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Resumo

Com o surgimento de novas tecnologias para visualizar informações 3D no navegador,
uma tendência pode ser observada no que concerne ao crescente uso de tais tecnologias em
aplicações web, tendo em vista que os navegadores atualmente estão presentes em virtualmente
qualquer aparelho. Da mesma forma, um crescimento também pode ser observado no campo de
impressão 3D, uma vez que as impressoras estão se tornando mais baratas conforme a tecnologia
evolui. Este estudo tem como objetivo desenvolver um carregador e um visualizador web
para o formato 3MF, e testar seu desempenho em aparelhos desktop e móveis, procurando por
uma forma otimizada de mostrar dados de impressão 3D em navegadores. A fim de validar o
visualizador e o carregador, um simulador de impressão 3D também foi implementado e testado
em diferentes plataformas. Constatou-se que o formato 3MF é melhor do que o STL, graças
a suas maiores capacidades, extensibilidade, e até um menor tempo de carregamento dadas as
otimizações adequadas.

Palavras-chave: Visualização 3D, Impressão 3D, 3MF, Three.js, CSG, Web





Abstract

With the rise of new technologies for visualizing 3D information in the browser, a trend
can be observed concerning the growing use of such technologies in web-based applications,
due to browsers being present in virtually every device. Also, a growth can be observed in the
3D printing field, since the printers are becoming cheaper as the technology evolves. This study
aims to develop a loader and a web visualizer for the 3MF format, and test its performance across
desktop and mobile devices, searching for an optimized way of displaying 3D printing data in
browsers. To test the validity of the loader, a 3D printing simulator was also implemented and
tested across platforms. It was discovered that 3MF is better than STL for visualizing 3D content
on the web, due to its greater capabilities, extensibility, and even a smaller loading time given
the right optimizations.

Keywords: 3D Visualization, 3D Printing, 3MF, Three.js, CSG, Web
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1
Introduction

Lately, new web technologies in the field of 3D graphics have been developed, such as
WebGL (1), “Three.js” (2) and Babylon (3), which are enabling a pervasive cross-browser form
of processing and displaying graphical data without most of the portability concerns traditional
technologies have, leaving only typical cross-browser API differences as a possible problem.
These new technologies have already enabled powerful new tools to be developed (4), and their
performance can be fine-tuned to work well both on desktop and mobile platforms (5).

Currently, those visualization technologies are being explored widely and a myriad of
examples are available. Many of them are now related to a field that has been gaining attention
in the last years: 3D printing.

3D printing, or additive manufacturing, is the process of transforming information
contained in a digital three-dimensional object into a physical object. It achieves such feat by
extracting horizontal cross-sections of the virtual objects, which are then printed and laid down
until the whole object is created (6).

Throughout last years the 3D printing technology has risen in popularity, even farther than
what was expected according to experts (7). This gave spawn to a series of very differentiated
applications ranging from manufacturing composite elements (8) to printing biomaterials (9).

However, the file format considered as the de facto standard, STL (Standard Triangulation
Language) (10)(11)(12), is falling behind since it is limited in its representational capabilities in
regard to the constantly evolving technological scenario. Therefore, new initiatives were founded
in order to find a suitable format that can be extended as needed, providing support to emerging
technologies, such as AMF (Additive Manufacturing Format) (13) and 3MF (3D Manufacturing
Format) (14).

1.1 Objectives

This work aims to study current techniques for web related 3D visualization. Specifically,
it first intends to explore the “Three.js” framework (2) and its visualization capabilities, moving
forward to the implementation of a 3MF file (14) based web visualizer, and finally test it both on
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mobile and desktop platforms. The visualizer will be implemented as an open source tool, with
the objective to effectively contribute with the “Three.js” community by adding a new loader to
its extensions.

Despite existing other open-source options that also enable web 3D visualization, like
Babylon [39], the “Three.js” framework was chosen because of experience related issues.

Then, implement the horizontal cross-section slicing algorithm used by 3D printers. This
will enable the visualizer to simulate the 3D printing process through the progressive assembly
of the visualized object’s slices, effectively validating the loader.

Hence, the specific objectives that this work intends to reach are:

� Implement a web based 3MF visualizer;

� Contribute to the open source community;

� Test the visualizer functionality both on mobile and desktop platforms;

� Simulate the 3D printing process on the visualizer.

1.2 Document Structure

With the intention to present the contents of this work in a suitable way, five chapters
were devised, beyond the current one.

The first one, called Basic Concepts, presents basic concepts involved in the making of
this work, as well as related themes.

The second chapter discusses the technology and architecture used to implement some
of the objectives of this work, which are the 3MF loader named ThreeMF Loader and the web
visualizer. The loader gives name to this chapter.

The third chapter, Printing Simulator, presents the work involved in implementing the
printing simulator, discussing both the challenges encountered and the technologies utilized in
its making.

The fourth chapter named Results and Analysis describes the tests made both regarding
the loader and the printing simulator, and also compares the 3MF file format to the STL file
format, with the objective of ascertaining which would be best suited for web visualization in
general.

The fifth and final chapter brings the conclusions of this work, as well as ideas for future
work.
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2
Basic Concepts

This chapter will discuss the fundamental concepts involved in the execution of this
graduation project. First, the current 3D visualization technologies will be discussed, with a
focus on web visualization. Then, there will be a quick introduction to the additive 3D printing
process, to the 3MF file format, and to CSG (Constructive Solid Geometry) object representation
concepts that were fundamental to the conclusion of the project.

2.1 Three Dimensional Visualization

For a long time, 3D visualization was a task left to computers with more processing
power on an offline setting. Such fact can be observed due to the fact that well established and
efficient technologies for handling 3D scenes such as OpenGL (15) and DirectX (16) are linked
to the installing of specialized software.

However, with the advent of technologies such as WebGL (1) and “Three.js” (2), the use
of the web browser for such work is growing, and with the most varied uses (4)(17). A great
advantage of using a browser oriented approach nowadays is that web browsers are present in
virtually every device, from computers to mobile phones.

It must be noticed that, meanwhile those 3D visualization web technologies can be used
in mobile web browsers, presenting such content on mobile devices is considered a challenge
(5), even with their growing power.

So, from a developer’s perspective, offering a 3D web visualization tool that works
both on desktop and mobile platforms brings concerns over efficiency, for the mobile device
might not be powerful enough to render what is proposed, and the usage of data, since the user
can be restricted by his/her data plan. Also, even if the device is powerful enough to render
intensive graphics, the developer must be concerned with battery usage, or his/her application,
be it web or not, can be disfavoured for rapidly discharging an user’s mobile device. In this work,
aspects regarding the time to download and data usage will be covered in the tests, as well as the
processing time required to efficiently load and display models and their printing simulation.
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2.2 Three Dimensional Printing

Formally, 3D printing is defined as a form of rapid prototyping (18)(19), term which
originated from the time saving associated with the negation of the human modeller (19), and
defines a set of technologies used to fabricate physical objects from data generated by computer
systems (20).

And, despite being a more modern form of rapid prototyping, the 3D printing process
follows the same principles (19) as other related processes:

1. A 3D model of the desired component is created in CAD (Computer Aided Design)
software;

2. The model is translated into a format suitable for its manufacturing, such as STL
(Standard Triangulation Language), which is a standard data format that can be
used by most machines. This step is useful because it describes the surface of the
model in a manner that enables it to be sliced into layers so that it can be constructed
sequentially;

3. Each computed layer (or slice) is then sent to the machine, which uses the information
to build the object.

Major advantages of such 3D printing process when compared to traditional means of
prototyping are the increased complexity of the object that can be built and the faster creation of
real models (20).

Furthermore, the 3D printing industry is growing rapidly (7), and is expected to grow
even further as 3D printers become cheaper and more accessible to everyone. Services such as
renting a 3D printer for a period of time (21) and for mass producing customized items (22)(23)
are starting to become common, and the tendency is that this industry will grow far more (24)
and change our daily lives (25).

As such, the need of consumers to preview the 3D objects that they will print or order
will grow, and the most pervasive way of doing such preview is through browsers, which are
very common. So, the need for loaders for various 3D printing can be justified even by industry
needs.

2.3 The 3MF File Format

3MF, or 3D Manufacturing Format, is a new file format designed by the 3MF Consortium
with the objective of having the following properties: be rich enough to fully describe a 3D
model containing all of the desired characteristics; be easily extensible; be interoperable, so it
can be used in a wide range of machines; and, be able to be broadly adopted (14). With that, it
hopes to be free of the issues involving other formats, such as the STL (13).
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According to its specification (26), a 3MF file is in fact a zip file that obeys the Open
Packaging Conventions (27). And hence, relationships must be described between the zip
file (called a package) and its different files and folders (called parts). Such relationships are
described by XML files that have the name of the file that is the source of the relationship, and
despite being in fact XML files, their extension is .rels. Those files must be inside a _rels folder
that must be located at the same level of the parts whose relationships they describe.

The folder structure at the root of the zip file may have the following folders: 3D
(Mandatory), Metadata (Optional) and _rels (Mandatory). The 3D folder contains the 3D model
in a file called 3Dmodel.model, and the optional folders Textures and _rels. Finally, the Textures
folder holds the 3D models textures as images, if such textures exist.

Besides folders, the root of the zip file also contains a file called [Content_Types].xml,
which has the content types for each file extension contained in the 3MF file. For instance, if the
3MF file contains JPEG textures inside its Textures folder, the “.jpg” extension and its mime
type will be present in this file.

For this work, the main files to be observed are the 3Dmodel.model and the image
textures files, because both contain the core of what is necessary to fully display the 3D model
that the 3MF file represents. It is noteworthy that, like the relationship files, the 3Dmodel.model
file is, in fact, an XML file. The specification for this XML file possesses several tags, but from
all of them, the most relevant to this work are described in the appendix A.

2.4 CSG

In order to implement a printing simulator, a technique capable of properly executing
a 3D model slicing had to be found, for slicing being one of the basic steps that compose
3D printing and rapid manufacturing techniques, as cited before. The CSG, or Constructive
Solid Geometry, was found to be the fastest way to implement such idea, since it is an already
established technique, and there are several libraries that implement it.

First proposed in a series of papers in 1977 (28), it has a strong theoretical base that has
been developed upon the years. It consists of a method of constructing solid models based on
a set of primitive solids (e.g. cubes, cylinders, cones) and primitive operations (e.g. set union,
intersection or difference) (29). Then, by combining the primitive solids through the defined set
of operations, new solids can be made. Figure 2.1 shows the result of combining a cube and a
sphere through an union, a difference and an intersection operation, building three new solid
geometries.
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Figure 2.1: CSG operations being applied to a sphere and a cube.

An actual example of modeling with CSG is the steps involved in the making of a simple
dice. First, the user can define a cube and place several spheres in the dice’s surface, representing
where the spherical holes will be (Figure 2.2).

Figure 2.2: An initial stage of modeling a dice.

Then, by applying the difference operation, a simple model of a dice can be obtained,
since all that the spheres will leave are the desired holes in the dice (Figure 2.3).
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Figure 2.3: A simple dice modelled with a CSG operation.

It is noteworthy that works have been developed in order to deal with more complex
polygons than a limited set of primitives (30). As such, the technique is perfectly fit to generate
the needed slices through the use of its operations, since there will not be a problem with high
complexity triangular 3MF models.
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3
ThreeMF Loader

The loader proposed in this work was implemented through the use of the “Three.js”
library to parse 3MF files in accord to the specifications (26). In this chapter, there will be a
brief introduction to the “Three.js” library and how it was used in the loader, followed by the
discussion of the loader’s architecture.

3.1 Three.js

The “Three.js” is a lightweight 3D library that simplifies the use of 3D graphics inside a
browser (2). It features a simple API and has different options of rendering engines, with the
default engines being: HTML5 canvas and SVG elements, CSS3D and WebGL. For the purposes
of this work, the WebGL renderer was used together with the HTML5 canvas element, so the
models could be rendered to the screen.

Despite being simple, the “Three.js” is quite flexible, and possesses a myriad of objects
that can be used to represent, animate and deform a given 3D object. Since the objective of this
project was only to load a 3MF file, only a subset of the classes related to the representation of
an object were used.

The base class for all rendering done in “Three.js” is called Scene, and an instance of such
class manages the rendering of several models on the screen. Each model must be constructed
and added to the scene separately by using one of the provided base classes in “Three.js”.

One of the basic “Three.js” data structures for representing an object is the Geometry
class. It contains all the information about the object’s vertices, faces, colors and texture UVs,
and also includes positional information and more advanced properties such as morph options,
used to animate an object’s deformation. This class was chosen for being flexible and used in
other loaders, so there was already a solid foundation to develop upon.

To use the Geometry class, one must first obtain all of the model vertices and save them
at the desired Geometry object. This enables the use of the classes describing the faces of a
geometry, for those depend upon a previous reference to a Geometry’s vertices.

The class utilized to describe a Geometry face was the Face3 class. That decision was
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based on the fact that such class merely describes a Triangle in space, and the 3MF format stores
the model as a discrete, triangularized mesh. As an added bonus, this class can also define which
color the face will have, and which texture that face will use, so it is also robust enough to offer
the full representation needed by the current state of the 3MF format.

It is important to notice that, in order to the face texture to work, the UV mappings for
each vertex have to be defined alongside them, since there must be one UV mapping for each
vertex in a “Three.js” Geometry, even if it effectively maps no texture. Both vertices and UV
mappings are stored inside arrays in a Geometry object, called “vertices” and “faceVertexUvs”,
respectively.

Outside of the loader, more high level classes were used to describe how the object looks,
in specific the Mesh class, which relates a Geometry with the materials that will be used to
display it. A material defines which shader will be used to render a geometry, and if necessary, a
texture that will be rendered using such shader. For this project, the MeshPhongMaterial was the
one utilized.

So, by utilizing the classes described before, one can fully describe a triangular mesh,
regardless of size, even if such mesh contains more complex information such as color and
textures. For a concrete example about the library’s initialization and object construction, please
refer to the source code of this project in Appendix B, and also to the examples at the “Three.js”
website.

3.2 Architecture

For the definition of the loader’s architecture, current loaders at the “Three.js” base
code were studied, so a general structure could be identified to construct the ThreeMF Loader
upon it. Such structure indicated the need for a new “Three.js” class, and so a class named
ThreeMFLoader was defined inside a new source file, called “ThreeMFLoader.js”.

The loaders found in the “Three.js” code base have their primary function defined in
form of a load function, which receives an url and returns a model. But, despite having a
similar signature, some loaders differed when it came to the return type, with some returning
fully formed Mesh objects, and others returning Geometries. Considering that the function of a
loader should not affect how the loaded model is displayed in the viewer, it was decided that the
ThreeMFLoader should just return a Geometry and a list of the accompanying 3MF textures,
leaving the decisions of which materials should be used to display the model to the loader’s final
user.

As for the inner workings of the load function, new libraries had to be found, since no
“Three.js” loader had to deal with a zipped file at the time this work was done. So, the “zip.js”
library(31) was chosen as a means to unzip the 3MF file and obtain its contents. Functions
were then defined to look through the zip file contents and unzip the ones needed, such as the
“3Dmodel.model” and the related texture image files. However, the “zip.js” library uses Web
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Workers, which are essentially an implementation of threads in the Javascript environment,
implying in the files being extracted from the zip file in an asynchronous manner. A simple
synchronization control was then devised trough counting all the files that needed to be extracted,
and then subtracting such counter by one every time a file was fully extracted (Figure 3.1).

Figure 3.1: A simple overview of the architecture up to the asynchronous control.

With all the files available for parsing after extracting, new functions had to be defined to
parse the “3Dmodel.model” file. Given that the model file is an XML file, the default Javascript’s
DOM parser was utilized to navigate through it, with several new functions being created to
modularize each of the XML file nodes concerns.

A function named processXML then starts to parse the XML file by separating tags
that can later be referenced by other elements in any resource present in the 3MF file, such as
the texture2d, colorgroup and texture2dgroup tags and putting them on variables that will be
accessible when the loader parses nodes that require them.

Besides the processXML function, the parseObjects function can be defined as being
fundamental in the parsing process. It extracts all the vertex tags from an object node, inserting
them onto a Geometry, generating all the needed references for constructing the needed Face3
objects. After parsing all vertices, it proceeds to parse all of the triangle nodes in order to
construct the Geometry’s faces. Each triangle node can hold a reference to either a colorgroup
or a texture2dgroup, and thanks to the pre-processing done by the processXML function, such
information is available to be used and inserted in the Face3 object alongside the vertices
references, or inside the Geometry object, as it happens in the UV mappings case.

After the addition of the processXML and parseObjects functions, the overview of the
architecture flow changes, and can be observed in the Figure 3.2.
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Figure 3.2: A simple overview of the architecture, excluding helper functions.

Most of the functions besides the processXML and parseObjects can be classified as
helper functions, since they only take care of simpler details, like extracting the coordinates of a
vertex. In such way, they’re not discussed here, but are available for consultation at the source
code of the project (https://github.com/jvfl/ThreeMFViewer).
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4
Printing Simulator

In order to validate the loader usefulness in a real web application, a basic 3D printing
simulator was implemented. This chapter will present the basic implementation details of the
Simulator, describing the used libraries and offering a short analysis of the results obtained with
the simulator implementation.

4.1 Implementation

After the model is in the appropriate structure, to simulate the additive manufacturing
process one has to divide it into layers, effectively slicing it. To achieve the slicing a CSG library
was utilized, namely the “CSG.js” library (32).

The “CSG.js” library implements CSG boolean operations by using BSP (Binary Space
Partitioning) trees, but at the time of implementation of this work it was severely outdated (32).
A suitable updated version was found inside the source code of the OpenJSCad project (33),
which enabled the implementation of the slicing feature through the use of CSG’s intersection
operation.

Despite being an updated version, the “CSG.js” basic data structures differ from the ones
found in “Three.js”, and as such a third component was needed in order to enable inter-operation
between the libraries; the “ThreeCSG.js” (34) was used to do so. However, in a similar fashion
to the “CSG.js” library, that new component was also outdated. Thus, the “ThreeCSG.js” library
had to be updated, and so there was the need to better understand the “CSG.js” data structures.

Similarly to “Three.js”, “CSG.js” has a set of classes designed to represent 3D models,
from which some were selected based on their properties, that were sometimes analogous to
those found in the chosen “Three.js” data structures. Those are the CSG, Polygon, Vertex and
Vector3D classes, described as follows:

CSG Represents a 3D model and contains a list of Polygons. Its chosen counterpart in the
“Three.js” library is the Geometry class.

Polygon A 3D polygon, represented by a list of vertices. Since it describes a face in the high
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level CSG object, this class was used to be the equivalent of a Face3 object, despite being
more general.

Vertex Represents a single 3D point, and can be directly correlated to a “Three.js” vertex.

Vector3D Required for the construction of a CSG Vertex, it represents a vector or a point in 3D
space.

In such way, a Polygon could easily be transformed in a Face3 object, and vice-versa,
thus effectively bridging both libraries. After updating the “ThreeCSG.js” library, the objects
could be easily converted between CSG and Geometry objects, giving “Three.js” full access to
the “CSG.js” capabilities.

After that, the intersection operation was available to the “Three.js” Geometry objects,
and a parallelepiped could be defined in a way that slices of varying heights could be obtained
by intersecting it with an arbitrary Geometry, given that the parallelepiped has depth and width
equal to the geometry (Figure 4.1).

Figure 4.1: Intermediary simulation results of the 3D printing process.

As a result, two functions were defined in a separate file called “3DPrinterSimulator.js”:

generateSlices Receives a mesh and a slice height, and then returns the sliced mesh as Geometry
objects.

displaySlices Receives the “Three.js” scene, a list of mesh slices, a delay time and a feedback
function. It renders each slice into the scene according to the delay set by the user, to then
execute the feedback function so the user can know that the simulation has come to an end.

By using such functions, one can effectively simulate the 3D printing process on a
“Three.js” geometry by first generating the slices with the desired height, and then displaying
them (Figure 4.2).
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Figure 4.2: The defined parallelepiped intersecting a tetrahedron.
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5
Results and Analysis

To confirm the pervasiveness and effectiveness of the technologies utilized, the loading
process was tested both on mobile and desktop platforms. This chapter describes the tests per-
formed for the completion of this work, namely: comparison between STL and 3MF file formats,
loading times of both STL and 3MF files, a comparison between the implemented loader and the
one currently used in the “Three.js” Github repository, and the printing simulator slicing times.
Such tests were executed in four models: Tetrahedron, Rhombicuboctahedron, Dodecahedron
chain and Heartgears (Figure 5.1). These four models have an increasing complexity in their
models, as well as an increasing number of triangles.

Figure 5.1: Loaded 3MF models.

5.1 File Format Comparison

Although the STL format has been the de facto standard for printing for the last two
decades, it is severely limited and falling behind the newer needs for 3D printing (10)(11)(12).
Some extensions have been proposed, but they were not widely accepted (35)(36). As a side-
effect of the lack of extensions, nowadays the STL file format is only able to save and load
simple 3D meshes based on triangles, and has no support for texture, color and materials. It
is important to notice that an STL file can be represented in either ASCII or Binary, and both
contain enough information to reconstruct the model’s triangles. The only difference between
them is in regard to their file size in bytes, since the Binary format is considerably smaller than
the plain ASCII file.

As for the 3MF file format, it proposes to fix some of the STL problems, offering
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Table 5.1: File format sizes (in KB).

Model Number of Triangles STL Size Binary STL Size 3MF Size
Tetrahedron 4 2 1 2
Rhombicuboctahedron 44 12 3 2
Dodecahedron chain 7680 1323 376 62
Heartgears 30636 6363 1502 326

a specification with flexible rules for extensions. In such way, although it still only supports
triangular models, it can be easily extended in order to support more varied model representations.
Besides that, things such as texture, color and materials are already supported out of the box
(26). When saved, the 3MF file consists of a zip file, which contains a folder structure describing
the model and its dependencies. According to the current specifications, the main folder can
be said to be the one named “3D”, since it contains both the XML description of the model
(3dmodel.model) and support files (such as textures inside the Textures subfolder).

At a first glance, one can infer that, due to the 3MF file being essentially a zip file, it will
be able to reduce the XML file size to a minimum, effectively mitigating file size problems and
still maintaining a format that is easy to debug. Meanwhile, the STL file does not have the same
advantages, because its file size tends to grow too much on larger models, and even the binary
format might not be able to outperform the 3MF in that regard.

A complete comparison between file sizes is shown as follows (Table 5.1), where files
containing exactly the same information where compared in order to ascertain which would be
better suited for web visualization, and to confirm the 3MF file size advantages.

Thus, it can be observed that the size of a 3MF file grows on a slower pace than the STL
files, even the binary one, confirming the earlier inference. Also, due to the same fact, the 3MF
file is the one better suited for web visualization in regard to file size, since the smaller file size
also means faster downloads and faster visualizations.

5.2 Loading Time

The file size only affects the download speeds of the model, effect that can be nullified if
the parsing of the file is slow enough. Hence, one must also test which loader is more efficient to
make sure the unzipping and parsing of the 3MF file will not affect the results obtained before.
The tables in sequence (5.2 through 5.5) describe the loading times of the STL and 3MF formats.
In the tests, three types of devices were used: PC, phone and tablet. Each model was loaded 100
times on each device, and the average times and their standard deviations were recorded. The
devices specifications are listed as follow:

PC ASUS N56JR-EH71

Processor 2.4GHz Intel I7 4700HQ
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Video Card NVIDIA Geforce GTX 760M with 2GB of memory

RAM 12GB

Browser Chrome 47

OS Windows 8.1

Phone iPhone 5S

Processor 1.3GHz Apple A7

Video Card PowerVR G6430

RAM 1GB

Browser Safari 9

OS iOS 9.2

Tablet Samsung Galaxy Note 2014 Edition

Processor 1.3GHz quad-core Exynos 5420

Video Card Mali-T628

RAM 3GB

Browser Android Native Browser

OS Android 4.3

Table 5.2: STL file parsing time (in ms).

Model
PC

(Standard Deviation)
Phone

(Standard Deviation)
Tablet

(Standard Deviation)

Tetrahedron
0.185

(0.164)
1.022

(1.468)
0.994

(0.958)

Rhombicuboctahedron
1.085

(0.336)
4.435

(2.268)
11.816
(3.130)

Dodecahedron chain
239.523
(29.469)

581.258
(56.211)

856.718
(102.663)

Heartgears
1185.450
(106.550

5879.429
(187.686)

4614.742
(1177.846)
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Table 5.4: 3MF unzipping times (in ms).

Model
PC

(Standard Deviation)
Phone

(Standard Deviation)
Tablet

(Standard Deviation)

Tetrahedron
133.605
(15.447)

61.501
(29.877)

140.397
(12.603)

Rhombicuboctahedron
134.651
(50.706)

62.273
(27.945)

148.852
(13.751)

Dodecahedron chain
199.252

(104.746)
242.116
(43.144)

806.121
(190.775)

Heartgears
313.421
(62.440

716.328
(221.484)

2482.954
(98.507)

Table 5.5: 3MF parsing times (in ms).

Model
PC

(Standard Deviation)
Phone

(Standard Deviation)
Tablet

(Standard Deviation)

Tetrahedron
0.171

(0.137)
0.579

(0.166)
2.413

(4.560)

Rhombicuboctahedron
0.423

(0.175)
1.314

(1.075)
4.070

(2.546)

Dodecahedron chain
42.404

(17.966)
56.067

(12.799)
438.604

(165.474)

Heartgears
308.822
(73.671)

392.871
(725.502)

2230.832
(161.264)

Table 5.3: Binary STL file parsing time (in ms).

Model
PC

(Standard Deviation)
Phone

(Standard Deviation)
Tablet

(Standard Deviation)

Tetrahedron
0.085

(0.136)
0.185

(0.398)
0.371

(1.219)

Rhombicuboctahedron
0.090

(0.047)
0.128

(0.068)
0.711

(0.307)

Dodecahedron chain
7.329

(2.486)
9.244

(2.034)
33.484

(17.117)

Heartgears
36.959
(7.898)

47.643
(4.248)

122.044
(12.729)

The binary STL file format seems more advantageous when the concern is loading time,
specially when the 3MF unzipping time is factored in. Nonetheless, it is important to notice that
the unzipping time can still be compensated by the smaller file size on larger models. That is due
to the fact that the unzipping time has a constant and relatively short time, and in more complex
models such as the Heartgears, the binary STL is approximately 4.6 times bigger than the 3MF
version, and the download of a larger file is prone to variations given the users access to a fast
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Internet connection.

5.3 Loaders Comparison

During the development of this work, one of the objectives was to contribute to the
“Three.js” source code by the addition of a 3MF loader. However, a thirdy party loader was
submitted before, and a comparison between the one previously submitted and the one developed
here was drawn in regards to capabilities and loading times.

As far as capabilities go, the loader present at the “Three.js” code parses some minor
tags from 3MF that the loader proposed here does not, such as the metadata tag, which contains
information such as the file author, creation date, among others. As for the loader here proposed,
it has support to textures and colors as extra features.

Architecture-wise, it is important to notice that the libraries utilized to unzip files were
different. While the proposed loader uses the “zip.js” library, the “Three.js” loader uses the
“jszip.js” library (37). When tested in regards to unzipping time, “jszip.js” proved to be much
faster than “zip.js” (Table 5.6). However, it did not work on the tested phone and tablet, even
when changing browsers. The browsers tested were Safari, Chrome, Opera, Firefox and the
Native Android Browser.

Table 5.6: Time taken by each loader to unzip files in PC (in ms).

Model
“Three.js” loader PC Average

(Standard Deviation)
Our loader PC Average
(Standard Deviation)

Tetrahedron
0.208

(0.364)
133.605
(15.447)

Rhombicuboctahedron
0.277

(0.906)
134.651
(50.706)

Dodecahedron chain
5.189

(2.071)
199.252

(104.746)

Heartgears
20.799
(2.621)

313.421
(62.440)

When compared regarding parsing times, the “Three.js” loader also outperformed the
one presented in this work (Table 5.7). By analyzing the parsing functions of each work, it was
discovered that the bottleneck of this work’s loader was the need for computing the normals
when each face of the geometry was created. In “Three.js” loader, this apparently is already done
automatically by the data structures utilized.

It is important to notice that, during tests, it was discovered that the “Three.js” loader
uses a Javascript API called TextDecoder, which is not working in all Desktop browsers (38),
and by the tests performed, it does not work on mobile devices as well. However, it is a problem
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Table 5.7: Time taken by each loader to parse models in PC (in ms).

Model
“Three.js” loader PC Average

(Standard Deviation)
Our loader PC Average
(Standard Deviation)

Tetrahedron
0.119

(0.069)
0.171

(0.137)

Rhombicuboctahedron
0.287

(0.132)
0.423

(0.175)

Dodecahedron chain
24.834

(11.513)
42.404

(17.966)

Heartgears
127.893
(28.460)

308.822
(73.671)

that can be fixed, since there are libraries which implement that API and give support to such
browsers. And, while there is a loader already in the “Three.js” source code which is more
efficient, some opportunities to improve such loader were identified while it was analyzed. It can
be further optimized if a different function is used to separate the XML nodes, and support to
textures and colors can also be added.

5.4 Printing Simulator Analysis

Since the objective of the final product of the simulation was to run both on mobile
and PC, tests were conducted to assert that it could effectively run on those platforms. That is,
besides loading and displaying the models, the device where the simulator runs must be able to
simulate the slicing in a timely fashion, so the user can use it without waiting too long for results.

In such way, tests were conducted to determine the speed in which the devices could
convert models from “Three.js” to “CSG.js” and back, and also how much time each slice takes
to be calculated. Table 5.8 shows the time it takes for each slice to be computed; each average
and standard deviation were taken from 100 samples, except for the Heartgears model when
tested on the mobile devices. For this model, in both the phone and the tablet, only 10 samples
were run due to the long time it took by each slice, and the fact that, sometimes, the browser
froze while the computations were being made.
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Table 5.8: Slicing times (in ms).

Model
PC

(Standard Deviation)
Phone

(Standard Deviation)
Tablet

(Standard Deviation)

Tetrahedron
1.248

(0.878)
3.115

(3.337)
7.220

(6.766)

Rhombicuboctahedron
1.836

(0.914)
6.745

(5.894)
11.899
(5.584)

Dodecahedron chain
637.616

(129.334)
1002.773
(234.394)

3360.233
(872.014)

Heartgears
2677.336
(546.256)

8075.494
(2468.433)

19855.443
(2078.619)

Given that the more complex models take too long for the slices to be computed, a
strategy was devised to minimize such effects. Each slice is only computed once when the
application is used, and a cache is established, so if the user so desires, the simulation can be
viewed smoothly after its first execution.

Nevertheless, the caching strategy did not solve one problem: complex models cannot be
easily simulated through the use of the CSG intersection operation, specially on mobile devices
which sometimes froze when the simulation was running. So, that leaves two options for the
simulations to be effective on mobile devices: either optimize the used functions, or pre-compute
the simulation and leave it available as a source file that the final user will use without noticing.

From these two options, the latter is considered to be a better option for incrementing
this work on the future, given that it would also make the voxelization of the models possible
regardless of the time that would take for the simulation to run, and the results would be available
in a fast manner both on PC and mobile.
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6
Conclusion

The proposed loader was successfully developed, and it was validated through the
implemented printing simulator. Meanwhile, the tests conducted were important for properly
comparing the STL format and the new 3MF format, not only for their capabilities, but also
regarding their possible use in a web application.

When considering file sizes and capabilities, the 3MF is a clear winner, for it having a
better scalability, extensibility, and support for textures and colors. For instance, the Heartgears
binary STL model is 4.6 times bigger than its 3MF counterpart, and it only contains a triangulated
model.

Nonetheless, one can argue that, due to greater loading times, the binary STL file is
preferable when considering mobile devices, since in a worst case it can take approximately 38.6
times more to load a complex 3MF model than it takes to load the same model in binary STL (as
the Heartgears model in the tablet). However, the analysis made when comparing our Loader
versus the “Three.js” loader showed some points where our Loader can be deeply optimized, and
as such the loading times for the 3MF format can be greatly reduced, effectively nullifying this
argument in the future.

As for the mobile uses for the simulator, it is clear that more optimized approaches will
be needed in the future, since the gap between mobile and desktop is still enough to make some
applications instances, as in the simulator when working with large models, impractical. The
tests showed that a model can take up to almost 20 seconds for just one slice to be produced in
mobile, and in some cases the tab simply crashed without the simulation running.

Regarding the open source contributions of this work, the fact that a more efficient loader
already exists at the “Three.js” source code does not mean that there will not be any contribution.
Support to texture and color can be added to it, since it is something that was developed in this
work, and opportunities for improving it were also identified while its code was being analyzed.
Therefore, given that the capabilities of the loader developed in this work include color and
texture loading, and the one currently at the “Three.js” code base does not, a contribution to the
open source community is possible.

Also, as a result of this work, a paper has been accepted for publication at the HCI
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International 2016. (39)

6.1 Future Work

As an upgrade for the visualizer as a whole, there is the need for UX testing in order for
its user to receive the better simulation experience that is possible. It is noteworthy that, involved
in this simulation improvement, measures should be taken to optimize the software.

Also, texture is not currently being processed as part of the slicing process, and adding
such mapping on top of the current printing simulator would improve the experience as a whole,
as it enables more complex objects to be loaded into the simulator.

The loader can also be configured to take into consideration tags that were not processed
in this work due to time restrictions, such as tags that concern metadata and which objects will
be actually built by the printer.
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A
3MF Specification

This appendix contains a subset of the tags contained in the specification of the 3MF
XML file. Such subset consists of the tags that were most relevant to this work. For the full
specification, please refer to the 3MF specification [11].

model The root of 3Dmodel.model file, it contains all of the XML information, and there must
be exactly one model node inside the XML file. As children, it has the metadata, resources
and build tags, and also has the following attributes:

unit Specifies the unit used to interpret all vertices, locations, or measurements in the
model. It can have one of the following values: micron, millimeter, centimeter, inch,
foot and meter.

requiredextensions Which 3MF extensions are required to process the XML file.

xml:lang Specifies which language must be used for the current and any descendant
elements.

resources Acts as the root element for 3D objects definition. As children, it has the following
tags: basematerials, colorgroup, textue2dgroup, compositematerials, multiproperties and
object.

object Describes reusable 3D objects that may be used or composed into more complex objects.
It has the mesh and components tags as children, and the following attributes:

id Unique value, enabling this tag to be referenced by other children of the resource tag
or item tags.

type The function of this object in the model. Possible values are: model, support or
other.

pid Reference to the property group element (a colorgroup, for instance) with the matching
id attribute value.

pindex References a zero-based index inside the properties group specified by pid. This
property is used to build the object.
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thumbnail Path to a 3D texture of type JPEG or PNG that represents a rendered image of
the object.

partnumber A partnumber, which editors should maintain during the process of modify-
ing and deriving objects.

name Name of the object.

mesh Is the root of a triangular mesh representation of an object. It contains as children the
vertices and triangles tags.

vertices Represents a set of vertices and must contain less than 231 vertex tags inside it.

vertex Represents a point in 3D space. It can be referenced by a triangle tag through an implicit
0-based index given by its positioning. It has the following attributes:

x The x coordinate of the vertex.

y The y coordinate of the vertex.

z The z coordinate of the vertex.

triangles Represents a set of triangles and must contain less than 231 triangle tags inside it.

triangle Describes reusable 3D objects that may be used or composed into more complex
objects. It has the mesh and components tags as children, and the following attributes:

v1 A zero-based index referencing the first vertex of the triangles.

v2 A zero-based index referencing the second vertex of the triangles.

v3 A zero-based index referencing the third vertex of the triangles.

p1 Overrides the object-level pindex for the first vertex of the triangle.

p2 Overrides the object-level pindex for the second vertex of the triangle.

p3 Overrides the object-level pindex for the third vertex of the triangle.

pid Overrides the object-level pid for the triangle.

colorgroup Represents a set of colors and must contain less than 231 color tags inside it. It has
the following attribute:

id Unique value, enabling this tag to be referenced by objects or triangles.

color Represents a color, and can be referenced by a triangle through an implicit 0-based index
given by its positioning. It has the following attribute:

color A sRGB color in hexadecimal format.
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texture2dgroup Represents a set of texture coordinates and must contain less than 231 tex2coord
tags inside it. It has the following attributes:

id Unique value, enabling this tag to be referenced by objects or triangles.

texid References a texture2d tag.

tex2coord Represents coordinates which enable mapping from a texture to a vertex, and can be
referenced by a triangle through an implicit 0-based index given by its positioning. It has
the following attributes:

u U-coordinate within the texture.

v V-coordinate within the texture.

texture2d Represents the texture image data. It has the following attributes:

id Unique value, enabling this tag to be referenced by texture2dgroups tag.

path The path to the image containing texture data.

contenttype The content type of the texture data. Valid values are image/jpeg and im-

age/png.

box Bounding box defining the boundaries of the texture swatch in UV coordinates. It
has the form “U V width height”.

tylestyleu Specifies how tiling should occur in the U axis in order to fill the requested
area.

tylestylev Specifies how tiling should occur in the V axis in order to fill the requested
area.
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