is show the same output from MATLAB version. (Rodrigues and Wohlberg 2015b) 

Code CUDA C++ (double precision)

Threshold Description Best avg All Frames Best First Frame

Threshold 0.148 0.173

Avaliation
Avg All 
Frames

First 
Frame

Avg All 
Frames

First 
Frame

Bootstrap 160x120 52.64% 52.40% 53.52% 52.40%

Campus 160x128 27.01% 32.62% 32.49% 32.62%

Curtain 160x128 69.70% 87.73% 62.74% 87.73%

Escalator 160x130 40.30% 52.14% 44.77% 52.15%

Fountain 160x128 71.76% 53.18% 70.55% 53.18%

hall 176x144 50.68% 78.08% 50.19% 78.08%

Lobby 160x128 48.50% 66.19% 43.25% 69.19%

ShoppingMall 320x256 69.75% 68.58% 67.20% 68.58%

lank3-rgb 640x480  

neovision3 1920x1088  

Mean   53.79% 61.37% 53.09% 61.37%
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Table 8 MATLAB IncPCP threshold and F-measurement for all datasets 

4.12.IncPCP timing 

The timing is generating from compute_all_data_set_timing subprogram that runs all data 

sets with the fastest possible configuration, without any show, save even generating the 

binary mask. In MATLAB a similar script was done to test Rodriguez and Wohlberg (2015a) 

MATLAB software, this script is at incPCP/run_all_datasets_timing.m. The time are 

initialization time in second and FPS. In table 9 is the timing from IncPCP in C++ with 

double precision, followed by in Table 10 the single precision. The Table 11 contains the 

timing from from Rodriguez and Wohlberg (2015a) software. And finally in Table 12 the 

timing from our CUDA version with double precision.  

Code MATLAB

Threshold Description Best avg All Frames Best First Frame

Threshold 0.063 0.065

Avaliation
Avg All 
Frames

First 
Frame

Avg All 
Frames

First 
Frame

Bootstrap 160x120 48.25% 60.04% 48.23% 59.55%

Campus 160x128 21.81% 25.46% 22.19% 25.80%

Curtain 160x128 51.09% 81.79% 50.68% 81.68%

Escalator 160x130 33.58% 44.86% 33.94% 45.28%

Fountain 160x128 53.34% 39.79% 53.49% 40.26%

hall 176x144 38.37% 60.91% 38.42% 61.53%

Lobby 160x128 37.95% 52.61% 37.38% 52.24%

ShoppingMall 320x256 57.16% 51.76% 56.99% 51.73%

lank3-rgb 640x480  

neovision3 1920x1088  

Mean   53.79% 61.37% 53.09% 61.37%
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Table 9: Timing for IncPCP C++ double precision 

Code C++ (double precision)

Threshold Description Time

Threshold    

Avaliation Init FPS

Bootstrap 160x120 0.004 219,113

Campus 160x128 0.008 196.582

Curtain 160x128 0.007 194.780

Escalator 160x130 0.016 201.558

Fountain 160x128 0.002 191.489

hall 176x144 0.014 167.461

Lobby 160x128 0.004 194.830

ShoppingMall 320x256 0.006 33;764

WaterSurface 160x128 0,751 118,931

lank3-rgb 640x480 0.0751 118.931

neovision3 1920x1088 0.029 8,134

Mean   0,087 138,893
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Table 10: Timing for IncPCP C++ single precision 

Code C++ (single precision)

Threshold Description Time

Threshold    

Avaliation Init FPS

Bootstrap 160x120 0.002 213.432

Campus 160x128 0.009 196.046

Curtain 160x128 0.013 195.578

Escalator 160x130 0.007 180.769

Fountain 160x128 0.004 196.981

hall 176x144 0.013 164.034

Lobby 160x128 0.009 194.462

ShoppingMall 320x256 0.004 52.539

WaterSurface 160x128 0.005 184.096

lank3-rgb 640x480 0.023 10.381

neovision3 1920x1088 0.121 1.528

Mean   0.019 144.531
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Table 11: Timing MATLAB double precision 

Code MATLAB

Threshold Description Time

Threshold    

Avaliation Init FPS

Bootstrap 160x120 0.016 69.673

Campus 160x128 0.008 68.527

Curtain 160x128 0.009 68.437

Escalator 160x130 0.008 71.131

Fountain 160x128 0.008 70.062

hall 176x144 0.009 65.641

Lobby 160x128 0.009 68.122

ShoppingMall 320x256 0.010 26.699

WaterSurface 160x128 0.008 72.972

lank3-rgb 640x480 0.025 7.950

neovision3 1920x1088 0.109 1.209

Mean   0.020 53.675
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Table 12: Timing CUDA C++ double precision 

So we could see that our implementation in C++ in single and double precision are faster than 

MATLAB version from Rodrigues and Wohlberg, between 2.5x faster,  or  167% faster. Our 

initialization time is bigger since as we had comment we initializated the algorithm with a 

SVD and not with a QR, what is a possible optimization. 

However, for some reasons other CUDA version is slower than all of others, what is not 

expected at the begging of research. Maybe more debugging and perfling could found the 

timing wasted and maybe redesign some operations in GPU, or even do new ones that are 

wtill nowadays done in CPU, as a division of two matrices, check of background stability and 

so on. But, this is still a supposition because our principal operation in timing is the IncSVD 

Code CUDA C++ (double precision)

Threshold Description Time

Threshold    

Avaliation Init FPS

Bootstrap 160x120 0.009 34.122

Campus 160x128 0.010 33.093

Curtain 160x128 0.012 33.709

Escalator 160x130 0.016 35.327

Fountain 160x128 0.008 33.276

hall 176x144 0.014 28.199

Lobby 160x128 0.009 33.849

ShoppingMall 320x256 0.043 17.214

WaterSurface 160x128 0.007 31.559

lank3-rgb 640x480 0.087 6.043

neovision3 1920x1088 0.457 1.264

Mean   0.061 26.150
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(75% of time in CPU) and it is faster in CUDA than C++ by 3x as shown before. More 

discuss could be found in chapter 5.  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5. Conclusion and Future Work 

It is visualized that the CUDA GEMM module, the wrapper have a numeric error (less than 
1%) and it is faster than a multiplication in GPU, from 25x to 400x times faster. 

The CudaSVD has also a good numeric error, what means do  not affect visual specs of 
project, and is faster than SVD in C++ by 2x to 3x faster, but was not expected that the 
MATLAB version was even faster in just CPU. However this MATLAB is been faster than 
C++, the timing resulting about IncSVD and IncPCP in faster since this algorithm just 
requires really small SVD evaluation. 

Also that the IncSVD in their three methods has a good numeric approximation also in CPU 
and in GPU. And that the GPU version is from 2x to 3x faster. 

The qualitatively evaluation from the IncPCP algorithm in all the platforms are as expected a 
good foreground, with some datasets being difficult than others to be resistance to 
undesirable movement, as the curtain one, but we accomplished to be as good as an state-of-
art-algortihm. 

The quantitatively evaluation from ours IncPCP is always higher then MATLAB one, in an 
factor of 17.68% above even this was not intended to be achieved, but a collateral effect 
maybe for do not use QR factorization in initialization or maybe because SVD precision in 
C++ or C++/CUDA is better. 

Another conclusions is that the accuracy from double and single precision are almost the 
same, but single precision is faster in all datasets, and so we had found a possible not 
expected optimization, the using of single precision. This is a valuable discover that could be 
even used in the MATLAB version in an easy way. 

And even the C++ double and single precision been more accurate they are also faster than 
MATLAB, achieving our goal that keep the accuracy and become faster. The single precision 
is in average 107.38% faster in FPS and in all datasets are faster. The double precision is 
43.85% faster than MATLAB, but is slower in some datasets, the bigger ones. Both of them 
17% more accurate. 

But MATLAB Original from Rodriguez and Wohlberg version has a good initialization time, 
in this aspect they are 96% faster than our double precision and 62% faster than the single 
precision, what probably could be fixed with QR factorization been applied to our version. 

Unhappily the CudaIncSVD is slower than C++ and MATLAB, and do not work with single 
precision points, even been designed to do so. This is probably because of the lack of time of 
the project, that just finish this feature in the week 23 and it is yet a draft. The implementation 
has some bottlenecks that with more time could be solved, as so much copies from CPU and 
GPU and some conversions from double and single precision. 

!  55

   



A desirable future work is include the QR factorization in both C++ and CUDA version to 
decrease this so long initialization time and analyse. After that analyse the CUDA code and 
why single precision is not working and remove the bottlenecks to be faster than C++ 
version, since all the submodules are faster than in CPU, is expected that this algorithm also 
were, but some integration problem avoid that.  

Further that all developed methods (that were finished) have a decent numeric and 
qualitatively output. 

Since IncPCP is an excellent in speed and good but not the best in speed (Hu et. al. 2015) in 

precision, and that Hu’s algorithm use the IncPCP as a subroutine, a possible work after this 

code is faster than MATLAB in all specs (including initialization, and single precision 

CUDA). 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