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Resumo

Os Sistemas de Múltiplos Classificadores (MCSs) baseados em seleção dinâmica de
classificadores são capazes de atingir altas taxas de acerto por estimar a competência dos
classificadores no pool em rotular cada instância de teste e selecionar os mais adequados
para realizar a classificação do objeto. O pool de classificadores deve, portanto, consistir de
classificadores precisos e diversos, para que se obtenha uma melhor performance. Entretanto,
para os métodos de geração de ensemble clássicos, a saber Bagging, Random Subspace e
Boosting, o tamanho do pool é um parâmetro de entrada para o algoritmo, o que pode tornar-se
um problema, já que é difícil antecipar o número de classificadores necessários para solucionar
cada problema de classificação. Além disso, o processo de geração de pool de classificadores
geralmente possui um alto custo computacional, devido à grande quantidade de classificadores
gerados e ao treinamento dos mesmos. Para solucionar essas questões, um método de geração
de ensemble para MCSs baseados em seleção dinâmica é proposto neste trabalho. O método
proposto gera uma certa quantidade, de acordo com a distribuição de dados de treinamento, de
Perceptrons localmente precisos. Ademais, ao invés de treinar os classificadores, uma heurística
é utilizada para obter seus pesos, reduzindo assim o tempo de geração do pool de classificadores.
Nesta dissertação, uma análise passo-a-passo do processo de geração do pool de classificadores
pelo método proposto é apresentada. Também é analisado o efeito de certos aspectos, como
mudanças na distribuição dos dados, fronteiras de decisão complexas e problemas de múltiplas
classes, no desempenho do algoritmo. Além disso, uma avaliação comparativa do desempenho
do método proposto é feita por meio de experimentos realizados utilizando diferentes técnicas
de seleção dinâmica com uma quantidade razoável de problemas de classificação. Resultados
obtidos de análises utilizando dados sintéticos mostram que, em comparação com os métodos de
geração de ensemble, o método proposto é menos sensível a variações na distribuição de dados
de teste. Além disso, para problemas com bordas complexas entre classes, o método proposto
é capaz de obter uma taxa de acerto maior que os outros métodos para o mesmo tamanho de
pool. Ademais, o desempenho do método proposto é equivalente ao dos mérodos de geração de
ensemble clássicos para problemas multi-classe. Experimentos usando 20 conjuntos de dados
mostram que o método proposto gera muito poucos classificadores e é tão preciso quanto os
métodos clássicos embora seja uma ordem de magnitude mais rápido.

Palavras-chave: Sistema de múltiplos classificadores, Seleção dinâmica de classificadores,
Método de geração de ensemble





Abstract

Multiple Classifier Systems (MCSs) based on the dynamic selection of classifiers are
able to achieve high accuracy rates by estimating the competence of the classifiers in the pool in
labelling each test instance and selecting the most suitable ones to perform the classification of
the object. The pool of classifiers should, therefore, consist of accurate and diverse classifiers,
in order to obtain a better performance. However, for the classical ensemble methods, namely
Bagging, Random Subspace and Boosting, the size of the pool is an input parameter to the
algorithm, which may be an issue since it is hard to anticipate the number of classifiers required
to solve each problem. Also, the pool of classifiers generation process usually have high
computational cost, due to the large amount of generated classifiers and their training. In order
to tackle these issues, a method of ensemble generation for MCSs based on dynamic selection is
proposed in this work. The proposed method generates a certain amount, in accordance with
the training data distribution, of locally accurate Perceptrons. Moreover, instead of training
the classifiers, a heuristic is used to obtain their weights, thus reducing the pool of classifiers
generation process time. In this dissertation, a step-by-step analysis of the pool of classifiers
generation process by the proposed method is presented. Furthermore, the effect of certain
aspects on the proposed method’s performance, such as changes on data distribution, complex
decision boundaries and multi-class problems, is analysed. In addition to this, a comparative
performance evaluation of the proposed method is done through experiments using different
dynamic selection techniques over a reasonable amount of classification problems. Results
obtained from analysis using synthetic data show that, in comparison with the classical ensemble
methods, the proposed method is less sensitive to variations on test data distribution. Moreover,
for problems with complex class borders, the proposed method is able to achieve a higher
accuracy rate than the other ensemble methods for the same pool size. Also, the performance of
the proposed method is equivalent to the classical ensemble methods for multi-class problems.
Experiments over 20 datasets show that the proposed method generates very few classifiers and
is as accurate as the classical ensemble methods whilst being an order of magnitude faster.

Keywords: Multiple classifier system, Dynamic selection of classifiers, Ensemble method
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1
Introduction

The "No Free Lunch Theorem" [31] leads to the conclusion that there is not a single
machine learning algorithm capable of yielding a better performance than other algorithms for
all problems. Since there is no universally superior classifier, an alternative to this would be
combining classifiers, in order to explore the competence of each one locally to obtain a better
overall performance [32, 14].

A Multiple Classifier System (MCS) is, then, divided in three phases [5]: Generation,
Selection and Integration. In the first phase, the pool of classifiers is generated. In the second
phase, a non-empty subset of classifiers from the pool is selected. In the third and last phase, the
outputs of the previously selected classifiers are combined to produce the system’s final output.
There are two possible approaches in the Selection phase: Static Selection (SS), in which the
same classifier ensemble is used to classify all test instances, or Dynamic Selection (DS), which
selects specific ensembles according to each test instance.

The DS techniques are based on the idea that the pool of classifiers contain locally
accurate classifiers. Therefore, their aim is to select a subset of classifiers that are best fit,
according to some criterion, for classifying each test instance in particular. This strategy has
been obtaining higher accuracy rates than SS techniques [20, 2, 5], in which the competence
estimation of each classifier in the pool and the ensemble setting happen during the training
phase.

1.1 Motivation

As described previously, the Generation phase of an MCS is responsible for creating
the classifiers to form the pool. The objective is to generate locally specialists and reasonably
complementary classifiers, so that they make different mistakes in different regions, and their
strengths can be explored.

Figure 1.1, shows a dataset structured in an exclusive-OR (XOR) Problem configuration
and exemplifies a situation in which DS techniques work with a pool of locally, but not globally,
accurate classifiers. This example can be found in [19]. Consider a pool of classifiers which
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contains only Perceptron 1 and Perceptron 2 from Figure 1.2(a). It can be observed that their
responses are complementary, that is, every time Perceptron 1 classifies an instance as Class 1,
Perceptron 2 classifies it as Class 2, and vice versa.

Figure 1.1: XOR Problem dataset

(a) Decision made by Perceptron 1 (b) Decision made by Perceptron 2

Figure 1.2: Locally accurate pool of Perceptrons for the XOR Problem

It is important to note that, although both classifiers have an individual accuracy rate of
50%, each one of them is highly accurate in specific regions. If the feature space is divided into
four parts, as in Figure 1.3, it becomes clear that the accuracy rate of Perceptron 1 in regions
Q1 and Q4 is 100%, whereas Perceptron 2 has an accuracy rate of 100% in regions Q2 and
Q3. However, as both Perceptrons never label the same instance as belonging to the same class,
classical static combination rules, such as majority vote or mean, would not obtain a satisfactory
accuracy rate.
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Figure 1.3: Division of the XOR Problem dataset feature space

Select
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<

:
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i

2Q1_ x
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2Q2_ x

i

2Q3

↵⌦ � 1.1

Nevertheless, the local accuracy of each Perceptron can be explored using DS techniques.
If, for any test instance x

i

, the DS technique selects the classifier to label it according to expression⌥⌃ ⌅⇧1.1 , an accuracy rate of 100% can be achieved. This is possible because, in the pool formed by
Perceptron 1 and Perceptron 2, there is always at least one classifier able to correctly classify
each instance, that is, it is guaranteed that the correct classifier to label each instance is inside the
pool.

Thus, it can be observed that, for DS techniques, the presence of locally accurate
classifiers in the pool is of great importance. As the Generation phase can cost a lot in terms
of computational time, the methods of pool of classifiers generation for an MCS that uses DS
techniques must be able to efficiently generate classifiers that are accurate in different regions of
the feature space.

1.2 Problem Statement

During the Generation phase of an MCS, a reasonable number of classifiers are generated
and trained to solve the same classification problem. This approach differs from the classical
classification models, in which only one strong classifier is trained to find the borders between the
problem’s classes. As obtaining a strong classifier is much harder than weak ones, a considerable
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amount of those weak classifiers are then generated to comprise a strong classifier by combining
them [7, 33].

The classical methods of pool of classifiers generation are Bagging [3], Random Subspace
[12] and Boosting [24], but a fair amount of variations from those methods were developed in
the last years.

Bagging is a technique in which a prefixed number of training datasets are generated by
bootstrapping [8] the original training dataset. Each dataset generated is then used to train one
classifier, for example a Perceptron, to form the pool [16, 33].

The Random Subspace method also generates a prefixed number of training dataset using
the original one. However, this is achieved by randomly reducing the number of features of the
original training dataset. Each classifier in the pool is, then, trained with one of the datasets
generated [16, 33].

On the other hand, Boosting is based on the idea that a lot of weak classifiers can surpass
in performance a strong classifier. The generation of those weak classifiers is incremental: the
algorithm generates a classifier on each step, and each of those classifiers is trained with a subset
of the original training dataset. Each training dataset is generated by updating its distribution in
every step, such that the classifier generated in step n+1 is more likely to correctly classify the
instances that the classifier generated in step n missed [16, 33].

All of the methods previously mentioned require training of the classifiers in the ensemble.
Even though it is common to have a pool of simple classifiers to reduce the training time, it is
still a costly process. Moreover, the number of classifiers in the pool must be set beforehand,
which can be disadvantageous, since it is reasonable to believe that the amount of classifiers
necessary to yield a good solution depends on the problem.

1.3 Objective

This work aims to perform a study on pool of classifiers generation for DS methods, in
order to implement an algorithm to generate a pool of classifiers. The size of this pool must vary
with the training dataset distribution, and the generated classifiers must not be trained, so that the
process can be optimized in terms of time.

The proposed algorithm is capable of producing a pool of classifiers such that each
training instance is correctly classified by at least one of the hyperplanes in it, that is, the
theoretical limit (oracle) for the training dataset is 100%.

This approach allows the necessary amount of locally accurate classifiers to be generated,
according to the training data. Also, in order to eliminate the need to train them, a heuristic is
used to obtain the hyperplanes, and, therefore, reduce the pool of classifiers generation time.
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1.4 Methodology

The design started by stating the research objective, which was defined in Section 1.2, and
performing the initial literature review. This last provided the basic concepts and understanding
of the area, as well as an analysis of the existent techniques and methods related to the research
problem. Then, a method for pool of classifiers generation was designed and implemented. The
proposed method was analysed using synthetic two-dimensional datasets. Also, an experiment
was then conducted using public datasets for classification, and the performance of the studied
techniques and the proposed method was measured by:

1. The computational costs associated with the pool of classifiers generation process

2. The accuracy rate obtained by the generated pool, using five different DS methods

Finally, the obtained results were then analysed and compared, and the proposed approach
validated.

1.5 Organization of the Dissertation

This work is organized as follows. In Chapter 2, the basic concepts of MCSs are
introduced. Also, an overview of the classical methods of pool of classifiers generation is
presented. The proposed method is presented in Chapter 3, along with an illustrative example of
the algorithm. Analysis of the proposed method using synthetic data and experimental studies
are conducted in Chapter 4. Finally, in the last chapter, experimental results are summarized and
possible future works are suggested.
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2
Background

2.1 Introduction

As stated by WOLPERT; MACREADY [31], each classifier has its particular competence
domain, in such a way that it surpasses in performance the other algorithms. One advantage
of MCSs over single classifier models is that having a pool of classifiers allows the MCSs to
attempt to select a local optimal model from the available classifiers in their pool, and thus
overcome the fact that there is not a single classifier optimal for all pattern recognition tasks.
Another benefit of using MCS is that, by averaging the outputs of the classifiers in the pool, it is
possible to avoid selecting the worst classifier, even though a better performance than the single
best classifier cannot be ensured. In addition to it, aggregating many classifiers may result in
a better overall classifier than any individual classifier, since many algorithms perform a local
search that leads to different local optima. Moreover, the optimal classifier may not be in the
classifiers space, although the latter may be expanded by combining them, increasing the space
of representable functions [32, 16, 7].

The MCSs are usually structured in three phases, as Figure 2.1 illustrates. In the first
phase, Generation, the training dataset is used as the input to an ensemble method, which then
generates the pool of classifiers. In the Selection phase, the most adequate classifier(s) in the
pool, based on some criterion, is selected to perform the classification task at hand. This is not a
necessary phase for all MCS, since it is possible to always use all classifiers in the ensemble to
classify the test instances. During the last phase, Integration, an aggregation scheme is used to
combine the outputs of the selected classifiers [5].

Figure 2.1: Possible phases of a MCS.
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The classifiers selection can be performed statically, that is, using a subset of the pool
of classifiers for all test instances, or dynamically, which means a different subset of the pool
of classifiers is chosen for each test instance. since not all test instances present the same
classification difficulties, it is reasonable to believe, and it has been shown, that DS techniques
usually yield a better performance than SS ones. When the DS method only selects one classifier,
it is called a Dynamic Classifier Selection (DCS) technique. On the other hand, when more
than one classifier is chosen dynamically to perform the classification task, the process is called
Dynamic Ensemble Selection (DES) [5, 2].

Regardless of the amount of classifiers to be dynamically selected, the selection itself
is done based on an evaluation of competence of each classifier for a given test instance. This
competence estimation can be based on numerous aspects, such as local accuracy, ranking,
the concept of the oracle, probability, diversity, ambiguity, and so on. For the pool to contain
competent classifiers for each test instance, and therefore be able to select an adequate subset
of the ensemble, it is important that the pool is diverse and accurate [16, 5]. The generation of
such pool of classifiers, as well as the classical ensemble methods, are further discussed in the
following section.

2.2 Ensemble Methods

Ensemble methods are responsible for constructing, from the training dataset, the classi-
fiers that will form the pool, during the Generation phase of a MCS [5]. Figure 2.2 illustrates this
process. The resulting pool can be homogeneous, which means it contains only the same type of
base classifiers, or heterogeneous, in which the pool has different types of base classifiers.

Figure 2.2: Generation of an ensemble.

The main goal of an ensemble method is to generate a pool as accurate and diverse as
possible, for it is generally believed that, in order to exploit each classifier’s strength and thus
yield a better solution than a single strong classifier, the ensemble should contain locally expert
base classifiers [7, 33].

The process of generating a pool of classifiers can be done using many general techniques:
by Bayesian voting, by manipulating the training examples, by manipulating the input features,
by manipulating the output targets and by injecting randomness [7, 32]. Two of the classical
ensemble methods, Bagging and Boosting, generate the pool of classifiers by using different
subsets of the training dataset, while the other classical method, Random Subspace, uses different
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feature subspaces of the training dataset to construct the ensemble. These three ensemble
methods will be presented in more details next.

2.2.1 Bagging

Bagging [3] is a pool of classifiers generation method based on bootstrapping [8], which
applies random sampling with replacement to generate data subsets of a given dataset. For
example, given a training dataset G of size N, G

i

, a bootstrap replicate of G, is constructed by
sampling with replacement N instances from G, which means G

i

may contain several replications
of an original instance in G, while another original instance may not be present in the subset
generated.

In Bagging, each classifier c

i

in the pool is trained using a bootstrap replicate (G
i

) of the
original training dataset (G) as its training dataset. By doing so, it is possible that misleading
instances in G may not be present in G

i

, which may result in a better classifier [16, 26, 33].
Algorithm 1 describes the Bagging method for any base classifier. Note that the number

L of classifiers to be generated must be set beforehand. In order to avoid generating almost
identical classifiers, the base classifier should be unstable, in which small changes in the training
dataset result in largely different classifiers [16, 26].

Algorithm 1 Bagging method
1: procedure GENERATEPOOL(L)
2: G {z1,z2, ...,zN

} . Training dataset
3: Pool {}
4: for i 1,L do . L: Number of classifiers
5: G

i

 bootstrapSample(G)
6: c

i

 constructClassi f ier(G
i

)
7: Pool Pool[{c

i

} . Add classifier c

i

to the Pool
8: end for
9: return Pool

10: end procedure

The instances from the training dataset G that are not present in its bootstrap replicate G
i

are called out-of-bag examples. For a training dataset of size N, the probability of each instance
to be left out of G

i

is approximately Poisson distributed with l = 1, which yields 1/
e

. Therefore,
approximately 37% of the original instances of G are out-of-bag. Thus, better classifiers may be
obtained from G

i

than from G, for it is possible that outliers in the original training dataset were
not selected in the process [16, 26, 33].

Furthermore, these out-of-bag examples can be used to estimate the generalization error
of the generated pool of classifiers. If an instance z

j

in G was not present in M < L bootstrap
replicates, z

j

is an out-of-bag example for the sub-ensemble formed by those M classifiers. So, if
the ensemble error on each instance in G is scored, the generalization error of the ensemble can
be estimated. [16, 33].



26 CHAPTER 2. BACKGROUND

2.2.2 Random Subspace

Introduced in [12], the Random Subspace method was originally proposed to build the so
called "Decision Forest", a classifier created from the combination of a pool of Decision Trees.
The generation of those Decision Trees is fairly simple: consider a training dataset G with N

instances and dimension d. Each Decision Tree in the pool is generated using a training dataset
G

i

of dimension k < d, whose k features are a randomly selected subset of the original d features.
G

i

contains the same N instances from G, but represented only with the k randomly selected
features [16].

The generation phase of the Random Subspace method is described with more detail in
Algorithm 2, for any base classifier. It can be observed that the algorithm requires two parameters:
the number L of classifiers in the pool and the dimensionality k of the generated subspaces.

Algorithm 2 Random Subspace method
1: procedure GENERATEPOOL(k,L)
2: G {z1,z2, ...,zN

} . Training dataset
3: Pool {}
4: for i 1,L do . L: Number of classifiers
5: G

i

 selectRandomSubspace(G,k) . k: Dimension of subspaces
6: c

i

 constructClassi f ier(G
i

)
7: Pool Pool[{c

i

} . Add classifier c

i

to the Pool
8: end for
9: return Pool

10: end procedure

The Random Subspace method can be advantageous for problems which the amount
of training instances is small compared to the amount of features, for the method reduces
the original training dataset dimensionality while maintaining the number of instances in all
generated subspaces. Also, for problems with redundant data, using random subspaces to
generate the classifiers may yield a better solution than using the original feature space, since
the former performs, albeit randomly, a feature selection. For those characteristics, the Random
Subspace method have been widely used for problems with high dimensional data, such as facial
recognition [6], traffic flow prediction [28], functional magnetic resonance imaging data analysis
[18], cancer diagnosis [1], among others [16, 26].

2.2.3 Boosting

The main idea of Boosting [24] and its variants is to create several weak classifiers
incrementally and combine them to obtain a better prediction rule. As opposed to Bagging and
Random Subspace, in which the process of generating the classifiers is random and parallel,
the Boosting method generates the pool of classifiers in a sequential and, depending on which
variant, strictly deterministic manner [16, 26].



2.2. ENSEMBLE METHODS 27

The process of generating each classifier is fairly simple: consider a training dataset G.
In the first step of the algorithm, a base classifier c1 is trained with the original training dataset.
But, since c1 is a weak classifier, it will probably not be able to satisfactorily generalize the
problem. So, the error of c1 is evaluated using the original training dataset, and another training
dataset, G2, is generated from the one used to train c1. The data distribution of G2 is derived so
that it makes the mistakes made by c1 more evident. This is performed in order to make the
incorrectly classified instances by c1 more apparent. In the next step, classifier c2 is trained with
G2, so it will probably classify correctly the instances that c1 did not. c2 will then be tested,
and the distribution of the new dataset G3 to be created from G2 will be adjusted according to
the classification errors of c1. This process is repeated until the amount of classifiers set to be
generated is reached. In short, the Boosting method generates in each step a classifier more
apt to correctly classify the instances the classifier created in the previous step misclassified
[16, 26, 33].

Algorithm 3 describes the general Boosting method. Note that the amount of classifiers
to be generated is an input to the algorithm.

Algorithm 3 General Boosting method
1: procedure GENERATEPOOL(L)
2: G {z1,z2, ...,zN

} . Training dataset
3: G

i

 G
4: Pool {}
5: for i 1,L do . L: Number of classifiers
6: c

i

 constructClassi f ier(G
i

)
7: e

i

 test(G,c
i

) . Evaluate the error of c

i

8: G
i+1 ad justDistribution(G

i

,e
i

)
9: Pool Pool[{c

i

} . Add classifier c

i

to the Pool
10: end for
11: return Pool

12: end procedure

In AdaBoost [11], the most influential boosting algorithm, the data distribution adjust-
ment can be achieved by resampling, in which the training instances are sampled in each step
to form the desired distribution, or re-weighting, in which the training instances are weighted
in each iteration according to the sample distribution. By doing so, the margins between the
training instances are maximized [7, 16, 33].

The Boosting algorithms have been acclaimed for their high accuracy, robustness and
wide applicability, which includes face recognition [30], text categorization [25], routing [22],
medical diagnosis [27], and so on. Aside from AdaBoost, variants include Arc-x4 [4], Brown-
Boost [9] and RobustBoost [10], among others.
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3
The Proposed Method

The proposed method is presented in Algorithm 4. It consists of generating hyperplanes
iteratively in such a way that each instance in the training set must be correctly classified by at
least one of the base classifiers in the pool, that is, the Oracle for the training dataset is 100%. The
base classifiers chosen to produce such hyperplanes were Perceptrons. Therefore, the algorithm
itself discovers the amount of Perceptrons needed in the pool, according to the training dataset.
Furthermore, the use of a heuristic to obtain the Perceptrons weights makes it not necessary to
train them.

Algorithm 4 Proposed method
1: procedure GENERATEPOOL
2: G {z1,z2, ...,zN

} . Training dataset
3: C {c1,c2, ...,c

k

} . Problem classes
4: Pool {}
5: while G 6= {} do
6: for j 1,k do
7: R( j) centroid(c

j

) . Centroid of class j

8: end for
9: d max(pairwiseDistance(R)) . Maximum distance between centroids

10: a,b f indIndex(d)
11: midPoint (R(a)+R(b))/2
12: normal (R(a)�R(b))/d

13: w

p

 {normal} . Perceptron p weights
14: q

p

 �midPoint ·normal . Perceptron p bias
15: p perceptron(w

p

,q
p

)
16: for i 1,N do
17: if test(p,z

i

) = label(z
i

) then . Perceptron p classifies instance i correctly
18: G G�{z

i

} . Excludes instance i from dataset
19: end if
20: end for
21: Pool Pool[{p} . Add Perceptron p to the Pool
22: end while
23: return Pool

24: end procedure
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Figure 3.1(a) shows a training dataset with N = 350 instances and k = 5 classes. The
step-by-step execution of the algorithm for this example happens as follows. Steps 1 and 2 of
Algorithm 4 consist of assigning to G the entire training dataset and to C the five classes of the
problem ({1,2,3,4,5}). Step 4 assigns the Pool to an empty set.

In the first iteration of the algorithm’s outer loop, the centroids of each of the five classes
are calculated and stored in the matrix R (steps 6 to 8). All five centroids are represented by
asterisks (*) in Figure 3.2(a). Then, in steps 9 and 10, the two most distant points in R are chosen,
in this case R(3) and R(5), and their classes a,b = 3,5 identified. In Figure 3.2(a), Class 3 and
Class 5 centroids are the red asterisks. From step 11 to step 15, the weights w

p

and bias q
p

of
Perceptron 1 are calculated, so that it separates R(3) and R(5) halfway between them, as can
be observed in Figure 3.2(a). In steps 16 to 20, each instance in G is tested with Perceptron 1,
and the instances correctly classified are then excluded from G. Since Perceptron 1 correctly
classifies all instances of Class 3 and Class 5, as can be seen in Figure 3.2(a), by the end of that
iteration G no longer contains instances of both classes, though it still contains all instances of
the other classes. In step 21 the Perceptron 1 is then added to the Pool.

In the second iteration of the outer loop, G contains all instances of Class 1, Class 2 and
Class 4, so the centroids of these classes are calculated from steps 6 to 8 and stored in R. These
centroids are represented by the three asterisks in Figure 3.2(b). The centroids chosen in steps
9 and 10 are R(2) and R(4), since they are the most distant to each other, as can be noticed in
Figure 3.2(b), in which they are the red asterisks. Then, the weights w

p

and bias q
p

of Perceptron
2 are calculated from step 11 to step 15, dividing the space between R(2) and R(4) right in the
middle, as Figure 3.2(b) shows. Perceptron 2 is then used to test each instance in G from steps
16 to 20, and the instances that remain in G are the ones Perceptron 2 classifies incorrectly. Since
Class 2 and Class 4 are not linearly separable, Perceptron 2 is not able to eliminate all instances
of those classes. Perceptron 2 is added to the Pool in step 21.

In the third iteration, G still has instances of Class 1, Class 2 and Class 4, so their
centroids R(1), R(2) and R(4) are calculated from steps 6 to 8. It can be observed that, since
most of Class 2 and Class 4 instances were eliminated in the previous iteration, their centroids
changed. It did not happened to centroid of Class 1, as neither Perceptron 1 nor Perceptron 2
were able to classify Class 1 instances. The red asterisks in Figure 3.2(c) show that centroids
R(1) and R(4) are the most distant ones in this iteration, with centroid R(2) in black. Perceptron
3 is then created from step 11 to step 15 so that it splits the plane in a half. From steps 16 to
20, each instance remaining in G is then tested with Perceptron 3, and the instances it correctly
classifies are further eliminated from G. It can be observed that the remaining Class 4 instance is
correctly classified by Perceptron 3, so G only possesses Class 1 and Class 2 instances after the
third iteration. In step 21 the Perceptron 3 is then added to the Pool.

In the fourth and last iteration, G contains only 4 instances, 3 of Class 1 and 1 of Class 2,
as showed in Figure 3.2(d). Centroids R(1) and R(2) are calculated from steps 6 to 8 and chosen
to calculate the weights w

p

and bias q
p

of Perceptron 4 from steps 11 to 15. Each instance in
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G is tested with Perceptron 4 in steps 16 to 20, and since it correctly classifies all 4 remaining
instances, they are eliminated and G turns into an empty set. Perceptron 4 is then added to the
Pool in step 21, and the algorithm leaves the outer loop, returning the Pool in step 23.

Figure 3.1 shows the entire training dataset with all four Perceptrons generated by the
proposed method. The spatial disposition of the only four Perceptrons necessary to "cover" the
entire dataset can be observed.

(a) Toy problem training dataset

(b) Perceptrons generated by the proposed method

Figure 3.1: Toy problem
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(a) First iteration (b) Second iteration

(c) Third iteration (d) Last iteration

Figure 3.2: Generation of Perceptrons using toy problem
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4
Experimental study

4.1 Performance analysis

In order to better understand the mechanics of the proposed method and identify in which
situations it works best or fails, analysis using synthetic data were performed regarding the effect
of the following factors on the accuracy rate of the method: differences on test data distribution,
problems with complex borders between the classes and problems with multiple classes.

As the pool generated by the proposed method is generally not fit for DES techniques,
since it generates very few and diverse classifiers, it was chosen five DCS techniques, instead
of DES techniques, to evaluate the accuracy, in order to perform a fair comparison between
the proposed method and the three classical pool of classifiers generation methods. The DS
techniques used in the following analysis were the accuracy-based methods Overall Local
Accuracy (OLA) and Local Class Accuracy (LCA), the behaviour-based method Multiple
Classifier Behaviour (MCB) and the probabilistic-based methods A Priori and A Posteriori,
which are the DCS techniques in [5].

4.1.1 Variations on data disposition

Since the data disposition has a strong influence on the proposed method’s pool generation
process, the impact on the performance due to differences between the data distributions of the
training and test datasets was analysed.

The purpose of this analysis is to investigate the sensitivity of the proposed method
in regards to the following three scenarios of variation on the distribution of the test dataset
compared to the distribution of the training dataset:

I The classes in the test dataset are farther from each other, but in the same relative
position to each other as in the training dataset;

II The classes in the test dataset are closer to each other, but in the same relative position
to each other as in the training dataset;



34 CHAPTER 4. EXPERIMENTAL STUDY

III The classes have a different relative position to each other in comparison with the
training dataset.

The artificial training dataset used in this analysis as a toy problem is shown in Figure
4.1(a). It is a balanced binary classification problem with 240 instances, in which the training
dataset contains 80% of those instances and the test datasets containing the remaining ones. The
pool generation by the proposed method is described in Figure 4.2.

Figure 4.1(b) shows the artificial test dataset generated with the same distribution as the
training dataset in Figure 4.1(a). This dataset was used as a reference for comparison with the
case studies described previously.

(a) Toy problem training dataset (b) Test dataset

Figure 4.1: Toy problem training and test datasets generated with the same distribution

The test datasets used in the analysis of case I scenario, in which the distance between
the classes is increased, are described in Figure 4.3. In Test 1 dataset, Class 1 instances are
farther from Class 2 instances than in the original test dataset. Both classes are even further away
in Test 2 dataset.

For the case II scenario analysis, in which the distance between the classes is reduced,
the test datasets used are described in Figure 4.4. The gap between Class 1 instances and Class 2
instances in Test 3 dataset is smaller than in the original test dataset. This gap is further shortened
in Test 4 dataset and even further in Test 5 dataset, to become non-existent in Test 6 dataset.

The case scenario III, in which the relative position between the classes is changed, the
test datasets used to evaluate the proposed method can be observed in Figure 4.4. The original
test dataset was modified so that the position of the classes in relation to each other gradually
shifted from Test 7 to Test 9 datasets.

The pool of Perceptrons in Figure 4.2(d) was tested with all test datasets previously
presented and was evaluated in terms of accuracy using the DCS techniques formerly stated.
For comparison, the same techniques were applied on the pools generated by Bagging, Random
Subspace and Boosting, all three with the same number of Perceptrons as the proposed method’s
pool size (N

PM

=3 Perceptrons). Also, a pool of size N100 = 100 was generated with Bagging,
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(a) First iteration (b) Second iteration

(c) Last iteration (d) Disposal of generated pool over training dataset

Figure 4.2: Generation of Perceptrons using toy problem

Random Subspace and Boosting and tested for each case scenario as well. The Boosting
algorithm used in this analysis was AdaBoost. The experiment was executed 20 times for the
last three methods for both pool sizes. The accuracy yielded by the four methods of pool of
classifiers generation can be observed in Table 4.1 for all DCS techniques aforementioned.

For case scenario I, the disposal of the pool of Perceptrons generated by the proposed
method over the test datasets can be seen in Figure 4.6. It can be observed that, since the relative
position of the classes with respect to each other have not changed, the position of the Perceptrons
favours the correct classification in this case, given that the border region between the classes is
increasing.

As expected, the accuracy for case I scenario increased for all methods, in comparison
with the original test dataset, as Table 4.1 shows. Note that, from Test 1 to Test 2, the accuracy
of the proposed method only increased for the A Posteriori DS technique, whereas all other pool
of classifiers generation methods had its performance increased with the increase in the distance
between the classes, which suggests the proposed method is more resistant to changes of this
nature, in comparison with the other methods.

The pool generated by the proposed method over the test datasets from case scenario II
are shown in Figure 4.7. Note that, even though the border region between the classes is being
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Table 4.1: Mean and standard deviation of accuracy for the pool of classifiers generation
methods using DCS techniques for the three case scenarios. N

PM

is the proposed method’s
pool size, while N100 is the pool size of 100 Perceptrons. Best results are in bold.

(a) OLA

Dataset Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Original test 95.00 95.66 (2.05) 93.00 (4.91) 90.58 (7.57) 94.66 (2.62) 94.16 (1.98 88.91 (9.22)

Test 1 98.33 99.33 (1.25) 97.66 (3.39) 94.33 (5.95) 98.33 (1.20) 98.75 (0.91) 91.75 (9.38)
Test 2 98.33 99.92 (0.37) 99.33 (2.25) 98.16 (2.58) 99.83 (0.51) 99.92 (0.37) 93.25 (8.91)
Test 3 90.00 91.67 (3.37) 89.58 (3.93) 87.33 (7.20) 90.75 (2.56) 90.75 (1.75) 84.25 (8.89)
Test 4 86.67 82.67 (3.12) 83.08 (3.75) 83.00 (4.70) 83.92 (2.37) 85.08 (2.26) 79.67 (8.08)
Test 5 78.33 74.08 (3.31) 75.50 (3.29) 73.67 (1.99) 76.25 (3.32) 78.08 (2.97) 72.33 (6.60)
Test 6 75.00 67.00 (4.03) 68.83 (3.59) 67.25 (3.34) 69.16 (3.22) 71.58 (3.72) 70.41 (6.11)
Test 7 41.67 48.00 (7.14) 45.83 (9.71) 53.50 (12.9) 46.25 (6.77) 45.16 (4.21) 44.25 (7.26)
Test 8 31.67 25.25 (4.30) 25.58 (6.69) 28.83 (8.95) 24.83 (5.23) 25.66 (3.76) 30.16 (5.35)
Test 9 11.67 11.41 (0.97) 11.41 (1.89) 12.33 (2.98) 10.67 (1.47) 12.16 (1.44) 16.33 (7.77)

(b) LCA

Dataset Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Original test 95.00 96.50 (1.70) 94.08 (4.82) 90.75 (7.48) 95.75 (2.26) 95.41 (1.70) 89.08 (8.82)

Test 1 98.33 99.25 (1.26) 97.75 (3.30) 94.58 (5.56) 98.25 (1.14) 98.66 (0.87) 91.83 (9.20)
Test 2 98.33 99.92 (0.37) 99.41 (2.25) 98.33 (2.29) 99.83 (0.51) 99.92 (0.37) 93.66 (8.89)
Test 3 90.00 92.16 (2.76) 90.25 (4.05) 87.50 (7.26) 92.25 (1.97) 90.91 (1.57) 84.58 (8.54)
Test 4 86.67 83.83 (3.24) 84.08 (3.44) 83.08 (4.75) 85.58 (1.97) 85.50 (1.80) 79.50 (7.91)
Test 5 76.67 74.58 (3.32) 75.67 (2.93) 73.41 (2.19) 75.41 (2.52) 77.67 (1.74) 72.50 (6.58)
Test 6 75.00 68.67 (3.57) 69.58 (3.70) 67.67 (3.35) 69.08 (2.98) 72.83 (2.23) 70.50 (6.35)
Test 7 45.00 47.16 (6.12) 46.16 (9.64) 53.16 (13.3) 47.50 (5.93) 43.91 (3.63) 44.33 (7.18)
Test 8 30.00 24.16 (3.64) 24.41 (6.51) 29.00 (9.05) 24.00 (4.20) 25.41 (3.05) 29.50 (5.07)
Test 9 11.67 10.50 (0.78) 11.00 (2.38) 12.00 (3.31) 10.08 (1.00) 11.16 (1.22) 15.83 (7.97)

(c) MCB

Dataset Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Original test 95.00 95.66 (2.05) 94.83 (2.69) 90.58 (7.57) 96.00 (2.12) 94.16 (1.98) 94.83 (1.42)

Test 1 98.33 99.33 (1.25) 98.67 (1.27) 94.33 (5.95) 98.41 (1.66) 98.75 (0.91) 98.75 (0.74)
Test 2 98.33 99.92 (0.37) 99.92 (0.37) 98.16 (2.58) 99.83 (0.51) 99.92 (0.37) 100.0 (0.00)
Test 3 90.00 91.67 (3.37) 90.91 (3.64) 87.33 (7.20) 92.16 (2.16) 90.75 (1.75) 89.58 (2.69)
Test 4 86.62 82.67 (3.12) 83.75 (3.41) 83.00 (4.70) 85.83 (2.19) 85.25 (2.37) 84.08 (1.81)
Test 5 78.24 74.08 (3.31) 76.00 (3.43) 73.67 (1.99) 73.83 (2.16) 78.08 (2.97) 77.16 (2.10)
Test 6 75.00 67.00 (4.03) 68.25 (4.09) 67.25 (3.34) 67.00 (3.52) 71.50 (3.85) 71.00 (3.39)
Test 7 42.51 48.00 (7.14) 48.41 (6.82) 53.50 (12.9) 47.41 (12.9) 45.16 (4.21) 44.67 (4.31)
Test 8 30.51 25.25 (4.30) 25.16 (5.16) 28.83 (8.95) 25.50 (5.16) 25.91 (3.76) 26.16 (2.42)
Test 9 11.67 11.41 (0.97) 11.41 (1.55) 12.33 (2.98) 10.58 (0.97) 12.16 (1.44) 11.41 (1.55)
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Table 4.1: Mean and standard deviation of accuracy for the pool of classifiers generation
methods using DCS techniques for the three case scenarios. N

PM

is the proposed
method’s pool size, while N100 is the pool size of 100 Perceptrons.

(d) A Priori

Dataset Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Original test 96.67 95.08 (2.38) 94.50 (2.96) 90.58 (7.57) 95.83 (2.13) 94.75 (1.64) 95.25 (1.11)

Test 1 98.33 99.33 (1.25) 98.67 (1.27) 94.33 (5.95) 98.41 (1.66) 98.75 (0.91) 98.75 (0.74)
Test 2 98.33 99.92 (0.37) 99.92 (0.37) 98.16 (2.58) 99.83 (0.51) 99.92 (0.37) 100.0 (0.00)
Test 3 88.33 90.16 (3.50) 89.08 (3.39) 85.83 (6.34) 90.25 (2.11) 88.58 (1.35) 87.58 (2.67)
Test 4 86.67 82.67 (3.17) 83.75 (3.19) 83.08 (4.62) 85.91 (2.26) 85.33 (2.45) 84.75 (2.05)
Test 5 80.00 74.58 (3.37) 76.25 (3.28) 74.00 (2.18) 74.50 (2.10) 78.83 (2.23) 77.25 (1.89)
Test 6 73.33 67.83 (3.38) 67.75 (3.75) 66.75 (2.56) 66.33 (2.62) 71.67 (2.75) 70.67 (2.77)
Test 7 48.33 49.16 (8.19) 49.33 (7.71) 55.58 (12.6) 49.00 (8.11) 46.00 (5.08) 47.83 (4.36)
Test 8 33.33 24.41 (4.96) 25.50 (4.52) 29.33 (8.74) 25.16 (4.64) 27.83 (4.01) 27.41 (3.80)
Test 9 11.67 11.67 (0.76) 11.58 (0.85) 12.75 (2.71) 11.41 (0.81) 11.58 (0.37) 11.83 (1.51)

(e) A Posteriori

Dataset Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Original test 95.00 95.75 (1.83) 95.16 (2.58) 90.67 (7.44) 95.83 (2.13) 95.16 (1.52) 95.33 (0.87)

Test 1 98.33 98.50 (1.42) 98.41 (0.85) 94.50 (5.49) 98.16 (1.19) 98.41 (0.65) 98.58 (0.61)
Test 2 100.0 99.92 (0.37) 100.0 (0.00) 98.33 (2.29) 99.83 (0.51) 99.92 (0.37) 100.0 (0.00)
Test 3 86.67 88.75 (3.10) 88.25 (2.72) 85.58 (6.26) 89.75 (2.04) 87.91 (1.31) 87.75 (2.31)
Test 4 85.00 84.41 (2.37) 84.67 (2.62) 83.16 (4.67) 86.08 (2.04) 85.41 (1.06) 84.16 (2.44)
Test 5 78.33 75.25 (3.07) 75.41 (2.85) 75.16 (2.01) 76.16 (2.16) 78.00 (1.49) 76.41 (1.55)
Test 6 73.30 67.08 (3.51) 68.25 (2.98) 67.67 (2.67) 67.16 (2.03) 71.67 (2.80) 71.33 (2.84)
Test 7 48.33 47.75 (6.67) 48.16 (6.88) 52.75 (13.2) 45.67 (6.93) 44.66 (4.76) 47.16 (4.36)
Test 8 31.67 24.16 (3.22) 24.00 (3.95) 27.67 (9.21) 22.25 (2.87) 26.83 (3.66) 27.25 (4.05)
Test 9 11.67 11.41 (0.61) 11.33 (0.87) 12.83 (2.81) 11.50 (0.51) 11.58 (0.37) 11.41 (0.97)
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(a) Original test dataset

(b) Test 1 dataset (c) Test 2 dataset

Figure 4.3: Test datasets used in the analysis of case I.

reduced, the feature space is still rather covered by the three Perceptrons in the pool, considering
that the relative position of the classes with respect to each other are the same.

Table 4.1 shows that, as the border region diminished, the performance of all methods
was degraded, as expected. It can be observed that, from Test 3 to Test 6, the accuracy of the
proposed method only decreased 15 percentage points at most. For Bagging, the performance was
degraded by at least 20 percentage points on average, and for Random Subspace the minimum
accuracy decrease was of 19 percentage points overall. On the other hand, the decrease in the
accuracy of Boosting was of at least 16 percentage points on average, the smaller performance
degradation between the three classical methods and the closest to the one presented by the
proposed method, though the later was less sensitive to the reduction of the classes boundaries.
This also implies the proposed method possess a certain resistance to changes in the distances
between the classes, as long as their dispositions are the same as in the training dataset.

Figure 4.8 shows the disposal of the Perceptrons over the test datasets from case scenario
III. It can be seen that the coverage of the feature space by the three Perceptrons in the pool was
strongly affected by the change in the relative position of the classes with respect to each other.

As expected, the accuracy of all methods was degraded by the alteration in the disposition
of the classes, as Table 4.1 shows. It can be observed that, from Test 7 to Test 8, the accuracy of
the proposed method decreased less percentage points on average, for most DS techniques, than
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(a) Original test dataset (b) Test 3 dataset

(c) Test 4 dataset (d) Test 5 dataset

(e) Test 6 dataset

Figure 4.4: Test datasets used in the analysis of case II.

the other three methods. Since the data distribution from Test 7 and Test 8 reasonably resemble
the data distribution from the original test dataset, this shows again the resistance presented by
the proposed method in the previous cases. However, from Test 8 to Test 9, the accuracy of all
methods were approximately the same. As the classes in Test 9 are almost in opposite positions
compared to the original test dataset, this result was expected.
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(a) Original test dataset (b) Test 7 dataset

(c) Test 8 dataset (d) Test 9 dataset

Figure 4.5: Test datasets used in the analysis of case III.

4.1.2 P2 Problem

Another important aspect to analyse is the effect of complex decision boundaries in the
performance of the proposed method. To do so, the P2 Problem [29], which consists of four
complex boundaries and has no overlapping of classes, was used to test the accuracy of the
proposed method and compare to the remaining pool of classifiers generation methods presented
in this work.

The P2 is a bidimensional two-class problem in which each decision region is delimited
by one or more of the following four simple polynomial and trigonometric functions:

E1(x) = sin(x)+5
↵⌦ � 4.1a

E2(x) = (x�2)2 +1
↵⌦ � 4.1b

E3(x) =�0.1x+0.6sin(4x)+8
↵⌦ � 4.1c

E4(x) =
(x�10)2

2
+7.902

↵⌦ � 4.1d

Figure 4.9 illustrates the decision boundaries, delimited by equations
↵⌦ � 4.1 , and the class
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(a) Original test dataset

(b) Test 1 dataset (c) Test 2 dataset

Figure 4.6: Disposal of generated pool over case scenario I datasets

distribution of the P2 Problem. The equation E4(x) was modified from the original equation in
[29] to make the areas occupied by each class approximately the same.

For this analysis, the P2 Problem dataset generated consists of 1000 instances, as can be
observed in Figure 4.10, and 20 replications of it were produced. For each replication, 75% of
the instances were randomly selected to form the training dataset and the remaining instances
were used for testing. The DCS techniques used to evaluate the methods were the same as the
previous analysis, and for Bagging, Random Subspace and Boosting, the pool size was set to
N

PM

and N100 as well. AdaBoost was also used as the Boosting representative algorithm.
The mean and standard deviation of the pool size generated by the proposed method

was N

PM

= 3.20 (0.41). Note that it generated very few Perceptrons for this problem, despite
the complexity of the boundaries between the classes. Figure 4.11 shows a pool generated by
the proposed method using one of the replications. It can be observed that Perceptron 1 and
Perceptron 2 have almost completely opposite responses, which suggests the method generates
quite diverse classifiers.

The execution time of the four pool of classifiers generation methods are in Table 4.2. It
can be noticed that the proposed method is around ten times faster than the other three methods
for the same pool size, and almost eighty times faster for a pool size of N100 = 100 Perceptrons.

Table 4.3 summarizes the performance of the pool of classifiers generation methods
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(a) Original test dataset (b) Test 3 dataset

(c) Test 4 dataset (d) Test 5 dataset

(e) Test 6 dataset

Figure 4.7: Disposal of generated pool over case scenario II datasets

for the P2 Problem. It can be observed that the accuracy yielded by the proposed method was
significantly better than the other methods for the same pool size. Also, the accuracy of the
proposed method with N

PM

Perceptrons was approximately the same as the other methods when
their pool size was set to N100, which shows that the proposed method is able to perform as well
as the other pool of classifiers generation methods with a much smaller pool size, for problems
with complex boundaries in general.
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(a) Original test dataset (b) Test 7 dataset

(c) Test 8 dataset (d) Test 9 dataset

Figure 4.8: Disposal of generated pool over case scenario III datasets

Figure 4.9: P2 Problem. I represents class 1, whereas II represents class 2.
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Figure 4.10: P2 Problem dataset.

Figure 4.11: Example of a pool generated by the proposed method. The arrows show the
areas that the Perceptrons label as Class 1.

4.1.3 Multi-class Problem

The purpose of this analysis is to investigate the performance of the proposed method in
a multi-class problem. This is important because the Perceptrons in the pool generated by the
proposed method are binary, that is, each one of them recognizes only two classes. Therefore, it
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Table 4.2: Mean and standard deviation of pool of classifiers generation time, in seconds,
for the P2 Problem. N

PM

is the proposed method’s pool size, while N100 is the pool size of
100 Perceptrons.

No. of
Perceptrons Proposed Method Bagging Random Subspace Boosting

N

PM

0.05 (0.01) 1.24 (0.14) 1.24 (0.16) 1.28 (0.16)
N100 - 38.96 (0.62) 39.36 (0.67) 40.80 (0.88)

Table 4.3: Mean and standard deviation of accuracy for the pool of classifiers generation
methods for the P2 Problem. N

PM

is the proposed method’s pool size, while N100 is the
pool size of 100 Perceptrons. Best results are in bold.

DCS
Technique

Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
OLA 93.00 (1.49) 81.42 (10.88) 93.40 (1.33) 84.56 (8.24) 92.96 (1.49) 83.12 (11.40) 93.08 (1.27)
LCA 93.22 (1.41) 81.58 (10.78) 93.46 (1.34) 84.52 (8.31) 93.14 (1.39) 83.28 (11.35) 93.50 (1.46)
MCB 93.00 (1.49) 81.42 (10.88) 93.40 (1.33) 84.56 (8.24) 92.96 (1.49) 83.12 (11.40) 93.08 (1.27)

A Priori 93.46 (1.27) 81.96 (11.03) 93.70 (1.26) 84.90 (8.14) 93.96 (1.28) 83.68 (11.59) 93.54 (1.22)
A Posteriori 93.86 (1.04) 82.04 (10.97) 93.96 (1.12) 84.90 (8.15) 93.24 (1.12) 83.74 (11.68) 93.94 (1.12)

Average 93.30 81.68 93.58 84.68 93.85 83.38 93.42

may or may not have an effect on the method’s accuracy for non-binary problems.
In order to do that, the dataset used in this analysis was generated using the MATLAB

PRTools toolbox [21] function gendatm, which creates an 8-class dataset. Figure 4.12 shows the
multi-class problem dataset, which consists of 1000 instances. For this analysis, 20 replications
of this dataset were produced. As in the previous analysis, 75% of the instances were randomly
selected to form the training dataset and the remaining instances were used for testing for each
replication. The DCS techniques used to evaluate the methods were also the same as the previous
analysis, and for Bagging, Random Subspace and Boosting, the pool size was set to N

PM

and
N100 too. The Boosting representative algorithm used in this analysis was AdaBoost.

For the Multi-class Problem, the proposed method generated, in all iterations, N

PM

= 5
Perceptrons. The amount of Perceptrons was, again, fairly small, considering that the Perceptrons
generated by the proposed method are binary. This means the proposed method generated almost
one Perceptron for every two classes. Figure 4.13 shows a pool generated by the proposed
method using one of the replications. It can be observed that most Perceptrons fully divide two
classes, since it is not difficult to find a pair of linearly separable classes in this problem.

The time necessary to generate each pool of classifiers by the four ensemble methods can

Table 4.4: Mean and standard deviation of pool of classifiers generation time, in seconds,
for the Multi-class Problem. N

PM

is the proposed method’s pool size, while N100 is the
pool size of 100 Perceptrons. Best results are in bold.

No. of
Perceptrons Proposed Method Bagging Random Subspace Boosting

N

PM

0.07 (0.01) 1.87 (0.19) 1.93 (0.35) 1.76 (0.34)
N100 - 37.10 (2.58) 38.63 (5.54) 41.01 (3.48)
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Figure 4.12: Multi-class Problem dataset.

Figure 4.13: Example of a pool generated by the proposed method.

be found in Table 4.4. For the same pool size, the proposed method was more than ten times faster
than the other three methods. For a pool size of N100 = 100 Perceptrons, the classical ensemble
methods took nearly seventy times longer to generate the pool than the proposd method.

Table 4.5 shows the accuracy of the pool of classifiers generation methods for the multi-
class problem. The proposed method obtained a very similar accuracy rate for all DCS techniques
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Table 4.5: Mean and standard deviation of accuracy for the pool of classifiers generation
methods for the Multi-class Problem. N

PM

is the proposed method’s pool size, while N100
is the pool size of 100 Perceptrons. Best results are in bold.

DCS
Technique

Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
OLA 91.36 (1.80) 88.24 (2.30) 89.72 (1.54) 86.30 (4.77) 88.98 (1.81) 90.76 (1.55) 90.88 (1.71)
LCA 91.36 (1.79) 88.62 (2.33) 90.16 (1.54) 86.78 (4.65) 89.36 (1.83) 91.02 (1.76) 91.30 (1.87)
MCB 91.36 (1.80) 88.24 (2.30) 89.72 (1.54) 86.30 (4.77) 88.98 (1.81) 90.78 (1.55) 90.88 (1.71)

A Priori 91.36 (1.54) 88.20 (2.09) 89.42 (1.52) 86.40 (4.54) 88.92 (1.50) 90.90 (1.50) 91.02 (1.46)
A Posteriori 91.36 (1.54) 88.56 (2.05) 90.16 (1.28) 86.56 (4.45) 89.46 (1.35) 91.14 (1.57) 91.28 (1.53)

Average 91.36 88.37 89.83 86.46 89.14 90.92 91.07

because, as previously mentioned, the proposed method generates nealy one Perceptron for every
two classes. This means that each class is recognized by, on average, one classifier. Thus, the
DS techniques do not have much choice when selecting a Perceptron to classify each instance. It
can be observed that the accuracy yielded by the proposed method was approximately equivalent
to Bagging and Boosting, and superior to Random Subspace, for the same pool size. Also,
for Bagging and Boosting, the accuracy was not greatly improved by increasing to a hundred
the size of the pool, so the accuracy of the proposed method with N

PM

Perceptrons was still
the same as these two methods when their pool size was set to N100. The Random Subspace
yielded a better performance with a pool size of N100, but it was still similar to the proposed
method’s performance. Therefore, it can be concluded that, even though the proposed method
only generates binary Perceptrons, it can still perform at least as well as the other methods with
the same or a greater pool size for general multi-class problems.

4.2 Comparative study

In order to evaluate the performance of the proposed method, both in time and in accuracy,
and compare it with Bagging, Random Subspace and Boosting, all four methods were tested
with a total of 20 datasets. All of the them are public or synthetic datasets. Ten come from the
UCI machine learning repository [15], four from the Ludmila Kuncheva Collection [17] of real
medical data, three from the STATLOG project [23], two from the Knowledge Extraction based
on Evolutionary Learning (KEEL) repository [13] and one artificial datasets generated with the
Matlab PRTOOLS toolbox [21]. The main characteristics of each dataset are shown in Table 4.6.

For this experiment, 20 replications of each dataset were used. Each replication was
generated by randomly splitting the dataset in two parts: 70% for training and 30% for testing. As
in previous analysis, the Boosting algorithm used in this comparative study was AdaBoost. Also,
the DS techniques used to evaluate the performance of the four pool of classifiers generation
methods were OLA, LCA, MCB, A Priori and A Posteriori, for the same reason stated in the
previous section.

The proposed method was evaluated after training by using the training dataset as the test
dataset for the DCS techniques previously mentioned, in order to measure the number of times
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Table 4.6: Main characteristics of the datasets used in the experiment

Dataset No. of
Instances

No. of
Features

No. of
Classes Source

Adult 48842 14 2 UCI
Blood Transfusion 748 4 2 UCI
Breast (WDBC) 568 30 2 UCI
German credit 1000 20 2 STATLOG

Heart 270 13 2 STATLOG
ILPD 214 9 6 UCI

Ionosphere 315 34 2 UCI
Laryngeal1 213 16 2 LKC
Laryngeal3 353 16 3 LKC
Lithuanian 1000 2 2 PRTOOLS

Liver Disorders 345 6 2 UCI
Mammographic 961 5 2 KEEL

Monk2 4322 6 2 KEEL
Pima 768 8 2 UCI
Sonar 208 60 2 UCI

Thyroid 215 5 3 LKC
Vehicle 846 18 4 STATLOG

Vertebral Column 310 6 2 UCI
Weaning 302 17 2 LKC

Wine 178 13 3 UCI

the DCS techniques chose the right Perceptron to classify each test instance. Table 4.7 shows
the rate at which OLA, LCA, MCB, A Priori and A Posteriori methods select the right classifier,
and therefore correctly classifies the instances. It can be observed that, on average, all five DCS
techniques choose the right Perceptron most of the time, for all datasets, which suggests the
pool generated by the proposed method is fairly accurate. For some datasets, such as Breast,
Lithuanian, Thyroid and Wine, the accuracy was reasonably close to the oracle’s performance
(100%), for some DCS methods.

Table 4.8 shows a summary of the pool generation for each method. N

PM

is the average
number of Perceptrons generated by the proposed method. Bagging, Random Subspace and
Boosting were tested with a pool size equal to the proposed method’s pool size, N

PM

, as well
as with N100 = 100 Perceptrons. It can be noticed that the number of Perceptrons generated by
the proposed method is generally very low, which implies there is no need to produce a large
number of classifiers to guarantee the best classifier is included in the pool. Also, the proposed
method generates the same amount of classifiers in one order of magnitude less time than the
other ensemble methods.

The average accuracy yielded by the ensemble methods using OLA, LCA, MCB, A Priori
and A Posteriori techniques is shown in Table 4.9 for all datasets from Table 4.6. The average
pool size generated by the proposed method was N

PM

, and all ensemble methods were tested
with this amount of Perceptrons. Bagging, Random Subspace and Boosting were also tested
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Table 4.7: Mean and standard deviation of the rate at which the right Perceptron is
chosen by the DCS technique, using the training dataset for testing, for the datasets from

Table 4.6. Best results are in bold.

Dataset OLA LCA MCB A Priori A Posteriori
Adult 86.90 (0.86) 86.76 (0.92) 87.13 (0.72) 89.52 (1.55) 89.29 (1.56)
Blood 79.58 (0.51) 80.19 (0.35) 79.60 (0.51) 69.54 (0.94) 69.37 (0.95)
Breast 95.29 (0.56) 80.19 (0.36) 95.31 (0.56) 95.25 (0.93) 95.08 (0.67)

German 71.05 (1.43) 75.74 (1.34) 71.22 (1.47) 72.82 (1.19) 72.10 (1.42)
Heart 84.06 (1.92) 83.86 (2.39) 83.96 (1.71) 84.38 (1.77) 84.55 (1.61)
ILPD 70.36 (2.54) 72.49 (2.56) 70.36 (2.54) 62.57 (2.43) 64.69 (1.80)

Ionosphere 86.46 (1.48) 87.33 (1.53) 86.42 (1.42) 84.23 (2.31) 84.82 (2.37)
Laryngeal1 84.75 (2.07) 84.81 (2.38) 84.75 (1.92) 81.37 (2.52) 81.34 (2.70)
Laryngeal3 74.81 (2.94) 73.97 (1.98) 74.84 (2.90) 42.46 (6.43) 42.72 (5.89)
Lithuanian 93.60 (1.34) 96.35 (1.26) 93.60 (1.34) 86.63 (1.85) 86.67 (2.13)

Liver 67.22 (1.39) 70.61 (2.91) 67.33 (1.27) 58.37 (4.67) 59.98 (4.95)
Mammographic 82.71 (0.64) 82.82 (1.54) 82.68 (0.73) 81.53 (0.74) 81.85 (1.15)

Monk2 85.77 (3.59) 91.82 (3.61) 86.66 (4.48) 76.54 (1.74) 77.36 (1.30)
Pima 75.64 (1.55) 76.02 (1.66) 75.81 (1.83) 76.13 (1.67) 76.39 (2.14)
Sonar 80.00 (3.62) 83.46 (3.45) 80.19 (3.63) 70.60 (3.28) 70.35 (3.71)

Thyroid 90.82 (1.09) 95.81 (0.91) 90.84 (1.10) 88.51 (1.32) 88.87 (1.67)
Vehicle 76.13 (1.49) 77.98 (1.56) 76.19 (1.50) 40.02 (1.87) 39.88 (1.76)

Vertebral 82.39 (2.14) 84.32 (2.32) 82.39 (2.18) 75.44 (4.72) 76.06 (5.52)
Weaning 83.45 (1.33) 84.32 (1.72) 83.36 (1.20) 79.00 (2.55) 78.25 (1.95)

Wine 97.14 (0.96) 97.74 (1.14) 97.14 (0.96) 66.99 (3.09) 66.95 (3.28)
Average 82.40 84.18 82.49 74.09 74.33

Table 4.8: Mean and standard deviation of pool of classifiers generation time, in seconds,
for the datasets from Table 4.6. N

PM

is the proposed method’s pool size, while N100 is the
pool size of 100 Perceptrons. Best results are in bold.

Dataset N

PM

Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Adult 3.10 (0.31) 0.09 (0.01) 1.26 (0.13) 40.00 (1.50) 1.31 (0.24) 43.53 (10.79) 1.76 (0.25) 83.95 (1.93)
Blood 3.00 (0.00) 0.10 (0.02) 2.03 (0.62) 65.85 (8.23) 1.94 (0.12) 64.69 (4.02) 2.23 (0.17) 93.41 (5.58)
Breast 3.00 (0.00) 0.10 (0.12) 0.42 (0.09) 13.51 (2.21) 0.45 (0.07) 15.07 (2.49) 0.60 (0.16) 50.58 (17.12)

German 3.10 (0.30) 0.13 (0.13) 2.41 (0.32) 78.44 (1.44) 2.51 (0.27) 81.37 (1.66) 2.82 (0.37) 116.88 (1.70)
Heart 3.20 (0.41) 0.09 (0.09) 0.70 (0.24) 18.70 (1.48) 0.64 (0.10) 19.94 (1.32) 0.81 (0.17) 32.98 (1.90)
ILPD 3.80 (0.41) 0.13 (0.11) 2.12 (0.37) 56.08 (12.22) 2.18 (0.34) 57.16 (10.35) 2.30 (0.35) 75.83 (15.39)

Ionosphere 3.70 (0.47) 0.11 (0.12) 0.59 (0.14) 15.03 (2.71) 0.78 (0.17) 21.23 (2.98) 0.89 (0.20) 42.50 (5.15)
Laryngeal1 2.40 (0.68) 0.05 (0.02) 0.41 (0.20) 17.48 (5.60) 0.46 (0.23) 19.14 (6.24) 0.52 (0.33) 32.46 (11.10)
Laryngeal3 4.80 (1.10) 0.15 (0.14) 1.80 (0.64) 36.61 (7.35) 1.85 (0.69) 38.65 (7.98) 2.06 (0.79) 50.08 (10.76)
Lithuanian 3.60 (0.50) 0.09 (0.01) 1.61 (0.41) 44.93 (6.68) 1.74 (0.70) 47.59 (14.40) 2.21 (0.45) 82.33 (15.25)

Liver 3.20 (0.41) 0.07 (0.00) 1.18 (0.12) 37.06 (1.45) 1.21 (0.14) 38.01 (1.47) 1.25 (0.15) 43.40 (1.47)
Mammographic 2.90 (0.31) 0.09 (0.02) 1.86 (0.69) 59.18 (5.31) 1.69 (0.20) 58.41 (2.20) 2.20 (0.32) 100.86 (2.57)

Monk2 2.50 (0.51) 0.07 (0.02) 0.89 (0.39) 33.54 (8.28) 0.84 (0.32) 33.45 (8.18) 0.99 (0.42) 57.71 (14.08)
Pima 3.50 (0.51) 0.13 (0.11) 2.25 (0.84) 63.33 (16.3) 2.32 (0.88) 63.54 (11.28) 2.66 (0.96) 95.72 (25.14)
Sonar 3.30 (0.66) 0.11 (0.14) 0.29 (0.09) 8.679 (0.97) 0.71 (0.14) 21.77 (0.96) 0.34 (0.11) 14.02 (2.19)

Thyroid 3.80 (0.41) 0.09 (0.00) 0.80 (0.10) 21.04 (0.59) 0.83 (0.10) 21.93 (0.63) 1.53 (0.37) 80.90 (0.95)
Vehicle 5.60 (0.50) 0.18 (0.01) 4.33 (0.40) 77.47 (0.67) 4.43 (0.43) 79.26 (0.76) 5.36 (0.62) 118.06 (1.72)

Vertebral 2.50 (0.69) 0.09 (0.14) 0.51 (0.13) 20.31 (0.63) 0.52 (0.13) 20.98 (0.64) 0.64 (0.22) 38.78 (0.69)
Weaning 3.00 (0.00) 0.10 (0.13) 0.65 (0.08) 20.83 (0.95) 0.68 (0.05) 22.71 (1.20) 0.86 (0.15) 39.86 (0.88)

Wine 2.90 (0.31) 0.09 (0.12) 0.13 (0.03) 4.284 (0.21) 0.13 (0.02) 4.60 (0.50) 0.14 (0.01) 3.92 (2.10)
Average 3.34 0.10 1.31 36.62 1.36 38.65 1.61 62.70
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with N100 = 100 classifiers. The results from Table 4.9 show that, on average, the performance
of the proposed method was equivalent to the performance of Bagging, Random Subspace and
Boosting, for all DCS techniques.

Figure 4.14(a) summarizes the comparison between the results from Table 4.9, in terms
of the mean values of the accuracy obtained for all DCS techniques by each ensemble method
with the same pool size. It can be noticed that, for A Priori, the number of times the proposed
method won and lost was almost equal. For the other DCS methods, the proposed method
yielded an inferior mean accuracy than the other ensemble methods more frequently. Overall,
the proposed method achieved a better performance, on average, in less occasions than the other
three pool of classifiers generation methods with the same number of Perceptrons, as the last bar
in Figure 4.14(a) shows.

The summary of the results from Table 4.9 for ensemble methods with a pool size of
N100 in comparison with the proposed method is shown in Figure 4.14(b). The proposed method
won and lost, on average, the same amount of times for the A Priori, and almost equally for
OLA and MCB. For the other two ensemble methods, the performance of the proposed method
was more frequently worse than the other pool of classifiers generation methods. The last bar in
Figure 4.14(b) shows that, on average, the performance of the proposed method was better than
the other methods with a pool of one hundred classifiers nearly half of the time.

The decision of using only DCS techniques instead of DES techniques to evaluate the
performance of the ensemble methods may be the reason for the classical methods with a pool
size of N

PM

classifiers to perform better than with N100 classifiers more frequently, since smaller
pools favours the selection of only one classifier. Moreover, since the results from Table 4.9
show a very close proximity in the accuracy rates of all methods, it can be concluded that the
proposed method yields approximately the same accuracy while requiring much less processing
time than the other pool of classifiers generation methods.
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Table 4.9: Mean and standard deviation of accuracy for the pool of classifiers generation
methods using DCS techniques for the datasets from Table 4.6. N

PM

is the proposed
method’s pool size, while N100 is the pool size of 100 Perceptrons. Best results are in bold.

(a) OLA

Dataset N

PM

Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Adult 3.10 (0.31) 88.15 (2.93) 85.89 (2.40) 84.91 (2.79) 86.12 (2.85) 84.79 (2.43) 85.89 (2.94) 84.33 (2.46)
Blood 3.00 (0.00) 75.53 (1.14) 74.86 (3.06) 74.60 (2.24) 75.10 (3.83) 75.21 (1.81) 75.66 (1.77) 74.44 (2.13)
Breast 3.00 (0.00) 96.97 (1.16) 96.23 (1.14) 96.37 (1.00) 96.16 (0.53) 96.58 (0.61) 95.91 (1.03) 96.23 (1.21)

German 3.10 (0.30) 70.04 (2.35) 71.74 (2.10) 72.70 (2.12) 71.34 (2.99) 71.40 (2.24) 71.54 (2.10) 69.62 (2.03)
Heart 3.20 (0.41) 86.61 (2.18) 85.58 (4.09) 83.45 (3.26) 83.38 (3.99) 82.57 (2.25) 83.01 (3.86) 80.80 (3.91)
ILPD 3.80 (0.41) 64.72 (0.95) 67.05 (3.10) 65.51 (2.75) 66.64 (2.62) 66.02 (2.95) 65.99 (3.18) 65.37 (2.77)

Ionosphere 3.70 (0.47) 87.15 (2.76) 86.98 (2.06) 87.61 (2.60) 87.21 (3.31) 87.78 (3.25) 87.10 (2.88) 86.81 (2.84)
Laryngeal1 2.40 (0.68) 80.37 (4.25) 80.56 (5.54) 78.49 (4.79) 81.69 (5.34) 80.66 (5.22) 80.18 (6.25) 78.96 (4.79)
Laryngeal3 4.80 (1.10) 72.24 (1.71) 70.56 (4.93) 69.94 (5.35) 71.01 (7.13) 73.14 (3.37) 70.67 (4.09) 68.65 (4.59)
Lithuanian 3.60 (0.50) 96.26 (1.44) 92.36 (2.89) 96.16 (1.96) 91.66 (5.61) 96.13 (1.83) 93.70 (2.74) 96.13 (1.11)

Liver 3.20 (0.41) 58.37 (3.53) 65.93 (3.83) 65.00 (2.84) 62.26 (4.55) 64.88 (2.43) 65.23 (3.90) 63.66 (3.75)
Mammographic 2.90 (0.31) 82.59 (2.47) 82.54 (5.26) 82.35 (2.29) 82.95 (2.14) 82.40 (2.53) 83.19 (2.14) 82.54 (2.13)

Monk2 2.50 (0.51) 86.20 (3.73) 86.66 (5.18) 94.58 (1.53) 86.80 (5.52) 93.84 (2.37) 88.65 (3.46) 92.91 (2.44)
Pima 3.50 (0.51) 72.29 (2.38) 73.12 (3.04) 73.77 (2.02) 72.65 (2.92) 73.38 (2.47) 73.75 (2.91) 71.40 (2.66)
Sonar 3.30 (0.66) 80.00 (3.32) 81.44 (3.59) 79.80 (4.20) 79.13 (5.62) 82.01 (4.24) 80.67 (3.92) 81.15 (4.48)

Thyroid 3.80 (0.41) 95.83 (1.32) 96.18 (1.35) 97.02 (0.86) 95.95 (2.53) 96.93 (1.42) 96.12 (1.17) 96.56 (0.88)
Vehicle 5.60 (0.50) 70.09 (2.57) 72.14 (1.89) 71.79 (2.27) 71.76 (2.20) 72.16 (2.47) 72.61 (1.88) 72.61 (2.08)

Vertebral 2.50 (0.69) 81.41 (2.05) 83.58 (4.45) 85.44 (3.36) 85.06 (3.28) 85.76 (3.32) 85.64 (3.04) 83.52 (2.97)
Weaning 3.00 (0.00) 78.68 (3.71) 78.88 (3.75) 79.53 (3.37) 80.59 (3.66) 80.19 (3.40) 79.67 (4.14) 76.77 (3.82)

Wine 2.90 (0.31) 98.44 (2.05) 95.33 (4.37) 96.33 (3.55) 95.44 (3.91) 96.55 (3.18) 97.11 (1.92) 96.44 (2.63)
Average 3.34 81.10 81.38 81.77 81.14 82.12 81.61 80.94

(b) LCA

Dataset N

PM

Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Adult 3.10 (0.31) 87.39 (2.81) 86.79 (2.68) 85.72 (2.00) 86.96 (2.48) 85.37 (2.04) 86.44 (2.20) 85.52 (2.54)
Blood 3.00 (0.00) 75.74 (1.04) 75.15 (3.11) 75.37 (1.97) 75.29 (3.63) 75.47 (1.77) 76.06 (1.45) 75.39 (1.83)
Breast 3.00 (0.00) 97.18 (1.16) 96.58 (1.00) 96.33 (0.93) 96.61 (0.67) 97.07 (0.86) 96.47 (1.18) 96.47 (0.85)

German 3.10 (0.30) 70.84 (1.86) 72.70 (2.64) 72.24 (2.16) 72.66 (3.20) 72.32 (2.31) 72.04 (2.09) 70.12 (2.02)
Heart 3.20 (0.41) 86.47 (2.84) 86.98 (3.38) 82.79 (4.27) 84.85 (3.27) 83.08 (2.21) 85.22 (2.40) 82.72 (3.56)
ILPD 3.80 (0.41) 64.79 (1.51) 67.50 (2.79) 66.36 (2.65) 66.74 (2.69) 66.78 (2.87) 66.43 (3.02) 66.71 (1.95)

Ionosphere 3.70 (0.47) 87.27 (3.20) 88.57 (2.00) 88.75 (1.94) 88.75 (2.87) 88.63 (1.91) 88.97 (2.24) 88.23 (1.92)
Laryngeal1 2.40 (0.68) 80.94 (4.69) 81.03 (4.51) 79.71 (4.81) 81.79 (4.90) 80.47 (5.38) 81.69 (5.68) 79.90 (5.02)
Laryngeal3 4.80 (1.10) 72.58 (2.13) 72.24 (3.09) 68.53 (4.00) 72.86 (6.64) 72.92 (3.80) 71.62 (2.86) 69.66 (3.21)
Lithuanian 3.60 (0.50) 96.73 (1.54) 92.46 (2.97) 96.43 (1.91) 92.03 (5.57) 96.46 (1.73) 93.93 (2.75) 96.33 (1.59)

Liver 3.20 (0.41) 58.37 (2.81) 64.88 (4.17) 65.34 (2.86) 61.74 (4.47) 63.31 (2.42) 63.89 (2.37) 64.01 (4.27)
Mammographic 2.90 (0.31) 82.54 (2.41) 82.76 (5.14) 82.30 (2.34) 83.34 (2.87) 82.33 (2.38) 83.17 (2.41) 82.69 (2.15)

Monk2 2.50 (0.51) 90.27 (2.17) 88.42 (5.22) 95.13 (1.46) 87.73 (5.79) 95.00 (1.05) 90.87 (2.90) 93.33 (1.93)
Pima 3.50 (0.51) 73.22 (3.38) 73.56 (2.72) 73.51 (2.00) 72.91 (2.90) 73.46 (2.10) 73.98 (2.82) 72.18 (2.21)
Sonar 3.30 (0.66) 78.07 (5.00) 83.75 (3.66) 83.36 (3.80) 80.28 (5.06) 82.69 (3.52) 83.36 (2.73) 82.78 (3.71)

Thyroid 3.80 (0.41) 96.82 (1.30) 97.13 (1.00) 96.90 (1.01) 96.50 (1.83) 97.54 (1.21) 97.02 (1.09) 96.87 (0.92)
Vehicle 5.60 (0.50) 70.75 (2.21) 72.94 (1.44) 73.70 (1.54) 72.26 (1.43) 72.59 (1.44) 73.18 (1.64) 73.82 (1.82)

Vertebral 2.50 (0.69) 82.30 (1.93) 84.67 (4.98) 84.87 (4.31) 85.32 (2.98) 85.96 (3.12) 86.41 (2.98) 83.71 (3.05)
Weaning 3.00 (0.00) 78.81 (3.04) 80.78 (3.87) 81.11 (4.31) 82.30 (3.78) 80.65 (3.91) 80.06 (4.56) 79.73 (3.00)

Wine 2.90 (0.31) 98.44 (2.05) 96.55 (4.10) 97.11 (3.31) 96.22 (3.68) 97.66 (3.18) 97.55 (1.89) 97.55 (2.78)
Average 3.34 81.47 82.27 82.27 81.85 82.49 82.42 81.89
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Table 4.9: Mean and standard deviation of accuracy for the pool of classifiers generation
methods using DCS techniques for the datasets from Table 4.6. N

PM

is the proposed
method’s pool size, while N100 is the pool size of 100 Perceptrons. Best results are in bold.

(c) MCB

Dataset N

PM

Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Adult 3.10 (0.31) 88.15 (2.93) 85.98 (2.36) 84.91 (2.79) 86.06 (2.70) 84.79 (2.43) 86.06 (2.86) 84.36 (2.50)
Blood 3.00 (0.00) 75.53 (1.14) 74.86 (3.06) 74.60 (2.24) 75.10 (3.83) 75.21 (1.81) 75.66 (1.77) 74.44 (2.13)
Breast 3.00 (0.00) 97.04 (1.28) 96.19 (1.19) 96.37 (1.00) 96.16 (0.53) 96.58 (0.61) 95.95 (1.06) 96.23 (1.21)

German 3.10 (0.30) 70.52 (2.08) 71.70 (2.25) 72.62 (2.08) 71.50 (3.18) 71.36 (2.31) 71.62 (2.09) 69.60 (2.03)
Heart 3.20 (0.41) 86.17 (2.35) 85.66 (3.90) 83.45 (3.26) 83.45 (4.18) 82.50 (2.38) 83.38 (3.99) 80.80 (3.91)
ILPD 3.80 (0.41) 64.72 (0.95) 67.08 (3.07) 65.51 (2.75) 66.57 (2.72) 65.99 (2.99) 65.95 (3.22) 65.37 (2.77)

Ionosphere 3.70 (0.47) 87.15 (2.71) 87.10 (2.15) 87.67 (2.64) 87.55 (3.36) 87.61 (3.37) 87.27 (2.94) 86.81 (2.84)
Laryngeal1 2.40 (0.68) 80.56 (4.58) 80.84 (5.41) 78.49 (4.79) 81.69 (5.34) 80.66 (5.22) 80.37 (6.43) 78.96 (4.79)
Laryngeal3 4.80 (1.10) 71.79 (1.58) 70.67 (4.77) 69.94 (5.35) 71.06 (7.18) 73.37 (3.28) 70.67 (4.18) 68.65 (4.59)
Lithuanian 3.60 (0.50) 96.26 (1.44) 92.36 (2.89) 96.16 (1.96) 91.66 (5.61) 96.13 (1.83) 93.70 (2.74) 96.13 (1.11)

Liver 3.20 (0.41) 58.37 (3.49) 65.98 (3.93) 65.00 (2.84) 62.61 (4.71) 65.69 (2.24) 65.23 (4.14) 63.66 (3.75)
Mammographic 2.90 (0.31) 82.59 (2.47) 82.54 (5.28) 82.35 (2.29) 83.00 (2.12) 82.40 (2.53) 83.19 (2.14) 82.54 (2.13)

Monk2 2.50 (0.51) 87.96 (3.79) 86.75 (5.16) 94.58 (1.53) 86.85 (5.55) 93.79 (2.36) 88.70 (3.49) 92.91 (2.44)
Pima 3.50 (0.51) 72.70 (2.67) 73.15 (3.04) 73.77 (2.02) 72.55 (3.16) 73.30 (2.52) 73.77 (2.92) 71.35 (2.65)
Sonar 3.30 (0.66) 79.80 (3.08) 81.53 (3.55) 79.71 (4.29) 79.03 (5.68) 82.01 (4.24) 80.86 (4.20) 81.15 (4.48)

Thyroid 3.80 (0.41) 95.95 (1.32) 96.18 (1.35) 97.02 (0.86) 95.95 (2.53) 96.93 (1.42) 96.12 (1.17) 96.56 (0.88)
Vehicle 5.60 (0.50) 70.14 (2.51) 72.24 (1.71) 71.74 (2.24) 72.07 (2.59) 72.28 (2.65) 72.64 (1.81) 72.66 (2.15)

Vertebral 2.50 (0.69) 82.69 (2.22) 83.58 (4.45) 85.44 (3.36) 85.06 (3.28) 85.76 (3.32) 85.70 (2.97) 83.52 (2.97)
Weaning 3.00 (0.00) 79.21 (3.29) 79.01 (3.78) 79.53 (3.37) 80.85 (3.75) 80.32 (3.48) 79.86 (3.96) 76.77 (3.82)

Wine 2.90 (0.31) 98.44 (2.05) 95.33 (4.37) 96.33 (3.55) 95.44 (3.91) 96.55 (3.18) 97.11 (1.92) 96.44 (2.63)
Average 3.34 81.28 81.43 81.76 81.21 82.16 81.69 80.94

(d) A Priori

Dataset N

PM

Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Adult 3.10 (0.31) 86.99 (2.46) 85.80 (2.62) 84.36 (3.13) 85.95 (2.61) 83.98 (1.84) 85.34 (2.49) 82.28 (2.36)
Blood 3.00 (0.00) 73.53 (1.55) 72.18 (4.88) 71.59 (4.50 70.74 (6.30) 71.94 (2.98) 72.50 (4.16) 70.00 (5.34)
Breast 3.00 (0.00) 97.04 (1.10) 96.23 (1.14) 96.37 (1.00) 96.16 (0.53) 96.58 (0.61) 95.84 (1.06) 96.23 (1.21)

German 3.10 (0.30) 69.80 (1.24) 71.62 (2.32) 71.74 (2.13) 72.14 (3.55) 71.46 (2.31) 71.20 (2.21) 68.50 (1.78)
Heart 3.20 (0.41) 87.20 (2.61) 85.00 (3.77) 82.79 (3.30) 83.16 (3.67) 81.32 (3.09) 82.72 (3.69) 80.44 (4.16)
ILPD 3.80 (0.41) 64.72 (2.01) 67.43 (2.84) 65.13 (3.21) 67.15 (2.68) 66.43 (3.19) 67.12 (3.63) 65.68 (3.75)

Ionosphere 3.70 (0.47) 86.93 (3.00) 86.98 (2.06) 87.61 (2.60) 87.55 (3.24) 87.78 (3.39) 87.44 (2.98) 86.87 (2.89)
Laryngeal1 2.40 (0.68) 81.32 (4.45) 81.50 (5.49) 78.11 (5.13) 82.16 (5.31) 80.94 (5.00) 80.66 (6.23) 78.96 (4.75)
Laryngeal3 4.80 (1.10) 71.79 (3.02) 70.78 (4.62) 68.76 (5.88) 71.06 (7.35) 72.07 (4.45) 70.44 (3.82) 68.48 (4.42)
Lithuanian 3.60 (0.50) 96.40 (1.89) 92.26 (2.96) 96.13 (2.14) 91.60 (5.44) 96.20 (2.24) 93.96 (3.00) 95.90 (1.33)

Liver 3.20 (0.41) 61.39 (3.87) 66.39 (3.45) 64.76 (3.60) 63.08 (4.85) 66.04 (1.71) 65.29 (3.35) 62.90 (4.02)
Mammographic 2.90 (0.31) 81.58 (2.83) 76.99 (11.25) 80.72 (2.97) 77.73 (10.81) 79.92 (3.06) 77.92 (8.78) 80.31 (2.69)

Monk2 2.50 (0.51) 86.66 (3.96) 86.20 (5.10) 94.53 (1.61) 86.06 (4.92) 93.61 (2.42) 88.14 (3.44) 92.45 (2.88)
Pima 3.50 (0.51) 72.50 (2.12) 72.96 (3.17) 73.69 (2.04) 72.81 (2.85) 73.33 (2.00) 73.41 (3.08) 70.83 (2.20)
Sonar 3.30 (0.66) 82.11 (2.34) 81.34 (3.58) 79.80 (4.20) 79.80 (5.34) 81.82 (4.16) 80.86 (3.71) 81.15 (4.48)

Thyroid 3.80 (0.41) 96.06 (1.26) 96.50 (1.42) 96.61 (0.75) 96.38 (2.49) 97.13 (1.17) 96.21 (1.23) 96.50 (0.92)
Vehicle 5.60 (0.50) 69.24 (2.00) 71.48 (1.90) 71.39 (2.39) 71.22 (1.98) 71.17 (1.98) 71.43 (1.97) 72.00 (2.65)

Vertebral 2.50 (0.69) 80.76 (1.55) 83.91 (4.27) 84.61 (3.37) 85.70 (3.33) 86.53 (3.51) 85.51 (3.19) 83.07 (3.36)
Weaning 3.00 (0.00) 78.02 (3.47) 78.81 (3.86) 79.67 (3.37) 80.78 (3.77) 80.19 (3.65) 79.34 (4.11) 76.77 (3.89)

Wine 2.90 (0.31) 98.44 (2.05) 95.55 (4.50) 96.33 (3.55) 95.44 (3.91) 96.55 (3.18) 96.88 (1.96) 96.44 (2.63)
Average 3.34 81.12 80.99 81.23 80.83 81.75 81.11 80.28
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Table 4.9: Mean and standard deviation of accuracy for the pool of classifiers generation
methods using DCS techniques for the datasets from Table 4.6. N

PM

is the proposed
method’s pool size, while N100 is the pool size of 100 Perceptrons. Best results are in bold.

(e) A Posteriori

Dataset N

PM

Proposed Method Bagging Random Subspace Boosting
N

PM

N

PM

N100 N

PM

N100 N

PM

N100
Adult 3.10 (0.31) 86.47 (2.53) 86.70 (1.94) 85.80 (2.25) 86.82 (2.77) 85.78 (2.23) 86.73 (2.43) 85.78 (2.23)
Blood 3.00 (0.00) 73.75 (1.63) 72.52 (4.84) 73.24 (4.20) 71.01 (6.30) 73.13 (3.63) 72.60 (4.26) 71.25 (4.55)
Breast 3.00 (0.00) 97.32 (1.01) 97.18 (1.07) 97.11 (1.42) 96.83 (0.87) 97.92 (0.95) 97.71 (1.04) 97.25 (1.18)

German 3.10 (0.30) 71.32 (1.89) 72.86 (2.54) 71.82 (2.94) 73.18 (3.58) 72.96 (2.68) 72.06 (1.76) 71.92 (3.30)
Heart 3.20 (0.41) 86.32 (4.27) 87.57 (2.99) 86.17 (3.51) 85.66 (3.53) 86.25 (3.44) 86.61 (2.97) 86.17 (3.51)
ILPD 3.80 (0.41) 65.89 (2.31) 68.49 (2.87) 66.91 (2.39) 68.32 (2.59) 68.76 (2.61) 67.53 (3.44) 66.26 (2.73)

Ionosphere 3.70 (0.47) 86.47 (3.59) 89.65 (1.80) 87.78 (2.49) 89.31 (2.59) 87.15 (3.27) 89.43 (1.84) 86.64 (3.51)
Laryngeal1 2.40 (0.68) 82.26 (4.51) 82.35 (4.75) 81.98 (4.47) 82.73 (5.20) 81.79 (4.29) 81.98 (6.04) 82.07 (4.60)
Laryngeal3 4.80 (1.10) 72.47 (1.65) 73.98 (2.13) 73.31 (1.45) 75.00 (1.95) 73.37 (6.79) 73.31 (1.58) 72.58 (1.38)
Lithuanian 3.20 (0.41) 96.80 (2.07) 92.46 (2.98) 96.73 (2.19) 92.16 (5.49) 96.63 (2.15) 94.03 (2.93) 96.73 (2.19)

Liver 3.20 (0.41) 61.27 (3.92) 65.52 (4.37) 60.81 (3.81) 62.55 (4.99) 64.47 (2.70) 63.02 (3.93) 60.17 (4.41)
Mammographic 2.90 (0.31) 82.04 (3.62) 76.75 (11.35) 81.20 (3.89) 78.58 (11.02) 81.22 (3.01) 77.92 (9.29) 81.45 (3.48)

Monk2 2.50 (0.51) 90.55 (2.64) 87.31 (4.78) 92.96 (1.48) 86.89 (5.50) 92.63 (2.15) 90.27 (3.14) 92.87 (1.53)
Pima 3.50 (0.51) 73.54 (2.85) 73.75 (2.59) 73.46 (2.58) 73.88 (2.47) 74.50 (2.48) 74.14 (2.61) 73.09 (2.57)
Sonar 3.30 (0.66) 79.42 (4.41) 82.69 (4.13) 79.80 (4.16) 80.00 (4.47) 77.40 (4.40) 82.78 (4.81) 77.30 (4.39)

Thyroid 3.80 (0.41) 96.93 (0.99) 96.99 (1.02) 97.05 (1.04) 96.41 (1.72) 97.05 (1.04) 97.10 (1.10) 97.05 (1.04)
Vehicle 5.60 (0.50) 71.08 (2.20) 73.18 (1.71) 71.88 (1.83) 73.06 (1.68) 73.01 (1.38) 72.33 (2.05) 70.99 (2.15)

Vertebral 2.50 (0.69) 81.66 (1.56) 84.48 (4.32) 83.46 (1.70) 85.89 (2.35) 87.05 (2.59) 86.53 (2.37) 82.43 (1.02)
Weaning 3.00 (0.00) 77.36 (3.76) 80.26 (4.16) 76.84 (2.74) 81.71 (2.92) 79.21 (3.21) 79.40 (4.48) 76.97 (2.84)

Wine 2.90 (0.31) 97.33 (2.23) 96.88 (3.48) 97.55 (1.89) 96.55 (2.92) 97.55 (1.89) 97.66 (2.21) 97.33 (2.34)
Average 3.34 81.51 81.30 81.79 81.83 82.39 82.16 81.31
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(a) N

PM

(b) N100

Figure 4.14: Win-tie-loss graph of the proposed method in terms of mean accuracy
achieved in comparison with the classical ensemble methods with a pool size of (a) N

PM

and (b) N100.
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5
Conclusion

In this work, a general view of MCSs was introduced. It was explained that, in order to
yield a better solution than a single strong classifier, the pool of a MCS should contain accurate
and diverse classifiers. For DS techniques, which selects, for each test instance, the most suitable
classifiers in the pool to label it, it was shown the importance of having local experts in the pool.

Furthermore, the Bagging, Random Subspace and Boosting methods and their main
characteristics were presented in more detail. As previously shown, the number of classifiers in
the pool is an input parameter to those methods, even though it is reasonable that the amount
of classifiers in a solution should vary with the problem. Also, the training of the entire pool
usually takes too much time.

The pool of classifiers generation method proposed in this work was designed to tackle
both issues. A step-by-step example showed how the proposed method generates a pool of
classifiers with a very small number of Perceptrons. The proposed method works so that the
oracle for the training dataset is 100%, and the generated classifiers are not trained, in order to
reduce the process time.

An analysis of the proposed method using synthetic data showed that it is less sensitive to
variations on test data distribution than the other ensemble methods discussed in this work, despite
the high dependency on data disposition the pool generation process has. Also, the proposed
method was analysed using the P2 Problem, which is a problem with complex boundaries, and it
was concluded that the proposed method is capable of generating a very small pool of classifiers
as accurate as a large pool generated by the classical ensemble methods for this kind of problem.
Furthermore, an analysis regarding multi-class problems showed that, although each Perceptron
generated by the proposed method is only able to choose between two classes, the proposed
method can achieve at least the same accuracy rate as other ensemble methods presented in this
work.

The performance of the proposed method, both in time and accuracy, was evaluated
using five DCS techniques over 20 datasets. The experimental results showed that the proposed
method generates very few classifiers for each classification problem, and the classical ensemble
methods were ten times slower in generating the same amount of classifiers than the proposed
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method. Moreover, the proposed method was able to yield a similar performance in terms of
accuracy than the other ensemble methods for the same and for a greater pool size. Thus, it can
be concluded that the proposed method yields approximately the same accuracy while requiring
much less processing time than the other pool of classifiers generation methods.

Improvements on the proposed method may involve the definition of more sophisticated
heuristics to obtain the hyperplanes, and thus enhance the performance. Also, since the proposed
method generates very few and diverse classifiers, the pool generated is generally not fit for DES
techniques, so other possible future works may concern adaptations of the algorithm in order to
make it suitable for ensemble selection.
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