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ABSTRACT 

In 1984, Shamir [1] proposed a public-key encryption scheme such that the public key 

could be an arbitrary string, in particular, some form of unique identity of the user. This kind 

of scheme is known as Identity-Based Encryption (IBE). Shamir’s original motivation for 

constructing IBE was to simplify key management in email systems. 

There are two basic approaches to the construction of IBE system. The first one, upon 

which Boneh-Franklin [2] scheme in based, builds IBE systems using bilinear maps [3,4,5]. 

The resulting systems are efficient both in performance and ciphertext length. 

The second approach, due to Cocks [6], builds an elegant IBE system based on the 

quadratic residuosity problem modulo an RSA composite 𝑁. The ciphertext in this system 

contains two elements of ℤ/𝑁ℤ to each bit of the plaintext. Hence, the encryption of an 𝑙-bit 

message yields a ciphertext of size 2𝑙 · 𝑙𝑜𝑔2𝑁 bits. For example, encrypting a 128-bit 

message using a 1024 bits modulo, the resulting ciphertext is of size 32678 bytes. For 

comparison, pairing based methods produce a 36 byte ciphertext. 

An open problem since Cocks scheme was the construction of a space efficient IBE 

scheme without pairings, namely a system with short ciphertexts. In 2007, Boneh, Gentry and 

Hamburg [7] proposed such a system. In their scheme, the ciphertext size is about 𝑙 + 𝑙𝑜𝑔2𝑁. 

Encrypting a 128-bit message produces a ciphertext of size 145 bytes. The security of the 

system is based on the quadratic residuosity problem. 

Encryption time in this system is quartic on the security parameter, while in the most 

part of practical public-key system the encryption is cubic on the security parameter. 

The objective of this work is to study and spell out the Boneh-Gentry-Hamburg 

scheme.



 

 

 

RESUMO 

Em 1984, Shamir [1] propôs um esquema de encriptação de chave pública tal que a 

chave pública pode ser uma string arbitrária, em particular, alguma forma de identificação do 

usuário. Esse tipo de esquema é chamado Identity-Based Enscryption (IBE). A motivação 

original de Shamir para IBE era simplificar o gerenciamento de certificados em sistemas de 

email.  

Existem duas abordagens para a construção de sistemas IBE. A primeira delas, na qual 

o esquema Boneh-Franklin [2] é baseada, constrói sistemas IBE usando pareamentos 

bilineares [3,4,5]. Os sistemas resultantes são eficientes tanto em performance quanto em 

tamanho do cifrotexto. 

A segunda abordagem, utilizada por Cocks [6], constrói um sistema IBE elegante 

baseado no problema padrão da residuosidade quadrática módulo um RSA composto N. Os 

cifrotextos nesse sistema contém dois elementos de ℤ/𝑁ℤ para cada bit do puro-texto. Assim, 

a encriptação de uma mensagem de 𝑙 bits possui tamanho 2𝑙 · 𝑙𝑜𝑔2𝑁. Por exemplo, 

encriptando uma mensagem de 128 bits usando um módulo de 1024 bits, o cifrotexto gerado 

possui 32678 bytes de tamanho. Em comparação, métodos baseados em pareamentos 

produzem um cifrotexto de 36 bytes para o mesmo nível de segurança. 

Um problema em aberto desde o sistema de Cocks era a construção de um sistema IBE 

eficiente em espaço sem recorrer a pareamentos, ou seja, um sistema com cifrotexto curto. Em 

2007, Boneh, Gentry e Hamburg [7] construíram um sistema com essas condições. O 

cifrotexto possui tamanho 𝑙 + 𝑙𝑜𝑔2𝑁. Encriptando uma mensagem de 128 bits, o resultado é 

um cifrotexto de tamanho 145 bytes. A segurança do sistema é baseada no problema da 

residuosidade quadrática. 

O tempo de encriptação nesse sistema é quártico no parâmetro do segurança, enquanto 

na maior parte dos sistemas práticos de chave pública a encriptação é cúbica no parâmetro de 

segurança.  

O objetivo desse trabalho é estudar o sistema de Boneh-Gentry-Hamburg. 
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Chapter 1 

INTRODUCTION 

Our globalized society evolves very fast and with this grows the reliance in the 

Internet as the main mean of communication. With this, came the need of exchanging 

information that only the involved parties could have access to. This security is needed to 

send confidential emails, access your web account through the web, buy things online and 

many other activities that are becoming a habit in many people lives. 

The older way to exchange information securely is cryptography. The first known use 

of cryptography was in 1900 BC. The earlier ciphers were much simpler. The main classical 

cipher types are transposition ciphers, which simply consist on rearranging the order of the 

letters of a message, and substitution ciphers, which systematically replace a letter or a group 

of letters with other letters or group of letters. With the advance of computers, and specially 

the internet, cryptography became mostly based in mathematical manipulation of the 

information. 

 Public-key cryptography is widely used in the internet. It consists of a pair of keys, 

namely a public key and a private key, where the public key is used to encrypt information 

and everybody can have access to it, while the private key is used to decrypt information and 

only the owner of the key can have access to it. Public-key cryptography requires a complex 

infra-structure to manage the keys. 

In 1984, Adi Shamir proposed a new kind of cryptography called identity-based 

cryptography [1]. The main purpose was to avoid the need of maintaining a complex infra-

structure as in public-key systems and thus simplify the use of cryptography in email systems. 

Identity-based systems uses some information that identifies the user uniquely as his public 

key, while the private key is generated by some entity called Private-key generator, or PKG. 

Since the problem was proposed, many identity-based schemes were proposed 

[8,9,10,11,12], but none of them was fully satisfactory. The first fully functional scheme was 

proposed by Dan Boneh and Mathew Franklin in 2001 [2]. Their scheme was based on 

pairings over elliptic curves. Also in 2001, Clifford Cocks [6] proposed another IBE scheme 

that was based in the quadratic residuosity problem. The problem with his approach is that it 

produces large ciphertexts. 
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Since the creation of Cocks and Boneh-Franklin IBE, it was an open-problem to find a 

space-efficient IBE-scheme that was not based on pairings in elliptic curves. This problem 

was solved in 2007 when Boneh, Gentry and Hamburg proposed such a scheme [7]. The 

purpose of this work is to study their proposal. 

1.1 DOCUMENT STRUCTURE 

This work is divided in 5 chapters. Chapter 2 presents some preliminary concepts that 

are needed to understand what comes next. It includes some cryptographic concepts, such as 

the types of attack, symmetric and public-key cryptography. It also includes some 

mathematical concepts, such as modular arithmetic, rings, fields, quadratic residues, 

Legendre’s and Jacobi’s numbers. 

Chapter 3 is about identity-based encryption. It shows the problems that motivates the 

creation of this new kind of cryptography and the main ideas besides it. It also presents the 

history of the schemes proposed and the notion of security appropriate to it. 

Chapter 4 presents the Boneh-Gentry-Hamburg scheme. It shows an abstract single-bit 

encryption system and then transforms this system in order to encrypt multi-bit messages. The 

proof of security is also presented. Finally, it shows a concrete instantiation of the schemes 

defined before and algorithm to help the implementation of them. 

The last chapter presents the conclusion and future works. 
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Chapter 2 

PRELIMINARY CONCEPTS 

God invented the integers; all else is the work of man. 

LEOPOLD KRONECKER 

Mathematics is the queen of the sciences and number theory is the queen of mathematics. 

CARL FRIEDRICH GAUSS 

 

In this chapter we present the preliminary concepts that a reader needs to know in 

order to understand the remaining chapters. The first section shows cryptography concepts 

such as types of attack, symmetric cryptography and public-key cryptography. The second 

section explains mathematical concepts such as modular arithmetic, groups, quadratic 

residues and quadratic residuosity problem. 

2.1 CRYPTOGRAPHY 

In this section, we present the types of attack and notions of symmetric and assymetric 

cryptography. We define plaintext as being the message itself that one wants to send and 

ciphertext as the “scrambled” information that is actually transmitted from the sender to the 

receiver. 

2.1.1 Types of Attack 

According to Katz and Lindell [13], the basic types of attack against encryption 

schemes are, in order of severity: 

 Ciphertext-only attack: This is the most basic type of attack and refers to the 

scenario where the adversary just observes a ciphertext (or multiple 

ciphertexts) and attempts to determine the underlying plaintext (or plaintexts). 

 Known-plaintext attack: Here, the adversary learns one or more pair of 

plaintext/ciphertext encrypted under the same key. The aim of the adversary is 

then to determine the plaintext associated with some other ciphertext (for 

which it doesn’t know the corresponding plaintext). 
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 Chosen-plaintext attack: In this attack, the adversary has the ability to obtain 

the encryption of plaintexts of its choice. It then attempts to determine the 

plaintext that was encrypted in some other ciphertext. 

 Chosen-ciphertext attack: The final type of attack is one where the adversary is 

even given the capability to obtain the decryption of ciphertexts of his choice. 

The adversary’s aim, once again, is to determine the plaintext that was 

encrypted in some other ciphertext (whose decryption the adversary is unable 

to obtain directly). 

 

 Ciphertext indistinguishability is an important security property of many 

cryptographic schemes. Intuitively, if a cryptosystem possesses the property of 

indistinguishability, then an adversary is not able to distinguish the origin of a ciphertext even 

if he knows it came from either one of two plaintexts. Indistinguishability under a chosen 

plaintext attack is equivalent to the property of semantic security. 

 Notice that the idea of ciphertext indistinguishability is similar to the idea of the 

Turing Test [14]. This refers to the game proposed by Turing as a way of dealing with the 

question whether machines can think. Suppose that we have a person, a machine, and an 

interrogator. The interrogator is in a room separated from the other person and the machine. 

The object of the game is for the interrogator to determine which of the other two is the 

person, and which is the machine. The objective of the machine is to try to cause the 

interrogator to mistakenly conclude that the machine is the other person; the object of the 

other person is to try to help the interrogator to correctly identify the machine.  

 

2.1.2 Symmetric Cryptography 

Symmetric cryptography refers to any form where the same key is used to encrypt and 

decrypt the message. It is also known as secret key cryptography. To be more precise, the 

encryption and decryption keys don’t have to be exactly the same but they do have to be 

trivially related: this means that they may be identical or there is a simple transformation to go 

between the two keys [15].  
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Figura 2-1 Symmetric Cryptography Scheme 

Symmetric cryptography has been in use for thousands of years. One of the simplest 

forms is called Caesar cipher. It is a type of substation cipher in which each letter is replaced 

by a letter some fixed number of positions down the alphabet. This cipher dates to the first 

century before Christ. 

An implicit assumption in any system using private-key cryptography is that the 

communication parties must have some way of initially sharing a key in a secret manner. Note 

that if one party sets the key and sends it to the other party over a public channel, an 

eavesdropper obtains the key too. If exists a secure channel which the parties could use to 

share the key, they didn’t need to use cryptography: they could send the message through the 

secure channel. In military settings, this is not a severe problem because communication 

parties are able to physically meet in a secure location in order to agree upon a key. In many 

modern settings, however, parties cannot arrange any such physical meeting [13].  

Note that the number of keys needed to be shared increases rapidly with the number of 

people wanting to communicate with each other. For example, assume that a company has 10 

employees and they all need to communicate with each other. Each employee must have 9 

keys, in order to communicate with the others. Once we have 10 employees, we should have 

to distribute 90 keys. As each key is distributed to 2 employees, we have 45 different keys to 

generate and distribute. If we double the number of employees, the number of keys became 

190, more than four times bigger than before. 

This is called the key management problem and it is the major problem with the use of 

symmetric cryptography in modern applications. This is a source of great concern and 

actually limits the applicability of cryptographic systems that rely solely on secret-keys 

methods.  
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2.1.3 Public-key cryptography 

In order to solve the key management problem existent in symmetric cryptography, 

Whitfield Diffie and Martin Hellman [16] introduced the concept of public-key cryptography 

in 1976. Public-key cryptography is also known as asymmetric cryptography. In their system, 

each user has a pair of keys: one called the public key and the other called the private key. 

The public key is published while the private key is kept in secret. 

The public key is used to encrypt data and the private key is used to decrypt 

ciphertexts. Hence, if Bob wants to send a secret message to Alice, he needs to know her 

public key, uses this key to encrypt the message and sends it off. When Alice receives the 

ciphertext encrypted by Bob, she will need her private key in order to decrypt it and read the 

original message. Anyone can send a confidential message by just using public information, 

but the message could only be decrypted with a private key, which is in the sole possession of 

the intended recipient. 

 

Figura 2-2 Public-key Cryptography Scheme 

 

Note that the need for the sender and receiver to share secret information is eliminated. 

All the communication involves only the public key and the private key never need to be 

shared or transmitted. In this system, that is no longer necessary to trust the security of some 

means of communications. 

In a public key system, the private key can always be mathematically derived from the 

public key. Hence, it is always possible to attack a public-key system by deriving the private 

key from the corresponding public key. Typically, the defense against this attack is to make 

the problem of deriving the private key as difficult as possible. For instance, some public-key 

systems require the attacker to factor a very large number, making the derivation of the key 

computationally infeasible [17].  

Public-key systems are considerably slower than symmetric systems and are therefore 

not appropriate to large amounts of data. They also usually need a larger key to provide the 
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same level of security of symmetric systems. Because of this, it is often used a hybrid 

approach: a public-key algorithm is used to exchange the key and this key is used to transmit 

data using a symmetric algorithm. 

Public keys should be associated with their users in a trusted manner. If it doesn’t 

happen, an attacker can generate a public-private key pair and sends the public key to a user 

that wants to communicate with Alice as if it is Alice’s public key. Once the attacker 

possesses the associated private key, he would be able to read the messages sent to Alice by 

that user. 

The association of public keys to its owner is typically done by protocols 

implementing a public-key infrastructure. This allows the validity of the association to be 

formally verified by a trusted third party. This is usually done by a certificate authority and 

the association is called digital signatures. 

In implementations of a traditional public-key system that uses digital certificates to 

manage public keys, a public-private key pair is generated randomly by the user. After it is 

created, the public key, along with the identity of the owner of the key, is digitally signed by a 

certificate authority to create a digital certificate that is then used to transport and manage the 

key [18]. 

The identity of a user is usually carefully verified before a digital certificate is issued 

to him, a process that is typically relatively expensive. The process of generating public-

private key pairs can also be computationally expensive. Because generating keys and 

verifying user’s identity can be expensive, digital certificates are often issued with fairly long 

validity periods, often between one and three years. Because of the relatively long validity 

period of the public keys managed by digital certificates, it is often necessary to check the key 

in a certificate for validity before using it. 

The difficulty of maintaining the necessary public-key infrastructure motivated the 

creation of identity-based encryption, as we will see in the next chapter. 

2.2 MATHEMATICS 

In this section, we explore the mathematical concepts that are necessary to understand 

the following chapters. Most part of the content from this section was based on [13]. 



PRELIMINARY CONCEPTS 8 

 

2.2.1 Basics Concepts from Number Theory 

Number theory is the branch of pure mathematics concerned with the properties 

of numbers in general, and integers in particular, as well as the wider classes of problems that 

arise from their study. 

The set of integers {… , −3, −2, −1,0,1,2,3, … } is denoted by the symbol ℤ. 

 

Definition 2.1 (Divisor): If 𝑎 and 𝑏 are integers, then 𝑎 divides 𝑏 or 𝑎 is a divisor of 𝑏 if 

there exists an integer 𝑐 such that 𝑏 = 𝑎𝑐. In this case we write 𝑎|𝑏 and we say that 𝑎 is a 

factor of 𝑏. 

 

Definition 2.2 (Prime): An integer 𝑝 ≥ 2 is a prime if its only positive divisors are 1 and 𝑝. 

 

Definition 2.3 (Greatest Common Divisor): A nonnegative integer 𝑑 is the greatest common 

divisor of integers 𝑎 and 𝑏 if 𝑑 is the largest positive integer that divides both 𝑎 and 𝑏. This is 

denoted by 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏). 

 

Definition 2.4 (Relatively Primes): For integers 𝑎 and 𝑏, if 𝑔𝑐𝑑(𝑎, 𝑏) = 1 then we say that 

𝑎 and 𝑏 are relatively primes. 

 

Definition 2.5 (Equivalence Relation): An equivalence relation is, loosely, a binary 

relation on a set that specifies how to split up (i.e. partition) the set into subsets such that 

every element of the larger set is in exactly one of the subsets. 

 

Definition 2.6 (Equivalence Class): Given a set 𝑋 and an equivalence relation ~ on 𝑋, 

the equivalence class of an element 𝑎 in 𝑋 is the subset of all elements in 𝑋 which are 

equivalent to 𝑎: [𝑎]  =  {𝑥 ∈ 𝑋|𝑥~𝑎}. 
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2.2.2 Modular Arithmetic 

Modular arithmetic is a system of arithmetic of integers, where numbers “wrap-

around” after they reach a certain value – the modulus. Modular arithmetic can be handled in 

mathematics by introducing a congruence relation of the integers. 

 

Definition 2.7 (Congruence): Given three integers 𝑎, 𝑏 and 𝑚, we say that ‘𝑎 is congruent to 

𝑏 modulo 𝑚’ and write 𝑎 ≡  𝑏 𝑚𝑜𝑑 𝑚, if the difference 𝑎 –  𝑏 is divisible by 𝑚. 𝑚 is called 

the modulus of the congruence. 

 

Like any congruence relation, congruence modulo 𝑛 is an equivalence relation, and 

the equivalence class of the integer 𝑎, denoted by 𝑎 𝑛  , is the set {… , 𝑎 − 2𝑛, 𝑎 − 𝑛, 𝑎, 𝑎 +

𝑛, 𝑎 + 2𝑛, … }. This set, consisting of the integers congruent to 𝑎 modulo 𝑛, is called 

the congruence class or residue class of 𝑎 modulo 𝑛.  

 

Definition 2.8 (ℤ/𝑵ℤ): The set of congruence classes modulo 𝑛 is denoted as ℤ/𝑁ℤ (or, 

alternatively, ℤ/𝑁 or ℤ𝑁) and defined by: 

ℤ/𝑁ℤ = {𝑎 𝑛 |𝑎 ∈ ℤ} 

 

Definition 2.9 (Inverse): If for a given integer 𝑏 there exists an integer 𝑏−1 such that 

𝑏𝑏−1 = 1 𝑚𝑜𝑑 𝑁, we say that 𝑏−1 is a (multiplicative) inverse of 𝑏 modulo 𝑁 and call 𝑏 

invertible modulo 𝑁.  

 

Definition 2.10 (Division Modulo N): When 𝑏 is invertible modulo 𝑁 we define division by 𝑏 

modulo 𝑁 as a multiplication by 𝑏−1 𝑚𝑜𝑑 𝑁 (i.e.: 𝑎/𝑏 ≝ 𝑎𝑏−1 𝑚𝑜𝑑 𝑁). 

 

 We stress that division by 𝑏 is only defined when 𝑏 is invertible. If 𝑎𝑏 = 𝑐𝑏 𝑚𝑜𝑑 𝑁 

and 𝑏 is invertible, then we may divide each side of the equation by 𝑏 to obtain: 

𝑎𝑏 = 𝑐𝑏 𝑚𝑜𝑑 𝑁    𝑎𝑏 𝑏−1 =  𝑐𝑏 𝑏−1 𝑚𝑜𝑑 𝑁   𝑎 = 𝑐 𝑚𝑜𝑑 𝑁 

 

Proposition 2.11: Let 𝑎, 𝑁 be integers, with 𝑁 > 1. Then 𝑎 is invertible modulo 𝑁 if and only 

if 𝑔𝑐𝑑(𝑎, 𝑁) = 1. 
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2.2.3 Groups 

Definition 2.12 (Group): A group is a set 𝔾 along with a binary operation + for which the 

following conditions hold: 

 Closure: For all 𝑔,  ∈ 𝔾, 𝑔 +  ∈ 𝔾; 

 Existence of an Identity: There exists an identity 𝑒 ∈ 𝔾 such that for all 𝑔 ∈ 𝔾, 

𝑒 + 𝑔 = 𝑔 = 𝑔 + 𝑒; 

 Existence of Inverses: For all 𝑔 ∈ 𝔾 there exists an element  ∈ 𝔾 such that 

𝑔 +  = 𝑒 =  + 𝑔. Such an  is called an inverse of 𝑔. 

 Associativity: For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝔾, (𝑔1 + 𝑔2)  + 𝑔3 = 𝑔1 +  (𝑔2 + 𝑔3). 

 

Definition 2.13 (Abelian Group): A group 𝔾 with an operation + is abelian if the following 

holds: 

 Commutativity: For all 𝑔,  ∈ 𝔾, 𝑔 +  =  + 𝑔. 

 

Definition 2.14 (Cyclic Group): A group 𝔾 is called cyclic if there exists an 

element 𝑔 in 𝔾 such that  𝔾 =< 𝑔 >  𝑔𝑛   𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟}. 

 

Definition 2.15 (Order of a Group): The order of a group 𝔾 is the number of elements of the 

set, must known as the cardinality. 

 

Definition 2.16 (Isomorphism): Let 𝔾, ℍ be groups with respect to the operations ∘𝔾, ∘ℍ, 

respectively. A function 𝑓: 𝔾 → ℍ is an isomorphism from 𝔾 to ℍ if: 

 𝑓 is a bijection 

 For all 𝑔1, 𝑔2 ∈ 𝔾 we have 𝑓 𝑔1 ∘𝔾 𝑔2 = 𝑓(𝑔1) ∘ℍ 𝑓(𝑔2). 

If there exists as isomorphism from 𝔾 to ℍ then we say that these groups are isomorphic and 

write this as 𝔾 ≃ ℍ. 

2.2.4 Properties of  ℤ/𝑵ℤ 

Proposition 2.17: Let 𝑁 ≥ 2 be an integer. The set ℤ/𝑁ℤ with respect to addition modulo 𝑁 

is an abelian group. 
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Proof: Closure is obvious. Asssociativity and commutativity follow from the fact that the 

integers satisfy the properties. The identity is 0. Since 𝑎 +  𝑁 − 𝑎 = 0 𝑚𝑜𝑑 𝑁, it follows 

that the inverse of any element 𝑎 is [ 𝑁 − 𝑎  𝑚𝑜𝑑 𝑁].             □ 

 

 In order to define a group structure over the set ℤ/𝑁ℤ using multiplication as the 

binary operation, we have to eliminate those elements in this set that are not invertible. As we 

saw in proposition 2.11, an element is invertible if 𝑔𝑐𝑑(𝑎, 𝑁) = 1. We define ℤ𝑁
∗  as the set of 

elements of ℤ/𝑁ℤ that are invertible. 

 

Definition 2.18 (ℤ𝑵
∗ ): ℤ𝑁

∗ ≝  𝑎 ∈ ℤ/𝑁ℤ   𝑔𝑐𝑑 𝑎, 𝑁 = 1}. 

  

Proposition 2.19: Let 𝑁 > 1 be an integer. Then ℤ𝑁
∗  is an abelian group under multiplication 

modulo 𝑁. 

 

Theorem 2.20: If 𝑝 is a prime, then ℤ𝑝
∗  is cyclic. 

 

Proposition 2.21: The order of ℤ𝑝
∗   is 𝑝 − 1. 

 

Theorem 2.22 (Chinese Remainder Theorem): Let 𝑁 = 𝑝𝑞 where 𝑝 and 𝑞 are relative 

prime. Then 

ℤ𝑁 ≃ ℤ𝑝 × ℤ𝑞  and ℤ𝑁
∗ ≃ ℤ𝑝

∗ × ℤ𝑞
∗ . 

Moreover, let 𝑓 be a function mapping elements 𝑥 ∈ {0, … , 𝑁 − 1} to pairs (𝑥𝑝 , 𝑥𝑞) with 

𝑥𝑝 ∈ {0, … , 𝑝 − 1} and 𝑥𝑞 ∈ {0, … , 𝑞 − 1} defined by 

𝑓 𝑥 ≝ ( 𝑥 𝑚𝑜𝑑 𝑝 , [𝑥 𝑚𝑜𝑑 𝑞]). 

Then 𝑓 is an isomorphism from ℤ𝑁  to ℤ𝑝 × ℤ𝑞  as well as an isomorphism from ℤ𝑁
∗  to ℤ𝑝

∗ ×

ℤ𝑞∗. 
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2.2.5 Quadratic Residuosity 

Definition 2.23 (Quadratic Residue): Given a group 𝔾, an element 𝑦 ∈ 𝔾 is a quadratic 

residue if there exists a 𝑥 ∈ 𝔾 with 𝑥2 = 𝑦. We call 𝑥 a square root of 𝑦. An element that is 

not a quadratic residue is called a quadratic non-residue.  

 

Proposition 2.24: Let 𝑝 > 2. Every quadratic residue in ℤ𝑝
∗   has exactly two square roots. 

 

Let 𝑠𝑞𝑝: ℤ𝑝
∗ → ℤ𝑝

∗  be the function 𝑠𝑞𝑝(𝑥) ≝ [𝑥2  𝑚𝑜𝑑 𝑝]. The above proposition show 

that 𝑠𝑞𝑝 is a two-to-one function when 𝑝 > 2 is prime. This immediately implies that exactly 

half the elements of ℤ𝑝
∗  are quadratic residues. We denote the set of quadratic residues modulo 

𝑝 by 𝒬ℛ𝑝 , and the set of quadratic non-residues by 𝒬𝒩ℛ𝑝 . We have just seen that for 𝑝 > 2 

prime 

 𝒬ℛ𝑝  =  𝒬𝒩ℛ𝑝  =
|ℤ𝑝

∗ |

2
=

𝑝 − 1

2
 

 

We want to characterize the quadratic residues in ℤ𝑝
∗  for 𝑝 > 2 prime. We begin with 

the fact that ℤ𝑝
∗  is a cyclic group of order 𝑝 − 1, according to theorem 2.20 and proposition 

2.21. Let 𝑔 be a generator of ℤ𝑝
∗ . This means that  

ℤ𝑝
∗ = {𝑔0, 𝑔1, … , 𝑔𝑝−2} 

(recall that 𝑝 is odd, so 𝑝 − 1 is even). Squaring each element in this list and reducing modulo 

𝑝 − 1 in the exponent yields a list of all quadratic residues in ℤ𝑝
∗ : 

𝒬ℛ𝑝 = {𝑔0, 𝑔2, … , 𝑔𝑝−3, 𝑔0, 𝑔2, … , 𝑔𝑝−3} 

Note that each quadratic residue appears twice in this list. We see that the quadratic 

residues in ℤ𝑝
∗ : are exactly those elements that can be written as 𝑔𝑖  with 𝑖 ∈ {0,2, … , 𝑝 − 2} an 

even integer. 

2.2.6 Legendre and Jacobi Symbols 

Definition 2.25 (Legendre Symbol): Let 𝑝 > 2 be prime and 𝑥 ∈ ℤ𝑝
∗ . The Legendre symbol 

of 𝑥 modulo 𝑝, denoted by   
𝑥

𝑝
 , is defined by:  
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𝑥

𝑝
 ≝  

+1 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝        
−1 𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝 

  

 

Proposition 2.26: Let 𝑝 > 2 be a prime. Then  
𝑥

𝑝
 = 𝑥

𝑝−1

2  𝑚𝑜𝑑 𝑝. 

 

Proposition 2.27: Let 𝑝 > 2 be a prime and𝑥, 𝑦 ∈ ℤ𝑝
∗ . Then  

𝑥𝑦

𝑝
 =  

𝑥

𝑝
  

𝑦

𝑝
 . 

 

Proposition 2.28: Let 𝑁 = 𝑝𝑞, with 𝑝 and 𝑞 distinct primes, and 𝑦 ∈ ℤ𝑁
∗  with 𝑦  (𝑦𝑝 , 𝑦𝑞), 

where 𝑦𝑝 = 𝑦 𝑚𝑜𝑑 𝑝 and 𝑦𝑞 = 𝑦 𝑚𝑜𝑑 𝑞. Then 𝑦 is a quadratic residue modulo 𝑁 if and only 

if 𝑦𝑝  is a quadratic residue modulo 𝑝 and 𝑦𝑞  is a quadratic residue modulo 𝑞. 

 

The above proposition characterizes the quadratic residues modulo 𝑁. A careful 

examination of the proof yields another important observation: each quadratic residue 𝑦 ∈ ℤ𝑁
∗   

has exactly four square roots. To see this, let 𝑦  (𝑦𝑝 , 𝑦𝑞 )  be a quadratic residue modulo 𝑁 

and let 𝑥𝑝  and 𝑥𝑞  be the square roots of 𝑦𝑝  and 𝑦𝑞  modulo 𝑝 and 𝑞, respectively. Then the 

four square roots of 𝑦 are given by the elements in ℤ𝑁
∗  corresponding to 

(𝑥𝑝 , 𝑥𝑞), (−𝑥𝑝 , 𝑥𝑞 ), (𝑥𝑝 , −𝑥𝑞 ), (−𝑥𝑝 , −𝑥𝑞 ).     

 

Let 𝒬ℛ𝑁  denote the set of quadratic residues modulo 𝑁. Since squaring is a four-to-

one function, we immediately see that exactly ¼ of the elements of ℤ𝑁
∗  are quadratic residues.  

We define now a generalization of Legendre symbol called Jacobi symbol. 

 

Definition 2.29 (Jacobi Symbol): For any integer 𝑎 and any positive odd integer 𝑛 the 

Jacobi symbol is defined as the product of Legendre symbols corresponding to the prime 

factors of 𝑛: 

 
𝑎

𝑁
 =  

𝑎

𝑝1
 

𝛼1

 
𝑎

𝑝2
 

𝛼2

…  
𝑎

𝑝𝑘
 

𝛼𝑘

 where 𝑛 = 𝑝1
𝛼1 . 𝑝1

𝛼2 … 𝑝1
𝛼𝑘 . 

 

In the special case where 𝑁 = 𝑝𝑞, with 𝑝 and 𝑞 odd primes, we have: 

 
𝑎

𝑁
 =  

𝑎

𝑝
  

𝑎

𝑞
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We define 𝒥𝑁
+1 as the set of elements in ℤ𝑁

∗  having Jacobi symbol +1 and define 𝒥𝑁
−1 

analogously. 

We know from proposition 2.28 that if 𝑥 is a quadratic residue modulo 𝑁, then 

𝑥 𝑚𝑜𝑑 𝑝 and 𝑥 𝑚𝑜𝑑 𝑞 are quadratic residues modulo 𝑝 and 𝑞, respectively. That is  

 
𝑥

𝑝
 =  

𝑥

𝑞
 = +1 

So  
𝑥

𝑁
 = +1  and the next proposition becomes trivial. 

 

Proposition 2.30: If 𝑥 is a quadratic residue modulo 𝑁, then  
𝑥

𝑁
 = +1. 

 

However,  
𝑥

𝑁
 = +1  can also occur when  

𝑥

𝑝
  =  

𝑥

𝑞
 = −1; that is, when both 

𝑥 𝑚𝑜𝑑 𝑝 and 𝑥 𝑚𝑜𝑑 𝑞 are not quadratic residues modulo 𝑝 and 𝑞. We introduce the notation 

𝒬𝒩ℛ𝑁
+1 for the set of elements of this type. That is 

𝒬𝒩ℛ𝑁
+1 ≝  𝑥 ∈ ℤ𝑁

∗    𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑁 𝑎𝑛𝑑  
𝑥

𝑁
 = +1} 

 

Proposition 2.31: Let 𝑁 = 𝑝𝑞 with 𝑝, 𝑞 distinct, odd primes. Then 

1. Exactly half the elements of ℤ𝑁
∗   are in 𝒥𝑁

+1. 

2. 𝒬ℛ𝑁is contained in 𝒥𝑁
+1. 

3. Exactly half the elements of 𝒥𝑁
+1 are in 𝒬ℛ𝑁  (the other half are in 𝒬𝒩ℛ𝑁

+1). 

 

 

Figura 2-3 The structure of ℤ𝒑
∗  and ℤ𝑵

∗  
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Proposition 2.32: Let 𝑁 = 𝑝𝑞 be a product of distinct, odd primes, and 𝑥, 𝑦 ∈ ℤ𝑁
∗ . Then 

 
𝑥𝑦

𝑁
 =  

𝑥

𝑁
  

𝑦

𝑁
 . 

2.2.7 Quadratic Residuosity Assumption 

We showed in proposition 2.26 a simple method for deciding whether a given input 𝑥 

is a quadratic residue modulo a prime 𝑝. Can we adapt it to work modulo a composite number 

𝑁? If the factorization of 𝑁 is known and 𝑁 = 𝑝𝑞, we could simply compute  
𝑥

𝑝
  and  

𝑥

𝑞
  and 

if  
𝑥

𝑝
 =  

𝑥

𝑞
 = +1, 𝑥 is a quadratic residue modulo 𝑁; if not, 𝑥 is not a quadratic residue. 

When the factorization of 𝑁 is unknown, however, there is no know polynomial-time 

algorithm for deciding whether a given 𝑥 is a quadratic residue modulo 𝑁 or not. However, a 

polynomial-time algorithm is known for computing  
𝑥

𝑁
  without the factorization of 𝑁. This 

leads to a partial test of quadratic residuosity: if, for a given input 𝑥, it holds that  
𝑥

𝑁
 = −1, 

then 𝑥 is not a quadratic residue. This test says nothing in the case  
𝑥

𝑁
 = +1, and it is widely 

believed that there does not exist any polynomial-time algorithm for deciding quadratic 

residuosity in this case. 

 

Definition 2.33 (Quadratic Residuosity): We say deciding quadratic residuosity is hard 

relative to 𝑅𝑆𝐴𝑔𝑒𝑛 if for all probabilistic polynomial-time algorithms 𝒜 there exists a 

negligible function 𝑛𝑒𝑔𝑙 such that 

| 𝑃𝑟 𝒜 𝑛, 𝑞𝑟 = 1 − 𝑃𝑟[𝒜 𝑛, 𝑞𝑛𝑟 = 1]| ≤ 𝑛𝑒𝑔𝑙 𝑛 . 

where in each case the probabilities are taken over the experiment in which 𝑅𝑆𝐴𝑔𝑒𝑛 is run to 

give (𝑁, 𝑝, 𝑞), 𝑞𝑟 is chosen at random from 𝒬ℛ𝑁  and 𝑞𝑛𝑟 is chosen at random from 𝒬𝒩ℛ𝑁
+1. 
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Chapter 3 

IDENTITY BASED ENCRYPTION 

If you have ambition, you might not achieve anything, but without ambition, you are almost certain not to 

achieve anything. 
WHITFIELD DIFFIE 

 

Identity-based encryption was first proposed by Adir Shamir in 1984[1]. The objective 

was to avoid the need to maintain the complex infra-structure of key management that exists 

in public-key systems and thus making encryption in e-mail systems easier. The scheme is 

based on public-key cryptography with an extra benefit: the user chooses some unique 

identifier as its public key instead of generating a random public/private key. This unique 

identifier can be his/her name, social number security, email address, or any other information 

that uniquely identifies him/her. 

According to Martin[18], IBE systems are very similar to public-key systems in many 

aspects, but it also has significant differences. In public-key systems, a public-key certificate 

has all the information needed to encrypt the message. In IBE, a user needs to get a set of 

public key parameters from a trusted third party. Once he/she has these public parameters, 

he/she can use it to calculate public keys for any user he/she wants and uses it to encrypt the 

messages.  

The recipient of an IBE-encrypted message needs his/her private key to decrypt the 

message. In order to obtain his/her private key, the recipient must authenticate himself/herself 

to a private key generator (PKG), a trusted third party that calculates the private keys. The 

PKG uses the identity of the user together with some secret information, called a master 

secret, to calculate the private key for that user. After that, the private key can be securely sent 

to the user. 

In public-key cryptography, public-key certificates have a preset expiration date. This 

can be made in IBE-systems by setting the public key as the identifier concatenated with the 

current year. The user can only use his/her private key during that year. After that, he/she 

needs to obtain a new private key. Note that a user who wants to communicate with him/her 

does not have to obtain his/her public key every time his/her private key expires. 
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A problem with this approach is that during the validating period of some key, there is 

no way to revoke that key. To solve this problem, IBE systems typically use short-lived keys. 

This is not as precise as having the ability of revoking immediately a key but it makes key 

validation trivial [18]. 

An interesting use of identity-based encryption is to send messages in the future [19]. 

The public key can be defined as the email address concatenated with the date. Thus, one 

could send an email that the recipient could only read in the future, in the date specified by the 

sender. This can also be used in some companies to protected information that must be 

available to only few people during a period of time, but that after some date or hour can be 

made public.  

 In IBE schemes there are four algorithms that are responsible for creating and using a 

public/private key pair. They are called Setup, KeyGen, Encryption and Decryption.  

The Setup algorithm initializes the system parameters (also known as public 

parameters or PP) and the master key. Intuitively, the system parameters will be publicly 

known, while the master key will be kept in secret by the PKG. The KeyGen algorithm takes 

as inputs the master secret and the identity and returns the private key associated with this 

identity. 

The Encryption algorithm takes as input the public parameters, the identity of the 

receiver and the message and returns the corresponding ciphertext. The Decryption algorithm 

takes as input the private key and a ciphertext and returns the original message. 

3.1 SECURITY NOTIONS 

Chosen ciphertext security (IND-CCA), as defined in chapter 2, is the standard 

acceptable model of security for public key schemes. Hence, it is natural to require this notion 

of security to identity-based encryption schemes. However, it is not enough for an IBE 

scheme to be IND-CCA secure [2]. The reason is that, when an adversary attacks an identity, 

he might already have the corresponding private keys to other identities. The system should 

remain secure despite the adversary being able to obtain private keys for any identity of 

his/her choice (other than the identity being attacked). The adversary is also allowed to choose 

the identity being attacked. 
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An IBE scheme may also be required to be anonymous. It means that the ciphertext 

reveals nothing about the identity of the user used to create it. The following IBE security 

game [7] captures chosen ciphertext security, private key queries and anonymity:  

Setup: The challenger runs 𝑆𝑒𝑡𝑢𝑝(𝜆) and gives the adversary the resulting public parameters 

PP. It keeps the master-key (MSK) to itself. We set 𝐼𝐷0
∗, 𝐼𝐷1

∗  ⊥ and 𝐶∗  ⊥. 

Queries: The adversary can issue adaptive queries of the following types: 

 Private key query ‹𝐼𝐷𝑖  ›: the challenger returns the resulting private key 𝑑𝑖 =

𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾, 𝐼𝐷𝑖) to the adversary. 𝐼𝐷𝑖  must be different from both 𝐼𝐷0
∗ and 𝐼𝐷1

∗. 

 Decryption query (𝐼𝐷𝑖  ,𝐶𝑖): the challenger responds by running 

𝐾𝑒𝑦𝐺𝑒𝑛(𝑀𝑆𝐾, 𝐼𝐷𝑖) to obtain the private key 𝑑𝑖  and Decrypt(𝑑𝑖 ,𝐶𝑖) to obtain the 

plaintext and then sends it to the adversary. (𝐼𝐷𝑖  , 𝐶𝑖) must be different from both 

(𝐼𝐷0
∗, 𝐶∗) and (𝐼𝐷1

∗, 𝐶∗). 

 A single encryption query ((𝐼𝐷0 , 𝑚0), (𝐼𝐷1 , 𝑚1)): 𝐼𝐷0, 𝐼𝐷1  are distinct from all 

previous key queries and 𝑚0, 𝑚1 are two equal length plaintexts. The challenger 

picks a random bit 𝑏 
𝑅
 {0,1} and sets 

𝐶∗   𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑃𝑃, 𝐼𝐷𝑏 , 𝑚𝑏 ,  𝐼𝐷0
∗    𝐼𝐷0  , 𝐼𝐷1

∗  𝐼𝐷1 

     It sends 𝐶∗ to the adversary. 

Guess: Eventually, the adversary outputs 𝑏′ 
R
 {0,1}. The adversary wins if 𝑏 = 𝑏′. 

 

Note that, initially, there is no value set to 𝐼𝐷0
∗, 𝐼𝐷1

∗ and 𝐶∗. So the adversary can make 

arbitrary private key queries and decryption queries. When he/she does his single encryption 

query, the two identities he/she chose must be different from all previous identities he queried 

for private keys. After that, the private key queries and decryption queries have restrictions to 

avoid the adversary to obtain the private key for 𝐼𝐷0
∗ or 𝐼𝐷1

∗  and to decrypt the challenge 

ciphertext with one of these two identities. 

We call the adversary 𝒜 and define its advantage in attacking the scheme ℰ as 

IBEAdv𝒜,ℰ(λ) =  Pr 𝑏 = 𝑏′  −  
1

2
  

We subtract 
1

2
 because the adversary already has this chance of guessing the right value 

of b by simply choosing a random bit. So, IBEAdv represents the chance that the adversary 



IDENTITY BASED ENCRYPTION  19 

 

has to win the game without taking into consideration the probability of he randomly 

guessing.  

An adversary in this game is called an ANON-IND-ID-CCA adversary. ANON stands 

for anonymous, IND stands for indistinguishability, ID refers to the ability of the adversary to 

make private key queries and CCA stands for chosen ciphertext attack. 

We will also consider three types of weaker adversaries: 

 If 𝒜 makes no decryption queries we say that 𝒜 is an ANON-IND-ID-CPA adversary. 

This models an anonymous IBE under a chosen plaintext attack. 

 If in the single encryption query the adversary uses 𝐼𝐷0 = 𝐼𝐷1  , then we say that the 

adversary is an IND-ID-CCA adversary. This models a chosen ciphertext secure IBE 

that is not necessarily anonymous.  

 If 𝒜 makes no decryption queries and uses 𝐼𝐷0 = 𝐼𝐷1 we say that 𝒜 is IND-ID-CPA 

adversary. This is the standard IBE security model under a chosen plaintext attack. 

A single encryption query with different identities, as in the original game, guarantees 

that the system is anonymous. This happens because, if the adversary was able to extract some 

information about the 𝐼𝐷 from the ciphertext, he/she could use this information to find out the 

right value of 𝑏, increasing his chance of winning the game. On the other hand, if we change 

the game to use the same identity for both 𝑚0 e 𝑚1 in the encryption query, there is no 

guarantee that the ciphertext reveals no information about the identity used to create it. Hence, 

the second type of adversary is not anonymous.  

 

Definition 3.1: Let 𝒮 be one of {IND-ID-CPA, IND-ID-CCA, ANON-IND-ID-CPA, ANON-

IND-ID-CCA}. We say that an IBE system ℰ is 𝒮-secure if for all polynomial time 𝒮 

adversaries 𝒜 we have that 𝐼𝐵𝐸𝐴𝑑𝑣𝒜,ℰ(𝜆) is a negligible function. 

3.2 HISTORY 

In 1984, Adi Shamir [1] introduced a novel type of cryptography scheme, which enables 

any pair of users to communicate securely and to verify each other’s signature without 

exchanging private or public keys, without keeping keys directory, and without using the 

services of a third party. This type of scheme became known as identity-based encryption and 
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signature schemes. In the same article, Shamir proposed a concrete implementation of 

identity-based signature scheme. However, he couldn’t find an identity-based cryptosystem, 

though he conjectures that they exist.   

 Since the problem was posed by Shamir, there have been several proposals for 

identity-based encryption schemes [8,11,12]. S. Tsuji and T. Itoh proposed a scheme based in 

the discrete logarithm problem [10]. Hatsukazu Tanaka also proposed a system based in the 

same problem [9].  None of these schemes were fully satisfactory.   

 In 2001, the first fully functional identity-based encryption scheme was finally 

proposed by Dan Boneh and Matthew Franklin [2]. Their work is based on bilinear maps 

between groups and they prove its security based on the random oracle model. Boneh-

Franklin IBE requires the calculation of a pairing, an expensive calculation that accounts for 

almost all the computation required for decryption and most of the computation required for 

encryption. Besides that, the assumptions about the hardness of problems in certain elliptic 

curves groups are relatively new compared to others cryptographic assumptions.  

 In the same year, Clifford Cocks [6] invented another IBE scheme. The security of 

Cocks IBE is based on both the computational difficulty of integer factorization and on the 

quadratic residuosity problem. Cocks IBE is efficient with respect to time but is not space 

efficient. Ciphertexts in this system contain two elements of ℤ/𝑁ℤ for each bit of the 

plaintext. Therefore the encryption of an 𝑙-bit message is 2𝑙. 𝑙𝑜𝑔2𝑁 long. 

 In 2004, Dan Boneh and Xavier Boyen [3] proposed a scheme that is secure under the 

standard model, i.e. which does not rely on random oracles. Boneh-Boyen is also based in 

pairings on elliptic curves. Sakai-Kasahara IBE was proposed in [4] and has the advantage of 

being more efficient than the previous IBE schemes.  

 Because of the uncertainty about the cryptographic assumption about pairings in 

elliptic curves and the space inefficiency of the only practical IBE scheme that was not based 

on elliptic curves [6], it was an open problem to find a space efficient IBE scheme that wasn’t 

based on pairings on elliptic curves. In 2007, the problem was solved by Dan Boneh, Craig 

Gentry and Michael Hamburg [7]. They proposed an IBE scheme that is based on the theory 

of ternary quadratic forms. The security of their system relies on the quadratic residuosity 

problem, as in Cocks system. The scheme is space efficient, though encryption is slower than 

in the Cocks system. The study and understanding of this scheme is the main purpose of this 

work. The description and security proof of it is given in the following chapters. 
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Chapter 4 

BONEH, GENTRY, HAMBURG SCHEME 

The best system is to use a simple, well understood algorithm which relies on the security of a key rather than 

the algorithm itself. This means if anybody steals a key, you could just roll another and they have to start all 

over. 

ANDREW CAROL 

In this chapter, we explore the Boneh-Gentry-Hamburg scheme [7]. As we saw in the 

last chapter, specialists were looking for a space efficient IBE scheme that was not based in 

pairings. Boneh, Gentry and Hamburg found such a scheme. In their system, the encryption 

on an 𝑙-bit message consists of a single element in ℤ/𝑁ℤ plus (𝑙 + 1) additional bits. Hence, 

ciphertext size is about 𝑙 + 𝑙𝑜𝑔2𝑁. 

To construct the IBE system, we are going to start constructing a deterministic 

algorithm with the following properties. 

 

Definition 4.1. Let 𝒬 be a deterministic algorithm that takes as input (𝑁, 𝑅, 𝑆) where 𝑁 ∈ ℤ+ 

and 𝑅, 𝑆 ∈  ℤ/𝑁ℤ. The algorithm outputs two polynomials 𝑓, 𝑔 ∈  ℤ/𝑁ℤ[𝑥]. We say that 𝒬 is 

IBE compatible if the following two conditions hold: 

 Condition 1: If 𝑅 and 𝑆 are quadratic residues, then 𝑓 𝑟 𝑔(𝑠) is a quadratic 

residue for all square roots 𝑟 of 𝑅 and 𝑠 of 𝑆. 

 Condition 2: If 𝑅 is a quadratic residue, then 𝑓 𝑟 𝑓 −𝑟 𝑆 is a quadratic 

residue for all square roots 𝑟 of 𝑅. 

 

Condition 1 implies that the Legendre symbol  
𝑓(𝑟)

𝑁
  is equal to  

𝑔(𝑠)

𝑁
 . This happens 

because the product being a quadratic form implies that the Jacobi symbol  
𝑓 𝑟 𝑔(𝑠)

𝑁
  is 1. 

Since  
𝑓 𝑟 𝑔(𝑠)

𝑁
 =   

𝑓 𝑟 

𝑁
 .  

𝑔(𝑠)

𝑁
  and the possible values for  

𝑓(𝑟)

𝑁
  and  

𝑔(𝑠)

𝑁
  is 1 and −1, 

 
𝑓(𝑟)

𝑁
  must be equal to  

𝑔(𝑠)

𝑁
 . This fact will be used during decryption. Condition 2 will be 

used to prove security. 

We begin by describing a simple IBE for one bit messages as a warm up to the main 

IBE construction. Then we are going to see the multi-bit abstract IBE system. After that, we 

are going to show the security proof of the multi-bit abstract IBE. Finally, we are going to 
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make the abstract system concrete, by showing a concrete instantiation of the IBE compatible 

algorithm 𝑄. 

4.1 SINGLE BIT ENCRYPTION 

We are going to describe the scheme by showing its four algorithms: Setup, KeyGen, 

Encrypt and Decrypt. 

𝑺𝒆𝒕𝒖𝒑(𝝀): generate  𝑝, 𝑞  𝑅𝑆𝐴𝑔𝑒𝑛(𝜆), 𝑁   𝑝𝑞 and a random 𝑢
𝑅
  𝒥𝑁

+1 \ 𝒬ℛ𝑁. Output 

public parameters 𝑃𝑃 = (𝑁, 𝑢, 𝐻) where 𝐻 is a hash function 𝐻 ∶  ℐ𝒟 →  𝒥𝑁
+1. The master 

key MSK is the factorization of 𝑁. 

𝑲𝒆𝒚𝑮𝒆𝒏(𝑴𝑺𝑲, 𝑰𝑫): generate a private key by first setting 𝑅  𝐻(𝐼𝐷). If 𝑅 ∈ 𝒬ℛ𝑁  set 

𝑟  𝑅1/2 and otherwise set 𝑟   (𝑢𝑅)1/2. Output 𝑟 as the private key for ID. 

𝑬𝒏𝒄𝒓𝒚𝒑𝒕 𝑷𝑷, 𝑰𝑫, 𝒎 : to encrypt 𝑚 ∈ {±1} with public key ID pick a random 𝑠 ∈ ℤ/𝑁ℤ  

and compute 𝑆   𝑠2. Let 𝑅  𝐻(𝐼𝐷). Run  𝒬 twice: 

  𝑓, 𝑔  𝒬(𝑁, 𝑅, 𝑆)  and   𝑓 , 𝑔   𝒬(𝑁, 𝑢𝑅, 𝑆)  

and encrypt 𝑚 using the two Jacobi symbols: 𝑐  𝑚 .  
𝑔(𝑠)

𝑁
  and 𝑐  𝑚 .  

𝑔 (𝑠)

𝑁
 . Output the 

ciphertext 𝐶  (𝑆, 𝑐, 𝑐) . 

𝑫𝒆𝒄𝒓𝒚𝒑𝒕(𝑪, 𝒓): decrypt (𝑆, 𝑐, 𝑐)  using private key 𝑟. Let us first suppose that 𝑅 = 𝐻(𝐼𝐷) is 

in 𝒬ℛ𝑁  so that 𝑟2 = 𝑅. The decryptor runs 𝒬(𝑁, 𝑅, 𝑆) to obtain (𝑓, 𝑔). By condition (1) of 

Definition 4.1 we know that 

 
𝑔(𝑠)

𝑁
 =  

𝑓(𝑟)

𝑁
   

Note that, since  
𝑔(𝑠)

𝑁
 =  

𝑓(𝑟)

𝑁
   and the possible values for Jacobi symbols are 1 and −1, 

𝑐 .  
𝑔(𝑠)

𝑁
 = 𝑚 .  

𝑔(𝑠)

𝑁
 .  

𝑓(𝑟)

𝑁
 = 𝑚. Hence the plaintext is obtained by setting 𝑚  𝑐 .  

𝑔(𝑠)

𝑁
 . 

If 𝑅 is a non-residue then 𝑢𝑅 is a quadratic residue and 𝑟2 = 𝑢𝑅. We decrypt by running 

𝒬(𝑁, 𝑢𝑅, 𝑆) and recovering 𝑚 from 𝑐 . Since 𝒬 is deterministic, both sender and receiver 

always obtain the same pairs (𝑓, 𝑔) and (𝑓 , 𝑔 ). 

 



BONEH, GENTRY, HAMBURG SCHEME  23 

 

An adversary trying to break the system would have access to the ciphertext, that 

includes 𝑆, 𝑐 and 𝑐 , and maybe would know the identity of the user used to create it. In order 

to recover the plaintext, he would have to know  
𝑔(𝑠)

𝑁
  or  

𝑓(𝑟)

𝑁
 .  

The information he have about 𝑠 is that 𝑠2 = 𝑆 and the value of 𝑆. If he knew the 

factorization of 𝑁, he could calculate 𝑠 easily, as we saw in section 2.2.7. But he doesn’t 

possess the factorization of 𝑁 and, by the quadratic residuosity assumption, he is not able to 

differ a residue number from a non-residue. So, he can’t find 𝑠, because if he could, he would 

be able to differ a residue number from a non-residue and the quadratic residuosity 

assumption would not be valid. In the same way, the adversary only knows 𝑅 and can’t find 𝑟. 

4.2 MULTIBIT ENCRYPTION 

We describe now the scheme that encrypts multi-bit messages, called BasicIBE. 

𝑺𝒆𝒕𝒖𝒑(𝝀): Generate  𝑝, 𝑞  𝑅𝑆𝐴𝑔𝑒𝑛(𝜆), 𝑁   𝑝𝑞 and a random 𝑢
𝑅
  𝒥𝑁

+1 \ 𝒬ℛ𝑁 . Output 

public parameters 𝑃𝑃 = (𝑁, 𝑢, 𝐻) where 𝐻 is a hash function 𝐻 ∶  ℐ𝒟 × [1, 𝑙] →  𝒥𝑁
+1. The 

master key MSK is the factorization of 𝑁 and a random key 𝐾 for a pseudorandom function 

𝐹𝐾: ℐ𝒟 ×  1, 𝑙 → {0,1,2,3}. 

𝑲𝒆𝒚𝑮𝒆𝒏(𝑴𝑺𝑲, 𝑰𝑫, 𝒍): It generates a private key for encrypting 𝑙-bit messages. Takes as 

input the master secret key, the identity of the user and the length 𝑙. For 𝑗 = 1, … , 𝑙 do: 

 𝑅𝑗  𝐻(𝐼𝐷, 𝑗) ∈ 𝒥𝑁
+1 and 𝑤  𝐹𝐾 𝐼𝐷, 𝑗 ∈ {0,1,2,3} 

 let 𝑎 ∈ {0,1} be such that 𝑢𝑎𝑅𝑗 ∈ 𝒬ℛ𝑁  

 let {𝑧0, 𝑧1, 𝑧2, 𝑧3} be the square roots of 𝑢𝑎𝑅𝑗  in ℤ/𝑁ℤ   

 Set 𝑟𝑗  𝑧𝑤  

Output the decryption key 𝑑𝐼𝐷   𝑃𝑃, 𝑟1, … , 𝑟𝑙 . The PRF 𝐹 guarantees that the same square 

roots is output for a given 𝐼𝐷, but an adversary can’t tell ahead of time which one will be 

output. 

Notice that the master secret key (MSK) is used to find the four square roots of 𝑢𝑎𝑅𝑗 . 

Without the factorization, we wouldn’t be able to determine whether 𝑢𝑎𝑅𝑗  is a quadratic 

residue, which is easier than finding the square roots. 
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𝑬𝒏𝒄𝒓𝒚𝒑𝒕 𝑷𝑷, 𝑰𝑫, 𝒎 : Takes as input the public parameters, the 𝐼𝐷 of the user and the 

message to be encrypted 𝑚 = 𝑚1 … 𝑚𝑙 ∈ {±1}𝑙 . It picks a random 𝑠 ∈ ℤ/𝑁ℤ  and computes 

𝑆   𝑠2. For 𝑗 = 1, … , 𝑙 do: 

 𝑅𝑗  𝐻(𝐼𝐷, 𝑗),     𝑓𝑗 , 𝑔𝑗   𝒬(𝑁, 𝑅𝑗 , 𝑆)   and    𝑓 
𝑗 , 𝑔 𝑗   𝒬(𝑁, 𝑢𝑅𝑗 , 𝑆)  

 𝑐𝑗  𝑚𝑗  .  
𝑔𝑗 (𝑠)

𝑁
     and     𝑐 𝑗  𝑚𝑗  .  

𝑔 𝑗 (𝑠)

𝑁
 . 

Set 𝑐  𝑐1 … 𝑐𝑙  and 𝑐  𝑐 1 … 𝑐 𝑙  and output the ciphertext 𝐶  (𝑆, 𝑐, 𝑐 ). 

𝑫𝒆𝒄𝒓𝒚𝒑𝒕(𝑪, 𝒅𝑰𝑫): Takes as input the ciphertext 𝐶 and the decryption key 𝑑𝐼𝐷 =

(𝑃𝑃, 𝑟1, … , 𝑟𝑙). For 𝑗 = 1, … , 𝑙 let 𝑅𝑗  𝐻(𝐼𝐷, 𝑗) and do: 

if 𝑟𝑗
2 = 𝑅𝑗  run  𝑓𝑗 , 𝑔𝑗   𝒬 𝑁, 𝑅𝑗 , 𝑆  and set 𝑚𝑗  𝑐𝑗 .  

𝑓𝑗  𝑟𝑗  

𝑁
  

if 𝑟𝑗
2 = 𝑢𝑅𝑗  run  𝑓 

𝑗 , 𝑔 𝑗   𝒬 𝑁, 𝑢𝑅𝑗 , 𝑆  and set 𝑚𝑗  𝑐 𝑗 .  
𝑓 

𝑗 (𝑟𝑗 )

𝑁
  

Output 𝑚 = 𝑚1 … 𝑚𝑙 . 

This completes the description of BasicIBE. 

 

The same value of 𝑆 can be used to encrypt the 𝑙 bits of the message. To encrypt an 𝑙-

bit message we hash ID multiple times by computing 𝑅𝑖  𝐻(𝐼𝐷, 𝑖) for 𝑖 = 1, … , 𝑙. Now each 

pair (𝑆, 𝑅𝑖) can be used to encrypt one message bit. The length of the ciphertext is the size of 

𝑆 plus 2 bits for each message bit. Hence, when encrypting a 𝑙-bit message, the length of the 

ciphertext (𝑆,  𝑐1, 𝑐1
′ , … ,  𝑐𝑙 , 𝑐𝑙

′ ) is 𝑙𝑜𝑔2𝑁 + 2𝑙 bits. 

Note that encryption and decryption in this system are similar to the ones in the single-

bit scheme. The same arguments can be used to show that the message 𝑚 is retrieved in the 

decryption by multiplying the ciphertext by  
𝑓𝑗 (𝑟𝑗 )

𝑁
  or  

𝑓 𝑗 (𝑟𝑗 )

𝑁
 . Also in the same way, the 

adversary can´t find 𝑠 and 𝑟, because he only knows 𝑆 and 𝑅. 

The hash function 𝐻, created in the setup step, outputs elements in 𝒥𝑁
+1. We can easily 

implement this function using another hash function that outputs elements in ℤ/𝑁ℤ. Choose 

an element 𝑧 ∈ ℤ/𝑁ℤ such that  
𝑧

𝑁
 = −1. Let 𝑥  𝐻′(𝐼𝐷, 𝑗). If  

𝑥

𝑁
 = 1, output 𝐻 𝐼𝐷, 𝑗 =

𝑥, otherwise output 𝐻 𝐼𝐷, 𝑗 = 𝑥𝑧. In the second case,  
𝑥𝑧

𝑁
 =  

𝑥

𝑁
  

𝑧

𝑁
 =  −1  −1 = 1. 

Either way,  
𝐻(𝐼𝐷 ,𝑗 )

𝑁
 = 1 and so 𝐻 𝐼𝐷, 𝑗 ∈ 𝒥𝑁

+1 as required. 
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4.3 SECURITY 

We now present the proof of security of the multi-bit abstract IBE presented. We start 

by proving a lemma that is needed in the security proof. Then we describe a public key 

system, called BasicPKE, which is semantically secure in the standard model under the 

quadratic residuosity assumption. After that, we deduce security of the IBE system. However, 

this requires the random oracle model. 

 

Lemma 4.2: Let 𝑁 =  𝑝𝑞 be as RSA modulus, 𝑋 ∈ 𝒬ℛ𝑁 and 𝑆 ∈ 𝒥𝑁
+1. Let 𝑥 be a random 

variable uniformly chosen from among the four square roots of 𝑋. Let 𝑓 be a polynomial such 

that 𝑓(𝑥)𝑓(−𝑥)𝑆 is a quadratic residue for all four values of 𝑥. Then: 

 when 𝑆 ∉ 𝒬ℛ𝑁 the Jacobi symbol (𝑓(𝑥)/𝑁) is uniformly distributes in {±1}; 

 when 𝑆 ∈ 𝒬ℛ𝑁 then (𝑓(𝑥)/𝑁) is constant, namely the same for all four values of 𝑥. 

 

Proof: Let 𝑥𝑝  be a square root of 𝑋 𝑚𝑜𝑑 𝑝 and 𝑥𝑞  a square root of 𝑋 𝑚𝑜𝑑 𝑞. The four square 

roots of 𝑋 𝑚𝑜𝑑 𝑁 are (𝑥𝑝 , 𝑥𝑞), (−𝑥𝑝 , 𝑥𝑞), (𝑥𝑝 , −𝑥𝑞) and (−𝑥𝑝 , −𝑥𝑞). By the Chinese 

Remainder Theorem, we can find the elements of ℤ/𝑁ℤ corresponding to each of these pairs. 

Let 𝑥 = (𝑥𝑝 , 𝑥𝑞) and 𝑥′ = (𝑥𝑝 , −𝑥𝑞). Then we have that the four square roots of 𝑋 modulo 𝑁 

are {±𝑥, ±𝑥’}. We know that 𝑓(𝑥)𝑓(−𝑥)𝑆  is a quadratic residue modulo 𝑁. It means that 

𝑓(𝑥)𝑓(−𝑥)S is a quadratic residue modulo 𝑝 and modulo 𝑞. So, we have that  
𝑓 𝑥 𝑓 −𝑥 𝑆

p
 =

 
𝑓 𝑥 

p
  

𝑓 −𝑥 

p
  

𝑆

p
 = 1 and the same on 𝑞. When 𝑆 ∉ 𝒬ℛ𝑁 ,  

𝑆

p
 = −1. This means that 

 
𝑓 𝑥 

p
 = −1.  

𝑓 −𝑥 

p
  and the same on 𝑞. Because 𝑥’ = 𝑥 𝑚𝑜𝑑 𝑝 and 𝑥’ = −𝑥 𝑚𝑜𝑑 𝑝, we have 

that  
𝑓 𝑥′ 

p
 =  

𝑓 𝑥 

p
  and  

𝑓 𝑥′ 

q
 = −1.  

𝑓 𝑥 

q
 . So  

𝑓 𝑥′ 

N
 = −1.  

𝑓 𝑥 

N
 . So of the four values 

𝑓 𝑥 , 𝑓 𝑥′ , 𝑓 −𝑥 , 𝑓 −𝑥′ , the first two must have different Jacobi symbols, as must the last 

two. Hence, among the four symbols, two are +1 and two are −1. When 𝑆 ∈ 𝒬ℛ𝑁 all four 

symbols are equal.                     □ 
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4.3.1 The public key system BasicPKE 

The public key system (PKE) consists of four algorithms: a setup algorithm 𝐺 to 

generate the common reference string 𝐶, a key generation algorithm 𝐾 to generate 

public/private key pairs, an encryption algorithm 𝐸 to encrypt messages by receiving the 

message and the public key and an decryption algorithm 𝐷 to decrypt messages by receiving 

the ciphertext and the private key. This system allows multiple users to use the same modulus 

𝑁, and 𝑁 is treated as the common reference string 𝐶. If for some reason one doesn’t want to 

share the same modulus to all users, then the pair of algorithms (𝐺, 𝐾) can be viewed as a 

single key generation algorithm. 

 

Algorithm 𝑮(𝝀): generate  𝑝, 𝑞  𝑅𝑆𝐴𝑔𝑒𝑛(𝜆), 𝑁   𝑝𝑞 and output 𝑁 as the common 

reference string. The factorization of 𝑁 is erased. 

Algorithm 𝑲(𝑵, 𝒍): Takes as input the common reference string 𝑁 and a message length 𝑙. 

For 𝑗 = 1, . . , 𝑙 pick a random 𝑟𝑗
𝑅
 ℤ/𝑁ℤ and sets 𝑅𝑗  𝑟𝑗

2. It then outputs the public key 

𝑃𝐾  (𝑅1, … , 𝑅𝑙) and the private key 𝑆𝐾   𝑁, 𝑟1, … , 𝑟𝑙 . 

Algorithm 𝑬 𝑵, 𝑷𝑲, 𝒎 : Takes as input the common reference string 𝑁, the public key 

𝑃𝐾  (𝑅1, … , 𝑅𝑙) and the message to be encrypted 𝑚 = 𝑚1 … 𝑚𝑙 ∈ {±1}𝑙 . It picks a random 

𝑠 ∈ ℤ/𝑁ℤ  and compute 𝑆   𝑠2. For 𝑗 = 1, … , 𝑙 do: 

 𝑓𝑗 , 𝑔𝑗   𝒬(𝑁, 𝑅𝑗 , 𝑆)   and 𝑐𝑗  𝑚𝑗  .  
𝑔𝑗 (𝑠)

𝑁
 . 

Set 𝑐  𝑐1 … 𝑐𝑙  and output the ciphertext 𝐶  (𝑆, 𝑐). 

Algorithm 𝑫(𝑺𝑲, 𝑪): Takes as input the ciphertext 𝐶  (𝑆, 𝑐1, … , 𝑐𝑙) and the secret key 

𝑆𝐾   𝑁, 𝑟1, … , 𝑟𝑙 . For 𝑗 = 1, … , 𝑙 do: 

𝑅𝑗  𝑟𝑗
2,     𝑓𝑗 , 𝑔𝑗   𝒬 𝑁, 𝑅𝑗 , 𝑆     and    𝑚𝑗  𝑐𝑗 .  

𝑓𝑗  𝑟𝑗  

𝑁
  

 

This completes the description of the PKE system BasicPKE. Note that the 

factorization of 𝑁 can be erased in the generation algorithm, while in the IBE system the 

factorization of 𝑁 is the MSK. This happens because, in the key generation algorithm of 
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BasicPKE, the factorization of 𝑁 is not needed once the public/private key is generated at 

random. 

We now prove that BasicPKE is semantically secure in the standard model. The 

standard security game starts by the challenger running the setup algorithm 𝐺 and the key 

generation algorithm 𝐾 and sending to the attacker 𝒜 the common reference string 𝐶 and the 

public key 𝑃𝐾. The challenger than picks a random bit 𝑏
𝑅
 {0,1}. Next, 𝒜 gives the 

challenger two equal length messages 𝑚0, 𝑚1. The challenger runs the encryption algorithm 

for 𝑚𝑏  and returns the challenge ciphertext 𝐶∗  𝐸(𝐶, 𝑃𝐾, 𝑚𝑏). Finally, 𝒜 outputs its guess 

𝑏′  for the bit 𝑏. 𝒜 wins the game if 𝑏 =  𝑏′ . We refer to such adversary 𝒜 as an IND-CPA 

adversary. We call 𝑃𝐾𝐸𝐴𝑑𝑣𝒜,ℇ the adversary’s advantage in attacking the PKE scheme ℇ. We 

define 𝑃𝐾𝐸𝐴𝑑𝑣 as 

𝑃𝐾𝐸𝐴𝑑𝑣𝒜,ℇ =  𝑃𝑟 𝑏 = 𝑏′  −
1

2
  

The probability is over the random bits used by the challenger and the adversary. 

 

Definition 4.3: We say that a PKE system ℇ is IND-CPA secure if for all polynomial time 

adversaries 𝒜 we have that 𝑃𝐾𝐸𝐴𝑑𝑣ℇ,𝒜 is a negligible function. 

 

The next lemma is the security proof of BasicPKE. 

 

Lemma 4.4: The PKE system 𝐵𝑎𝑠𝑖𝑐𝑃𝐾𝐸 = (𝐺, 𝐾, 𝐸, 𝐷) is IND-CPA secure in the standard 

model if the QR assumption holds for RSAgen. In particular, suppose 𝒜 is a polynomial time 

IND-CPA adversary attacking BasicPKE. Then there exists an efficient QR algorithm ℬ 

(whose running time is about the same as that of 𝒜) such that  

𝑃𝐾𝐸𝐴𝑑𝑣𝒜,𝐵𝑎𝑠𝑖𝑐𝑃𝐾𝐸  𝜆 = 𝑄𝑅𝐴𝑑𝑣ℬ,𝑅𝑆𝐴𝑔𝑒𝑛 (𝜆) 

 

Proof: This proof is by direct reduction to quadratic redisuosity assumption. Algorithm ℬ is 

given a random tuple (𝑁, 𝑉) where 𝑁 = 𝑝. 𝑞, (𝑝, 𝑞)  𝑅𝑆𝐴𝑔𝑒𝑛(𝜆) and 𝑉 ∈ 𝒥𝑁
+1. It must 

determine whether 𝑉 is a quadratic residue. In order to do that, algorithm ℬ runs 𝒜 and plays 

the role of the challenger to 𝒜. Then, ℬ sets 𝑁 as the common reference string, runs 𝐾(𝑁, 𝑙) 

to obtain a public/private key pair (𝑃𝐾, 𝑆𝐾) and sends (𝑁, 𝑃𝐾) to 𝒜.  
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Adversary 𝒜 chooses two messages 𝑚0 and 𝑚1, both with length 𝑙, and gives it to ℬ. 

ℬ choose a 𝑏 ∈ {0,1} and creates the encryption of 𝑚𝑏  using the given 𝑉 as follows: 

 Let 𝑃𝐾 =  (𝑅1, …  𝑅𝑙) and 𝑆𝐾 =  (𝑟1, …  𝑟𝑙) 

 Let 𝑚𝑏 =  𝑚1 … 𝑚𝑙 ∈ {±1}𝑙 . For 𝑢 =  1, … 𝑙, do: 

(𝑓𝑢 , 𝑔𝑢 )  𝒬(𝑁, 𝑅𝑢 , 𝑉) and 𝑐𝑢  𝑚𝑢  
𝑓𝑢 (𝑅𝑢 )

𝑁
  

Set 𝑐  𝑐1 … 𝑐𝑙 . The challenge ciphertext is 𝐶∗  (𝑉, 𝑐). ℬ sends 𝐶∗ to 𝒜. 

Note that the creation of the ciphertext is done differently from the original scheme. In 

BasicPKE, 𝑐𝑢  𝑚𝑢  
𝑔𝑢 (𝑣)

𝑁
 , where 𝑣2 = 𝑉. ℬ doesn’t know the square root of 𝑉, it doesn’t 

even know if 𝑉 has a square root. So, ℬ sets 𝑐𝑢  𝑚𝑢  
𝑓𝑢 (𝑅𝑢 )

𝑁
 . 

𝒜 now outputs a guess 𝑏′ . If 𝑏 = 𝑏′ , ℬ outputs 1. Otherwise, ℬ outputs 0. This 

completes the description of ℬ. 

We argue that ℬ breaks the QR assumption with the same advantage as 𝒜 breaking 

the BasicPKE. This will follow from the following two claims: 

Claim 1: When (𝑁, 𝑉)
𝑅
 𝑃𝑄𝑅  (i.e. 𝑉 is uniformly distributed in 𝒬ℛ𝑁) then 

 𝑃 𝑟 ℬ 𝑁, 𝑉 = 1 −
1

2
 =  𝑃𝑟 𝑏 = 𝑏′  −

1

2
 = 𝑃𝐾𝐸𝐴𝑑𝑣𝒜,𝐵𝑎𝑠𝑖𝑐𝑃𝐾𝐸  𝜆                (1) 

Proof: When 𝑉 is uniformly distributed in 𝒬ℛ𝑁 , ℬ emulates perfectly the challenger. The 

common reference string 𝑁 and public key 𝑃𝐾 are as in the real game. The challenger 

ciphertext is also equal to the one of the real game. ℬ constructs the ciphertext by setting 

𝑐𝑢  𝑚𝑢  
𝑓𝑢 (𝑅𝑢 )

𝑁
 . Consider 𝑣 as being a square root of 𝑉 (𝑣 exists because 𝑉 ∈ 𝒬ℛ𝑁. In the 

real game, the ciphertext is constructed by setting 𝑐𝑢  𝑚𝑢  
𝑔𝑢 (𝑣)

𝑁
 . Note that, by condition 1 

of definition 4.1,  
𝑔𝑢 (𝑣)

𝑁
 =  

𝑓𝑢 (𝑅𝑢 )

𝑁
 . So, for all 𝑢 = 1, … , 𝑙, we have 𝑐𝑢 = 𝑚𝑢  

𝑔𝑢 (𝑣)

𝑁
 =

𝑚𝑢  
𝑓𝑢 (𝑅𝑢 )

𝑁
 . With this, we confirm that ℬ emulates perfectly an IND-CPA challenger. 

 𝑃 𝑟 ℬ 𝑁, 𝑉 = 1 −
1

2
 =  𝑃𝑟 𝑏 = 𝑏′  −

1

2
  because ℬ outputs 1 only if 𝑏 = 𝑏′ .  

 𝑃𝑟 𝑏 = 𝑏′  −
1

2
 = 𝑃𝐾𝐸𝐴𝑑𝑣𝒜,𝐵𝑎𝑠𝑖𝑐𝑃𝐾𝐸  𝜆  follows from the definition of 

𝑃𝐾𝐸𝐴𝑑𝑣𝒜,𝐵𝑎𝑠𝑖𝑐𝑃𝐾𝐸  𝜆 , once ℬ emulates perfectly the challenger.            □ 
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Claim 2: When (𝑁, 𝑉)
𝑅
 𝑃𝑁𝑄𝑅  (i.e. 𝑉 is uniformly distributed in 𝒥𝑁

+1\𝒬ℛ𝑁) then 

𝑃 𝑟 ℬ 𝑁, 𝑉 = 1 = 𝑃𝑟 𝑏 = 𝑏′  =
1

2
                                             (2) 

Proof: When (𝑁, 𝑉) are distributed in 𝑃𝑁𝑄𝑅  we claim that the bit 𝑏 is independent of 𝒜’s 

view. In particular, we claim that the challenge ciphertext 𝐶∗ is independent of 𝑏. To see why, 

consider the bit 𝑐𝑢  𝑚𝑢  
𝑓𝑢 (𝑅𝑢 )

𝑁
 ∈ {±1} for all 𝑢 = 1, … , 𝑙. Recall that 𝑃𝐾 =  (𝑅1, …  𝑅𝑙). 

The only information 𝒜 has about 𝑟𝑢  is the value of 𝑅𝑢 . Hence, from 𝒜’s view, 𝑟𝑢  is 

uniformly distributed in the set of four square roots of 𝑅𝑢 . Since 𝑉 ∈ 𝒥𝑁
+1\𝒬ℛ𝑁, it follows 

from condition 2 of definition 4.1 and lemma 4.2 that the symbol  
𝑓𝑢 (𝑅𝑢 )

𝑁
  is uniformly 

distributed in {±1}. Hence, 𝑐𝑢  is independent of 𝑚𝑢 . The same argument holds for all 

𝑢 = 1, … , 𝑙 and therefore 𝐶∗ is independent of the message being encrypted. Overall, when 

(𝑁, 𝑉) are distributed in 𝑃𝑁𝑄𝑅 we have Pr ℬ 𝑁, 𝑉 = 1 = Pr 𝑏 = 𝑏′  =
1

2
.         □ 

 

By combining equations (1) and (2) we obtain  

𝑃𝐾𝐸𝐴𝑑𝑣𝒜,𝐵𝑎𝑠𝑖𝑐𝑃𝐾𝐸  𝜆 = 𝑄𝑅𝐴𝑑𝑣ℬ,𝑅𝑆𝐴𝑔𝑒𝑛 (𝜆) as required. This completes the proof of lemma 

4.4.                   □ 

4.3.2 Proof of Security 

We now prove the security of BasicIBE in the random oracle model based on the QR 

assumption.  

 

Theorem 4.5: Suppose the QR assumption holds for RSAgen and 𝐹 is a secure PRF. Then the 

system BasicIBE is IND-ID-CPA secure when 𝐻 is modeled as a random oracle. In 

particular, suppose 𝒜 is an efficient IND-ID-CPA adversary. Then there exist efficient 

algorithms ℬ1, ℬ2 (whose running time is about the same as that of 𝒜) such that 

𝐼𝐵𝐸𝐴𝑑𝑣𝒜,𝐵𝑎𝑠𝑖𝑐𝐼𝐵𝐸  𝜆 ≤ 2. 𝑄𝑅𝐴𝑑𝑣ℬ1 ,𝑅𝑆𝐴𝑔𝑒𝑛  𝜆 + 𝑃𝑅𝐹𝐴𝑑𝑣ℬ2 ,𝐹(𝜆) 

 

Proof: We present the proof as a sequence of games. We let 𝑊𝑖  denote the event that the 

adversary 𝒜 wins the game 𝑖. 

Game 0: This game is identical to the one defined in section 3.1. Hence, we know that  
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 Pr 𝑊0 −
1

2
 = 𝐼𝐵𝐸𝐴𝑑𝑣𝒜,𝐵𝑎𝑠𝑖𝑐𝐼𝐵𝐸  𝜆  

The challenger chooses the random oracle 𝐻 ∶ ℐ𝒟 × [1, 𝑙] →  𝒥𝑁
+1 at random from the 

set of all such functions. 

Game 1: This game differs from the past game in the way it generates private keys. Instead of 

using a pseudorandom function 𝐹, the challenger uses a truly random function. If 𝐹 is a secure 

pseudorandom function, the adversary won’t notice the difference between the two games. In 

particular, there exists an algorithm ℬ2 (whose running time is about the same as that of 𝒜) 

such that 

 Pr 𝑊1 − Pr 𝑊0  = 𝑃𝑅𝐹𝐴𝑑𝑣ℬ2 ,𝐹(𝜆) 

Game 2: In game 1 the public parameters given to 𝒜 contain (𝑁, 𝑢, 𝐻) where 𝑢 is uniform in 

𝒥𝑁
+1\𝒬ℛ𝑁, as in the original system. Moreover, the random oracle 𝐻 is a random function 

𝐻 ∶ ℐ𝒟 × [1, 𝑙] → 𝒥𝑁
+1. In game 2, we change 𝐻 in the following manner: 𝐻 outputs 

𝐻(𝐼𝐷, 𝑗)  = 𝑢𝑎𝑣2 by choosing at random 𝑎
𝑅
 {0,1} and 𝑣

𝑅
 ℤ/𝑁ℤ. We know that 𝑢 ∈

𝒥𝑁
+1\𝒬ℛ𝑁 so  

𝑢

𝑁
 = 1. Since 𝑣2 ∈ 𝒬ℛ𝑁 ,  

𝑣2

𝑁
 = 1. If 𝑎 =  0, 𝐻(𝐼𝐷, 𝑗) =  𝑣2 ∈ 𝒥𝑁

+1. If 

𝑎 =  1, 𝐻 𝐼𝐷, 𝑗 = 𝑢𝑣2 and we have  
𝑢𝑣2

𝑁
 =  

𝑢

𝑁
 .  

𝑣2

𝑁
 = 1.1 = 1. In both cases, we have 

𝐻(𝐼𝐷, 𝑗) ∈ 𝒥𝑁
+1. So, 𝐻 implements a random function 𝐻 ∶ ℐ𝒟 × [1, 𝑙] →  𝒥𝑁

+1. 

Let 𝑅𝑗  𝐻(𝐼𝐷, 𝑗) for some (𝐼𝐷, 𝑗). In game 1 the challenger responds to private key 

queries by outputting a random square root of 𝑅𝑗  or 𝑢𝑅𝑗  for 𝑗 =  1, … 𝑙. In game 2 let 

𝑅𝑗  𝐻 𝐼𝐷, 𝑗 = 𝑢𝑎𝑣2. The challenger responds to private key queries by outputting either 

𝑅𝑗
1 2 = 𝑣 (used if 𝑎 =  0) or  𝑢𝑅𝑗  

1 2 
= 𝑢𝑣 (used if 𝑎 =  1) for 𝑗 = 1, … , 𝑙. Since 𝑣 is 

uniform in ℤ/𝑁ℤ, 𝑟𝑗  is uniform in the set of the square roots of 𝑅𝑗  or 𝑢𝑅𝑗 , just like in game 1. 

Because of this, from 𝒜’s view, games 1 and 2 are identical and therefore  

Pr[𝑊2]  =  Pr[𝑊1] 

Note that in game 2 the challenger no longer needs the factorization of 𝑁 to respond to 

𝒜’s queries. In game 1, the challenger needs it to calculate the square roots of 𝑅𝑗 . 

Game 3: We slightly modify game 2 by choosing a random 𝑢 in 𝒬ℛ𝑁  instead of in 𝒥𝑁
+1\

𝒬ℛ𝑁 . The adversary won’t notice any differences assuming QR assumption holds for 
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RSAgen, since it is the only change between the two games. In particular, there exists an 

efficient algorithm ℬ1 such that 

 Pr 𝑊3 − Pr 𝑊2  = 𝑄𝑅𝐴𝑑𝑣ℬ1 ,𝑅𝑆𝐴𝑔𝑒𝑛  𝜆  

We note that since 𝐻 𝐼𝐷, 𝑗 = 𝑢𝑎𝑣2 and 𝑢 ∈ 𝒬ℛ𝑁, 𝐻 will always output elements in 

𝒬ℛ𝑁 . Let 𝑢0 be a square root of 𝑢. 

Game 4: We slightly change the way that the challenger builds the ciphertext 𝐶∗. We pick 𝐶∗ 

in a similar way to the one used in the proof of lemma 4.4. To respond to the encryption query 

(𝐼𝐷, 𝑚0, 𝑚1) from 𝒜 the challenger chooses 𝑏
𝑅
 {0,1} and does: 

𝑅𝑖  𝐻 𝐼𝐷, 𝑗 = 𝑢𝑎𝑖 . 𝑣𝑖
2 and 𝑟𝑖  𝑢0

𝑎𝑖 . 𝑣𝑖  for 𝑖 = 1, … , 𝑙 

 (then 𝑟𝑖  is a root of 𝑅𝑖  and 𝑢0𝑟𝑖  is a root of 𝑢𝑅𝑖) 

(∗) 𝑠
𝑅
 ℤ/𝑁ℤ  and 𝑆  𝑠2 

write 𝑚(𝑏) = 𝑚1 … 𝑚𝑙 ∈ {±1}𝑙  

for 𝑘 =  1, … , 𝑙 do: 

  𝑓𝑘 , 𝑔𝑘  𝒬(𝑁, 𝑅𝑘 , 𝑆)   and    𝑓 
𝑘 , 𝑔 𝑘  𝒬(𝑁, 𝑢𝑅𝑘 , 𝑆)  

(∗∗)                𝑐𝑘  𝑚𝑘  .  
𝑓𝑘(𝑟𝑘)

𝑁
     and     𝑐 𝑘  𝑚𝑘  .  

𝑓 𝑘(𝑢0𝑟𝑘)

𝑁
 . 

 𝑐  𝑐1 …𝑐𝑙  and 𝑐  𝑐 1 … 𝑐 𝑙 . Send 𝒜 the challenge ciphertext 𝐶  (𝑆, 𝑐, 𝑐 ). 

Since 𝑆, 𝑅𝑘 , 𝑢𝑅𝑘  are all in 𝒬ℛ𝑁 , we know by condition (1) of 4.1 that  
𝑓𝑘(𝑟𝑘)

𝑁
 =  

𝑔𝑘(𝑠)

𝑁
  for 

all 𝑘 =  1, … , 𝑙 and also  
𝑓𝑘    (𝑢0𝑟𝑘)

𝑁
 =  

𝑔𝑘    (𝑠)

𝑁
 . Hence, the ciphertext 𝐶∗ created in this way is 

identical to the challenge ciphertext created in game 3. Therefore,  

𝑃𝑟[𝑊3]  =  𝑃𝑟[𝑊4] 

It is important to note that 𝑠 is not used in the creation of 𝐶∗. 

Game 5: We slightly modify the challenger in game 4 by choosing 𝑆 uniformly in 𝒥𝑁
+1\𝒬ℛ𝑁 

instead of 𝒬ℛ𝑁 . That is, we change the line marked with (∗) in Game 4 into  

(∗)  𝑆
𝑅
 𝒥𝑁

+1\𝒬ℛ𝑁 

Since this is the only difference between the games, the adversary will not notice the 

difference, assuming the QR assumption holds for RSAgen. In particular, there exists an 

algorithm ℬ1 such that 

 Pr 𝑊5 − Pr[𝑊4] = 𝑄𝑅𝐴𝑑𝑣ℬ1 ,𝑅𝑆𝐴𝑔𝑒𝑛  𝜆  
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Game 6: We can now change Game 5 and make the challenge ciphertext 𝐶∗ be independent 

of the challenge bit 𝑏. We change the line marked (∗∗) in Game 4 as follows:  

(∗∗)       𝑧𝑘

𝑅
 {±1},  𝑐𝑘  𝑧𝑘  .  

𝑓𝑘(𝑟𝑘)

𝑁
     and     𝑐 𝑘  𝑧𝑘  .  

𝑓 𝑘(𝑢0𝑟𝑘)

𝑁
 . 

As a result, the challenge ciphertext 𝐶∗ is an encryption of a random message 𝑧1, … , 𝑧𝑙 , 

independent of the bit 𝑏. 

We argue that because 𝑆 is a non-residue, Games 5 and 6 are indistinguishable due to 

Condition 2 of definition 4.1 and lemma 4.2. The argument is similar to the argument in the 

proof of lemma 4.4. The challenge ciphertext is created by using 2𝑙 elements 

{𝑅1, 𝑢𝑅1, … , 𝑅𝑙 , 𝑢𝑅𝑙} all in 𝒬ℛ𝑁 . For each 𝑅 the adversary does not know which of the four 

square roots of 𝑅 is used in the creation of 𝐶∗. This is used to satisfy the condition of lemma 

4.2 which says that 𝑟 is a random variable chosen over the four square roots of 𝑅. 

Consider now a specific 𝑘 ∈ {1, … , 𝑙} and let 𝑥 =  
𝑓𝑘(𝑟𝑘)

𝑁
  and 𝑦 =  

𝑓𝑘    (𝑢0𝑟𝑘)

𝑁
 . Using 

condition (2) of definition 4.1 and lemma 4.2, we have that 𝑥 is uniformly distributed in {±1} 

and the same happens with 𝑦. With this, we have that  

𝑃𝑟  𝑥, 𝑦 =  1,1  = 𝑃𝑟  𝑥, 𝑦 =  −1, −1    and  

𝑃𝑟[(𝑥, 𝑦) = (1, −1)] = 𝑃𝑟[(𝑥, 𝑦) = (−1,1)]  

It follows that the pair (𝑥, 𝑦), which is an encryption of +1,  is distributed identically 

as the pair (−𝑥, −𝑦), which is an encryption of −1. Hence, in 𝒜’s view, the bits (𝑐𝑘, 𝑐𝑘   ) are 

distributed identically whether the plaintext is +1 or −1. Since this holds for all 𝑘 =  1, … , 𝑙 

it follows that 𝐶∗ is distributed identically in Games 5 and 6. As a result, we have: 

𝑃𝑟[𝑊6]  =  𝑃𝑟[𝑊5] 

End. In game 6 we have the ciphertext as the encryption of a random message 𝑧. Because of 

this, we clearly have  

𝑃𝑟[𝑊6]  =  
1

2
 

Combining the equations, we have that  

𝐼𝐵𝐸𝐴𝑑𝑣𝒜,𝐵𝑎𝑠𝑖𝑐𝐼𝐵𝐸  𝜆 ≤ 2. 𝑄𝑅𝐴𝑑𝑣ℬ1 ,𝑅𝑆𝐴𝑔𝑒𝑛  𝜆 + 𝑃𝑅𝐹𝐴𝑑𝑣ℬ2 ,𝐹(𝜆) 

Thus, the theorem is proved.                 □ 
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4.4 CONCRETE INSTANTIATION 

To make the IBE abstract system concrete, we need a concrete instantiation of the IBE 

compatible algorithm 𝒬. We present it now: 

 

Algorithm 𝓠(𝑁, 𝑅, 𝑆): 

1. Construct a solution (𝑥, 𝑦) ∈ (ℤ/𝑁ℤ)2 to the equation 𝑅𝑥2 + 𝑆𝑦2 = 1. 

In the next section, we describe algorithms for solving this equation, that is the 

main bottleneck in this system. 

2. Output the polynomials 𝑓 𝑟  𝑥𝑟 + 1 and 𝑔 𝑠  2𝑦𝑠 + 2. 

 

We now show that 𝒬 is IBE compatible and satisfies the two conditions of definition 

4.1. Let 𝑅, 𝑆 ∈ ℤ/𝑁ℤ. Let 𝑟 be a square root of 𝑅 and 𝑠 a square root of 𝑆, if one exists. 𝒬 

satisfies condition 1, since 

𝑓 𝑟 . 𝑔 𝑠 =  𝑥𝑟 + 1  2𝑦𝑠 + 2 = 2𝑥𝑟𝑦𝑠 + 2𝑥𝑟 + 2𝑦𝑠 + 2

= 2𝑥𝑟𝑦𝑠 + 2𝑥𝑟 + 2𝑦𝑠 + 2 +  𝑅𝑥2 + 𝑆𝑦2 − 1 

= 𝑅𝑥2 + 𝑆𝑦2 + 2xrys + 2xr + 2ys + 2 − 1

=  r2𝑥2 + 𝑠2𝑦2 + 2xrys + 2xr + 2ys + 1

=  xr + ys + 1 2 mod N  

With this, we know that 𝑓 𝑟 . 𝑔 𝑠  is a quadratic residue and xr + ys + 1 is its square root. 

Now we show that 𝒬 satisfies condition 2. 

𝑓 𝑟 𝑓 −𝑟 𝑆 =  𝑥𝑟 + 1  −𝑥𝑟 + 1 𝑆 =  1 − 𝑥2𝑟2 𝑆 

=  1 − 𝑅𝑥2 𝑆 = 𝑆𝑦2𝑆 = 𝑆2𝑦2 = (𝑆𝑦)2 

With this, we know that 𝑓 𝑟 𝑓 −𝑟 𝑆 is a quadratic residue and 𝑆𝑦 is its square root.  

Hence we have a valid instantiation of 𝒬. 

4.4.1  Algorithms 

The instantiation of algorithm 𝒬 presented before requires the computation of to 

integers 𝑥 and 𝑦 that satisfies the equation  

𝑅𝑥2 + 𝑆𝑦2 = 1      (1) 
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where 𝑅, 𝑆 ∈ ℤ/𝑁ℤ. Recall that when encrypting a 𝑙-bit message using the abstract system, 

one must solve 2𝑙 of these equations. In particular, the encryptor must find solutions 

 𝑥𝑖 , 𝑦𝑖 ,  𝑥𝑖 , 𝑦𝑖  ∈ (ℤ/𝑁ℤ)2 such that 

𝑅𝑖𝑥𝑖
2 + 𝑆𝑦𝑖

2 = 1   and   (𝑢𝑅𝑖)𝑥𝑖
2 + 𝑆𝑦𝑖

2 = 1     (2) 

For 𝑖 =  1, … , 𝑙, the decryptor needs a solution to 𝑙 of these equations, once he only 

needs to calculate 𝑅𝑖𝑥𝑖
2 + 𝑆𝑦𝑖

2 = 1 or (𝑢𝑅𝑖)𝑥𝑖
2 + 𝑆𝑦𝑖

2 = 1 to each bit 𝑖. 

 

4.4.1.1 A Product Formula 

The encryptor needs solution to 2𝑙 equations in the form of (1), which are the 2𝑙 

equations in (2). However, we show that solving 𝑙 + 1 equations is sufficient. We do that by 

using a product formula that, given the solution of two equations, builds the solution to a third 

equation. 

 

Lemma 4.6: Suppose that (𝑥1, 𝑦1) is a solution to 𝐴1𝑥2 + 𝐵𝑦2 = 1 and (𝑥2, 𝑦2) is a solution 

to 𝐴2𝑥2 + 𝐵𝑦2 = 1. Then (𝑥3, 𝑦3) is a solution to 

(𝐴1𝐴2)𝑥2 + 𝐵𝑦2 = 1      (3) 

where 𝑥3 =
(𝑥1𝑥2)

𝐵𝑦1𝑦2+1
 and 𝑦3 =

(𝑦1+𝑦2)

𝐵𝑦1𝑦2+1
. 

Proof: This proof is by direct substitution into (3): 

(𝐴1𝐴2)𝑥2 + 𝐵𝑦2 = 1 

 𝐴1𝐴2  
(𝑥1𝑥2)

𝐵𝑦1𝑦2 + 1
 

2

+ 𝐵  
(𝑦1 + 𝑦2)

𝐵𝑦1𝑦2 + 1
 

2

= 1 

 𝐴1𝐴2𝑥1
2𝑥2

2

 𝐵𝑦1𝑦2 2 + 2𝐵𝑦1𝑦2 + 1
 +  𝐵(𝑦1

2 + 2𝑦1𝑦2+𝑦2
2)

 𝐵𝑦1𝑦2 2 + 2𝐵𝑦1𝑦2 + 1
 = 1 

𝐴1𝐴2𝑥1
2𝑥2

2 + 𝐵 𝑦1
2 + 2𝑦1𝑦2+𝑦2

2 =  𝐵𝑦1𝑦2 2 + 2𝐵𝑦1𝑦2 + 1 

𝐴1𝐴2𝑥1
2𝑥2

2 + 𝐵 𝑦1
2 + 2𝐵𝑦1𝑦2+𝐵𝑦2

2  =  𝐵𝑦1𝑦2 2 + 2𝐵𝑦1𝑦2 + 1 

𝐴1𝐴2𝑥1
2𝑥2

2 + 𝐵 𝑦1
2 + 𝐵𝑦2

2  =  𝐵𝑦1𝑦2 2 + 1 

𝐴1𝐴2𝑥1
2𝑥2

2 + (1 − 𝐴1𝑥1
2)  +(1 − 𝐴2𝑥2

2)  =  𝐵𝑦1𝑦2 2 + 1 

 𝐴1𝑥1
2 − 1   𝐴2𝑥2

2 − 1  + 1 =  𝐵𝑦1𝑦2 2 + 1 

𝐵𝑦1
2.  𝐵𝑦2

2  =  𝐵𝑦1𝑦2 2 
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 𝐵𝑦1𝑦2 2 =  𝐵𝑦1𝑦2 2                                      □ 

 

During encryption, one needs the solution to the following 𝑙 + 1 equations: 

𝑢𝑥2 + 𝑆𝑦2 = 1   and   𝑅𝑖𝑥𝑖
2 + 𝑆𝑦𝑖

2 = 1    for 𝑖 = 1, … , 𝑙    (4) 

The encryptor uses lemma 4.6 to quickly find the solution to the remaining 𝑙 equations 

in (2). Simply apply lemma 4.6 to the left equation in (4) and the 𝑖th right equation in (4) to 

obtain the solution to (𝑢𝑅𝑖)𝑥𝑖
2 + 𝑆𝑦𝑖

2 = 1, as required. 
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Chapter 5 

CONCLUSION 

You're braver than you believe, stronger than you seem, and smarter than you think. 

WINNIE THE POOH'S FRIEND CHRISTOPHER ROBIN 

Dream big and dare to fail. 

NORMAN VAUGHAN 

 

We have described a space-efficient IBE scheme without pairings based on the 

quadratic residuosity assumption in the random oracle model. The abstract scheme makes use 

of an abstract algorithm 𝒬 that satisfies some properties. We have also described a concrete 

instantiation of the IBE compatible algorithm 𝒬. However, this concrete instantiation requires 

the generation of primes of order  𝑁 during the encryption. It makes the encryption quartic in 

the security parameter, while the decryption is cubic in the security parameter. Most practical 

public-key systems, like RSA and the existing IBE schemes including Cocks’ IBE, are cubic 

in the security parameter. Thus the encryption time in this scheme is not ideal. It is natural to 

look to other concrete instantiations of the IBE compatible algorithm 𝒬 that makes the scheme 

more time-efficient. 

In [7], Boneh, Gentry and Hamburg described a modification of the original scheme, 

changing the abstract algorithm 𝒬 by adding new conditions that the algorithm must satisfy. 

The modified scheme is proved to be anonymous. They also present a concrete instantiation 

for this modified algorithm 𝒬. 

As a future work, is proposed the implementation of the scheme described here. The 

study and implementation of the modified anonymous scheme is also a target. This would 

allow a major understanding of how they work and of the viability of applying them in the 

real world. 
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