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Resumo

Simulação de fluidos utilizando métodos sem a presença de malha tornou-se cada vez
mais eficiente para resolver problemas de mecânica que lidam com grandes deformações e
tornou-se popular em muitas aplicações, tais como engenharia naval, engenharia mecânica,
filmes e jogos. Um dos principais métodos é o Smoothed Particle Hydrodynamics (SPH). Esse
trabalho tem como objetivo investigar a aplicabilidade do método SPH e meios de reconstruir a
superfície do fluido utilizando um algorithm de ray tracing. O SPH fracamente compressível
(WCSPH) é implementado utilizando uma equação de estado para calcular a pressão do sistema e
a abordagem XSPH para simular a viscosidade. Uma versão paralela do método é implementada
usando a tecnologia CUDA para melhorar o desempenho de cálculo de tempo. Para reconstruir
a superfície do fluido, utilizando os resultados do WCSPH, um sistema de traçado de raios
chamado Real Time Ray Tracer ou simplesmente RT 2 é usado. Para criar uma visualização mais
realista da superfície, dois métodos de alisamento foram testados e comparados: o Gaussian Blur
e o Screen Space Curvature Flow. Ambos os algoritmos foram capazes de criar uma superfície
lisa, mas a abordagem de Curvature Flow foi capaz de criar um resultado mais realista, porém
com um baixo desempenho em fps, enquanto que a abordagem Gaussian criou um resultado
menos realista, mas com um alto desempenho em fps.

Palavras-chave: Ray Tracing, Smoothed Particle Hydrodynamics, Reconstrução de Superfície,
Suavização, Simulação de Fluidos, Renderização de Fluidos





Abstract

Fluid simulation using meshless methods has increasingly become a robust way to solve
mechanics problems that require dealing with large deformations, and has become very popular
in many applications such as naval engineering, mechanical engineering, movies and games.
One of the main methods is the Smoothed Particle Hydrodynamics (SPH). This work aims to
investigate the applicability of the SPH to fluid simulation and ways of reconstruct the fluid
surface based on a ray tracer algorithm. A Weakly Compressible SPH (WCSPH) is implemented
which uses a state equation to calculate the pressure of the system and the XSPH approach to
simulate the viscosity. A parallel version of the method is implemented using CUDA technology
to improve the time calculation performance. To reconstruct the fluid surface of the WCSPH
results a ray tracing system named Real Time Ray Tracer or simply RT 2 is used. In order to
create a more realistic surface visualization, two methods of smoothing are used to create a
more realistic surface: the Gaussian Blur and the Screen Space Curvature Flow approach. Both
algorithms were able to create a smooth surface but the Curvature Flow approach was able to
create a more realistic result but with a low fps performance, while the Gaussian approach creates
a less realistic result but with high fps performance.

Keywords: Ray Tracing, Smoothed Particle Hydrodynamics, Surface Reconstruction, Smooth-
ing, Fluid Simulation, Fluid Rendering





List of Figures

3.1 Particle approximation for a two-dimensional problem. . . . . . . . . . . . . . 23

5.1 Visualization of the particles using the software ParaView. . . . . . . . . . . . 34
5.2 Multi-kernel solution steps. Adapted from (1). . . . . . . . . . . . . . . . . . . 34

6.1 2D dam break scheme (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Keyframes of the 3D dam break test case. . . . . . . . . . . . . . . . . . . . . 36
6.3 Keyframes of the water drop test case. . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Initial and final position of the test case. . . . . . . . . . . . . . . . . . . . . . 37

7.1 WCSPH visual result for different times t. . . . . . . . . . . . . . . . . . . . . 40
7.2 Evolution of the water wave front through dimensionless time using the WSCPH

algorithm (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Normal calculation results comparison. . . . . . . . . . . . . . . . . . . . . . 41
7.4 Dam break with 1000 particles without smoothing the surface. . . . . . . . . . 41
7.5 Dam break with 1000 particles using Gaussian smoothing with different mask size. 42
7.6 Dam break with 1000 particles using Curvature Flow smoothing with different

iterations number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.7 Dam break with 3375 particles without smoothing the surface. . . . . . . . . . 43
7.8 Dam break with 3375 particles using Gaussian smoothing with different mask size. 44
7.9 Dam break with 3375 particles using Curvature Flow smoothing with different

iterations number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.10 Drop water with 3500 particles without smoothing the surface. . . . . . . . . . 44
7.11 Drop Water 3500 particles using Gaussian smoothing with different mask size. 45
7.12 Drop Water 3500 particles using Curvature Flow smoothing with different itera-

tions number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46





List of Tables

7.1 Performance of the Gaussian Blur method in frames per second (fps) in the Dam
break with 1000 particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Performance of the Screen Space Curvature Flow method in frames per second
(fps) in the Dam break with 1000 particles. . . . . . . . . . . . . . . . . . . . . 42

7.3 Performance of the Gaussian Blur method in frames per second (fps) in the Dam
break with 3375 particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.4 Performance of the Screen Space Curvature Flow method in frames per second
(fps) in the Dam break with 3375 particles. . . . . . . . . . . . . . . . . . . . . 43

7.5 Performance of the Gaussian Blur method in frames per second (fps) in the water
drop with 3500 particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.6 Performance of the Screen Space Curvature Flow method in frames per second
(fps) in the water drop with 3500 particles. . . . . . . . . . . . . . . . . . . . . 45





Contents

1 Introduction 17
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 SPH-based Fluid Simulation and Rendering: State of the Art 19

3 Smoothed Particle Hydrodynamics 21
3.1 Weakly Compressible SPH (WCSPH) Method . . . . . . . . . . . . . . . . . . 24

4 Rendering the Fluid Surface 27
4.1 Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Gaussian Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Screen Space Curvature Flow . . . . . . . . . . . . . . . . . . . . . . 30

5 Implementation Methodology 33

6 Case Studies 35

7 Results and Analysis 39
7.1 Hardware and Software Infrastructure . . . . . . . . . . . . . . . . . . . . . . 39
7.2 SPH Simulation Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3.1 Dam break with 1000 particles . . . . . . . . . . . . . . . . . . . . . . 41
7.3.2 Dam break with 3375 particles . . . . . . . . . . . . . . . . . . . . . . 43
7.3.3 Water drop with 3500 particles . . . . . . . . . . . . . . . . . . . . . . 44

8 Conclusion 47
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References 49





171717

1
Introduction

Some of the fluid dynamics problems in naval engineering and mechanical engineering
are intended to be simulated with high numerical accuracy. The classic method for this type of
simulation is the Finite Element Method (FEM), which can deal effectively with the vast majority
of simulation problems, but becomes inefficient in cases where there are large deformations and
with boundary regions (3).

To overcome such challenges, mesh-free methods may be used such as the Smoothed
Particle Hydrodynamics (SPH) (4) and Moving Particles Semi-Implicit (MPS) methods (5).
These techniques can simulate fluids efficiently using a system with a discrete number of
particles and solving the Navier-Stokes equation of motion without the need to use a grid,
making the method with a high degree of flexibility in cases where the traditional methods
become very complex (6).

In this work, the SPH method will be used in order to simulate the fluid behavior. This
method was designed over three decades ago by Lucy (7) and Gingold and Monaghan (4)
and intended to astrophysics applications. Since their conception, there have been continuous
improvements and adaptations of the original method in order to simulate various kinds of
physical phenomena.

One of the biggest problems for particle methods is the modeling of the interaction
between solids and fluids (boundary condition). Several solutions have been presented, which
may lead to the high degree of numerical precision or only the visual accuracy (3). However,
given the high flexibility of implementation of this type of method, it has been used in the gaming
industry (8) and in the film industry (9).

In those industries, another big challenge is to realistically render the simulated fluid. To
visualize the simulation results, it is necessary to rebuild the surface using the particles identified
as free surface (10). The rendering of the results can be made using several methods such as
direct rendering (11), 3D scalar field (10), volume rendering (12) or a screen space approach (8).

Recently, literature indicates two main methodologies: the use of a 3D scalar field and
the screen space approach. In the first one, each particle of the system is associated with a
scalar value and the surface of the fluid is reconstructed using those values, for instance, using a
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Marching Cubes algorithm (13). The second approach renders the particles as spheres or point
sprites and applies a smoothing filter to the depth map in order to create a better looking final
surface render.

The 3D scalar field approach includes the challenge of choosing the most appropriate
kernel function to determine the density of scalar field of the surface particles. To create a smooth
surface, the function is calculated using neighboring particles, which tends to be quite costly,
making the rendering method more suitable for offline applications (10).

The screen space option may be more suitable for real-time applications because each
particle renders individually, without the need to apply a function on the neighboring particles.
Once reconstructed, the surface may have a resemblance to a jam. To overcome this characteristic,
a smoothing function is applied to the depth map of the scene and it is used to calculate the
normal at each point. Finding the best function to create a smooth surface is the main challenge
of this type of technique (1).

1.1 Goals

The goal of this work is to investigate the SPH method and ways of reconstructing the
surface from the fluid simulation results based on a ray tracing algorithm. To achieve this goal, a
compressible SPH method is implemented based on the work of (14) and (15) and, to improve
the calculation time, a parallel implementation of the method is implemented using CUDA.

To reconstruct the fluid surface, a ray tracing system named Real Time Ray Tracer - RT 2

(16) is used, and, to obtain a more realistic surface, two smoothing algorithms are implemented
and compared in regards to visual quality and rendering time. The smoothing algorithms used to
smooth the surface are: Gaussian Blur (17) and Screen Space Curvature Flow (8).

1.2 Document Structure

The next chapter discusses the state of art of SPH-based fluid simulations and also how to
render the results from the simulation. The Chapter 3 describes the SPH technique, its governing
equations, main applications and different ways of calculation the fluid behavior. After that,
The chapter 4 describes the ray tracing algorithm and the smoothing methods applied in this
work. The Chapter 5 shows the methodology adopted throughout the development of this work
and chapter 6 describes the test cases used in this work and how to analyze the results. The
Chapter 7 discusses the results of this work in regarding numerical validation of the SPH method
developed, GPU speedup, surface reconstruction, visual quality and performance. At last, in
chapter 8, the conclusions are discussed and the contributions of this work are exposed, with
future possibilities and enhancements being discussed.
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2
SPH-based Fluid Simulation and Render-
ing: State of the Art

The SPH method was introduced by (7) and (4) in order to model astrophysical phenom-
ena. Since then it has been vastly extended to model fluids (18), (19) and even solids behavior
(20), mainly under those aspects which could limit the applications simulated by mesh-based
approaches, such as high deformations, for instance.

A straightforward adaptation to the original SPH method is the application for weakly
compressible fluids. In this kind of fluid, the pressure can be calculated by an equation of state.
The works (21), (22), (23) and (24) show comparisons between implementations of weakly
compressible and truly incompressible methods, in which are applied techniques such as the one
introduced by (25).

In the truly incompressible methods, the density is calculated by the Poisson equation.
This equation can be represented by a sparse linear system. Those kind of methods can generate
a more accurate solution but requires more computation time as stated in the works of (26), (27),
(28) and (29).

The main difference between the original (astrophysical) SPH method and the newer
particle-based fluid simulations is the inclusion of boundary conditions. There are several ways
of containing the fluid inside of a bounded geometry, such as, explicit forces (3), pressure
influence (27), density compensation (30) or a geometrical approach (31).

To create fluid with distinct behavior, some characteristics can be adapted depending
on the problem being simulated, such as viscosity, turbulence, smoothing function, among
others. The works (24), (32), (33) and (34) show some existing options concerning viscosity
improvements.

The most common way of simulating a turbulent flow is to incorporate the Reynolds-
Averaged Navier-Stokes turbulence (RANS) model into the SPH method (35). It’s worth noticing
that the majority of the meshless works found in the literature deal with a low Reynolds’ number
such as the works of (36), (37), (38), (33), (39) and (40). This last work discusses the common
usage of this value in the literature.
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In order to explain the effects of the smoothing function on meshless simulations, the
works (33), (41), (42), (43), (44) and (3) discuss the changes in behavior when varying the
smoothing functions, evaluating the accuracy and stability of the methods.

Given the meshless characteristics of the simulation, it is possible to create a parallel
solution, using cluster technology or general purpose programming for graphics processor
(GPGPU) techniques, in order to decrease the time consumption, as shown in the works of (45),
(46), (47), (48) and (49).

In the SPH literature, many methods have been presented in order to reconstruct the
surface given a set of particles. A possible approach is to use a 3D scalar field; the liquid surface
is defined by calculating a kernel function which will define a scalar density field. Then, a
Marching Cubes algorithm (13) is used to generate a triangular mesh of the isosurface of this 3D
field. The choice of the scalar field formulation is the key to create a high quality surface; the
simplest choice is to use a blobbies approach, also known as metaballs (50), but this method can
create surface dumps, depending on the particle distribution.

Smoother surfaces can be found using a scalar field based on the weighted average of
particles close to each other and calculated by an isotropic kernel (51) (52) (53) , which can
generate a better visual result in sharp features and edges (10).

A second approach to render the fluid surface is to use an explicit method, frequently
used in an Eulerian context (54). In the SPH literature, a few works can be found using this
approach, such as (55), which change the surface position using information of the particles
simulation. Those methods have a high memory consumption and, in order to avoid this problem,
methods such as point splatting (56) and ray-isosurface intersection with metaballs can be used
(57).

Another solution is to render the fluid particles using screen space, which are more
suitable methods for real-time applications. Those methods interpret each particle as a sphere
and create a depth map of the scene, smooth this map in order to create a more coherent surface
and render the scene using the smoothed depth map. Many algorithms can be used to smooth
the depth map: a binomial filter (58), a Gaussian filter (8), a curvature flow (8) (59), and a post
smoothing filter (1).
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3
Smoothed Particle Hydrodynamics

The Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method created originally
to simulate astrophysics problems and lately has been used mainly to simulate hydrodynamics
problems solving the Navier-Stokes equation, defined by Eq. (3.1).

du
dt

=− 1
ρ

∇P+
1
ρ

∇ · τττ +Fext
�
 �	3.1

where u is the velocity of the fluid, t is the time, ρ is the density of the fluid, P is the
pressure of the fluid system, τττ is the deviatoric stress tensor, and Fext is the external forces in
the fluid system. This approach can be described in two parts: the kernel approximation and the
problem discretization. In the kernel approximation step, a function f (x) can be represented by
an integral interpolation as in Eq. (3.2) with second order accuracy (3):

f (x) =
∫

Ω

f (x
′
)δ (x− x

′
)dx

′ �
 �	3.2

where f is a function of the position vector x, and δ (x− x
′
) is the Dirac delta function given by

Eq. (3.3).

δ (x− x
′
) =

{1,x = x
′

0,x 6= x
′

�
 �	3.3

The delta function can be approximated by a kernel function W (x− x
′
,h), where h is the

smoothing length, so the function f can be expressed by Eq. (3.4) and its derivative can be
calculated by Eq. (3.5) and Eq. (3.6).

〈 f (x)〉=
∫

Ω

f (x
′
)W (x− x

′
,h)dx

′ �
 �	3.4

〈∇ · f (x)〉=−
∫

Ω

f (x
′
) ·∇W (x− x

′
,h)dx

′ �
 �	3.5

〈∇ f (x)〉=
∫

Ω

f (x
′
)∇W (x− x

′
,h)dx

′ �
 �	3.6
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The kernel function W is a symmetric smooth function which defines the influence area of a
particle and should satisfy some conditions (3):

1. Normalization condition, that can be expressed as in Eq. (3.7):

∫
Ω

W (x− x
′
,h)dx

′
= 1

�
 �	3.7

2. Limit condition, which can be expressed by Eq. (3.8):

lim
h→0

W (x− x
′
,h) = δ (x− x

′
,h)

�
 �	3.8

3. Compact domain condition defined by Eq. (3.9), which limits the domain of the
problem to a local solution:

lim
h→0

W (x− x
′
,h) = 0 when|(x− x

′
,h)|> kh

�
 �	3.9

There are many possible choices for a kernel function. Most of SPH simulations use a cubic
spline kernel as in Eq. (3.10), which resembles a Gaussian function but its second derivative has
some results close to a linear function and may cause transverse mode instability (37). Another
possibility is to use a quintic kernel function as in Eq. (3.11). This kernel is more stable because
it doesn’t lead to a transverse mode instability (37). There are some applications that don’t need
high accuracy, for instance, in games, so simpler kernels can be used, for instance, the poly6
kernel expressed by Eq. (3.12) or the spiky kernel shown in Eq. (3.13) (60).

W (r,h) = αd

{ 2
3
− r2 +

1
2

r5, i f 0≤ r ≤ 1

1
6
(2− r)3, i f 1 < r ≤ 2

0, otherwise

�
 �	3.10

where αd = 1/h, 5/7πh2 and 3/2πh3, for one, two and three dimensions, respectively.

W (r,h) = αd

{(3− r)5−6(2− r)2 +15(1− r)5, i f 0≤ r ≤ 1

(3− r)5−6(2− r)5, i f 1 < r ≤ 2

(3− r)5, i f 2 < r ≤ 3

0, otherwise

�
 �	3.11

where αd = 120/h, 7/478πh2 and 3/359πh3, for one, two and three dimensions, respectively.

W (r,h) =
315

64πh9

{
(h2− r2)3, i f 0≤ r ≥ h

0, othewise

�
 �	3.12
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W (r,h) =
15

πh6

{
(h− r)3, i f 0≤ r ≥ h

0, othewise

�
 �	3.13

The second part of the SPH method is to approximate the continuous hydrodynamics
problem into a series of particles. An amount of fluid is described as a finite number of particles.
Each particle in a position x has velocity u, mass m, density ρ , viscosity µ and an influence
radius h which describes the interaction of a particle over its neighbors (61), as illustrated in
Figure 3.1.

Figure 3.1: Particle approximation for a two-dimensional problem.

The influence radius of a particle defines a domain, being and area (in 2D) or a volume
(in 3D) of influence (3). Given that there are two different particles inside the domain of a particle
a, the one closer to the particle a suffers more influence than the other. Different influence
radius can be assigned to each particle in the system and the domain can have different shapes as
suggested by (3).

To get the neighborhood from a single particle, a geometric comparison is used between
the distances of two particles. If a couple of particles are within a distance less than the influence
domain, those particles are neighbors of each other and the radius of influence of a particle can
be calculated as 1.3dx, where dx is the initial spacing of the particles, according to the work of
(31).

The neighborhood search is a potentially time-consuming step and is usually optimized
using an accelerated spatial access structure like a uniform grid or an octree, instead of a naive
brute-force search (62).

In the discrete formulation, the interpolation (3.4) can be defined as Eq. (3.14):

f (xi) =
N

∑
j=1

m j

ρ j
f (x j)W (x− x j,h)

�
 �	3.14

where N is the number of neighbors of a particle and j is the index of the neighbor particle.
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Using the same approach, the divergent and the gradient operators can be calculated as
in Eq. (3.15) and Eq. (3.16):

∇ · f (xi) =−
N

∑
j=1

m j

ρ j
f (x j) ·∇W (x− x j,h)

�
 �	3.15

∇ f (xi) =
N

∑
j=1

m j

ρ j
f (x j)∇W (x− x j,h)

�
 �	3.16

Those derivatives may lead to a large numerical error. So, to overcome those limitations,
some algebraic operations are done and stable forms of the derivatives can be found, as in Eq.
(3.17) (63):

∇ · f (xi) = ρi

N

∑
j=1

m j[
f (x j)

ρ2
j

+
f (xi)

ρ2
i

] ·∇W (x− x j,h)
�
 �	3.17

3.1 Weakly Compressible SPH (WCSPH) Method

The Navier-Stokes equation describes the fluid movement in three main components:
pressure, viscosity and external forces. The WCSPH solves the fluid movement by considering
the fluid as a weakly compressible system, which is based on the fact that every incompress-
ible fluid is actually a little compressible, and because of that the method simulates a quasi-
incompressible equation to model the simulation (15). In order to calculate those components,
the first step is to calculate the particle densities, which can be calculated using the density
summation equation as expressed in Eq. (3.18) (15):

ρi = ∑
j

m jWi j
�
 �	3.18

This approach can make the simulation unstable for particles near the boundary or at the free
surface, caused by insufficient number of particles inside the kernel. Two common ways of
solving this instability is to normalize the kernel so the density will be calculated by Eq. (3.19)
or it can be calculated using the continuity equation as in Eq.(3.20) (3):

ρi =
∑ j m jWi j

∑ j
m j
ρ j

Wi j

�
 �	3.19

dρi

dt
= ∑

j
m j(ui−u j)∇Wi j

�
 �	3.20

After calculating the density of the particles in the system, the next step is to calculate their
pressures. For a weakly compressible system, there are two main options: 1) For higher
compressibility, an ideal gas equation such as (3.21) can be used; 2) In cases where the low
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density variation must be enforced, the Tait’s equation (3.22) can be used (2):

Pi = kp(ρi−ρ0)
�
 �	3.21

Pi = B((
ρi

ρ0
)γ −1)

�
 �	3.22

where kp and B are the pressure constants, ρ0 is the rest density of the fluid and γ is a constant
that usually has a value 7 (64). The pressure force is commonly calculated using the derivative
expression by Eq. (3.17), which results in the Eq. (3.23). This approach ensures a modular
equality between two particles and conserves linear and angular momentum, leading to a more
stable simulation (61):

1
ρi

∇Pi = ∑
j

m j(
Pi

ρ2
i
+

Pj

ρ2
j
)∇Wi j

�
 �	3.23

To calculate the viscosity term of the governing equations, there are some approaches that can be
used. For cases which need to model strong shocks, an artificial viscosity (3.24) can be used
(37):

∏
i j
=

{−α c̄i jθi j +βθ 2
i j

ρ̄i j
,ui j ·xi j < 0

0,ui j ·xi j ≥ 0

�
 �	3.24

where the parameters found in the equation above are given by:

θi j =
hi jui j ·xi j

r2
i j + ε2

�
 �	3.25

c̄i j =
1
2
(ci + c j)

�
 �	3.26

ρ̄i j =
1
2
(ρi +ρ j)

�
 �	3.27

h̄i j =
1
2
(hi +h j)

�
 �	3.28

xi j =
1
2
(xi +x j)

�
 �	3.29

ui j =
1
2
(ui +u j)

�
 �	3.30

where α , β and ε are constants set around 1, 1 and 0.1hi j, respectively, and ci and c j are the
respective speeds of sound for particles i and j.
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Despite the fact that this approach is used to model real viscosity, the results are not
the most accurate. But this formulation guarantees the conservation of the angular momentum,
which is crucial for simulation cases that may have a large fluid velocity or a big free surface, and
simulate a shear and bulk viscosity (37). Another option is to use the SPH formalism to calculate
the viscosity force acting on a particle, which can be expressed as (3.31). This formulation gives
a good visual result but numerical accuracy is not guaranteed (60):

f viscosity
i = µ ∑

j

m j(u j−ui)

ρ j
∇

2Wi j
�
 �	3.31

where µ is the dynamic viscosity.
In order to achieve a better numerical accuracy of the simulation, the viscous diffusion

estimation defined in Eq. (3.32) can be used. This approach combines the standard SPH first
derivative with the first derivative of a finite difference and conserves linear momentum exactly
while the angular momentum is approximately conserved (37):

(
1
ρ

∇ ·µ∇)ui = ∑
j

(m j(µi +µ j)xi j ·∇W )

ρiρ j(x2
i j +0.01h2)

ui j
�
 �	3.32

A simple way to simulate the viscosity in the system is to use the XSPH approach. This
formulation is computationally cheaper than the other methods and is easier to tune because
it only uses one tunable parameter (64). This method forces particles near each other to move
with close velocity and conserves angular and linear momentum approximately by dumping the
particle velocity using Eq. (3.33) (64):

ui = ui + ε ∑
j

mb
(ui−u j)

ρ̄ j
Wi j

�
 �	3.33

where ε is the tunable parameter of the XSPH method.
Finally, the final term in the Navier-Stokes governing equation is related to the external

forces acting upon the system which is commonly represented by the gravity. The particle new
velocities and positions are calculated using a simple first order Euler time integration described
by Eq. (3.34) and Eq. (3.35), respectively (64):

ut+1
i = ut

i +at
it

�
 �	3.34

xt+1
i = xt

i +ut+1
i t

�
 �	3.35

where ai is the particle i acceleration.
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4
Rendering the Fluid Surface

4.1 Ray Tracing

A ray tracing algorithm is used in order to reconstruct the fluid surface. The ray tracer is
a technique which has been used for over three decades to synthesize images based on natural
physical phenomena. In the computer graphics field, the ray tracing was originated in 1968 with
the work of Arthur Appel (65) to solve the visibility problem. The recursive ray tracing was
introduced by Turner Whitted in 1980 (66); using his algorithm, images were synthesized by
simulating reflection, refraction and shadow effects. Using a physical phenomenon based model,
instead of using a raster algorithm, the algorithm traces rays on the scene from the camera, being
possible to render images with more details and more realistic.

Unlike the raster algorithm, ray tracing can print objects without the need of transforming
each object into a polygonal mesh, giving more precision to the method. For instance, a sphere
can be represented as a algebraic entity and the spatial equation is able to get all the information
to a proper rendering.

In the beginning, the ray tracing algorithm was used for off-line rendering purposes due
to the high computational demand. But with the increase of computational performance of the
CPU and GPU, many works described real-time approaches for the algorithm (67) (68) (69) (70).

The ray tracer initializes its processing by emitting rays from the camera position into
the 3D scene. Those rays come out from the camera to the cut screen space, which represents
the final image. The emitted rays directed from the camera are called primary rays. In a simple
ray tracer, a ray comes out of the camera to each pixel of the image; this process is called ray
casting and the ray can be described as Eq. 4.1.

R(t) = E+ tD
�
 �	4.1

where R is the ray position, E is the eye position, D is the direction of the ray and t is the
parameter [1...+∞]

When a ray intersects an object of the scene, a new ray is emitted as reflected, refracted,
shadow or illumination rays and those rays are called secondary rays. A reflected ray is a
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secondary ray which bounces off the surface after a hit by a ray. The angle of reflection is equal
to the incident angle and the new ray direction is calculated by Eq. 4.2.

Rout = 2N(N ·Rin)−Rin
�
 �	4.2

A refracted ray is a secondary ray which is conducted by the Snell’s law expressing that
the products of the refractive indices and the sines of the angle of incidence and refraction must
be equal, as in Eq. 4.3

n1 · sin(θi) = n2 · sin(θr)
�
 �	4.3

where n1 and n2 are the normals for each medium and θi and θr are the angles of incidence and
refraction, respectively.

In order to render the results from the SPH simulation, each particle of the scene is
rendered as a sphere. In the ray tracer, a sphere can be expressed by Eq. 4.4 and any point of the
spherical surface must satisfy this equation.

(Px−Cx)
2 +(Py−Cy)

2 +(Pz−Cz)
2 = R2

�
 �	4.4

where P = (Px,Py,Pz) is any point on the sphere, C = (Cx,Cy,Cz) is the center of it and R is the
radius of the sphere.

To reconstruct the surface of the fluid, the ray tracing intersects the primary ray with
the sphere of the scene and the intersection between a ray and a sphere can be calculated by an
algebraic approach.

The first step is to substitute the parametric ray equation into the surface equation(s).
This means solving the intersection for all points P that are both on the ray and on one of the
solid’s surfaces. So after substituting Eq. 4.1 in Eq. 4.4, the intersection between a ray and a
sphere is expressed by Eq. 4.5.

((Ex + tDx)−Cx)
2 +((Ey + tDy)−Cy)

2 +((Ez + tDz)−Cz)
2 = R2

�
 �	4.5

After expanding this equation, the same can be expressed by a quadratic equation 4.6
which can be solved by the Bhaskara equation.

at2 +bt + c
�
 �	4.6

where
a = D2

x +D2
y +D2

z

�
 �	4.7

b = 2(Dx(Ex−Cx))+Dy(Ey−Cy)+Dz(Ez−Cz)
�
 �	4.8

c = (Ex−Cx)
2 +(Ey−Cy)

2 +(Ez−Cz)
2−R2

�
 �	4.9
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The unit normal of the sphere can be calculated using equation 4.10:

n̂ =
P−C
|P−C|

�
 �	4.10

where P is a point of the sphere.

In this work, to render the results from the SPH simulation and reconstruct the fluid
surface, a ray tracing system named Real Time Ray Tracer or simply RT 2 (16) was used. It
does the ray tracing process entirely on GPU using the CUDA programming model (71). The
RT 2 gives support to primary and secondary rays as explained in Whitted’s simple model (66)
and also supports visibility tests, reflections, refractions and shadows. Moreover, the ray tracer
gives support to geometric primitive types, such as triangles, cylinders, spheres and parametric
surfaces.

In the tracing system, an iterative version of Whitted’s method is implemented, which
leads to higher performance on CUDA and every stage of the rendering is integrated into a single
CUDA kernel and uses the concept of persistent threads to avoid idle threads inside a block (72).
Due to this approach, instead of defining thousands of blocks to be processed, only the necessary
ones are created to fully occupy the stream multiprocessors of the GPU.

To obtain the rendering results with high performance, the RT 2 supports 5 acceleration
structures: Bounding Volume Hierarchy (BVH), Octree, Uniform Grid, KD-Tree and Bounding
Interval Hierarchy (BIH) (16). The KD-Tree ray traversal achieved better performance if
compared to the other structures, improving the performance on a 12-39% approximate range.
However, this structure consumes more memory than the others. Because of that, in cases of
high complex geometric scene or if the architecture has a limited amount of memory, the BVH
and the BIH are more suitable options (16).

4.2 Surface Reconstruction

After rendering the spheres using the ray tracer, the result is a surface with a “blobby” or
jelly-like look. In order to create a more realistic surface without the need of creating any other
structure besides the fluid particles, a blur algorithm is applied to the surface to minimize the
difference between points of the surface close to each other.

To achieve this purpose, a screen space approach is used (8). The first step is to create the
depth map of the scene; this depth map is created using the ray tracer procedure which retains
the closest value at each pixel. After creating the depth map of the scene, a smoothing algorithm
is used to create a more realistic look for the fluid surface. With the new depth map, the normals
of the surface are calculated and with the new surface, the render process can continue.

To smooth the depth map, two methods were used: the Gaussian Blur and Curvature
Flow process.
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4.2.1 Gaussian Blur

In the Gaussian Blur (17) method, the new value of a depth from the map is calculated
by averaging its value with the ones in the neighborhood. The neighborhood is determined by a
quadratic window and the weights of each value of the window are calculated by the Gaussian
function of Eq. 4.11.

G(x,y) =
1

2πσ2 e−
x2+y2

σ2
�
 �	4.11

where x and y are the position index of the window and σ is the cross product.

This approach can cause blur over silhouette edges and can cause plateaus of equal depth
when using a large kernel.

4.2.2 Screen Space Curvature Flow

In order to achieve a better looking result, (8) propose a curvature flow approach, based
on (73), which smoothes sudden changes in curvature between particles. As the viewpoint is
constant, the smoothing effect can be applied by moving the depth value z proportionally to the
curvature, as defined by equation 4.12.

∂ z
∂ t

= H
�
 �	4.12

where t is the smoothing time step and H is the mean curvature.

The mean curvature is defined as the divergence of the unit normal of a surface, as in
equation 4.12.

2H = O · n̂
�
 �	4.13

A point P in view space Vx and Vy is mapped into a value in the depth map by inverting
the projection transformation, as defined by equation 4.14.

P(x,y) =


(2x

Vx
−1)/Fx

(2y
Vy
−1)/Fy

1

z(x,y) =

Wx

Wy

1

z(x,y)
�
 �	4.14

where Vx and Vy are the dimensions of the viewport, Fx and Fy is the focal lenght in the x and y

direction.

The normal of a point of the surface is calculated by the cross product between the
derivatives of P in the x and y direction, as expressed by Eq. 4.15.
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n(x,y) =
∂P
∂x
× ∂P

∂y
=

Cxz+Wx
∂ z
∂x

Wy
∂ z
∂x

∂ z
∂x

×


Wy
∂ z
∂y

Cyz+Wy
∂ z
∂y

∂ z
∂y

≈
−Cy

∂ z
∂x

−Cx
∂ z
∂y

CxCyz

z
�
 �	4.15

where Cx = 2
VxFx

, Cy = 2
VyFy

and the terms Wx and Wy are ignored in order to simplify the
computation as they have a small contribution on the calculation.

The unit normal is calculated by the expression of equation 4.16.

n̂ =
n(x,y)
|n(x,y)|

=
(−Cy

∂ z
∂x ,−Cx

∂ z
∂x ,CxCyz)T

√
D

�
 �	4.16

where D = C2
y (

∂ z
∂x)

2 +C2
x (

∂ z
∂y)

2 +C2
xC2

y z2 and is substituted in equation 4.12 to express H in a
way that can be derived.

The z component of the divergence is always zero, due the fact that z is a function ofx
and y is kept constant when x and y are also maintained constant. So

2H =
∂ n̂x

∂x
+

∂ n̂y

∂y
=

CyEx +CxEy

D3/2

�
 �	4.17

in which

Ex =
1
2

∂ z
∂x

∂D
∂x
− ∂ 2z

∂x2 D
�
 �	4.18

,

Ey =
1
2

∂ z
∂y

∂D
∂y
− ∂ 2z

∂y2 D
�
 �	4.19

A simple Euler integration of equation 4.12 in time is used to change the depth value
in each iteration, and the derivatives of z are computed using finite differencing. To create a
smoother surface, the number of iterations can be high, leading to a high computation time.
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5
Implementation Methodology

The first step of this work was to implement a WCSPH simulation method in C++
language. Each particle of the system is a set of information into a struct such as: position,
velocity, intermediate velocity, acceleration, mass, pressure, density, type of the particle, number
of neighbors, index of the neighbors, kernel calculated and the kernel gradient calculated. The
code of the particle struct can be seen below.

s t r u c t P a r t i c l e 3 D {

Vector3D <double > p o s i t i o n ;
Vector3D <double > v e l o c i t y ;
Vector3D <double > i n t V e l o c i t y ;
Vector3D <double > a c c e l e r a t i o n ;

double mass ;
double p r e s s u r e ;
double d e n s i t y ;

i n t t y p e ; / / 0 f o r f l u i d , 1 f o r board

i n t n e i g h b o r s [ 2 0 0 ] ; / / 200 i s t h e maximum number o f

/ / n e i g h b o r s

i n t numberNeighbors ;
double k e r n e l [ 2 0 0 ] ;
Vector3D <double > k e r n e l G r a d [ 2 0 0 ] ;

} ;

The continuity equation 3.20 was used to calculate the density of the particles, the Tait’s
equation 3.22 to calculate the pressure and the XSPH approach 3.33 to simulate the viscosity
(2). In order to validate the method implementation, the numerical result will be compared with
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the one found in the literature and will be illustrated in chapter 7 and to visualize the result the
ParaView software was used, which can render the fluid particles as points in space as can be
seen in Figure 5.1.

Figure 5.1: Visualization of the particles using the software ParaView.

In order to speedup the calculation, a parallel implementation was developed using
CUDA technology without losing the numerical accuracy. In this solution, the calculations
regarding each particle are done by a different thread in parallel.

The number of blocks used in a cuda kernel is a multiple of 512, which is the number of
threads in a block.

In order to render the results from the simulation, the RT 2 was used to render each
particle as a sphere to reconstruct the fluid surface. The RT 2 was also used to implement the
smoothing algorithms, and even though the RT 2 is integrated into a single kernel to increase
the performance, the implementation of the smoothing algorithms demanded a change of the
integration into a multi-kernel solution.

The multi-kernel solution has 4 steps: (1) calculate the depth map of the scene, (2)
smooth the depth map, (3) calculate the normal of the surface using the depth map information
and (4) illuminate the scene using phong algorithm, as illustrated in Figure 5.2.

Figure 5.2: Multi-kernel solution steps. Adapted from (1).

And the final steps were to implement both smoothing algorithms discussed in the
previous chapter and to analyze the visual results and the performances of them.
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6
Case Studies

To analyze the results from the algorithms implemented, two different scenarios were
used: the dam break and drop of water falling into an amount of fluid, which will be named
water drop from now on.

A 2D dam break test case with 1600 fluid particles was used in order to validate the SPH
implementation. This scenario is useful for testing numerical methods and solving flows that
have a constant free-surface variation. In the test scenario, a dam was built as a 2D rectangular
domain which burst right at the beginning of the simulation. The region on the right side of the
dam does not contain any fluid. The fluid column has an initial height H of 0.6m and an initial
width L of 0.6m. The bottom side of the domain has size of 2.4m. Figure 6.1 shows a 2D version
of the dam break test scenario.

Figure 6.1: 2D dam break scheme (2).

A 3D dam break was also constructed. The dam was built as a 3D rectangular domain
which burst left at the beginning of the simulation. The fluid column has H of 0.3m, L of 0.3m
and an initial depth D of 0.3m. The bottom side of the domain has width size of 1.2m. Keyframes
of this test case can be visualized in Figure 6.2.
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(a) Initial configuration of the
3D dam break

(b) Configuration of the dam
break halfway the simulation

Figure 6.2: Keyframes of the 3D dam break test case.

Two different configurations were constructed for the 3D dam break, one with 1000 fluid
particles and another with 3775 fluid particles, in order to analyze the influence of the particle
number in the surface reconstruction result.

In the water drop scene, a 3D rectangular with 125 particles, initial height h of 0.1m,
an initial width l of 0.1m and an initial depth d of 0.1m falls from a height of 0.6m and initial
velocity of (0, -10, 0) m/s into a confined 3D rectangular with H of 0.3m, L of 0.3m and D of
0.3m. Keyframes of this test case can be visualized in Figure 6.3.

(a) Initial configuration of
the water drop

(b) First keyframe of the
simulation

(c) Last keyframe of the
simulation

Figure 6.3: Keyframes of the water drop test case.

To analyze the performance of the algorithm, the camera moves through the scene from
a location where the screen is completely filled with spheres and to another location where the
scene cannot be distinguished, those positions can be seen in Figure 6.4 . While the camera
moves through the scene, the frame rate in frames per second (fps) is tracked in order to get the
maximum and minimum fps.
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Since a ray tracing approach is being used is expected that the frame rate decreases as
the camera goes away from the scene, given that there is less objects to be intersected.

(a) Screen is completely filled with spheres

(b) Far away distante view from the scene

Figure 6.4: Initial and final position of the test case.
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7
Results and Analysis

7.1 Hardware and Software Infrastructure

The SPH method and the surface reconstruction algorithm were tested on a Intel(R)
Core(TM) i7-4790K 4GHz with 32GB of memory and a 64-bit operating system. The GPU used
was a GeForce GTX 960 with 2GB of memory and CUDA 7.5 installed.

7.2 SPH Simulation Validation

The weakly compressible method WCSPH was implemented using a cubic kernel as
smoothing function with kernel support of 1.3l0, where l0 is the initial particles distance and
using a time step equals to 5x10−4.

To evaluate the solutions obtained with the WCSPH, the 2D dam break scenario was
used and the wave position right after when the dam bursts is tracked. The time is represented as
a dimensionless value calculated by t

√
g
H , where t is the time in seconds and g is the gravity. The

wave front position is expressed by the dimensionless expression as well. In order to validate the
results from the simulations, the particle evolution chart is compared with the one found in (74).

The WCSPH method implemented and shown here has a close result to the referenced
results, as it can be seen in Figure 7.2. The results found can be improved by using a more
accurate viscosity approach than the artificial one and a different boundary condition, because
the approach used in the simulation sticks the particles with low velocity to the boundary.

To simulate the fluid with high numerical precision, a small time step was used, leading
to a very time consuming calculation.
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(a) t = 0s (b) t = 0.2s

(c) t = 0.3s (d) t = 0.45s

(e) t = 0.6s (f) t = 0.8s

Figure 7.1: WCSPH visual result for different times t.

Figure 7.2: Evolution of the water wave front through dimensionless time using the
WSCPH algorithm (2).

In the CPU based simulation, a single time step is calculated on average in 2.29 seconds
and standard deviation of 0.39 seconds, whereas in the GPU based simulation, the calculation
can be done on average in 0.67 seconds and standard deviation of 0.04 seconds. Leading to a
speedup of 3.4 times, approximately.

7.3 Surface Reconstruction

The surface reconstruction can be divided in three steps: (1) depth map creation, (2)
smoothing the normal map and (3) calculate the surface normal. With the new surface, phong
algorithm is used to illuminate the scene.

The normal map is created by taking the distance which is used to lead the ray from



7.3. SURFACE RECONSTRUCTION 41

the camera to the scene. After applying the smoothing algorithm, the map is more equally
distributed.

The normal of a point of the smoothed surface is calculated by Eq. 4.16. To validate the
calculation, the normal map of a scene with spheres in it, which can be calculated using the Eq.
4.10, is compared to the normal map using the approximated approach. The comparison proved
that the approximated approach can reproduce correctly the normal behavior, as can be seen in
Figure 7.3.

(a) Spherical normal
calculation

(b) Approximated normal
calculation

Figure 7.3: Normal calculation results comparison.

7.3.1 Dam break with 1000 particles

This test case, without the smooth surface, was rendered between 83 and 142 fps and the
rendering result can be found in Figure 7.4.

Figure 7.4: Dam break with 1000 particles without smoothing the surface.

If the Gaussian Blur is used to smooth the fluid surface, as the mask size increases, better
is the visual result from the rendering but bigger is the time for rendering a single frame, as can
been seen in Table 7.1 and the rendering result can be seen in Figure 7.5.
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(a) Mask size = 7 (b) Mask size = 15 (c) Mask size = 31

Figure 7.5: Dam break with 1000 particles using Gaussian smoothing with different
mask size.

Table 7.1: Performance of the Gaussian Blur method in frames per second (fps) in the
Dam break with 1000 particles.

Mask size = 7 Mask size = 15 Mask size = 31

60 to 130 fps 25 to 50 fps 5 to 17 fps

Using the Screen Space Curvature Flow approach, it was possible to achieve a more
realistic reconstruction, but with a small fps, if compared with the Gaussian approach, as can be
seen in Figure 7.6.

(a) 40 iterations (b) 60 iterations (c) 100 iterations

Figure 7.6: Dam break with 1000 particles using Curvature Flow smoothing with
different iterations number.

In order to achieve a better visual result, a bigger number of iterations is needed, which
lead to a small fps, as can be seen in Table 7.2.

Table 7.2: Performance of the Screen Space Curvature Flow method in frames per second
(fps) in the Dam break with 1000 particles.

40 iterations 60 iterations 100 iterations

12 to 15 fps 9 to 10 fps 5 to 7 fps
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7.3.2 Dam break with 3375 particles

Without any blur in the surface, the ray tracer was able to reconstruct the fluid surface
between 87 and 130 fps and the visual result can be found in Figure 7.7.

Figure 7.7: Dam break with 3375 particles without smoothing the surface.

By using both smoothing approaches, the relation between visual quality and performance
was similar to the one found in the previous test case. The higher the reconstruction visual quality,
the smaller is the performance of the approach, as can be seen in Table 7.3 for the Gaussian
approach and in Table 7.4 for the Curvature Flow approach.

Table 7.3: Performance of the Gaussian Blur method in frames per second (fps) in the
Dam break with 3375 particles.

Mask size = 7 Mask size = 15 Mask size = 31

72 to 115 fps 28 to 45 fps 6 to 14 fps

Table 7.4: Performance of the Screen Space Curvature Flow method in frames per second
(fps) in the Dam break with 3375 particles.

40 iterations 60 iterations 100 iterations

13 to 14 fps 9 to 10 fps 6 to 7 fps

Comparing the visual quality of the results, with the results from the previous test, it was
possible to achieve a better reconstruction quality due to the bigger number of particles in the
same scene. But, just like the earlier test, the Curvature Flow approach had a better visual quality
compared to the Gaussian approach, while the Gaussian is more suitable for applications that
require better time performance.

The reconstruction results can be seen in Figure 7.8 and 7.9 using the Gaussian approach
and the Curvature flow approach, respectively.
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(a) Mask size = 7 (b) Mask size = 15 (c) Mask size = 31

Figure 7.8: Dam break with 3375 particles using Gaussian smoothing with different
mask size.

(a) 40 iterations (b) 60 iterations (c) 100 iterations

Figure 7.9: Dam break with 3375 particles using Curvature Flow smoothing with
different iterations number.

7.3.3 Water drop with 3500 particles

For the water drop, without the smooth surface, was possible to render with performance
between 90 and 150 fps and the rendering result can be found in Figure 7.10.

Figure 7.10: Drop water with 3500 particles without smoothing the surface.
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By comparing the performance of both approaches in this test case, it was possible to
visualize the same behavior of the two couple of tests done before, as can be seen in Table 7.5
and Table 7.6.

Table 7.5: Performance of the Gaussian Blur method in frames per second (fps) in the
water drop with 3500 particles.

Mask size = 7 Mask size = 15 Mask size = 31

32 to 101 fps 30 to 50 fps 7 to 9 fps

Table 7.6: Performance of the Screen Space Curvature Flow method in frames per second
(fps) in the water drop with 3500 particles.

40 iterations 60 iterations 100 iterations

13 to 16 fps 9 to 11 fps 5 to 7 fps

By comparing the reconstruction result, the Curvature Flow approach had a better visual
result compared to the Gaussian Blur. The Gaussian Blur is able to smooth the surface but still
appear some imperfections in the surface, which are almost vanished using the Curvature Flow
approach. The reconstruction result can be seen in Figure 7.11 and Figure 7.12 for the Gaussian
and the Curvature Flow approaches, respectively.

(a) Mask size = 7 (b) Mask size = 15 (c) Mask size = 31

Figure 7.11: Drop Water 3500 particles using Gaussian smoothing with different mask
size.
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(a) 40 iterations (b) 60 iterations (c) 100 iterations

Figure 7.12: Drop Water 3500 particles using Curvature Flow smoothing with different
iterations number.

In general, both methods were able to reconstruct the surface with a smoother look
compared to the initial surface. Comparing the visual result, the Gaussian Blur method produces a
less quality result because even with a large number of mask size it is still possible to differentiate
the spheres in the scene and creates a dark region around the silhouettes of the surface. Whereas,
the Screen Space Curvature Flow approach is able to decrease the dark region error and, by using
a high number of iterations, the jelly look of the surface almost disappears.

In terms of performance, as expected, the frame rate increase as the scene occupies a
bigger amount of the screen space. The Gaussian approach had a better result, being recom-
mended to be used in real time applications. On the other hand, the Curvature Flow method is
more suitable for applications which require a more realistic reconstruction without the necessity
of being in real time.
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8
Conclusion

This work has investigated the SPH method and ways of reconstructing the surface from
the fluid simulation results using the Real Time Ray Tracer system. A WCSPH method was
implemented being able to simulate the fluid behavior with numerical precision and a GPU
version of the code was implemented achieving a speedup of 3x.

To reconstruct the fluid surface, two smoothing algorithms were implemented: the Gaus-
sian Blur and the Screen Space Curvature Flow. It was possible to observe a trade-off between
visual quality and performance. While the Gaussian Blur is more focused in performance, the
Curvature Flow method can reconstruct the fluid surface with higher visual quality but is not
recommended for real time applications.

Developing this work, one paper was published in the Congress on Numerical Methods
in Engineering (CMN 2015) (2) and a book chapter regarding point based fluid simulation, to be
published in 2016, was written while working alongside with the University of São Paulo (USP)
entitled Applied Topics in Marine Hydrodynamics (75).

8.1 Future Work

As next steps for this work we intend to implement acceleration structures, like grid
and octree, to speed up the neighborhood search of the SPH method in order to achieve a real
time simulation and apply different methods of solid fluid coupling in order to create a more
accurate simulation, such as (76) and (30). Also, improve the visual quality of the reconstruction
by enforcing the boundary condition to prevent error around the silhouettes (8). To give a more
realistic look to the fluid surface, there are several ways that can be followed, for instance, a
thickness approach can be found in (8) and a volume based one can be found in (77).
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