

Universidade Federal de Pernambuco  

Centro de Informática
Bachelor in Computer Engineering

A Real Time Online Background Subtraction
Implementation in CUDA using Incremental Principal

Component Pursuit

Djeefther Souza Albuquerque  

B. Eng. Dissertation Proposal

Advisor: Veronica Teichrieb
Co-advisor: João Marcelo Teixeira

Recife 
September, 2016

Abstract

Background Subtraction aims to separate what in a video is foreground (moving objects)
from background. It is a very important tool for a lot of applications, such as navigation,

surveillance and automatic tools in graphics software. This work intends to extend a
previous work made by Rodriguez [1] of an IncPCP (Incremental Principal Component
Pursuit) done in MATLAB, by translating it to C++ and then using CUDA to speed up
the processing without losing precision. This speedup will allow the real time processing
of a video stream, which is a key feature for the applications aforementioned. In the end
of this project, the results of our implementation and the reference one will be evaluated
and compared regarding accuracy (F-measurement) and speed (FPS (Frames per
Second)) using reference ground-truth datasets.

Keywords: Background Subtraction, Image Processing, Principal Component Pursuit,
CUDA, GPU, Real Time 

Summary

Abstract

Summary

Background

Objectives

Schedule

Possible Examiners

Signatures

References

Background

Background Subtraction aims to separate what in a video is foreground (moving objects)
from the background. Figure 1 shows a general view of how it works. A proper
background subtraction algorithm should only highlight relevant movement. In the case
shown in Figure 1, the water movement is not relevant. For accomplishing that the
background model should avoid all undesired changes in the foreground, including
movements, light changes, jitter or other kinds of noise.

Figure 1: General scheme for a background subtraction algorithm.  
Image obtained from (Maghsoumi 2015)

It is a valuable tool for a lot of applications, such as navigation, surveillance, and
automatic tools in graphics software. These applications require a real-time solution. As an
example, Figure 2 shows an automatic traffic analyzer that internally uses a background
subtraction algorithm to detect cars’ movement.

Figure 2: Example of a background subtraction algorithm in an automatic traffic analyser.  
Image obtained from (Ferreira 2016)

This work intends to extend a previous work made by Rodriguez and Wohlberg [1] called
IncPCP (Incremental Principal Component Pursuit) by translating the algorithm already
implemented in MATLAB® to C++, and then implementing it using CUDA to take benefit
of the GPU as coprocessor. This way, we intend to make the algorithm faster and possibly
real time, which is relevant to the aforementioned applications, without losing accuracy
compared to the original algorithm. In order to do that, the full reading and understanding

of their technique and their implementation is an essential part.

PCP (Principal Component Pursuit) is considered the state-of-the-art for video background
modelling [1]. It is an algorithm that models the background of a video as a low-rank
matrix where (number of rows, columns and depth or channels, respectively) and n is the
number of frames analyzed, as shown in Equation (1). The PCP finds the background and
foreground solving the optimization problem in (1). D and S are the video input and
foreground, respectively, and they have the same dimensions as L, so and .

 (1)

PCP algorithms are used as online and offline methods. The offline method processes an
entire video in batch, analyzing all the frames at once. The online method processes each
new frame based on a background model and so it could accept video streams. The online
method could have a static or adaptive background model. Our implementation
corresponds to an online algorithm that fits best the objectives this report has previously
mentioned.

The PCP algorithm requires a low-rank evaluation of an SVD (Singular Value
Decomposition) [2] as shown in Equations (2) and (3). This significant mathematical
operation makes this algorithm timing and memory consuming, since it has to keep in
memory a matrix with floating point numbers as input and compute all of them in an SVD
and make an output of floating point numbers. In an online version of PCP process a full
SVD of the last n frames (as n being a memory parameter) is computed for each new
frame, without any data reutilization, and just after that SVD computation the rank is
reduced by forcing the less significant eigenvalues to zero. This dataflow does not reuse
any previous data already computed between frames, and use huge more memory when
compared with IncPCP.

 (2)

Where for full-size SVD:

● M is the input (complex or real) m × n matrix,
● is an , unitary matrix,
● is an diagonal matrix with non-negative real numbers on the diagonal, and
● is an unitary matrix, the conjugate transpose of

Moreover, a fixed rank factorization, which is a partial SVD with rank equal to r, is going
to be:

 (3)

Where for r rank SVD:

● M is the input (complex or real) m × n matrix,
● r is an integer input corresponding to the rank that should be less than or equal to

min(m,n),
● is an , unitary matrix,
● is an diagonal matrix with non-negative real numbers on the diagonal, and
● is an unitary matrix, the conjugate transpose of

The multiplication of the three output matrices from the full SVD (2) always give the input
itself, when the multiplication of three output matrices from (3) always returns an r-rank
matrix that depending on the r chosen could be a good approximation or a low rank of the
input.

Rodriguez and Wohlberg [1] work made possible to compute an SVD based on a previous
SVD from the last frame keeping or increasing the rank in this operation, without the need
of recomputing all SVD and then reducing the rank. So it allows us to save memory
(working with a low rank matrix all time) as well to save time (reusing already computed
data). The input memory usage is floating point numbers from the current frame, and the
output memory usage is going to be floating point numbers considering a 1-rank
evaluation is) floating point numbers, which is a a considerable memory saving. They
called this mathematical operator as IncSVD (Incremental Singular Value Decomposition).
The IncSVD is what makes possible the IncPCP to exist and be faster than previous
algorithms.

In the end of this project we aim to compare our C++ version without CUDA, the version
in C++ with CUDA optimization and the reference version in MATLAB regarding
accuracy (F-measurement [3]) and speed (FPS (Frames per Second)) using reference
ground-truth datasets.

The relevance of this technique when compared with the literature is shown for some
researches as Yang [4] compares a lot of techniques of background subtraction and
introduces its own technique. IncPCP is the faster of the eight techniques and the third
better in F-measurement precision.  

Objectives

The main objective of this project is to produce a real time CUDA implementation of
IncPCP. In order to do so, a C++ version without CUDA will also be implemented as
debug reference. Both of them need the IncSVD operator, as described before, so this
operator must also be implemented in both CUDA and C++ platforms. Summing up, this
project is going to produce 4 implementation deliverables:

● IncPCP
● CUDA IncPCP
● IncSVD
● CUDA IncSVD

Besides that, all modules need to be tested, debugged and have precision and speed
evaluations, in F-measurement tests and FPS, respectively. Tests of the MATLAB
reference code will also be performed.

Schedule

Activities September October November December

Read and Test IncPCP
MATLAB code from Rodriguez

x x

Read Literature about
Background Subtraction and
find reference datasets

x x

Implement IncSVD in C++ and
test its compatibility with
MATLAB reference
implementation

x x x

Implement IncSVD in C++ with
CUDA and test its compatibility
with MATLAB reference
implementation

x x x

Implement IncPCP in C++ and
test its compatibility with
MATLAB reference
implementation

x x x

Implement IncPCP in C++ with
CUDA and test its compatibility
with MATLAB reference
implementation

x x x

Test the general precision, find
a good threshold value and
general specs of the final
implementation

x x

Write Dissertation x x

Possible Examiners

There are possible examiners of this project as specified in this propose:
Abel Guilhermino da Silva Filho
Edna Natividade da Silva Barros

Hansenclever de França Bassani  

Signatures

Djeefther Souza Albuquerque

Student

Veronica Teichrieb

Advisor

João Marcelo Teixeira

Co-advisor  

References

1. Rodriguez, P., and Wohlberg, B. 2015a. Incremental Principal Component
Pursuit for Video. J Math Imaging Vis (2016) 55:1–18 DOI 10.1007/
s10851-015-0610-z https://sites.google.com/a/istec.net/prodrig/Home/
en/pubs/incpcp accessed at 21/10/15.

2. “Singular Value Decomposition”, Wikipedia, https://en.wikipedia.org/
wiki/Singular_value_decomposition.html [Accessed at 01/04/2016].

3. “F1 score”, Wikipedia, https://en.wikipedia.org/wiki/F1_score accessed
at 21/10/15.

4. Y. Hu at el., “An Online Background Subtraction Algorithm using a
Contiguously

5. Weighted Linear Regression”, EUSIPCO, Nice, PACA, France, CFP1540S-
USB, 2015

https://en.wikipedia.org/wiki/Singular_value_decomposition.html
https://en.wikipedia.org/wiki/F1_score%2520accessed%2520at%252021/10/15

