
Human-Centric Test Generation

Adriana Libório

Federal University of Pernambuco
Informatics Center, Recife-PE, Brazil

alfl@cin.ufpe.br

Abstract—Despite the tremendous advances ob-
served over the recent years in automated test gener-
ation, existing techniques are far from achieving their
goal of fulfilling some informed coverage criteria. That
happens because the search-space that generators ex-
plore are often intractable. This paper presents one
approach to involve the human actively in the test
generation process. Intuitively, humans can easily solve
problems that a machine encounters difficulty, and con-
versely. Our goal is to facilitate the interaction between
the human and the tool for the particular purpose
of test generation. Our solution builds on the infras-
tructure of the search-based EvoSuite test-generator.
We evaluate our approach on a well-known benchmark
(SF100); results show that by sparing the search from
hard-to-solve problems, the search is able to improve
its performance and in most cases solve subproblems
on its own.

I. Introduction

Testing is important. As long as humans continue
to participate in software development, errors will likely
continue to be introduced in code, and software testing
will remain an important activity in software engineering.
In industry, testing is certainly today the most popular
technique for verification and validation of software.

Unfortunately, testing has its limitations. It is incom-
plete and can consume significant human energy. Automa-
tion can help improve testing. Previous test-automation
techniques showed some promising results in some eval-
uation settings when using controlled code. However, a
recent study [1] shows that those techniques do not work
well “out of the box”, on real open-source projects: the
study involved 100 randomly-selected real applications and
indicated that effectiveness of several test-generation tech-
niques proposed in the literature have been overestimated.
The study found that, when considering programs that
contain a significant amount of dependencies with the
testing environment, the effectiveness of test-generation
techniques is significantly lower than what has been ad-
vertised. In particular, the study found that test genera-
tion performs poorly for programs with dependencies on
databases, files, and other sub-systems. Unfortunately, the
study also found that these programs seem to dominate in
practice. In a different study, involving 4 large applications,
Xiao et al. [2] also report similar difficulties that test-
generation techniques face. These two empirical studies
applied different testing techniques (e.g., random, evolu-
tionary, and symbolic test generation) but reported similar
limitations. Their results suggest that these limitations
correspond to general challenges of search as opposed to
particular deficiencies of existing techniques.

This paper exploits one way to enable humans and test
generators to interact, synergistically leveraging the power
of each other. More precisely, testers can provide guidance
to the search on the basis of the difficulties that the test-
generator faces. The main challenge is to identify the
proper interfaces between the user and the tool. This paper
proposes a semi-automatic approach for test generation
that builds on the EvoSuite [3] test generator.

Figure 1 shows a code excerpt of ArgsParser class. To
cover the target branch it is necessary to generate a string
starting with two dashes (“- -”). EvoSuite can only cover
such a branch when given a very large time budget.

public class ArgsParser { ...
String LONG_ARGUMENT_INDICATOR = "--";
...
public SwitchArgument parseSwitchArgument(String

key){
boolean isLongKey = (key.length() > 1);
if (isLongKey) {
String searchFor = LONG_ARGUMENT_INDICATOR + key;
for (int i = 0; i < args.length; ++i) {
if (innerArgs[i] != null) {
if (innerArgs[i].equals(searchFor)) {
innerArgs[i] = null; // Target Branch
return new SwitchArgument(i, key, true);

...
}...}

Fig. 1. Excerpt of ArgsParser class.

Figure 2 shows an example test sequence that EvoSuite

generates. This sequence comes close to covering the target
branch. However, the last if statement evaluates to false.
Based on the content of LONG ARGUMENT INDICATOR it is
easy for a developer to realize that all that’s necessary to
achieve a true evaluation on this last if statement is to
call the method with the same name but with two dashes
prepended to it.

ArgsParser argsParser0 = new ArgsParser();
String string0 = "</xml>"; // "--xml"
String[] stringArray0 = new String[4];
stringArray0[1] = string0;
argsParser0.setArgs(stringArray0);
argsParser0.parseSwitchArgument(string0); // "xml"

Fig. 2. Example test sequence that EvoSuite generates. The side
comments show the String arguments needed to cover the target
branch indicated in Figure 1. The two dashes are required due to
the value of LONG ARGUMENT INDICATOR in Figure 1.

Fraser and Arcuri [1] reported some major problems
faced by test-generation techniques, in particular for the



EvoSuite. Complex string handling, Java generics, dy-
namic type handling and branches in exception handling
code are among the reasons why a test-generation tech-
nique cannot always achieve a high coverage. For example
if there is a call for a String.equals method, EvoSuite won’t
always be able to create a test case that would generate
both true and false return calls for this method in a short
period of time. Another limitation of the EvoSuite occurs
when the class requires I/O for reading/writing a file or
even for network permission checks. There are branches
which depends on or sometimes even create files causing
the EvoSuite to generate several files with random names.
Classes with graphical user interface also have problems
when used in a test-generation technique. A large amount
of windows being opened at the same time requiring user
inputs, together with a large amount of thread manipula-
tion makes this scenario close to impossible to handle with
a test-generation technique.

Our approach helps the tester to identify hard-to-
solve branches and generate tests that cover them. We
build on search-based test generators like Randoop [4] and
EvoSuite [3]. We say that the search hits stagnation, when
coverage does not improve for a certain (informed) time
interval. A stagnation in the search reveals a stagnation
frontier, which corresponds to the set of branches that
the search is about to solve (but could not). Note that
it is possible that such set is small and that hard-to-
solve branches dominate not only many easy to solve
branches but also some other hard-to-solve ones. Our
approach to test generation proceeds in an interactive
way: the user collaborates with the tool for a number
of times corresponding to the number of stagnation hits.
When interruption occurs, the tester adjusts tests that
the tool informs with the goal to cover the branches in
the stagnation frontier. We conjecture that the number of
stagnation hits is small and so is the number of branches
to cover in each stagnation frontier.

This paper makes the following contributions:

Idea: We present a semi-automatic test generation
technique that brings the human to the loop. The human
assumes an active role of assisting the test generator in
improving coverage.

Implementation: Our approach is supported by a
tool, which includes an environment for observing search
progress, stagnation frontiers and their branches, and re-
fining tests and evaluating whether they cover frontier
branches. Our tool builds on the EvoSuite test-generator.

Experiments: We evaluate our approach using the
SF100 benchmark. We want to observe how often and how
quickly stagnation occurs as well as the number of branches
in each frontier a stagnation reveals. Results indicate that
search stagnates really quickly and by solving a frontier,
the search is able to improve coverage even more than just
that branch.

II. Background and Related Work

Many automatic generation techniques have been pro-
posed, such as Randoop [4], which is based on random

approach to generate test inputs. Because it is open-source,
a lot of other test generators and extensions were cre-
ated based on Randoop. In dynamic symbolic execution,
Microsoft developed Pex [5] as a test generator for their
language C#, and for Java we have jCute [6]. In test
generation based on search, EvoSuite [3] is a state of the
art with its evolutionary search to create test cases for Java
applications. In this project we focus our approach as an
extension of EvoSuite.

Different static metrics to predict the capability of test-
generators on programs have been studied [7], [8]. They can
be useful to give rough explanations for the reasons why
test generators did not work. Previous research has also
pointed to different factors that influence test-generator
capability [9]–[11]. All these results suggest new directions
for improving existing test-generator tools.

Despite the remarkable advances observed in previous
years, recent studies indicate that there is still a lot to
improve in automated test-generation research [1], [2].
Xiao et al. [2] and then Fraser and Arcuri [1] report similar
problems in automated test generation which are inherent
to the challenging search spaces that generators need to
explore. They showed that state-of-the-art techniques and
tools have not been able to achieve high coverage when
it comes to real-life application. For example, applications
that involve I/O and environmental dependencies [1]. The
focus of this paper is to improve human-machine collabo-
ration with the goal to improve effectiveness of automated
test generation and therefore contribute to reduce the gap
that exists between testing research and practice.

Test Sequence Generation. Pavlov and Fraser have
recently investigated human guidance in search-based test-
ing [12]. Their work builds on the idea of human-based
genetic algorithms [13]. The approach taken by Pavlov
and Fraser was to stop the search when it stagnates, i.e.,
coverage scores observed during the search saturate. In
such scenario, the tool asks the tester to augment the test
suite with informed test cases. Their results suggest that
human-interaction is one concrete way to deal with the
problem of environmental dependencies [1]. Our approach
focus on problems that need to be solved in that moment,
as the next to cover branch. We study how to simplify,
minimize the user effort and how to use user feedback to
solve other problems. Ning and Kim proposed PAT [14]
to improve test-generation with the user help. In contrast
to the work of Pavlov and Fraser, PAT uses symbolic
execution to produce object and primitive-type constraints
that existing off-the-shelf constraint solvers cannot handle.
PAT fragments and presents these constraints for the user
to solve.

Test Oracle Generation. Since machine limitations,
CrowdSourcing has began to be studied as a way to be
able to achieve goals that computation only can’t. Crowd-
Sourcing is a recently popular technique to automate
computation that cannot be performed by machines, but
only by humans. In this very recent study [15], Pastore
introduces an approach to solve test generation problems
using this technique by simplifying these problems into
subproblems that mostly unqualified crowd are able to fix
them.



Fig. 3. Test generation workflow. This diagram shows our approach interaction loop with the user and between components.

III. Technique

Our technique uses human-feedback to improve auto-
mated test generation. Figure 3 illustrates the test gen-
eration process. The feedback loop continues until the
tester is satisfied with the quality of the generated test
suite. The user (a) can either create new tests or improve
existing ones (b). These tests are the seeds to the (c)
sequence generator (d). The simplifier (f) processes the
data collected during the search up to a stagnation bound
and communicates to the user the branches in the frontier
and the tests that got close to cover them. The framework
provides a user-interface to assist the user with the elabo-
ration of tests to cover branches in the frontier. We detail
below each of the individual processes in this workflow.

A. Sequence Generator

The goal of this component is to maximize branch
coverage of an input class under test. The sequence gen-
erator builds the scope of the search dynamically. When
the search makes no progress for a certain (informed)
amount of time it stops and all collected data is passed
to the simplifier. In principle, our approach is general to
use any randomized test generator. We used the EvoSuite

generator.

EvoSuite. Our approach builds on the EvoSuite evolu-
tionary test generator [16]. EvoSuite uses genetic algorithm
to perform search for test sequences. Each individual in the
search population is a test suite (a set of test cases). So
there is no distinction between unit and integration testing
in this context. A test case is a sequence of method calls,
however, the user can provide annotations to be used as
test oracles. The method call sequences can be as complex
as needed to set right objects instances, change attributes,
etc. We refer to the size of a test case as the number of
statements it has. In evolutionary test generation [1], [3],
[9]–[12] it is possible that the search gets stuck trying to
cover particular hard-to-cover branches. This can happen
because the size of the search space can be large, making
the search to virtually stop or to make progress at an

unacceptable rate. EvoSuite uses a standard notion of
branch distance to evaluate fitness [16].

EvoSuite adaptation. We adapted search to keep a more
global state of the genetic algorithm. Since in EvoSuite

individuals of the population are suites, if a test case in
another individual covers a branch not covered yet, but
this is not part of the best individual, this improvement
is only improves that individual fitness, but not the whole
population coverage. We added this information in a global
state where every improvement in the population is used
and added back as a better individual to search population.
This way, we can achieve better coverage result faster, and
then stagnate (if necessary) with branched in the frontier
that search really didn’t find a solution.

B. Simplifier

The tester is a key participant in human-centric test
generation. It is therefore crucial that an interactive en-
vironment reports useful information, e.g., a small set of
facts that reveals the difficulties that the test generator
faces. In this component, we try to formulate various
simple questions about execution behavior to simplify the
answers to the user. One can formulate a problem as:
find groups of generated test sequences that fail to cover
particular conditional branches and report them to the
user in a compact manner.

The main goal of the simplifier, is to minimize the infor-
mation that we show to the user. For example, when search
stagnates, it stagnated with a frontier of branches that
weren’t covered yet. We define frontier branches as those
branches that were not covered yet but their dependencies
have been, so they are the next branches to be covered.
So, from the search data that we saved, we have the test
cases that get the closest to cover that branch. However,
that test case can be as large as the maximum number of
statements in a test case, and the first thing necessary to
do is to minimize this test case, to leave only the minimum
of statements that are necessary to keep the same distance
to that branch. Figure 5 shows the test case editor screen



Fig. 4. Source code GUI: The test cases coverage is highlighted in
the source code. Statements highlighted in blue are the target branch
of given test case, red are the statements being executed in the given
test case and green are the ones that were covered by other test cases.

that the user can use to edit the minimized test case that
targets the blue colored statement in Figure 4. For each of
the frontier branches, we show the best test case for it and
in the source code screen 4 we highlight statements that
were covered in that test case (red) and by the other test
cases (green). The simplifier can be formulated as another
search problem. Conceptually, the goal of the simplifier
is to report to the user a quality summary of the test
generator difficulties.

C. User-Interface (UI)

Once the stagnation point is reached, we need to ask
feedback to the user. For this purpose, we show to the
user the GUI shown in Figures 4 and 5. At this moment,
the user can visualize the best test case to achieve the
target branch (which is displayed in blue for him) and edit
it to cover the branch. To see the result of each of the
modification to the test case he can click Save and the
test case is parsed into EvoSuite test case and executed
(covered lines are updated). To facilitate file creation for
most of the subjects we created a File Factory, where
the user can create files to feed test cases.

When the user is finished, he can resume search. When
search is resumed, the set of test cases created by the user

Fig. 5. Test case editor GUI: the editor parses user input, and
converts it to EvoSuite’s internal format. The user can see the impact
of each modification to a test case in Source Code GUI by clicking
Save.

are added back to the best individual of the population.
To make sure user input is not going to be lost during
the genetic algorithm operations, the input is saved and
always inserted if needed.

D. Tester

In our context, the test generator provides a sum-
mary of potential problems it encounters when generating
sequences. There are a number of ways the user can
help a test generator for improved effectiveness, structural
coverage. For example, the user can write mock objects,
object factories, and even sequence rules to accept/rejec-
t/underweight/overweight particular test sequences with
certain characteristics he or she prefers.

In the screens in Figures 4 and 5, the user can edit
test cases that are going to be added to search population
inside the best individual. We also added a few mechanisms
so user feedback is not going to be eliminated during the
genetic algorithm. Also, I/O is a bit of a challenge when
it comes to creating test cases. In the editor, the user can
use our built-in File Factory to create a set of files that
the search can use to create test cases.

IV. Evaluation

This section presents our evaluation of this project.

A. Research Questions

Our experiments can be divided in two groups. The first
group contains experiments on a completely controlled en-
vironment where it is used automatic test generation only.
This first group is used for RQ1 and RQ2 since none of
them require user interaction. The second group contains
experiments where human input is needed to evaluate our
semi-automatic approach and is used to evaluate RQ3 and
RQ4. RQ1 and RQ2 were studied as a form of analysis of
the EvoSuite and automatic test generation. We wanted
to gather data to show the limitations of automatic test
generation and to increase the motivation to achieve good
results on RQ3 and RQ4. RQ3 and RQ4 both represent the



synergie that the user can have together with an automatic
test generation tool in order to improve test efficiency.

RQ1: How often search stagnates and what is the distri-
bution of coverage obtained when it occurs?

RQ2: What is the importance of increasing stagnation
bounds?

RQ3: What is the impact on coverage of releasing hard-
to-solve test requirements from the search goal?

RQ4: How much can we minimize report to the user?

B. Object of Analysis

We used the SF100 corpus of real Java projects ran-
domly selected from SourceForge [1] as base. This bench-
mark contains 100 Java projects, including 8784 public
classes in total. Fraser and Arcuri provided evidence that
this benchmark is valid to evaluate analysis techniques
given the diversity of constructions it contains.

C. Setup

In our controlled experiments we have applied
EvoSuite fully automatic over the whole SF100 bench-
mark. These experiments are important to answer our pri-
mary research questions regarding the behavior of coverage
growth over search time. To avoid threat of validity, we also
use EvoSuite’s built in Sandbox for all SF100 subjects.
By using EvoSuite’s Sandbox we avoid potentially unsafe
operations that can harm the environment and affect
next subjects, also every subject has the same runtime
conditions.

Since we are working with humans, it seemed intuitive
that we understand and study search behavior through
time, which is measurable by the user, instead of by
number of generations or iterations in the search that can
be very variable between different subjects. Therefore, we
test search behavior using stagnation bounds based on
time. For example, if search coverage doesn’t change for
10 seconds, it is considered stagnated, in this case the 10
seconds is the stagnation bound. Notice that stagnation
bound is irrespective of the global timeout of the search
budget. Conceptually, when the search reaches this bound
it means that the search is unable to make progress.

To evaluate this project, we measure human effort to
improve test generation results and how much human
input improves coverage in contrast to fully automatic
approach. We are aware that evaluation using human
input can create bias due to user qualification, background,
programming skills, etc. and in our experiments we try to
avoid that these factors affect the results. We can factor
them out by measuring the human effort not just by time
needed to report back to the search, but number of lines
written by the user, and the number of times the search
reached the stagnation bound during out semi-automatic
extension execution.

To answer research questions 3 and 4, we selected 20
classes out of SF100. To avoid threats to validity, we chose

them based on a testability metric used by Testability Ex-
plorer [17], which uses cyclomatic complexity, a software
metric commonly used in testability measurement [7], to
find hard-to-test classes. This tool computes its testability
metric by using recursive cyclomatic complexity based on
components inside a method that can’t be mocked, it
measures the number different paths of execution are there
in the code. A class is also penalized in this metric by the
number of static fields which are globally reachable by the
class under test and could be changed anywhere, global
state makes it harder to test. Finally, this tool uses the
Law of Diameter [18] to increase the target class score.

Therefore the selected classes will be likely to have
branch complexity. We added a few filters to selection, and
we limit the number of classes from the same project, such
as classes that are mainly Main classes, and also those
that show Graphic User Interface. We don’t focus in the
project GUI testing, and, finally, we select only classes that
EvoSuite didn’t achieve 100% within search budget. The
final result of our selection is shown in Table I.

The coverage measurement being used is branch cov-
erage. That means that the test generator goal is to max-
imize the number of branches that have their predicates
satisfied. Even if the commands inside a branch are not
fully executed, the branch is counted as covered. It also
includes in our goal the execution of methods that don’t
have any branches.

D. Results

1) Answering RQ1: In order to answer the question
of how often search stagnates and its distribution, we
conducted this experiment using all subjects of SF100
and fully automated EvoSuite and assuming 4 different
stagnation bounds, 2, 5, 10 and 15 seconds, and a total of 1
minute time budget (maximum time of exploration). This
way we can evaluate the impact of each different stagnation
bound. Intuitively, setting this bound too low has the
potential risk of reducing coverage and setting it too high
has the potential risk of reducing user responsiveness, i.e.,
search may take more time to respond and time progress
will contribute less and less to coverage increase.

The Figure 6 shows the distribution of coverage that
EvoSuite achieves considering the analysis of each of the
classes that reached stagnation bound in separate. We
used boxplot notation to represent the distribution. The
stagnation was reported in over 50% of the subjects, in
particular we can see that the difference of percentage of
stagnated classes between stagnation bound of 5 and 15
seconds is very small, more than 90% of stagnations with
5 seconds are still true when increasing the stagnation time
in 10 seconds.

Results for the first experiment show that a large
number of subjects stagnate in less than 1 minute. It also
shows that a small stagnation bound suffices to detect
stagnation for most cases of stagnation. We are aware that
smaller stagnation bounds can make premature reports
more frequently than bigger stagnation bounds, but in real
cases it impossible to predict when is the right time to
report stagnation.



Fig. 6. Coverage distribution during search of subjects that stag-
nated in each of the stagnation bounds.

2) Answering RQ2: Given the amount of subjects that
stagnated, in this experiment we evaluate this stagnation
in matter of global time, how early EvoSuite search was
considered stagnated for each class that reached stagnation
bounds. In this experiment we use the subjects that stag-
nated in each stagnation bound of the previous experiment
and the same search timeout. Clearly, stagnation times
with low stagnation bound will be able to be reported to
the user sooner than higher stagnation bounds.

The distribution of actual time that search was stopped
for each different stagnation bounds is shown in Figure 7
as a boxplot. The behavior described in this plot shows
that as soon as the search was able to report stagnation,
it did. Most of the stagnation reported happens in the
beginning of search time, what makes us believe that the
search rapidly found branches in the code that are hard to
solve. These spots are important to report to the user, as
told before.

The behavior noticed from results of Figures 6 and 7
makes us believe that we might have during search big
jumps of coverage. Search increases coverage very fast,
then stagnates and when it covers a hard to cover branch,
it has another big increase of coverage. This hypothesis is
evaluated in the next research question.

3) Answering RQ3: To evaluate the impact of solving a
stagnation point, or a hard to cover branch, human input
was needed once a stagnation point is reached. We done
this experiment ourselves by running our semi-automatic
approach. We set a global timeout to search of 2 minutes,
this does not count the time that the user needed to give
feedback.

The coverage improvement of a given stagnation point
is measured by how much it increased until another stag-
nation or search finalization. For example, if the coverage

Fig. 7. This boxplot represents the distribution of actual search time
that EvoSuite stopped in each stagnation bound.

was 20% at the moment that search stagnated A and
user input was requested, and it was 50% in the next
stagnation point or the search budget was over, then the
coverage improvement for stagnation point A is 30%. So in
this experiment we are interested in evaluating the impact
of human input by means of coverage improvement of
stagnation points in each of the subjects (Table I).

Table II lists the number of stagnation points occurred
during the experiment of each subject, and the average
of coverage improvement for each of them. It’s important
to noticed that the whole coverage improvement of a
stagnation point is not the user modification of test case.
Once new statements ares given back to search (as new
individual of population), they are used to solve other
similar branches, or mutating into new statements, and
by solving branches that are easier to the search but they
were dependent on a hard one.

TABLE II. Coverage Improvement by Means of Pauses.

Id Number of Pauses
Avg. Coverage
after Paused

1 3 25%
2 2 7.5%
3 2 17%
4 2 23%
5 2 18%
6 5 19.4%
7 2 41%
8 4 21%
9 2 37.5%
10 2 31%

Balanced Average 23.30%

Figure 8 shows a clear case where to advance in code we
need to successfully execute the indicated statement. This
statement requests an instance of String, but this String
must be an address to a file that exists. In Figure 9 is
a minimized test case created by EvoSuite, the user can
simply modify the random String passed to the method to
a valid file address or use FileFactory, in either way the
impact in coverage would be the same. The modified test



TABLE I. Selected Experiment Subjects.

Id Project Class
Number of
Lines

Number of
Goals

Complexity
Score

1 Wheel WEB WheelClassLoader 140 32 99
2 ObjectExplorer ObjectCopyDialogEventConverter 236 45 99
3 QuickServer ConfigReader 466 100 197
4 Lilith LilithBuffer 85 14 202
5 Tullibee Order 255 22 98
6 celwars2009 Sound 52 11 120
7 at-robots2-j AtRobotLineLexer 249 119 569
8 TemplateIT HSSFDataFormat 290 36 239
9 TemplateIT DynamicTemplate 99 21 267
10 JMCA JMCAParser 63 11 1628

public static void createPatch(String origfn,
String newfn, String patch, boolean verbose) {

FileInputStream A = null;
try {

if (verbose) {
System.out.println("Reading file A...");

}
String a = StringFromFile.readString(origfn);

// Throws IOException
if (verbose) {

// Target branch
System.out.println("Reading Patch...");

}
FileInputStream B = new FileInputStream(patch);
RelativeString r = new RelativeString(B);
B.close();
// ...

} catch (Exception ex) {
ex.printStackTrace();

}
}

Fig. 8. This snippet of FileDiffPatch class shows one of its methods
that EvoSuite has problems in covering. Here, EvoSuite is not able
to reach the indicated branch because the previous statement raises
IOException and code flow is redirected to the catch command.

String string0 = "Lt <k}hvD}oct\u001F\u0018&1\u001D";
boolean boolean0 = true;
FileDiffPatch.createPatch(string0, string0, string0,

boolean0);

Fig. 9. Best test case created by EvoSuite after minimization. It
still doesn’t cover the target branch described in Figure 8 because it
gives a random String to createPatch instead of a valid file address
and IOException is raised.

case shown in Figure 10 immediately increases coverage
of the subject from 36.84% to 44.44% and after new
generation are created, the coverages improves to 100%.

Since search time was limited first by time then cover-
age (obviously, search is finished once it reaches 100%),

String string0 = "Lt <k}hvD}oct\u001F\u0018&1\u001D";
boolean boolean0 = true;
File file0 = FileFactory.getRandomFile();
String string1 = file0.getAbsolutePath();
FileDiffPatch.createPatch(string1, string0, string0,

boolean0);

Fig. 10. Test case from Figure 9 after manual editing to create and
pass a valid file address to createPatch.

TABLE III. Summary of Branch Coverage

Id EvoSuite Semi-Automated
Infeasible
Branches

1 28.13% 100% 2
2 31.11% 46% 10
3 13.00% 100% 17
4 57.14% 100% 8
5 3.7% 100% 0
6 18.18% 100% 23
7 17.65% 100% 0
8 27.78% 100% 3
9 42.86% 100% 1
10 27.27% 100% 0

some of the resulting coverages didn’t reach 100%. Ta-
ble III summarizes the obtained coverages by fully auto-
mated EvoSuite and semi-automated approach. Also, the
infeasible branches that were reported had their percent-
age in code were considered as covered, it includes their
dependent branches.

In our experiments, semi-automatic test generation
increased branch coverage by by 67.9%. Such impressive
improvement is not only caused by the user input, but the
set of low testability classes that were selected with Testa-
bility Explorer. Also, the number of infeasible branches
that were found is a variable in this metric. With no report
of infeasible branches, search would go on until its budge
ended trying to move on, but it would impossible.

4) Answering RQ4: This experiment evaluates how
much minimization can be done on the best test cases
that we found for the frontier branches (next to cover
branches) when a stagnation bound is reached. Frontier
branches are those branches that were not covered yet
but their dependencies have been, so they are the next
branches to be covered. During search, we keep track of
the test cases that got the closest (smaller distance) to
each frontier branch, once a stagnation bound is reached,
and the search is stopped to give the user feedback, these
test cases are minimized to keep the same distance to their
goal and have the minimum size as possible.

Figure 11 shows how effective the minimization of
test cases is. Though EvoSuite’s search focuses on also
minimizing its test cases, when search stagnates it might
not have enough time to have minimized them. Before
minimization the longest test had over 93 lines, and after
minimization the longest has 43 lines. We may still have
a lot of work left to never show the user a test case as big
as 43 lines.



Fig. 11. Boxplot distribution of test case length before and after
minimization.

V. Conclusions and Future Work

In this paper, we have presented a semi-automatic
approach and had good results that show that a minor
human input can help improve test generator coverage. We
implemented this approach as an extension of EvoSuite to
get dynamic data from search and give back to it feedback
from the user to cover new branches. Our experiments to
understand search behavior showed us that it is important
for performance that human input release search from
hard-to-cover areas.

There is a real potential in including human in the loop
of test generation, and a lot can still be done in the areas to
communicate with the user: simplify information as most
as possible to be able to not even need source code nor test
cases, so it would be possible for companies to use crowd-
sourcing without the need to jeopardize their security.

References

[1] G. Fraser and A. Arcuri, “Sound empirical evidence in software
testing,” in ICSE, 2012, pp. 178–188.

[2] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux, “Precise
identification of problems for structural test generation,” in
ICSE, 2011, pp. 611–620.

[3] G. Fraser and A. Arcuri, “Evosuite: automatic test suite gen-
eration for object-oriented software,” in ESEC/FSE, 2011, pp.
416–419.

[4] Randoop website, http://code.google.com/p/randoop/.
[5] Pex and Fakes (Moles) website,

http://research.microsoft.com/en-us/projects/pex/.
[6] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing

and explicit path model-checking tools,” in CAV, 2006, pp. 419–
423.

[7] M. Bruntink and A. v. Deursen, “Predicting class testability
using object-oriented metrics,” in Proceedings of the Source
Code Analysis and Manipulation, Fourth IEEE International
Workshop, ser. SCAM ’04. Washington, DC, USA: IEEE

Computer Society, 2004, pp. 136–145. [Online]. Available:
http://dx.doi.org/10.1109/SCAM.2004.15

[8] B. Daniel and M. Boshernitsan, “Predicting effectiveness of
automatic testing tools,” in Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 363–366. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2008.49

[9] J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu, “Random
test run length and effectiveness,” in Proceedings of the 2008
23rd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 19–28. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2008.12

[10] G. Fraser and A. Arcuri, “The seed is strong: Seeding strategies
in search-based software testing,” in Proceedings of the 2012
IEEE Fifth International Conference on Software Testing,
Verification and Validation, ser. ICST ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 121–130. [Online].
Available: http://dx.doi.org/10.1109/ICST.2012.92

[11] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm
testing,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 78–88. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336763

[12] Y. Pavlov and G. Fraser, “Semi-automatic search-based test
generation,” in 5th International Workshop on Search-Based
Software Testing (SBST’12) at ICST’12, 2012, pp. 777–784.

[13] H.-S. Kim and S.-B. Cho, “Application of interactive genetic
algorithm to fashion design,” in Engineering Applications of
Artificial Intelligence, 2000, p. 635âĂŞ644.

[14] N. Chen and S. Kim, “Puzzle-based automatic testing:
bringing humans into the loop by solving puzzles,” in
Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 140–149. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351697

[15] F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the
crowd solve the oracle problem?” in ICST’13: Proceedings of the
6th International Conference on Software Testing, Verification
and Validation. IEEE Computer Society, 2013, to appear.

[16] G. Fraser and A. Arcuri, “Evolutionary generation of whole
test suites,” in Proceedings of the 2011 11th International
Conference on Quality Software, ser. QSIC ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 31–40. [Online].
Available: http://dx.doi.org/10.1109/QSIC.2011.19

[17] M. Hevery, “Testability explorer: using byte-code analysis
to engineer lasting social changes in an organization’s
software development process.” in Companion to the 23rd
ACM SIGPLAN conference on Object-oriented programming
systems languages and applications, ser. OOPSLA Companion
’08. New York, NY, USA: ACM, 2008, pp. 747–748. [Online].
Available: http://doi.acm.org/10.1145/1449814.1449842

[18] Law of Demeter - wikipedia,
http://en.wikipedia.org/wiki/Law of Demeter.

http://code.google.com/p/randoop/
http://research.microsoft.com/en-us/projects/pex/
http://dx.doi.org/10.1109/SCAM.2004.15
http://dx.doi.org/10.1109/ASE.2008.49
http://dx.doi.org/10.1109/ASE.2008.12
http://dx.doi.org/10.1109/ICST.2012.92
http://doi.acm.org/10.1145/2338965.2336763
http://doi.acm.org/10.1145/2351676.2351697
http://dx.doi.org/10.1109/QSIC.2011.19
http://doi.acm.org/10.1145/1449814.1449842
http://en.wikipedia.org/wiki/Law_of_Demeter

	I Introduction
	II Background and Related Work
	III Technique
	III-A Sequence Generator
	III-B Simplifier
	III-C User-Interface (UI)
	III-D Tester

	IV Evaluation
	IV-A Research Questions
	IV-B Object of Analysis
	IV-C Setup
	IV-D Results
	IV-D1 Answering RQ1
	IV-D2 Answering RQ2
	IV-D3 Answering RQ3
	IV-D4 Answering RQ4


	V Conclusions and Future Work
	References

