

FED ER AL UN I V ER SI TY O F PERN AMBUCO

CENTER OF INFORMATICS
COMPUTER SCIENCE GRADUATION

2 0 1 5 . 2

A Ray Traced Rendering Solution for Particle-

Based Fluid Simulation
GRADUATION PROJECT PROPOSAL

Student: Caio José dos Santos Brito (cjsb@cin.ufpe.br)

Supervisor: Veronica Teichrieb (vt@cin.ufpe.br)

Co-Supervisor: Mozart William Santos Almeida (mwsa@cin.ufpe.br)

October 2nd, 2015.

1. Introduction

Fluid Simulation is used in films, games and virtual reality to generate plausible

physical results and with high visual quality. In scenarios where high numerical

accuracy is needed, such as movies or scientific simulations, the complexity of the

simulation and rendering algorithms becomes very complex, therefore demanding

offline implementations [1]. When only visual plausibility is needed, as in the cases of

video games or some virtual reality applications, the use of a simpler method may be

used in order to optimize the processing time, leading to lower numerical precision and

visual of the results [2]

In this work, the Lagrangian method Smoothed Particle Hydrodynamics (SPH) will

be used to simulate the fluid movement [3]. This method takes a continuous amount of

fluid and describes it as a finite number of particles without the use of a mesh [4], which

leads to a low memory cost and the system becomes more dynamic. For those reasons,

it has been used in games [5] and movies as well [1].

The SPH method is able to simulate fluid with numerical precision, but it consumes

a long processing time because a large number of particles that is required to achieve a

higher order precision. This performance issue can be minimized by using a parallel

solution of the algorithm [6].

The SPH can be resumed in three steps: neighborhood search, the calculation of

each particle’s acceleration and the time integration. The neighborhood search is a

potentially time-consuming step and is usually optimized using an accelerated spatial

access structure like a uniform grid [2] or an octree [7], instead of a naïve brute-force

search. The considered forces applied in the particle system are gravity, pressure and

viscosity [3]. The pressure influence of each particle can be calculated using a state

equation [4] or solving the Pressure Poisson equation [8]. The first option is usually

chosen for the simplicity and computational efficiency and has a good numerical

precision while, in order to calculate the Pressure Poison Equation one needs to solve a

sparse linear system, which can make the simulation slower

To calculate the viscosity in the particle position, an artificial viscosity can be used

which can introduce shear and bulk viscosity in the simulation [3]. Another option is to

use a laminar viscosity [8] in a particle system that do not have the presence of

turbulence or use a function that damp the velocity of a particle using the velocity from

the neighborhood [9]. This option is easier to tune and can achieve acceptable numerical

accuracy for our purposes [10].

The time integration can be done using a local [8] or global [3] scheme and,

depending of the method implemented, one scheme can be more appropriated than

another. In our work, we chose the global approach.

In order to render the results, it is required to reconstruct the fluid surface using the

particles identified as free surface [11]. To visualize the simulation, it is possible to use

many methods such as Direct Rendering [12], 3D Scalar Fields [11], Volume Rendering

[13] or the Screen Space Approach [14]. Recently, the literature shows that there are

two main approaches for rendering the simulation results:

(1) 3D Scalar fields. This method maps each particle to a scalar value and

reconstructs the surface using those values, for instance, using a marching

cubes algorithm;

(2) Screen Space approach. This approach renders the particles as point sprites

and apply a smoothing filter in the surface;

The first option has as major challenge: choosing the right kernel function to

determine the scalar density field of the surface particles. To create a smooth surface,

the function is calculated using the neighbors of the particles, which tends to be time

consuming, and making the rendering method more appropriated for offline applications

[11].

While the second option can be better suited for a real time application, because it

renders the surface particles individually without the necessity of applying a function

over the neighbors, after the surface is reconstructed, the results may have a jelly look.

To overcome this characteristic, a smooth function is applied in the particles normal. To

find the best function to create a smooth surface is the major challenge of this kind of

rendering technique [15].

2. Objectives

This graduation work aims to study rendering algorithms applied to the Weakly

Compressible Smoothed Particle Hydrodynamics. First, an implementation of the

method will be improved to simulate a higher number of particles, by adding an

accelerated spatial access structure. This version will be tested with different test cases.

The results from the simulation will be rendered using a ray-traced method based on

the works of [14] and [15].

The goals to be achieved in this work are:

 Study and implementation of the improvements at the SPH method.

 Study the rendering techniques used in particle based simulation.

 Choose the most appropriated technique for rendering the simulation results

using a ray-tracer [16] as core of the rendering algorithm

 Compare the rendering results with the ones found in the literature

3. Methodology

The graduation work will be accomplished in three stages: research, development

and validation.

At the research stage, two aspects will be studied:

(1) The SPH method for fluid simulation;

(2) The rendering methods applied to this kind of simulation.

At the end of this stage, a rendering approach will be chosen to apply in a ray tracer

algorithm.

The development stage will be divided in two steps. First, using our SPH

implementation already developed, a GPU version will be implemented to optimize the

result computation, by not only creating a parallel solution for the algorithm but also

adding a spatial hash structure. Then, using the SPH results, a rendering solution will be

developed using the ray tracer as rendering platform [16] by adding new rendering

modules based on the approach considered more suitable to create an interactive

solution with a high visual quality.

The GPU solution will be implemented using NVIDIA’s CUDA technology [17],

the development environment will be the Microsoft Visual Studio 2013 and using the

C/C++ language.

In the validation step, the results will be compared with the ones found in the

literature considering both the visual quality and execution time and, by the end of the

project, there will be a rendering solution applied to particle-based simulations using a

ray tracer platform.

4. Schedule

Activities August/2015 September/2015 October/2015 November/2015 December/2015 January/2016

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Literature

Review and
Solution
Definition

Development
of the SPH
method in

GPU
(CUDA)

Development
of the

Rendering
Solution

Compare the
Solution

Results with
the Literature

Write Final
Report

Make
Presentation

5. Reference

[1] C. J. Horvarth; B. Solenthaler. Mass preserving multi-scale SPH. Pixar

Technical Memo 13-04, Pixar Animation Studios, 2013.

[2] M. Ihmsen et al. SPH fluids in computer graphics. 2014.

[3] J. J. Monaghan. Simulating free surface flows with SPH. Journal of

computational physics, v. 110, n. 2, p. 399-406, 1994.

[4] P. J. Morris; P. J. Fox; Y. Zhu. Modeling low Reynolds number incompressible

flows using SPH. Journal of computational physics, v. 136, n. 1, p. 214-226,

1997.

[5] S. Green. Screen space fluid rendering for games. In: Proceedings for the

Game Developers Conference. 2010.

[6] P. Goswami et al. Interactive SPH simulation and rendering on the GPU.

In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation. Eurographics Association, 2010. p. 55-64.

[7] F. Reichl; M. Treib; R. Westermann. Visualization of big SPH simulations via

compressed octree grids. In: Big Data, 2013 IEEE International Conference

on. IEEE, 2013. p. 71-78.

[8] R. Xu; P. Stansby; D. Laurence. Accuracy and stability in incompressible SPH

(ISPH) based on the projection method and a new approach. Journal of

Computational Physics, v. 228, n. 18, p. 6703-6725, 2009.

[9] H. Schechter; R. Bridson. Ghost SPH for animating water.ACM Transactions

on Graphics (TOG), v. 31, n. 4, p. 61, 2012.

[10] A. L. V. E Silva et al. A QUALITATIVE ANALYSIS OF FLUID

SIMULATION USING A SPH VARIATION. 2015.

[11] J. Yu; G. Turk. Reconstructing surfaces of particle-based fluids using anisotropic

kernels. ACM Transactions on Graphics (TOG), v. 32, n. 1, p. 5, 2013.

[12] J. Yu et al. Explicit mesh surfaces for particle based fluids. In:Computer

Graphics Forum. Blackwell Publishing Ltd, 2012. p. 815-824.

[13] R. Fraedrich; S. Auer; R. Westermann. Efficient high-quality volume rendering

of SPH data. Visualization and Computer Graphics, IEEE Transactions on,

v. 16, n. 6, p. 1533-1540, 2010.

[14] W. J. Van Der Laan; S. Green; M. Ssinz. Screen space fluid rendering with

curvature flow. In: Proceedings of the 2009 symposium on Interactive 3D

graphics and games. ACM, 2009. p. 91-98.

[15] F. Reichl et al. Interactive Rendering of Giga-Particle Fluid Simulations.

In: Eurographics/ACM SIGGRAPH Symposium on High Performance

Graphics. The Eurographics Association, 2014. p. 105-116.

[16] A. Lira Dos Santos; V. Teichrieb Orientador. Estruturas de aceleração para Ray

Tracing em tempo real: um estudo comparativo. 2011.

[17] NVIDIA, C. U. D. A. Compute unified device architecture programming guide.

2007.

6. Signatures

Caio José dos Santos Brito

Student

Veronica Teichrieb

Supervisor

Mozart William Santos Almeida

Co-Supervisor

