‘Centro

de Informatica

Uu-+«F+«P-E

FEDERAL UNIVERSITY OF PERNAMBUCO

BSc COMPUTER SCIENCE
GRADUATION PROJECT

AN EMPIRICAL STUDY ON THE USAGE OF THE
SWIFT PROGRAMMING LANGUAGE

Marcel de Siqueira Campos Rebougas

Recife, January 6, 2016

FEDERAL UNIVERSITY OF PERNAMBUCO

BSc COMPUTER SCIENCE
GRADUATION PROJECT

AN EMPIRICAL STUDY ON THE USAGE OF THE
SWIFT PROGRAMMING LANGUAGE

A monograph submitted to the Center of
Informatics of the Federal University of
Pernambuco in partial fulfillment of the
requirements for the degree of Bachelor of
Science in Computer Science.

Author: Marcel de Siqueira Campos Rebougas
(mscr@cin.ufpe.br)

Supervisor: Fernando José Castor de Lima Filho
(ficlf@cin.ufpe.br)

Recife, January 6, 2016

Acknowledgements

I would like to express my gratitude to my advisor, Fernando Castor, for his
support and encouragement throughout the research, and also for the great
opportunity in a field I had no previous background. I am also grateful for
the help provided by Gustavo Pinto, Weslley Torres and Felipe Ebert, whose
technical advice was essential to the completion of this research and has
taught me countless insights and lessons on the fundamentals of academic
research in general.

My thanks also go to the friends and teachers that worked with me this
year, whose help allowed me to learn about mobile development and Swift.

Last, but not least, I would like to thank my family. To them, I give my
wholehearted recognition and love for their commitment and the many years
of support during my undergraduate studies that provided the foundation
for this work.

Abstract

The mobile market is facing an unprecedented growth, with iOS
and Android platforms playing a central role in this arena. Recently,
Apple released Swift, a modern programming language built to be the
successor of Objective-C. In less than a year and a half after its first
release, Swift became one of the most popular programming languages,
considering different popularity measures. A significant part of this
success is due to Apple’s strict control over its ecosystem, and the
clear message that it will replace Objective-C in a near future. This
distinctive scenario presents a unique opportunity to understand the
adoption of a programming language from its very early stages.

According to Apple, “Swift is a powerful and intuitive program-
ming language/...]. Writing Swift code is interactive and fun, the syn-
tax is concise yet expressive.” However, little is known about how
Swift developers perceive these benefits.

In this paper, we conducted two studies aimed at uncovering the
questions and strains that arise from this early adoption. First, we
perform a thorough analysis on 59,156 questions asked about Swift on
StackOverflow. Second, we interviewed 12 Swift developers to cross-
validate the initial results. Our study reveals that developers do seem
to find the language easy to understand and adopt, although 17.5%
of the questions are about basic elements of the language. Still, there
are many questions about problems in the toolset (compiler, Xcode,
libraries). Some of our interviewees reinforced these problems.

Resumo

O mercado de dispositivos méveis esta enfrentando um crescimento
sem precedentes, com as plataformas iOS e Android desempenhando
um papel central neste processo. Recentemente, a Apple langou Swift,
uma linguagem de programacgao moderna construida para ser o suces-
sor de Objective-C. Em menos de um ano e meio apds seu primeiro
langamento, Swift tornou-se uma das linguagens de programagao mais
populares, de acordo com diferentes medidas de popularidade. Uma
parte significativa desse sucesso parte do controle rigoroso da Apple
sobre seu ecossistema, e a mensagem clara de que ele ird substituir
Objective-C em um futuro préximo. Este cenario distinto apresenta
uma oportunidade Unica para entender a adocao de uma linguagem
de programacao, desde seus estigios iniciais.

Segundo a Apple, “Swift € uma linguagem de programagao poderosa
e intuitiva [...]. O cédigo em Swift € interativo e divertido, e a sin-
taxe € concisa e expressiva.” No entanto, pouco se sabe sobre como
os desenvolvedores Swift percebem esses beneficios.

Neste trabalho, realizamos dois estudos destinados a descobrir as
questoes que surgem a partir desta adogao antecipada. Primeiro, re-
alizamos uma andlise aprofundada em 59,156 perguntas sobre Swift
no StackOverflow. FEm seguida, foram entrevistados 12 desenvolve-
dores para validar os resultados iniciais. Nosso estudo revela que os
desenvolvedores parecem achar a linguagem facil de entender e uti-
lizar, embora 17,5% das perguntas sejam sobre os elementos bésicos
da linguagem. Além disso, h4a muitas perguntas sobre problemas no
conjunto de ferramentas (compilador, Xcode, bibliotecas). Alguns de
nossos entrevistados reforcaram estes problemas.

Contents

(1__Introductionl 8
2 Background| 9
DI Swiffl 9
2.1.1 Optionals| 10

[2.1.2 Error handlingl 11

2.2 StackOverflowl 12
2.3 Topic Modeling| 13
[B_Related Workl 14
[4 Methodology| 15
4.1 Study 1: Mining Software Repositories 15
(4.2 Study 2: Interviews|o 18
6 Results| 21
b.1 RQI: What are the most common problems faced by Swift |

| developers?| 21
[>.1.1 Switt Standard Library| 23

(.12 Cocoa Frameworkl 24

[Hh.1.3 General Code Problems| 25

[>.1.4 Testing and Errors| 25

[>.1.5 Integration with Objective-C|. 26

BI6 _IDE 27

1.7 Others 27

(5.2 RQ2: Are developers having problems with the usage of Op- [

[tionals?l 28
B2T FErrors 29

[p.2.2 Basic Usage| 29

[5.2.3 Optional Idiosyncrasies| 29

[>.2.4 Concepts|. 30

(6.3 RQ3: Are developers having problems with error handling in |

[SWItt?l . .. 30
(b.3.1 How to handle error in Swift? 31

[5.3.2 How to migrate to Swift 2.07 31
6__Discussions| 31

APP e

(A Interview Script|

33

36

36

List of Figures

(1 Hello World Implementation in Swift| 9
[2 An example of the Optionals syntax. It is shown how to de- |
clare an Integer(Int), an Optional Integer(Int?) with a starting |

value and an Optional Integer starting with a null value| . . . 11
[3 An example of the error handling syntax added in Swift 2.0. [
Example extracted from Apple’s Swift documentation!t| 12
M An example of a question (a) as it appears in the StackOver- |
flow, and (b) after the pre-processing steps.. 16
(> Our research methodology.| 17

List of Tables

(1 The LDA Topics, and their set of words.| 19
[2 Demographic information about our interviewees. The Swift

Familiarity is graded as: Somewhat Familiar, Moderately Fa-

the developer has Objective-C background. Column “Experi-

I
I
miliar and Strongly Familiar. Column “Objective-C” shows it |
|
|

ence’ describes their experience in software development (in

VEATS).| . o o 20
(3 The LDA 'Topics, with the number of questions associated, |
[and the values of share and relevancel. 22

1 Introduction

In the last years, the mobile app market is facing a fascinating growth, with
iOS and Android devices playing a central role in this arena. As a recent
article shows? over a billion of mobile devices are going to be sold in 2015 —
which is about twice the number of personal computers. This fact creates a
high demand not only for new mobile developers, but also for new techniques,
tools, and frameworks to ease mobile programming practice. As an attempt
to mitigate this problem, in June 2014 Apple released Swift, a modern, multi-
paradigm language that combines imperative, object-oriented, and functional
programming.

More interestingly, however, is that Swift is experiencing a fast popularity
growth. According to specialized Websiteﬁ, Swift is already one of the top-
20 most popular programming languages in the world. Most of this success is
due to the inherited Objective-C ecosystem, with more than 700 million de-
vices sold [I8]. Moreover, Swift is intended to be a “safer” alternative to pure
Objective-C. For instance, Swift is statically-checked, discourages the use of
nil, and supports Maybe—likeE] optional types and error handling. These key
elements makes Swift adoption almost guaranteed. Also, considering that
Apple has been using Objective-C for almost 20 years (it was acquired in
1996), we can expect Swift’s lifespan to be similarly long. This distinctive
scenario presents a unique opportunity to understand the adoption of a pro-
gramming language from its very early stages.

This paper is a first step in the quest to understand the benefits, draw-
backs, and hurdles of being an early adopter of a programming language that
is bound to be widely adopted. earch is still in its early stages, in this paper
we focus on a high-level research question and two that emphasize differences
between Swift and Objective-C. Specifically, the questions we are trying to
answer are:

RQ1. What are the most common problems faced by Swift developers?

RQ2. Are developers having problems with the usage of Optionals?

RQ3. Are developers having problems with error handling in Swift?

Zhttp://www.entrepreneur.com/article/236832/
Shttp://www.tiobe.com /index.php/content/paperinfo/tpci/index.html
4http:/ /redmonk.com /sogrady/2015/07/01 /language-rankings-6-15/
Shttps://hackage.haskell.org/package /base-4.8.1.0/docs/Data-Maybe.html

8

http://www.entrepreneur.com/article/236832/

Our interest in Optionals (RQ2) and error handling mechanism (RQ3)
is related to the fact that those features constitute the major differences be-
tween Swift and its predecessor Objective-C, and therefore can hinder adop-
tion of Swift by the experienced Objective-C developers.

Although many researchers have proposed methods for evaluating pro-
gramming languages [17], no consensus has emerged from a methodological
standpoint, e.g, methods proposed in the literature are prone to be subjec-
tive [19]. In this paper we present two studies. The first one is based on
a quantitative and qualitative analysis of data from StackOverflow, a col-
laborative Q& A website. We complemented the results from StackOverflow
with our second study: 12 interviews with Swift developers with different
backgrounds. These two studies provide important insights on the current
state of practice Swift programming.

2 Background

2.1 Swift

After using Objective-C - a language first released in 1983 - for 18 years,
Apple announced they were releasing a new programming language on June
2014, called Swift. It was designed to be a language that accomodates the
best of C and Objective-C, without the constraints of C compatibility, and
to be used on every Apple plaftorm (i0S, OS X, watchOS, and tvOS).

Swift is a multi-paradigm (imperative, object-oriented, and functional),
statically-checked and compiled programming language. It was designed to
work with Apple’s main frameworks (i.e., Cocoa and Cocoa Touch) and to
be fully compatible with Objective-C, while being less prone to erroneous
code (due to features like Optionals) and more concise.

print("Hello, World")

Figure 1: Hello World Implementation in Swift

Swift shares some of the core concepts of Objective-C. For instance, it uses
dynamic dispatch, late binding and extensible programming. It also shares
the same memory management (i.e., Automatic Reference Counting). On

9

the other hand, some of Swift’s features allowed it to be more similar to
the “modern” languages we have today, like Java or Python (e.g., no need
for header files, type inference, no need for semicolons, operator overloading,
unicode strings, generic programming, functions as first-class objects - which
allows it to be passed as an argument - and error handling). Apple also
refers to Swift as a “protocol-oriented language”f] since it added the concept
of protocol extensibility, in which types, structs and classes can be extended
and modified.

2.1.1 Optionals

Swift brings a concept that was not part of the Objective-C universe: Op-
tionals.

Added as a safety mechanism, Optional types are types that either con-
tains a value, or contains nil. This helps to prevent common programming
errors, like null pointers, since the compiler ensures that non-optional types
can never be nil. This mechanism is similar to maybe in Haskell, or Nullable
Types in CH#.

In order to create an Optional type, the developer just needs to add a
question mark (7) after the type when declaring a variable or constant (e.g.,
var name : String?). Then, the marked variable will either have a value of the
underlying type or will be empty. The Optional mechanism wraps the base
type, and creates a different instance, which means that the types String and
String? are different. Furthermore, in order to retrieve the Optional value,
the developer can use the ! operator to unwrap the content of the Optional
type, assuming it is not empty. Unwrapping a nil value will result in a crash.

This feature also adds a technique that can be used to make the code less
complicated, called Optional Chaining. In this technique, the developer is
able to call methods from Optional Types, and they will only be executed if
the Optional contains a value. If not, the method call will just be ignored.

Shttps://developer.apple.com /videos/play/wwdc2015-408/

10

var anInteger : Int =5

var anOptionalIntegerWithValue: Int? = anInteger
var unwrappedInteger = anOptionallntegerWithValue! //5

var anOptionalIntegerWithoutValue: Int? //nil
var unwrappedIntegerError = anOptionallntegerWithoutValue! //ERROR

Figure 2: An example of the Optionals syntax. It is shown how to declare an
Integer(Int), an Optional Integer(Int?) with a starting value and an Optional
Integer starting with a null value.

2.1.2 Error handling

Error handling is the act of recovering from erroneous conditions on the
execution of a program.

In Objective-C, dealing with error conditions could be done with the use of
the NSExzception(which encapsulates information like the name and reason)
and NSError(which holds an error code and other data) classes. The former
involved the usage of the try-catch-finally pattern, should only be used in
critical conditions (able to cause a crash) and is considered to have a poor
performance in Objective-C. The latter works differently. Instead of using
dedicated constructs, NSErrors are added as an additional argument in a
failable method or function and, if an error occurs, the NSError is then filled
with the error data. This is, most of the time, done in callback functions,
that execute asynchronously (e.g., loading a webpage, or retrieving data from
an API call.

The first release of Swift only had the NSError construct, as used in
Objective-C, and worked the same way. However, the version 2.0 added a
new form of error handling to Swift. This version added first-class support
for throwing, catching, propagating, and manipulating recoverable errors at
runtime, through the usage of do-try-catch syntax. In this new form, errors
are represented by values of types that conform to the ErrorType protocol (a
protocol that indicates that a type can be used for error handling). Image
shows an example of Swift’s error handling syntax.

11

var vendingMachine = VendingMachine()
vendingMachine.coinsDeposited = 8
do {
try buyFavoriteSnhack("Alice", vendingMachine: vendingMachine)
} catch VendingMachineError.InvalidSelection {
print("Invalid Selection.™)
} catch VendingMachineError.OutOfStock {
print("out of Stock.™)
} catch VendingMachineError.InsufficientFunds(let coinsNeeded) {
print("Insufficient funds. Please insert an additional \(coinsNeeded) coins.")

}

// prints "Insufficient funds. Please insert an additional 2 coins."

Figure 3: An example of the error handling syntax added in Swift 2.0. Ex-
ample extracted from Apple’s Swift documentationﬁ

2.2 StackOverflow

StackOverﬂowﬂ is an online platform for users to ask and answer questions
related to programming and software engineering. Aside from the Q&A part,
users can also comment and upvote/downvote posts, based on the relevance
or the help it provides. By giving good answers, users can receive reputation
points.

StackOverflow makes its data publicly available through the StackFx-
change Websitelﬂ under the Creative Commons license. Using this resource,
it is possible to access the data from posts (questions and answers), com-
ments, votes, users, tags and other metadata. Until October 2015, Stack-
Overflow had more that 10M questions and over 18M answers.

StackOverflow uses a tag system to categorize the questions. When a
question is created, the user is asked to select the tags the represent that
questions (e.g., Swift, 10S). The tags are also autocompleted, which prevents
the user from creating new tags or adding typographical errors. In this

8http://apple.co/1IXnmQQ
9http:/ /stackoverflow.com/
Ohttps://data.stackexchange.com/

12

research, we are interested in studying the posts that contains tags related
with Swift.

StackOverflow questions and its metadata served as our main source of
data.

2.3 Topic Modeling

Since we will work with thousands of text documents (the questions), manual
analysis is not feasible. For this reason, we use a topic modeling approach.
A topic model is a type of statistical model that aims to discover abstract
“topics” that happens to exist in a set of documents. This form of text
mining looks for patterns in the set, and groups clusters of words, for which
we call a “topic” (e.g., "church, priest, religion” or ”star, planet, space”).
These words are clustered following a metric of similarity, which depends on
the algorithm used.

Given that a document talks about a certain topic (e.g., space), it is
intuitive that some words are more likely to be used than others (e.g., ”star,
planet” are more likely to occurr than “shoes, sandals” in a space-related
topic.). Also, the topic “religion” might have the words “church, priest”
in its vocabulary. Furthermore, some words might appear equally on both
topics, also known as “stopwords” (e.g., the, for, about). A document can
have multiple topics, with different proportions (e.g., a topic can be 90%
about space, and 10% about travel). The topic model analyzes each word
in the document and, through probabilistic approaches, discovers what the
topics might be, and which topics are present in each document.

Apart from the necessary large set of documents, it is recommended that
each document is “clean” from stopwords and other tokens that might add
noise to the results. The method used to prepare the documents are further
explained in Section

13

3 Related Work

There are a plethora of studies targeting the usage of different programming
language usage and constructs. They vary from how developers use con-
current techniques [12} [I5], the sun.misc.Unsafe class [10], the goto state-
ment [I1], generics [14], inheritance [22], among many others. As regarding
mobile application, more recently, some researchers are studying how refac-
toring can be applied in asynchronous mobile applications [I3| @]. In the
programming language usage arena, Schmager et al. [19] evaluated the Go
programming language, Chandra et a. [5] compared Java and C#, in terms
of their strengths and weaknesses. Hadjerrouit [6] evaluated Java as a first
programming language, and Stefik and Hanenberg [20] discussed the respon-
sibilities the community has in regard to the programming language wars
(the discussion about their differences and impacts), among others. We also
analyzed the usage of a programming language based on two studies: by
looking what developers were asking about it and also by a set of interviews.
The closest work to us is from Barua et al.. However, although we shared
the same methodology, Barua et al. were focused on a broad aspect, analyz-
ing the main topics of interest on StackOverflow. In our case, we are more
restrict to the Swift usage. Also, when Barua et al. conducted their study,
Swift was not even launched, so our findings do not overlap with their ones
in any sense.

14

4 Methodology

The goal of this study is to improve the understanding of the problems faced
by Swift early-adopter developers, in particular, and possibly of early pro-
gramming language early adopter in general. In this section we describe the
procedure used to download and process the analyzed data (Section ,
and how we chose the interviewees, how the interviews were conducted (Sec-

tion .

4.1 Study 1: Mining Software Repositories

In this section we describe the steps needed to gather our dataset of questions.

Data Eztraction. We used the StackExchangd'l| website to extract
StackOverflow questions, answers, comments, and their metadata (e.g., Score,
View Count, Answer Count, Favorite Count). We retrieve questions that con-
tain any of the following tags: ‘swift’, ‘swift2’, ‘swift-playground’; ‘swift-json’,
‘swift-extensions’, ‘sqlite.swift’, ‘swift-protocols’, ‘swift-array’, ‘cocos2d-swift’,
‘swift-dictionary’, ‘objective-c-swift-bridge’, ‘rx-swift’, ‘dollar.swift’, ‘swift2.0’
and ‘swift-custom-framework’. We used these tags because StackOverflow as-
sociates them when searching for ‘swift’. One might argue that tagging is a
manual process, which would incur in mistagged questions. However, Stack-
Overflow autocompletes tags, thus preventing one from using a misleading
tag.

In total 59,156 questions posted by 33,681 users have been retrieved to-
gether with 74,297 answers and 216,403 comments to these questions. These
questions span the period from June 2, 2014 (when Swift was released -
Q24001778) till October 11, 2015 (when we ran the query).

Will Swift-based applications work on OS X 10.9 (Mavericks)/iOS 7 and
lower?

Q24001778: 50% i0S Testing, 27% IDE—xcode
The first Swift question on StackOverflow

To answer our research questions, we analyzed qualitative properties of
questions, answers and tags. Qualitative coding was done with support of

Uhttp://data.stackexchange.com/

15

http://data.stackexchange.com/

a text mining algorithm, and was further confirmed in collaborative coding
sessions.

Data Processing. Since manual inspection of 59 thousand of questions
is not feasible, we used the approach of Barua et al. [I], based on Latent
Dirichlet Allocation (LDA) [4], a topic modeling algorithm[™@ This algo-
rithm summarizes large amounts of text documents. LDA assumes that each
document, that is, the StackOverflow questions, in a given set is a mix of
different topics, so that each word in the document can be associated with
one or more topics with a certain proportion. LDA has been extensively
applied in many domains [2] [3].

Before feeding the LDA with our questions, we removed (1) content inside
the tags <code>, <pre> and <blockquotes>, (2) HTML tags, (3) URLs, (4)
punctuation, (5) one-letter words, and (6) stop word (e.g., an, by, the). We
also stemmed the remaining words using the Porter stemming algorithm [16],
to reduce words to their base form (e.g., “compilation” and “compiler” are
reduced to “compil”). Figure 4] shows an example of a question before and
after the pre-processing step. The resulting files were then used as the LDA
input.

(a) before processing
<p> I would like to try out Swift, but currently don’t
have an Apple developer’s account. Would it be possible
to compile and run it without having Xcode 67</p>

4

(b) after processing
] swift appl develop account compil run xcode \

Figure 4: An example of a question (a) as it appears in the StackOverflow,
and (b) after the pre-processing steps.

LDA deals with documents, which in our case are the StackOverflow
questions. LDA assumes that each document in a given set is a mixture of
different topics, and that each word in the document can be associated with

I2We used the implementation available in the Mallet-2.0.8RC2 tool.

16

Pre-processing
jaqpes |

L\Lﬂ

Swift Questions from b Pre-processed
Stack Overflow N Questions

v —_— Analysis 2
v — ~ M

Topics & Results
Topic Mapping

Figure 5: Our research methodology.

one or more topics with a certain proportion. Given a set of documents,
LDA tries to identify the topics and creates a mapping between topics and
documents. In the current work we used the LDA implementation available
in the Mallet tool, version Mallet—Q.O.SRCﬂ.

LDA can be configured in different ways. Hence, for the sake of complete-
ness, we describe the parameters that we used. The first parameter is the
number of topics that LDA will generate, in which we used 25. There is no
“right” value for this parameter as it depends on the granularity one wants
to achieve. We tested the number of topics ranging from 10 to 35. Using
a small number of topics (i.e., 15) resulted in topics that were too general,
most of them being perceived as having a mix of subjects. We believe that
the mixing of subjects occurs because, since most questions are related to
Swift and the iOS environment, they have general terms that would make
sense to appear in more than one topic. For example, the word time could
appear in a performance-related topic, or in a date-related topic, with the
same relevance.

Furthermore, we configured Mallet to look for uni-grams (single words)
and bi-grams (sequences of two words). This results in topics that look
like, e.g., view, navigation, view_control, objective_c. Using uni-grams and
bi-grams improves the quality of the resulting topics [21],.

Since a document can have multiple topics, we denote the membership of

3http: / /mallet.cs.umass.edu/

17

a topic t; in a document d as 6(dy, t;). According to Blei et al. [4], a document
normally contains between 1 and 5 topics, with a membership value above
0.10. For this reason, we set the membership threshold § to 10%, value
commonly used in LDA studies[I]. Since Mallet uses a probabilistic approach,
some topics can be assigned to documents with a very low membership (e.g.
1%) which can lead to false positives. To mitigate this case, the threshold
helps to remove noise topics from the output, while keeping the dominant
ones. This same membership is used in the share and most_relevant metrics,
described in the RQ1.

Output. The output of executing Mallet is a list of topics and a map-
ping of the document-topic relations. The list of topics was composed of
25 groups, each containing 10 related words, that we manually labeled for
simplifying purposes.Some of the topics required the reading of a sample of
questions. We used this processed data to provide answers to RQ1. Besides
the LDA processing, we performed additional queries to filter representa-
tive StackOverflow questions to answer RQ2 and RQ3. Details about this
questions are provided at the beginning of each RQ’s discussion.

4.2 Study 2: Interviews

We conducted semi-structured interviews in order to cross-validate the re-
sults obtained in the StackOverflow study. Therefore, interviews provided
additional discussions to RQ1, RQ2, and RQ3. This method was chosen
to take advantage of the knowledge of each participant, allowing us to evolve
the questions based on gained insights. Also, since participants had differ-
ent levels of development experience, interviews allowed us to understand
different points of view.

Participants with varying development experiences were selected, through
different methods. We selected 2 undergrad students, and 10 professionals.
Among the professionals, 3 are Swift professors — professors that teach edu-
cational programs for iOS development — and 1 works for a local software
company. These professionals were reached through convenience sampling.
To compensate for the inherent limitations of the convenience sampling, we
analyzed the most popular (in terms of stars) Swift software repositories
hosted on Github. For each repository, we identified the top-3 contribu-
tors of each project and invited them to participate in the interviews. We
ended up contacting 43 open-source Swift developers, and 6 of them (14%)
participated in our interviews.

18

Table 1: The LDA Topics, and their set of words.

Topic

LDA Words

Error—General
UI—Navigation
Error—Debugging
Q&A

Data Storage

OO Programming
Data Types

Objective-C Interop.

UI—TableView
IDE—Xcode

iOS Testing
UIl—Positioning
Ul—Actions
Cloud/Social Media
Image Handling
Networking

Game Development
Variables Def/Use
Ul—Animations

Noise—General Words
Multithread/Sched. Func

Optionals/Nil
UIl—Text
Media/Time Comp.

code work swift problem fine function issu wrong call work_fine
view control view_control segu bar viewcontrol navig storyboard tab back
error swift code type line compil crash messag argument issu
swift question find answer solut make document appl read understand
arrai data object dictionari save core core_data swift store creat
class method call swift protocol type subclass implement creat deleg
string swift function type number convert return int paramet charact
swift ¢ objective objective_c framework project import header object_c object
cell tabl tableview view row tabl_view uitableview custom select section
xcode file project swift beta build xcode_beta error creat test
app io devic iphon simul run applic crash io_app work
view size height constraint scroll set screen width layout uiview
button click press keyboard tap action user swift uibutton custom
user pars notif app login facebook queri log messag post
imag color background chang photo set camera uiimag pictur uiimageview
json data request server swift api respons url alamofir send
game scene node sprite spritekit screen player move score make
variabl properti swift access set declar struct refer assign object
anim move draw swipe gestur touch left screen uiview rotat
search swift list io creat select user app tutori appreci
call function time updat load complet data block run thread
option nil print return statement unwrap error check found unwrap_option
text label field crash line uilabel font text_field chang set
plai date video time sound timer audio record swift dai

Location/Web Comp. locat map user annot page googl url webview html uiwebview

In total 12 interviews were performed. Each participant was interviewed
by a member of our research team. 3 of the interviews were conducted
in person, the remaining 9 were conducted via phone. Interviews lasted
approximately 20 minutes and the audio was recorded. We refer to the
anonymized interview participants as P1-—P12. Table [2 gives additional
demographic information on each of the 12 participants. Participants ranged
in professional programming experience from less than a year (graduating
students) to 10 years, averaging 4.16 years.

Both graduating students had less than 1 year of mobile development
practice, and 3 months of experience with Swift, but mostly on academic
projects. The Swift educators we interviewed had more than 5 years of
professional software development experience (5, 5 and 10 years). Two of
them (P11 and P12), are using Swift since its very first release. Amongst
the software developers, their professional experience ranges from 2 to 6
years. Furthermore, 6 of them were top contributors in popular Swift software
repositories.

19

Table 2: Demographic information about our interviewees. The Swift Famil-
iarity is graded as: Somewhat Familiar, Moderately Familiar and Strongly
Familiar. Column “Objective-C” shows if the developer has Objective-C
background. Column “Experience” describes their experience in software
development (in years).

Job Title Swift Familiarity Objective-C? Experience
P1 | Software Dev. 000 v 5
P2 | Software Dev. 000 v 5
P3 | Software Dev. 000 v 5
P4 | Software Dev. 1]@) v 6
P5 | Software Dev. ' 1]@) v 2
P6 | Software Dev. 000 v 5
P7 Student L 1]@) v <1
P8 Student (1]@) v <1
P9 | Software Dev. 000 X 2
P10 Educator 1]@ v 5
P11 Educator 000 v 5
P12 Educator 000 v 10

The interviews were grounded in research questions RQ1-3. For each in-
terview, we started by asking about the interviewee’s background in software
development. Some of the questions included (1) "Do you have professional
experience with Objective-C?” and (2) ”When did you start using Swift?”.
After understanding the background of the interviewee, we then moved to
the specific questions about the language. We asked three questions about
the learning process, and two questions about the challenges that they faced
when writing Swift applications, if any. Then, we ended the interview by
asking about problems and solutions found when using Optionals and Error
Handling mechanisms.

To analyze the data, we first transcribed all the audio files. Each tran-
script, along with the associated recording, was analyzed by two of the au-
thors. We then coded the answers, analyzed the keywords, organized them
into categories. We followed the guidelines on the open coding procedure [7].

20

5 Results

In this section we describe our results organized in terms of the research
questions.

5.1 RQ1: What are the most common problems faced
by Swift developers?

For this RQ, we ranked each topic found in the StackOverflow questions using
the share metric (Equation , which is similar to the one used by Barua et
al. [1]. This ranking is shown at Table 8] The share of a topic t; is the
sum of the memberships of this particular topic for every document d in our
dataset. Furthermore, since we used a membership threshold of 10% when
running Mallet, the topics with a membership lower than this value for any
given document d are not taken into consideration. For this reason, the share
does not add up to 100%.

share(t Dl 26’ di, t; (1)

Table [3] also presents the Most Relevant metric, which is calculated with
the following formula[2] Here, D(¢;) represents the subset of documents that
contains the topic ¢; with a membership higher than the threshold (Equa-
tion . Also, Equation (4] checks if ¢; is the dominant topic - with a higher
membership value than all of other topics - for a document d. Most Relevant
represents the proportion of documents in D(¢;) in which ¢; has the highest
membership value.

(2)

most_relevant(t;)

deD (ti)

D(t;) = {d € D|0(d, ;) > 6} (3)

1, ifVt e T,0(dyt;) > 0(dy,1)
0, otherwise

dom(dg, t;) = { (4)

We then manually grouped the topics in Table [3|into seven main themes,
namely Swift Standard Library, Cocoa Framework, General Code Problems,

21

Testing and FErrors, Integration with Objective-C, IDE and Others . These
themes are described below. For each of them, we present a representative
example of questions, and relate the theme with findings from our interviews.

Table 3: The LDA Topics, with the number of questions associated, and the
values of share and relevance.

Topic Share (%) Questions Most Relevant
Error—General 7.5 36.7% 13.5%
UI—Navigation 5.0 15.5% 44.7%
Error—Debugging 4.5 16.5% 32.9%
Q&A 45 22.0% 14.8%
Data Storage 4.4 14.6% 41.3%
OO Programming 4.3 15.3% 34.7%
Data Types 4.1 13.4% 38.2%
Objective-C Interop. 3.8 11.8% 41.0%
Ul—TableView 3.7 12.0% 43.4%
IDE—Xcode 3.6 13.5% 30.8%
iOS Testing 3.5 13.2% 30.5%
UI—Positioning 3.5 10.6% 43.9%
UIl—Actions 3.4 12.8% 31.1%
Cloud/Social Media 2.9 9.4% 42.0%
Image Handling 2.9 10.1% 36.6%
Networking 2.8 8.8% 44.3%
Game Development 2.8 7.2% 55.9%
Variables Def/Use 2.5 9.6% 29.9%
UI—Animations 2.4 8.1% 37.0%
Noise—General Words 2.2 9.6% 23.0%
Multithread/Sched. Func 2.2 8.7% 28.8%
Optionals/Nil 2.2 8.5% 29.1%
Ul—Text 2.0 8.0% 28.0%
Media/Time Comp. 2.0 6.0% 48.7%
Location/Web Comp. 1.7 5.8% 42.0%

22

5.1.1 Swift Standard Library

Out of the 25 topics, 5 were categorized as Swift Standard Library: Data
Storage, OO Programming, Data Types, Variables—Definition and Usage and
Multithreaded/Scheduled Functions. The Standard Library comprehends a
base layer of functionality for writing Swift programs, which includes the
basic data types, data structures, functions and methods, protocols, etc.
Their total share is 17.5%.

Swift is advertised as “a language that is easy and fun to use’[| and
“friendly to new programmers”ﬁ. Yet, almost 1/5 of the questions are about
the syntax and constructs of the language. However, the fact that Swift was
easy to learn was supported by the interviewees. 10 of them reported that
they did not have problems with the language syntax. Also, 9 of them
suggested that the syntax is very similar to other languages they knew (e.g.,
Java or Python).

This contrast may be explained by the fact that all of the interviewees
were experienced with other programming languages, and 11 out of 12 knew
Objective-C beforehand, while developers posting on StackOverflow can have
a much broader experience range. Since Swift and Objective-C share some
features (e.g., the same readability of named parameters and similar method
names), part of the complexity is reduced. The contrast suggests that Swift
may be an easy language if the developer has previous experience with other
languages, specially Objective-C, but the contrary may not be true . Mean-
while, P4 and P6 do not think that knowing Objective-c helped on learning
Swift, as P6 said “No, I don’t think it did. I mean, like knowing Objective-c
helped Swift but only a little bit but only because Swift was designed to be
familiar to Objective-c developers. 1If I was a brand new student that had
never done Objective-c and never done Swift, Objective-c makes it harder to
learn Swift because there are problems in Swift that are only there because of
Objective-c¢”. Examples of questions in this group, with their corresponding
topics are:

> “How to remove elements from array that match elements in another
array?”—Q25250809: 95% Data Storage.

~ “Is it possible that subclasses from MuySuperClass access the class
function dummyDict() at runtime?”—Q24711515: 91% OO Programming.

& “How to create a function accepting any type of Int or Uint in Swift,

“https://developer.apple.com /swift /
http://apple.co/1DgqEVo

23

and calculate the number of bits regardless of param type?”—(Q249863109:
92% Data Types.

5.1.2 Cocoa Framework

Cocoa Touch is the core framework used to develop iOS applications. As
its documentationﬁ states “The Cocoa Touch layer contains key frameworks
for building 108 apps. These frameworks define the appearance of your app.
They also provide the basic app infrastructure and support for key technologies
such as multitasking, touch-based input, push notifications, and many high-
level system services”.

We find 7 topics that are related to the Cocoa Framework. They are: UI—
Navigation, UI—Table View, UI—Layout, UI—Actions, UI—Animations, Ul—
Text and Image Handling. Their total share is equals to 22.9%. It is inter-
esting to observe that the number of topics, and the total share of this theme
are higher than the first one (Swift Standard Library).

Even though Swift 2.0 is expected to become Open SourceEL which may
allow its usage in other areas of development, currently it is still strongly
tied to mobile development, which implies the usage of Cocoa.. As P10
stated “There isn’t much sense in learning Swift without learning and using
the frameworks”. PT also said “Since I already knew the frameworks from
Objective-C, and it is almost the same in Swift, I could write code almost
straight away”. Examples of questions in this group with their corresponding
topics are:

> ‘I created a UlViewController in my Main.storyboard with a few but-
tons and labels. I'm trying to switch to that view controller using self.present
ViewController but it will not load the view from storyboard. It will only load
a blank black screen by default. Any idea on how to load the view from what
i’ve created in storyboard?”—Q25474115: 88% UI—Navigation.

~ “Hi I have a Table ViewController with two static cells, however when
displayed, it shows the two static cells, and then all the other empty cells
for the tableview. However I don’t want to display those cells as they are
useless. How do I hide the rest of the cells apart from the two static cell?”—
Q28708574: 88% UI—TableView.

S “How do I programmatically create graphical elements (like a UIBut-
ton) in Swift? I tried to create and add button into a view, but wasn’t able

Yhttp://apple.co/1IPnRI6G
17https:/ /developer.apple.com /swift /blog/?id=29

24

to.”—Q24030348: 89% UI—Actions.

5.1.3 General Code Problems

The topics Error—General and Q&A are related to general code issues.
These two topics achieved some of the highest share values: 7% and 4.5%
respectively. But, even though their share is high, they are not related to any
technical Swift category. This is something likely to happen, since questions
are written in natural language and general terms like problem or answer are
used in order to explain and give meaning to them. Both topics also had
the lowest Most Relevant values, which means that they were not dominant
topics—in 86.5% and 85.2% of their appearances, they were just secondary
topics. We do not show examples of questions in this category, since this is
not a category we are interested in.

5.1.4 Testing and Errors

Three topics are contained in this category: Error—Debugging, 10S Testing
and Optionals/Nil, with a total share of 10.2%.

We found it interesting that 11 of 12 of the interviewees complained about
the Swift compiler and the error messages, they also indicated that those were
a nuisance in the usage of the language. As P9 stated, “The compiler was
quite unstable sometimes, which led to errors that we didn’t expect. Some-
times, I didn’t even knew the cause of it, just how to fix it.”. He also said that
he “had problems with the error messages, that were not clear and sometimes
led to more doubt”. The Swift 1.2 change log™¥| shows that those issues were
known to the language developers: “Better compiler diagnostics— Clearer er-
ror and warning messages, along with new Fiz-its, make it easier to write
proper Swift 1.2 code.” and “Stability improvements—The most common
compiler crashes have been fized. You should also see fewer SourceKit warn-
ings within the Xcode editor.”. And P4 was more critical saying that “the
biggest problem right now, like the biggest problem by far is the instability
of the tools, because Swift compiler is like the worst compiler I could ever
imagine and that multiplied by hundred, I think.”.

Interestingly, we found that the Optionals construct had its own topic
(5034 questions were categorized as so). The interviews showed that the

18https://developer.apple.com /swift /blog/?7id=22

25

opinions on the matter are quite different. Even though 10 of the intervie-
wees said that Optional was an easy concept to grasp, and recognized its
importance, 5 of them stated that they were not 100% sure about its usage
in some occasions. P9 also declared that the constant use of the Optionals
symbols 7 and ! made the code a little bit confusing. Examples of questions
in this group, with their corresponding topics are:

> “I used this code and I'm getting error “Could not find an overload
for “init” that accepts the supplied arguments”.”—Q26511891: 94% Error—
Debugging.

N “Ok so I am trying to run this code but I keep on getting this error: fa-
tal error: unexpectedly found nil while unwrapping an Optional value. I don’t
understand what it means or why im getting it. Any hint?”—Q24948302:
91% Optionals/Nil.

5.1.5 Integration with Objective-C

This category is represented by the topic Objective-C' Interoperability. This
was the 8th topic on the share ranking (Table [3)). Swift and Objective-C
share the same frameworks and they are interoperable, which means that
they can be used together in the same project. This fact also allows an
easier migration, since it is possible to translate and replace parts of the
Objective-C apps.

Objective-C is, still, more used than Swift[23]. It has a much more content
(e.g., 4 times more questions on StackOverflow) and many APIs that were
not migrated. Therefore, Swift developers need to have an understanding
of Objective-C. This need is recognized by the interviewees: “I believe that,
in order to someone to be considered an i0OS developer, he needs to know
Objetive-C” (P11); “I learned Swift without knowing Objective-C. But soon
I had to use an API that reads barcodes, and it only had an Objective-C
version. I had to do simple modifications, but it was a little complicated
since the syntax is was unfamiliar. After some research, I was able to make
it work.” (P9). An example of a question in this theme is:

& “Tve made a framework that requires the sqlite3 framework. How do
I add a Objective C' Bridging Header for my framework that imports sqlite3
into my Swift file? I already have a bridging header file for my project, but
not for my framework.”—Q24841144: 96% Objective-C Interoperability.

26

5.1.6 IDE

The IDE category is represented by the topic IDE—Xcode, 10th on the share
ranking. Xcode is the IDE made by Apple that contains a suite of develop-
ment tools that enables the development to the iOS ecosystem (and other
Apple products, like OS X).

Some of the interviewees related issues that occurred while using the
IDE, mainly because of the version changes. Since its release, Swift received
two major upgrades (v1.2 and v2.0), Xcode went from v6 (Swift release) to
v7 (Swift 2.0) and iOS was updated from v7 to v9. These updates incur
changes in the way the code should be used and written, causing the old
code no longer to compile. As an example, interviewees indicate that the
Swift 2.0 converter, a tool in Xcode that helps to convert older Swift code
to the latest Swift syntax, was not 100% reliable: “When the new version
was released, I had to convert my code, since it wasn’t working anymore. It
wasn’t a difficult task. But it was kind of a problem when APIs I was using
also stopped working” (P10). Furthermore, P9 talked about the difficulties
to merge changes made to the Storyboard, an Interface Builder present in
Xcode. Even though it is not exactly Swift code, it is still something that
the developers have to deal with. An example of a question in this theme is:

& “After upgrading to xCode6.1, I can’t compile my project which 1is
ok last time. I have never changed anything in this file. Please help me
117—Q26502746: 94% IDE—Xcode.

5.1.7 Others

Some of the topics were too specific to fit in the categories above, however
they are still important to be discussed. The Game Development topic shows
that there’s an interest in developing iOS native games, and the majority
of the questions are related to the 2D framework SpriteKit. Another topic,
Cloud/Social Media, demonstrates that the developers are interested in using
third-party APIs, like Parse{ig] and Facebook[gﬂ to connect their apps, and
that there are doubts about the integration and initial usage (e.g., performing
a login on Facebook, or a query on Parse). Moreover, we had problems with
topic that we labeled Noise—General Words. After looking through a sample
of questions, some of it were related to the data structure List. Still, a lot of

Yhttps:/ /www.parse.com/
2Ohttps://developers.facebook.com/

27

other unrelated questions appears because it had general words (e.g., Swift,
iOS, App) that could be part of most topics.

5.2 RQ2: Are developers having problems with the
usage of Optionals?

Swift makes use of optional types: “var x: Int?” means that the vari-
able x either has a value and this value is an integer, or it does not have a
value at all. We studied Swift’s optionals for at least three reasons. First,
although commonplace in functional languages, such as Haskell and ML, op-
tionals types are rarely available in imperative languages. Second, in Swift
optionals types are also pervasive. For example, some functions operating
on dictionaries, one of the basic data structures of the language, require the
use of optionals. It is not natural to build non-trivial Swift programs with-
out using optionals. Third, optionals are a major feature of Swift that is
not available in Objective-C and can thus be an obstacle to its adoption by
experienced Objective-C developers.

As we show in our first research question (§ , the LDA technique
successfully identified questions related to Optional usage. In this research
question we are motivated to further investigate how the Optional construct
is being used in practice. The LDA technique classified 1,451 questions (8.5%
of the total) as Optionals related (Table [3)). Interestingly, the answer rate of
these questions is four times higher than the overall questions about Swift
(90.14% of them have answers, and 60.02% have an accepted answer). Since
this high number of questions prevents manual analysis from being success-
ful, we decide to study the questions that had a high LDA score. We use this
approach because, after a manual investigation, we observed that these ques-
tions are more likely to be related to Optionals concerns. On the other hand,
questions with a low LDA score are not directly associated with Optionals
usage, for instance, the user wants to improve one aspect of her applica-
tion, which is using an Optional variable (e.g., Q30147712, score: 0.1053).
We then selected and investigated the 3rd quartile of questions (363 ones)
ranked using their score value. When analyzing these questions, we found
and removed 10 false-positive questions (e.g., Q29313022), resulting in 353
categorized questions. After examining the title, the question body, and the
associated tags of all the 353 selected questions, we ended up with 4 main
groups of Optional related questions.

28

5.2.1 Errors

203 occurrences. Most of questions are related to errors that happen
during runtime or compile time. In particular, the “fatal error: unexpectedly
found nil while unwrapping an Optional value” error is the most common one,
with 185 occurrences. This error occurs when a user is trying to unwrap an
optional variable that holds a nil value. This error happens in different
contexts, mainly because several Swift APIs made use of Optional values,
for instance: Q24948302 deals with graphic components, Q29730819 deals
with audio components, and Q28882954 deals with URL components. As a
solution to this problem, several StackOverflow users have pointed the use of
optional chaining. Three interviewees also agree with this suggestion.

5.2.2 Basic Usage

88 occurrences. This category groups questions that deals with Optional
basic usage. For instance, (1) checking the value of an optional variable (e.g.,
Q25523305), (2) unwrapping an optional variable (e.g., Q33049246), and (3)
printing an optional variable. Some interviewees reported difficulties when
using the operators ! and 7, which “are not straight-forward to understand”
(P9). Still, although simple, the printing example is rather common (11 oc-
currences found). One StackOverflow user summarized this problem as: “For
one of my static labels on my main story board, it prints out Optional(” United
States”). However, I would like it to print out “United States”. So my ques-
tion is, how do I get rid of the “Optional” part?” (Q232101920). This hap-
pens because the user is trying to print the value of an optional variable which
was not unwrapped. The solution is straightforward: unwrap the variable
before printing.

5.2.3 Optional Idiosyncrasies

38 occurrences. Here we group questions that focus on peculiar Op-
tional features. Most of the questions deal with Optional chaining (e.g.,
Q28046614), with 13 occurrences, and Optional binding (e.g., Q26576366),
with 7 occurrences. Optional chaining is an important strategy to deal with
Optionals. It not only favors readability, but it also makes the code safer be-
cause it avoids forced unwraps, which could lead to the “unexpectedly found
nil while unwrapping” error. Multiple calls can be chained together, and the
whole chain fails elegantly if any part of it is nil. P2 also said that optional

29

chaining is “an alternative instead of using if and elses and it makes your
code cleaner”.

5.2.4 Concepts

24 occurrences. Finally, this group of questions is related to the very basic
concepts about Optionals. Usually they are high level and aimed at under-
standing how the technique is used behind the scenes. Some of them are
not even related to source code (Q32154698). Some example of questions
include: (1) what happens while wrapping and unwrapping an Optional?
(Q27370700), (2) what is the difference between optional and forced un-
wrapping? (Q28665375), and (3) the difference between “optional chaining”
and “optional call chaining” ((Q31143806). Interestingly, we found that all
these questions have answers, and only 3 of them do not have an accepted
answer. When analyzing the questions that do not have an accepted an-
swer, we found that these questions had at lease one answer that one can
judge as accepted, but the author of the question did not mark it as so (e.g.,
(32154698).

5.3 RQ3: Are developers having problems with error
handling in Swift?

We study the Error Handling mechanism because Swift only recently intro-
duced it in its 2.0 release. In the 2.0 approach, errors are thrown using
the throw statement, and are handled by using the do-try-catch syntax.
Before that, Swift developers had to use the old associative Objective-C
solution, which envolves using an NSError object (an object that encapsu-
lates information about an error condition). Here we analyze if developers
are using NSError, using ad hoc solutions, or if they are migrating to the
Swift 2.0 solutions. Since the LDA technique did not identify topics related
to error handling, we performed additional queries with specific Error Han-
dling terms, including “NSError”, “except handl”, “try”, “catch”, “error”,
“finally”, “defer”, and “throw”. This query returned 563 questions. While
manually analyzing these question, we found that 411 of them were false pos-
itive (e.g., Q27325139 deals with errors in general). After removing these
questions, we ended up with 152 Error Handling related questions. These
questions are categorized into 2 categories, discussed next.

30

When analyzing these questions, we found that the majority of them
(87.5%) fits into the topic “Error - Debugging” (Table[3). Interestingly, none
of these questions are related to “Game Development”, “UI - Animations”,
“UI - Positioning” or “UI - TableView”. In order to better understand these
questions, we categorized these questions into 2 groups. These groups are
discussed next.

5.3.1 How to handle error in Swift?

74 occurrences. We found that developers suggest that error handling can
be done using the old associative NSError implementation. Furthermore,
some developers are also using the newly introduced Error Handling mecha-
nism. More interestingly, however, is the fact that 14 developers are propos-
ing the usage of a particular approach: result enumerations (Q27611433,
Q28552710). Indeed, one interviewee (P3) mentioned that “A lot of people
in the community are using result enums”. Still, P3 raised that the current
mechanism that Swift provides does not support asynchronous computation,
which is a unfortunate since mobile applications are becoming much more
asynchronous to improve responsiveness [I13]. One StackOverflow user also
raised the same point (Q30812959).

5.3.2 How to migrate to Swift 2.07

78 occurrences. In this group there are questions about how to trans-
late error handling from another language like Java or Objetive-C into Swift
2.0 (e.g., Q31667074). Questions like that, might indicate that developers
are migrating to the new error handling mechanism. There are also ques-
tions (e.g., Q32809294) about compiling errors due to the migration process.
These errors happened for various reasons, like not knowing how to use try
and catch statements. Multiple questions (Q32694669, (Q32651449) also
asked about the “Clall can throw, but is not marked with try and the error
1s not handled” error, which was solved by correctly using the do-try-catch
pattern.

6 Discussions

Overall Assessment. Developers seem to find the language easy to un-
derstand and adopt. This is the opinion of most of our interviewees. Also,

31

the majority of the questions are about libraries and frameworks, instead
of the language itself. Nonetheless, a considerable number of questions are
targeting Optional Types, which does not exist in Objective-C. Since Swift
has other features that are not in Objective-C which are not mentioned as
frequently, such as overflow operators, this large number of questions about
optionals suggests that this subject is both relevant and non-trivial. This is
reinforced by answers from some of our interviewees.

In addition, it may still be too early to make a switch to Swift for produc-
tion development. There are many questions on StackOverflow about bugs in
the toolset and also about error messages that are either hard-to-understand
or unhelpful. One of our interviewees went so far as claiming that “Swift
compiler is like the worst compiler I could ever imagine and that multiplied
by hundred”. On the one hand, this result is not entirely surprising, consid-
ering that the language has just a year old. On the other hand, the Swift
Web site states that “Swift is ready for your next project”FY

Implications. This research has implications for different kinds of stake-
holders. Software developers can learn from the mistakes made by their peers.
For instance, learning how to use Optional variables is important and since
Swift frameworks use this construct intensively, they cannot ignore it (RQ2).
Since some developers argued that the error handling mechanism that Swift
provides is not effective (e.g, it does not handle asynchronous code), re-
searchers can conduct empirical studies further investigate this claim. Also,
researchers can study strategies for improving this error handling mechanism.
Tool makers can take advantage of the high number of questions related to
User Interface (RQ1), and develop tools to make the usage, customization
and animations of Ul elements easier. Still, we found that majority of prob-
lems related to Optional usage were related to inappropriately unwrapping
optional variables (RQ2). Tool makers can use this finding, and improve
their tools to provide hints of when it is safe to unwrap a variable.

Yet, since Swift Error Handling mechanism is different from the ones
found in well-known programming languages (e.g., Java and C#), and Swift
developers are facing a hard time using them (RQ3), professors can provide a
better foundation on this regard. In particular, professors should incentivize
students to discuss the strengths and weakness of each approach. Finally,
we found that compiler errors raised in the initial versions of the language
are, by far, the most unpleasant part of the language. Language designers

2https://developer.apple.com /swift /

32

can benefit from this finding and improve the error messages raised by their
compilers.

Threats to Validity. The first threat is related to the number of LDA
topics chosen. Although there is no “right” solution, we ran several tests in
order to verity the number of topics that best fits in our scope. Also, due to
the high number of associated questions, we manually analyzed only a subset
of Optionals and Error Handling-related questions. However, we believe that
this sample of questions is representative (See the beginning of Section
and [5.3). Still, even though our analysis focus only on StackOverflow. How-
ever, StackOverflow is one of the most popular Q& A websites for developers.
We also correlated the findings with interviews with 12 Swift developers.
As regarding the interviews, our interview script might not have covered all
questions that could have been asked. To mitigate this threat we followed
established empirical methods for interviews [§]. Finally, we also designed
the interviews to be semistructured. This allowed us to ask questions that
were not listed in the script.

7 Conclusion

With less than two years, Swift became one of the most popular programming
languages. After conducting two studies (12 interviews plus quantitative
and qualitative analysis on StackOverflow), we found that there is no rose
garden. Although experienced developers seem to find the language easy to
understand and adopt, a significant proportion of questions are about the
basic language constructs. Even though optional types are pervasive in Swift
development, most of the problems report trivial unwrapping errors. There
are many questions about bugs in the toolset (compiler, Xcode, libraries) and
also about error messages that are either hard-to-understand or unhelpful.
Also, interviewees were unanimous suggesting that the Swift compiler needs
urgent improvement.

References

[1] A.Barua, S. W. Thomas, and A. E. Hassan. What are developers talking
about? an analysis of topics and trends in stack overflow. Empirical
Softw. Engg., 19(3):619-654, June 2014.

33

2]

[10]

[11]

I. Bhattacharya and L. Getoor. A latent Dirichlet model for unsuper-
vised entity resolution. In Proceedings of the Sixth SIAM International
Conference on Data Mining, April 20-22, 2006, Bethesda, MD, USA,
pages 47-58, 2006.

I. Biro, D. Siklési, J. Szabd, and A. A. Benczur. Linked latent dirichlet
allocation in web spam filtering. In Proceedings of the 5th International
Workshop on Adversarial Information Retrieval on the Web, AIRWeb
‘09, pages 3740, 2009.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993-1022, Mar. 2003.

S. S. Chandra and K. Chandra. A comparison of java and c#. J.
Comput. Sci. Coll., 20(3):238-254, Feb. 2005.

S. Hadjerrouit. Java as first programming language: A critical evalua-

tion. SIGCSE Bull., 30(2):43-47, June 1998.

R. Hoda, J. Noble, and S. Marshall. Developing a grounded theory to

explain the practices of self-organizing agile teams. FEmpirical Softw.
Engg., 17(6):609-639, Dec. 2012.

S. Kvale. Interviews : an introduction to qualitative research interview-
ing / Steinar Kvale. Sage Publications Thousand Oaks, Calif, 1996.

Y. Lin, C. Radoi, and D. Dig. Retrofitting concurrency for android appli-
cations through refactoring. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2014, pages 341-352, 2014.

L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom. Use at your own risk: The java unsafe api in the wild. In
Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, pages 695-710, 2015.

M. Nagappan, R. Robbes, Y. Kamei, E. Tanter, S. McIntosh, A. Mockus,
and A. E. Hassan. An empirical study of goto in C code from GitHub
repositories. In Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, pages 404-414, 2015.

34

[12] S. Okur and D. Dig. How do developers use parallel libraries. In FSE,
2012.

[13] S. Okur, D. Hartveld, D. Dig, and A. Deursen. A study and toolkit for
asynchronous programming in C#. In ICSFE, 2014.

[14] C. Parnin, C. Bird, and E. R. Murphy-Hill. Adoption and use of java
generics. Empirical Software Engineering, 18(6):1047-1089, 2013.

[15] G. Pinto, W. Torres, B. Fernandes, F. Castor, and R. S. Barros. A large-
scale study on the usage of javas concurrent programming constructs.
Journal of Systems and Software, 106(0):59 — 81, 2015.

[16] M. F. Porter. Readings in information retrieval. chapter An Algorithm
for Suffix Stripping, pages 313-316. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

[17] T. W. Pratt and M. V. Zelkowitz. Programming Languages: Design and
Implementation. Prentice Hall PTR, Upper Saddle River, NJ, USA, 4th
edition, 2000.

[18] D. Reisinger and S. Tibken. Apple by the numbers: 700m iphones, 25m
apple tvs sold, Mar. 2015. Available at http://www.cnet.com/news/

apple-by-the-numbers-453-retail-stores-worldwide-120m-customers/.
Accessed: 2015-09-04.

[19] F. Schmager, N. Cameron, and J. Noble. Gohotdraw: Evaluating the go
programming language with design patterns. In Evaluation and Usability
of Programming Languages and Tools, PLATEAU ’10, pages 10:1-10:6,
2010.

[20] A. Stefik and S. Hanenberg. The programming language wars: Ques-
tions and responsibilities for the programming language community. In
Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software, Onward!
2014, pages 283-299, 2014.

[21] C.-M. Tan, Y.-F. Wang, and C.-D. Lee. The use of bigrams to enhance
text categorization. Inf. Process. Manage., 38(4):529-546, July 2002.

35

http://www.cnet.com/news/apple-by-the-numbers-453-retail-stores-worldwide-120m-customers/
http://www.cnet.com/news/apple-by-the-numbers-453-retail-stores-worldwide-120m-customers/

[22] E. Tempero, J. Noble, and H. Melton. How do java programs use inher-
itance? an empirical study of inheritance in java software. In Proceed-
ings of the 22Nd Furopean Conference on Object-Oriented Programming,
ECOOP 08, pages 667-691, 2008.

(23] Tiobe. Tiobe index for september 2015, Sept. 2015. Available
at http://www.tiobe.com/index.php/content/paperinfo/tpci/
index.html. Accessed: 2015-09-09.

Appendices

A Interview Script

e (1) Interviewee Background

— How long have you been working as software developer?

— How many/which programming languages have you used in pro-
fessional software projects?

— Do you have professional experience with Objective-C? If so, when
did you start using it?

— When did you start using Swift?
— How familiar are with Swift? (Not that familiar, familiar, strong
familiar with)

e (2) Language Adoption

— What motivated you to learn Swift?
— What made swift easy/difficult to learn?

— What are the data sources you use to get updated with Swift?
(understand /study/learn)

— If the interviewee knows objective-c: Did objective-c help to ease
the learning? How/Why?

e (3) General Problems

— What are the most common problems that face when using Swift?

36

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

— How could those problems be solved?
e (4) Specific problems (Optional Usage and Exception Handling)

— Are you familiar with the idea of Optionals?

— Did you find any difficulties/problems about the usage of Option-

als?
— Do you see any advantages about its usage?

— Are you familiar with the concept of Exception Handling?

— If the interviewee used Swift 1.0: Swift 1.0 doesn’t support excep-
tion handling, nor does it support catching them. Did you miss

EH on Swift 1.07

x If yes, what workarounds did you use to handle exceptional

behavior?

— Do you see any advantages about its usage?

— If the interviewee used Swift 2.0: Have you used it in Swift 2.07

How/Why?

— If the interviewee used both: Did you refactor your old code to

use EH? Do you plan to do this refactor?

x If yes, Are there challenges in doing so?

37

