[image: image1]
Universidade Federal de Pernambuco

Centro de Informática

Graduação em Ciência da Computação

Sincronismo e integridade entre bases de dados num contexto corporativo multi-servidor

[image: image24.png]

TRABALHO DE GRADUAÇÃO

Aluno: Luís Otávio Peixoto Bastos (lopb@cin.ufpe.br)

Orientador: Fernando da Fonseca de Souza (fdfd@cin.ufpe.br)

Recife, 2009

Agradecimentos

[image: image2]
Gostaria de agradecer primeiramente a Deus.

Agradeço também aos meus pais e a toda minha família.

Agradeço a todos meus amigos pela força.

Obrigado a todos da Unisys e a todos da SEFAZ-PE por terem me tirado muitas dúvidas, em especial o grupo de administração de dados e a Alexandre Leão.

Muito obrigado a todos os professores do CIn, por terem me dado uma ótima formação acadêmica e, a alguns professores em especial, por terem me ajudado a ter uma boa formação pessoal.

Gostaria de terminar os agradecimentos com duas frases que me marcaram muito e que provavelmente as pessoas que as proferiram sequer devem lembrar do momento. Ambas foram ditas por professores do CIn, a primeira foi por um amigo recém chegado ao corpo docente do CIn, Dr. Fernando Castor: “A redundância é uma das bases da tolerância a falhas” e a segunda é do PhD. Hermano Perrelli: “Não importa o processo que estejas usando, não importa o quão bem sigas o RUP ou qualquer outra coisa, nada, absolutamente nada, pode substituir o bom senso”.
Resumo

[image: image3]
O mercado demanda aplicações mais complexas e hardware de última geração dá o suporte necessário para criação de tais aplicativos. Não são raros cenários de projetos de software de grande porte nos quais grupos de desenvolvedores trabalham separados geograficamente e utilizam diversos bancos de dados agrupados por sua função. Pode-se ter uma equipe de programadores testando um projeto em um grupo de bancos de dados de desenvolvimento, um conjunto de analistas de sistemas utilizando bancos de dados de homologação e os usuários já utilizando algum módulo finalizado do software nos bancos de produção.

Nesse contexto, são encontradas algumas questões que têm cada vez mais importância para aplicações corporativas reais, como por exemplo a integridade estrutural e de dados entre bases de dados.

Este trabalho tem como objetivo apresentar uma proposta de solução para o cenário dos problemas descritos acima e uma implementação da mesma de modo a mostrar sua aplicabilidade.

Palavras-chave: Grupos, servidores, integridade de dados e estrutura.
Abstract

[image: image4]
The market demands more complex applications, and last generation hardware supports the creation of such software. It is not rare to find large sized software design scenarios where developers’ groups work geographically separated and use several databases grouped by their functions. It is possible to have a programmers’ group testing a design on a developing databases’ group, a team of analysts using a databases for homologation as well as final users already accessing any software module on production databases.

In such a context, it is found questions increasing in importance to real world corporative applications such as data and structural integrities between databases.

This work is aimed at presenting a solution proposal to the above mentioned problems’ scenario and its implementation to show its applicability.

Key words: Groups, servers, data and structure integrity.

Sumário

[image: image5]
8Lista de Ilustrações

1. Introdução
9
1.1
Contexto
10
1.2 Problemas Enfrentados
11
1.3 Trabalhos Relacionados
12
1.4 Objetivos
14
1.5 Estrutura do Trabalho
14
2. Concepção
15
2.1 Visão Geral
15
2.2 Requisitos
16
2.2.1 Requisitos Funcionais
16
2.2.2 Requisitos Não Funcionais
16
2.3 Padrões Arquiteturais e de Projeto
17
2.3.1 Padrões Arquiteturais
17
2.3.2 Padrões de Projeto
18
2.4 Fluxo da Ferramenta
20
3. Implementação
21
3.1 Módulo de Interface Com o Usuário
21
3.1.1 Legado
22
3.1.2 InterfaceUsuario
22
3.2 Módulo de Regra de Negócio
23
3.2.1 Coluna
24
3.2.2 BancoDados
24
3.2.3 Saida
24
3.2.4 FactoryVerificacaoAcesso
24
3.2.5 TemplateVerificacaoAcesso
25
3.2.6 VerificacaoAcessoPadrao
25
3.2.7 FactorySincronismo
25
3.2.8 TemplateSincronismo
25
3.2.9 SincronismoPadrao
25
3.2.11 RegraNegocio
26
3.3 Módulo de Interface de Dados
26
3.3.1 FK
27
3.3.2 FactoryBD
27
3.3.3 ICategoriaBD
28
3.3.4 DB2BD
28
3.3.5 IRepositorio
28
3.3.6 Repositorio
28
3.4 Módulo Utilitário
28
3.4.1 Base64
29
3.4.3 Util
29
3.4.4 Propriedades
29
3.5 Módulo de Arquivos de Configuração e Entrada de Dados
30
3.5.1 CONFIG_BD.properties
30
3.5.2 USUARIOS_SENHAS.properties
30
3.5.3 GRUPOS_SERVIDORES.properties
31
3.5.4 USUARIOS_GRUPOS.properties
31
3.6 Visão Arquitetural de Alto Nível
31
4. Experimentação
33
4.1 Tabelas com a mesma estrutura
33
4.1.1 Uma tabela com poucas centenas de registros
33
4.1.2 Duas tabelas com poucas centenas de registros, mas com sub-seleções e interdependências
33
4.1.3 Uma tabela com uma dezena de milhares de registros
33
4.1.4 Uma tabela com três dezenas de milhares de registros e com parâmetros de sincronização diferentes
34
4.1.5 Uma tabela de grande volume de dados
34
4.2 Tabelas com estruturas diferentes
34
4.2.1 Tabela com uma coluna a menos no alvo
34
4.2.2 Tabela existente na fonte, mas não no alvo
34
4.2.3 Tabela existente na fonte, mas não no alvo e se referenciando a outra tabela
35
4.2.4 Alteração de chave primária
35
5. Conclusões
36
5.1 Principais Contribuições
36
5.2 Limitações
36
5.3 Sugestões de Trabalho Futuro
36
6. Referências
38
7. Apêndice
40
7.1 Saídas de sincronização de dados
40
7.1.1 Uma tabela com poucas centenas de registros
40
7.1.2 Duas tabelas com poucas centenas de registros mas com sub-seleções e interdependências
41
7.1.3 Uma tabela com três dezenas de milhares de registros e com parâmetros de sincronização diferente
42
7.2 Saídas de sincronização estrutural
42
7.2.1 Tabela com uma coluna a menos no alvo
42
7.2.2 Tabela com uma coluna cujo tamanho é diferente em dois bancos de dados
43
7.2.3 Tabela existente na fonte, mas não no alvo
43
7.2.4 Tabela existente na fonte, mas não no alvo e se referenciando a outra tabela
43
7.2.5 Alteração de chave primária
43
Assinaturas
44

Lista de Ilustrações
 SHAPE * MERGEFORMAT

Figura 2.1: Representação de uma arquitetura em três camadas
17
Figura 2.2: Representação do padrão de projeto Parameterized Factory Method
18

Figura 2.3: Representação do padrão de projeto Template Method
19
Figura 2.4: Representação do padrão de projeto Singleton
19

Figura 3.1: Diagrama de Classes do módulo de interface com o usuário
21
Figura 3.2: Diagrama de Classes do módulo de regra de negócio
23

Figura 3.3: Diagrama de Classes do módulo de interface de dados
26
Figura 3.4: Diagrama de Classes do módulo utilitário
28

Figura 3.5: Visão arquitetural de alto nível da ferramenta
31

1. Introdução
 SHAPE * MERGEFORMAT

Será apresentado nesse capítulo o contexto no qual esse trabalho se insere, os problemas enfrentados, os trabalhos relacionados ao contexto, os objetivos deste trabalho e, por fim, a estrutura das seções e assuntos abordados nos capítulos seguintes.

1.1 Contexto

O mercado demanda aplicações mais complexas e hardware de ultima geração dá o suporte necessário para criação de tais aplicativos. Não é raro encontrar-se cenários de projetos de software de grande porte onde muitos grupos de desenvolvedores trabalham separados geograficamente e utilizam diversos bancos de dados(BD) agrupados por sua função. Pode-se ter um grupo de programadores testando um projeto em um grupo de BD de desenvolvimento, um grupo de analistas de sistemas utilizando BD de homologação e os usuários já utilizando algum módulo do software nos BD de produção.
É nesse cenário que encontra-se a necessidade de um mecanismo de auxilio para manter algum tipo de integridade entre esses BD.

Pode-se ter um cenário onde determinado BD com o propósito de ser utilizado como homologação do software tenha algumas tabelas que precisem ser constantemente atualizadas com base em algum outro grupo de BD, ou então pode-se ter uma situação na qual um servidor de contingência deva estar espelhando outro servidor, para que, em caso de falha do servidor primário, o secundário entre em ação sem ter que esperar os procedimentos de recuperação do primário, ou ainda pode-se ter solicitações de mudança diferentes, em diferentes momentos, acabem por gerar uma estrutura diferente de tabelas em BD que deveriam ser idênticas. Em todos esses exemplos citados, uma solução para auxiliar o sincronismo de BD faz-se útil.

Inicialmente, foi cogitado o uso de tabelas federadas para criação dessa solução, mas essa idéia foi logo descartada pois há diversas desvantagens na sua utilização dentro desse cenário:

· Restrições de recursos em alguns Sistemas Gerenciadores de Bancos de Dados(SGBD) - no IBM DB2 [1], por exemplo, até a versão 8.1 as tabelas federadas (remotas) só disponibilizavam o tipo de dados LOB (Large Object) para seleção, e não para inserção, alteração ou remoção [2];

· O tráfego de informações na rede seria imenso para todos, mesmo que um grupo de usuários num prédio qualquer quisesse utilizar um BD no próprio prédio, ainda assim ele sofreria da lentidão de rede, pois os usuários estariam na verdade apontando suas aplicações para o servidor de tabelas federadas;

· O acesso e a segurança dos dados também é algo a se levar em conta, pois não é incomum que os dados do banco de produção sejam de conteúdo restrito para os programadores e para os analistas, portanto deixar todas as informações acessíveis a partir de um único ponto pode ser uma falha de segurança. Mesmo definindo-se níveis de acesso aos usuários nesse servidor, estar-se-ia gerando mais um ponto de possíveis falhas no sistema;

· Disponibilidade é outro fator - caso houvesse um servidor com tabelas federadas de todos os outros BD, bastaria que essa máquina saísse do ar para que todo o projeto parasse, visto que todos estariam apontando suas aplicações para esse servido; e

· Política da empresa - Nem toda corporação se sente à vontade para utilizar tabelas federadas, portanto o software de auxílio de manutenção de integridade entre BD não pode contar com esse recurso como parte de sua solução.

Logo, faz-se necessário é uma solução extensível, que permita que eventuais alterações tenham um impacto reduzido.

1.2 Problemas Enfrentados

Ambientes corporativos se deparam com sérios problemas de integridade entre BD que podem surgir por conta de algum dos fatores abaixo:

· Falta de extensibilidade do software atual;

· Custo adicional ao projeto;

· Grande número de BD envolvidos na aplicação;

· Requisitos alterados ao longo do tempo, mudando também a estrutura do DB;

· Vários grupos de BD separados por funcionalidade;

· Grupos de usuários diferentes utilizando grupos de BD diferentes; e

· A forma como se dá o processo de alteração de dados e de estrutura dos BD pode variar.
Falta de Extensibilidade do Software Atual

Tendo em vista que é dispendioso para qualquer empresa alocar recursos para o desenvolvimento de algum software para manter integridade de seus ambientes, então a solução é, muitas vezes, procurada no mercado. Conforme será mostrado na seção de trabalhos relacionados, as soluções hoje disponíveis são muito normalmente adaptadas para somente um único SGBD com uma única forma de se efetuar o algoritmo de sincronização e com uma única forma de validação dos usuários.
Custo Adicional ao Projeto

Um software para solução de problemas de sincronismo estrutural e de dados entre BD tende a ser mais um gasto no orçamento do projeto, isso se for possível encontrar uma ferramenta que faça o desejado com o BD escolhido para o referido projeto. Uma opção para resolver o problema poderia ser alocar recursos para implementar uma solução específica para o projeto, nesse caso o custo para ter a solução local é proporcional às horas de trabalho e à quantidade de recursos alocados para desenvolvê-la. Outra opção é procurar por alguma solução completa utilizando software livre. Entretanto, será apresentado na seção de trabalhos relacionados que isso não é trivial, pois o que se encontra são soluções ou só voltadas para um BD específico ou só trata parte dos problemas vistos nessa seção.

Quantidade de BD

Também é facilmente encontrado, num cenário de aplicação de grande porte, um número grande de servidores. Número esse possivelmente alterável, para mais ou para menos, de acordo com as necessidades do contexto. Um motivo comum para isso é a segregação da equipe em locais possivelmente distintos, desde uma equipe em um prédio e outra noutro como até uma em cada parte do planeta, o que torna difícil a existência de um servidor central com todos os dados para serem acessados por todos os usuários. Assim, réplicas são criadas localmente para permitir um tempo de resposta mais adequado do servidor.

Requisitos Alterados Continuamente

Apesar de todos os esforços para que se crie uma arquitetura fixa e inalterável na fase de concepção do projeto, é inevitável lidar com eventuais ajustes e melhorias. Essas alterações são de uma ordem de grandeza elevada quando se fala de projetos que se prolongam por muitos meses ou anos. Nesse cenário, é muito difícil prever uma estrutura fixa de campos para uma tabela, ou até mesmo relacionamentos entre essas tabelas, e muito mais a intensidade de transações envolvendo-as.

Vários Grupos de BD

Em grandes projetos não é raro organizar os servidores de acordo com seu propósito, pois mais de um servidor pode ser utilizado para o mesmo fim. Por exemplo, uma série de servidores de desenvolvimento pode ser grupados por serem utilizados por desenvolvedores em prédios diferentes ou então poderia ser criado um grupo de homologação para que diferentes gestores homologuem em diferentes ambientes as suas correspondentes partes do sistema. Isto depende da política interna da empresa em questão.

Grupos de Usuários Diferentes Utilizando Grupos de BD Diferentes
Nesse cenário tem-se, muitas vezes, a necessidade de que dados ou até mesmo que a estrutura de uma tabela em determinado servidor seja igualada a outra para que sejam executados os devidos testes ou os devidos ajustes.

Forma Diferenciada de Alteração de Dados e de Estrutura dos BD

Outra situação comum em contextos multi-ambiente é o de que determinadas tabelas só são acessíveis através de um ambiente fixo e, a partir dele, a informação é replicada para os outros ambientes.

1.3 Trabalhos Relacionados

Nesta seção serão listados alguns trabalhos relacionados, nos quais as vantagens e desvantagens em relação ao contexto proposto serão apontadas.

dbForge Schema Compare for SQL Server [3]

Essa ferramenta se propõe a sincronizar o SGBD SQL Server [4] em termos estruturais. Tem-se como vantagem dessa ferramenta a possibilidade que ela dá de escolher exatamente o que da estrutura deve ser comparado. Porém, ela não se enquadra no contexto proposto por não suportar múltiplos servidores, não sincronizar dados e não prover ao desenvolvedor uma forma de estender a ferramenta para trabalhar com outros SGBD. Além disso, ela não é livre, custando $149,95 dólares.

SqlSync [5]

A principal vantagem dessa ferramenta, que se propõe a sincronizar somente dados, é que ela pode trabalhar com SGBD diferentes. Porém, ela falha em fazer sincronismo de dados entre esquemas diferentes dentro de instâncias do BD e não compara a estrutura do banco. Pelo fato de ser uma ferramenta livre, ela é mais atraente, mas sua incapacidade de comparar estruturas e sua não-extensibilidade a tornam inadequada para o contexto deste trabalho. Por exemplo, a implementação da solução proposta neste trabalho foi feita utilizando DB2 [1], SGBD esse que sequer tem suporte na SqlSync.

SQL Balance [6]

Ferramenta disponível tanto para o SGBD Sybase [7] quanto para MySQL [8]. Porém, oferece suporte somente para esses dois SGBD, o que já a torna inadequada para o contexto deste trabalho. SQL Balance [6] tem a funcionalidade de sincronizar estruturas, inclusive de esquemas diferentes, mas não sincroniza dados e não é livre, custando $80,00 dólares para cada um dos dois tipos de SGBD.

EMS DB Comparer for MySQL [9]

Essa ferramenta dá suporte a múltiplos servidores como fonte e alvo, mas só faz comparações estruturais e, somente para o MySQL. Seu custo é de $65,00 dólares.

Cross-Database Studio [10]

Ferramenta mais completa entre as pesquisadas. Ela faz sincronismo de estrutura e de dados entre dois BD que podem ser de SGBD diferentes e gera relatórios a partir das saídas de suas sincronizações. Entre seus pontos negativos estão: seu elevado custo, $865,00 dólares; sua falta de verificação de acesso do usuário que a utiliza; e falta de flexibilidade para criação de uma conexão com um SGBD novo ou uma eventual versão nova de um existente.

Outras Ferramentas

Encontra-se ainda várias outras ferramentas de sincronização de BD, porém todas elas ou são voltadas apenas para um SGBD, ou só sincronizam a estrutura ou só os dados, recaindo nos casos das detalhadas acima. Dentre as ferramentas proprietárias que recaem nessa categoria, tem-se:

•
Sync Dadabase [11];

•
MS SQL Sync Toolkit Lite [12];

•
xSQL Object [13]; e

•
xSQL Compare [13].

E dentre as ferramentas livres, estão:

•
SQLyog [14];

•
SQL Server DB Compare and Synchronize [15];

•
Ira DB Manager [16]; e

•
DBUpdater.Net [17]

1.4 Objetivos

Este trabalho tem como objetivo apresentar uma proposta de solução para o cenário dos problemas descritos acima e desenvolver uma implementação para esta solução de modo a mostrar sua aplicabilidade.

1.5 Estrutura do Trabalho

Da seguinte forma serão apresentados os capítulos a seguir: No Capítulo 2, de concepção, será apresentada a solução proposta para o contexto descrito neste trabalho, os requisitos funcionais e não funcionais necessários a uma ferramenta que se proponha a implementar essa solução e padrões arquiteturais e de projeto a serem seguidos em uma eventual implementação.

No Capítulo 3, o de implementação, será exposta a arquitetura do software que será intitulado de Legado, desenvolvido para ser uma fiel implementação da solução proposta no Capítulo 2.

Após a apresentação do software, será descrito o uso da ferramenta em um ambiente real no Capítulo 4, de experimentação. Nele será mostrado como se dá a entrada, o comportamento e a saída do software em um ambiente corporativo.

No Capítulo seguinte, o 5, será apresentada a conclusão, apresentando-se as principais contribuições deste trabalho, suas limitações e sugestão para trabalho futuro.

Tem-se no Capítulo 6 as referências bibliográficas e, por fim, temos no Capítulo 7 o Anexo, onde encontram-se artefatos gerados pelo Legado.

2. Concepção

 SHAPE * MERGEFORMAT

Será detalhado neste capítulo um modelo proposto para solução dos problemas encontrados no contexto apresentado. Nas seções seguintes serão apresentados uma visão geral deste modelo, suas funcionalidades em termos de requisitos funcionais e não-funcionais, arquitetura proposta e fluxo da ferramenta.

2.1 Visão Geral

Dada a importância de manter a integridade, não somente de informações, mas também estrutural, entre servidores de dados com propósitos e acessos diferentes, sejam eles agrupados ou não, foi elaborada uma solução voltada para esse contexto.

A solução se dá em forma de uma ferramenta que não só se propõe a suprir uma solução para o problema de sincronismo da informação e integridade estrutural entre BD, mas se utiliza da engenharia de software para que, por meio de padrões arquiteturais e de projeto, essa solução se dê de forma bastante extensível e adaptável, dadas as necessidades de cada projeto.

2.2 Requisitos

Foram entrevistados analistas de sistemas e o arquiteto de um conjunto de sistemas de grande porte da Secretaria da Fazenda de Pernambuco (SEFAZ-PE) e, a partir dai, foram levantados requisitos funcionais (RF) e requisitos não funcionais (RNF) para uma ferramenta que solucionaria os problemas expostos. Os requisitos são detalhados nas subseções 2.2.1 e 2.2.2.

2.2.1 Requisitos Funcionais

Segue abaixo a lista dos Requisitos Funcionais para a ferramenta proposta:

· [RF01] – Sincronizar dados entre tabelas de BD;
· [RF02] – Sincronizar estruturas de tabelas de BD alterando informações referentes aos campos dessas tabelas;
· [RF03] – Criar tabelas caso elas não existam;
· [RF04] – Remover tabelas caso elas não sejam mais necessárias;
· [RF05] – Agrupar logicamente os BD em conjuntos com o mesmo objetivo;
· [RF06] – Validar o acesso do usuário a rodar a ferramenta, tanto em termos de acesso ao BD em questão quanto acesso ao grupo em que esse BD está cadastrado;
· [RF07] – Permitir ao usuário definir que sub-seleção da(s) tabela(s) que ele definiu devem ser sincronizadas;
· [RF08] – Permitir ao usuário definir colunas especiais que devem ser ignoradas pela ferramenta; e
· [RF09] – Uma saída, na forma de scripts SQL (Structured Query Language) [18], deve ser gerada.
2.2.2 Requisitos Não Funcionais

Segue abaixo a lista dos Requisitos Não Funcionais para a ferramenta proposta:

· [RNF01] – Caso seja necessário criar uma tabela, ela também deve ser povoada com os dados da tabela de origem, se algum dado lá existir;
· [RNF02] – Toda senha que venha a ser salva em arquivos de configuração, seja na máquina local ou não, deve estar devidamente criptografada;
· [RNF03] – Deverá ser dada a opção para o usuário de obter a saída em arquivo e/ou em tela;
· [RNF04] – Deve ser tratado quando tabelas têm dependências, seja referenciando uma outra tabela ou a ela mesma;
· [RNF05] – A ferramenta deve ser implementada de forma tal que seja trivial uma futura manutenção no software com a finalidade de alterar as funcionalidades específicas de um SGBD;
· [RNF06] – A ferramenta deve ser implementada de forma tal que seja trivial uma futura manutenção no software com a finalidade de alterar a forma de validação do usuário

· [RNF07] – Somente deve ser feito o sincronismo de dados caso as tabelas compartilhem da mesma estrutura, senão, a estrutura deve ser igualada primeiro;
· [RNF08] – A ferramenta deve ser elaborada utilizando-se a linguagem de programação Java [19], para que a portabilidade do software seja potencialmente maior.

2.3 Padrões Arquiteturais e de Projeto

Abaixo, nas subseções 2.3.1 e 2.3.2, são abordados os padrões de arquitetura de software e de projeto de software escolhidos para a criação dessa solução para problemas de sincronismo entre BD.

2.3.1 Padrões Arquiteturais

É sugerido o padrão arquitetural Layers (Camadas) para a solução por encapsular as partes de um software de acordo com suas funcionalidades, permitindo assim que se no futuro for feita alguma mudança mais significativa no software, como a alteração da forma de interação com o usuário, então isso se dará com um impacto menor.

Isso se deve ao fato de que as camadas, cada uma com seu propósito abstrato, só se comunicam com as outras camadas por meio de interfaces, abstrações que estabelecem um contrato que explicita exatamente os serviços que a camada subjacente deve prover, independente de como a camada provê o serviço.

O padrão em camadas ajuda a estruturar aplicações que podem ser decompostas em grupos de sub-tarefas, no qual cada um desses grupos de sub-tarefas também está em um nível definido de abstração. A Figura 2.1 mostra a representação de uma arquitetura em três camadas [20].

[image: image9.jpg]Business Logic Tier

Client/Presentation Tier

o

Data Tier

Figura 2.1: Representação de uma arquitetura em três camadas [20]

2.3.2 Padrões de Projeto

Visto que alguns requisitos não funcionais exigem uma grande modularidade para abstrações de funcionalidades como a forma de saída do software ou a flexibilidade para alterações futuras de fabricante de SGBD, alguns padrões de projeto são sugeridos para auxiliar nessa modularização.

Parameterized Factory Method [21]:

É uma variação do padrão Factory Method e sugere que seja criado um módulo, chamado de fábrica, que devolve alguma das possíveis instâncias garantidamente válidas de determinada interface. A fábrica recebe como entrada um parâmetro que indica qual o tipo de instância desejado para aquele contexto e retorna uma classe que vai se adequar ao que se é esperado dessa fábrica, pois todas as classes retornadas dela são implementações de uma abstração (interface) que obriga que determinados serviços estejam sendo providos. A Figura 2.2 mostra a representação do padrão de projeto Parameterized Factory Method.

[image: image10.jpg]<<interface >>

Product ProductFacton

+getPrice(): float +createProduct(what: String): Product
+getProductType(): String

/ \
Milk Sugar
+getPrice(): float +getPrice(): float Shopper

+getProductType(): String | | +getProductType(): String

Figura 2.2: Representação do padrão de projeto Parameterized Factory Method [21]

Template Method [21]:

É um padrão conhecido por sua utilidade no auxílio à abstração do algoritmo escolhido para desempenhar determinada tarefa que tem passos predefinidos bem estabelecidos. Isto é alcançado a partir de uma classe abstrata que tem um método concreto e múltiplos abstratos, um para cada passo a ser modularizado no algoritmo. O método concreto chama os abstratos em sua devida ordem, mas como eles não passam de assinaturas de métodos que só serão implementados nas classes que herdarem dela, então cabe a essas classes herdeiras a tarefa de executar, em sua forma particular, os passos do algoritmo. Quando se precisa utilizar o algoritmo em si, basta chamar o método concreto da superclasse que foi herdado nas subclasses e o algoritmo é executado conforme os moldes estabelecidos na classe abstrata. A Figura 2.3 mostra a representação do padrão de projeto Template Method.

[image: image11.png]«Classe Java»
@ AbstractClass

© templateMethod ()
& primitiveOperation1 ()
& primitiveOperation2 ()

Classe Javar Classe Java
@ Conarete1 @ Concrete2
& pimitiveOpsrationt () e pimitiveOperationt ()

@ primitiveOperation2 () @ primitiveOperation2 ()

Figura 2.3: Representação do padrão de projeto Template Method [21]

Singleton [21]:

É um dos padrões de projeto mais conhecidos. Talvez isso se deva à sua simplicidade. É utilizado para garantir que ter-se-á somente uma única instância de determinada classe ativa em um instante de tempo. Ele tem uma referência a si mesmo em seu corpo, e também um método que retorna a instância ativa dessa referência. É útil para quando se deseja evitar concorrência de acesso a determinado dado. A Figura 2.4 mostra a representação do padrão de projeto Singleton.

[image: image12.png]Singleton

- instance : Singleton = null

+ getinstance() : Singleton
- Singleton() : void

Figura 2.4: Representação do padrão de projeto Singleton [21]

2.4 Fluxo da Ferramenta

A ferramenta deve receber do usuário algumas informações iniciais básicas, para então tomar o correto fluxo de operações. São dessa natureza informações tais como:

· Usuário e senha relativos à ferramenta, para eventual verificação de acesso;

· Quais tabelas, ou subconjuntos dessas tabelas, ele quer sincronizar;

· Os nomes dos servidores fonte e dos servidores alvo para sincronização;

· Os logins de acesso aos servidores fonte e aos servidores alvo;

· As senhas de acesso dos servidores fonte e dos servidores alvo;

· Quais colunas o usuário deseja que a ferramenta ignore;

· O tipo de saída desejado;

· O SGBD a ser utilizado; e

· A forma pela qual a validação de acesso será dada.

Isso se dá ainda na camada de interface com o usuário. Uma vez de posse dessas informações e após verificar o acesso devido do usuário, essa camada deve invocar a lógica do sincronismo da camada de negócio.

Na camada de negócio uma requisição é feita à camada de dados para recuperar os metadados das tabelas em questão, pois, de posse desses meta-dados a ferramenta pode saber quais e quantas colunas têm a tabela, quais delas são chave primária [22] e quais são chave estrangeira [23], dentre outras informações úteis.

É necessário também que, de posse desses metadados, verifique-se também se a tabela depende de alguma outra tabela, das que o usuário informou, para executar. Pois se houver, a tabela deverá respeitar tais dependências referenciais.

Ainda de posse dessas informações, serão feitas na regra de negócio algumas verificações como a comparação estrutural das chaves primárias das tabelas em questão. Pois, se a chave primária estiver diferente, será demandada à camada de dados a saída para igualá-las. Será verificado também se o resto da estrutura da tabela também se encontra coerente, e caso necessário, a saída para correção dessas incongruências também será gerada.

No fluxo normal, onde as tabelas são estruturalmente idênticas, é gerada uma saída para sincronizar os dados de acordo com as configurações estabelecidas pelo usuário.

3. Implementação

 SHAPE * MERGEFORMAT

Será apresentada nesse capítulo uma ferramenta desenvolvida de acordo com a solução concebida. As seções seguintes se destinam a explicar a arquitetura dessa ferramenta, intitulada de Legado, elaborada utilizando-se o Eclipse 3.4 [24] e o Java 1.5 [19]. A explicação será dividida por módulos, sendo estes cinco no total: três módulos compostos pelas unidades da arquitetura em camadas, um módulo de classes utilitárias e um módulo de arquivos de configuração e entrada de dados. No final desse capítulo há uma sub-seção com a visão arquitetural de alto nível.

3.1 Módulo de Interface Com o Usuário

As classes que compõem este módulo são a instanciação da abstração da camada de interface com o usuário no padrão arquitetural proposto. São somente duas: a classe de entrada do Legado por meio de linha de comando e a classe que efetivamente recupera e trata os parâmetros de entrada, para então poder chamar a camada de negócios. A seguir será apresentada a Figura 3.1 com a representação UML [25] desse módulo. Sub-seções descreverão as classes.

[image: image14.png]Legado
+ static void main(Stringl])

M
Interfacelisuario

- ArrayList<String> ahrrayColunasignoradas
- ArrayList<String> aTahelas

- IRegraNegocio regraNegocio

- String aNmEsquema

- String aNmTabela

- String aSelecao

- String[] aLoginBDAND

- String[] aLoginBDFonte

- String[] aNmBDAND

- String[] aNmBDFonte

- String[] aSenhaBDANo

- String[] aSenhaBDFonte.

- Stringl] aTipoSaida

- hoolean aindicadorDeletes

~boolean aindicadorinsertsUpdates

- boolean validarConfiguracoesBD()

- boolean verificarPropriedadeBooleana(String)
- void definirAtributosUI(String)

~void definirTabela(String)

- void inicializarSincronizacao(String, String)
- void recuperarConfiguracoesBD(

Figura 3.1: Diagrama de Classes do módulo de interface com o usuário

3.1.1 Legado

É meramente o ponto de entrada da ferramenta, sua única função é mandar o login e a senha do usuário, passados por linha de comando, até a classe que irá efetivamente tratar estes e outros dados de inicialização: a classe InterfaceUsuario.

Caso seja passado somente um parâmetro para essa classe de entrada da ferramenta, ela chama a InterfaceUsuario somente para criptografar esse parâmetro e retorna, em tela, para o usuário.

3.1.2 InterfaceUsuario

Essa classe armazena temporariamente todos os parâmetros de entrada do software em suas variáveis locais. Ela se utiliza de uma classe do módulo de utilitários para recuperar tais parâmetros que, nesta ferramenta, foi implementado como arquivos texto, mas poderiam muito bem ser registros em algum BD. Essa modularidade será melhor vista nas classes do módulo de regra de negócio.

A classe InterfaceUsuário lê, trata e valida essas propriedades, tais como lista de tabelas, bancos a serem sincronizados, colunas ignoráveis e dados de validação de acesso. A senha com a qual o usuário entrou por linha de comando é criptografada e comparada com a senha já registrada para validação de acesso. Após isso, é necessário verificar se o usuário tem acesso ao grupo de servidores em questão. As tabelas são organizadas para serem comparadas em ordem tal que referências de chaves estrangeiras não causem problemas e então os dados são passados como argumento para a camada de regra de negócio por meio de uma interface.

Caso seja passado somente um único parâmetro para esta classe, ao invés do login e a senha, então assume-se que o usuário deseja codificar alguma palavra de entrada, que seria esse parâmetro passado, e a classe retorna a palavra criptografada.

3.2 Módulo de Regra de Negócio

As classes que compõem este módulo são a instanciação da abstração da camada de regra de negócio no padrão arquitetural proposto. São onze classes, entre elas estão algumas classes que representam abstrações como a classe Coluna e a BancoDados. Há também classes que implementam padrões de projeto com a finalidade de melhorar a modularização do software e outras que efetivamente têm a lógica da aplicação. A seguir será apresentada a Figura 3.2 com a representação UML desse módulo. Sub-seções descreverão as classes.

[image: image15.png]<sinterface>>
IRegraNegocio

BancoDados

Coluna FactorySincronismo
~String anhulo =+ STalc TemplateSInGronfsto getScronsmoSting)

- String aNome

- String aTamanho FactoryverificacaoAcesso

- String aTipo

~ Siring getinNuio) Static TemplateVerificacaoAcesso getAcesso(String)
+String getNome()

 String getTamanhogy TemplateveriicacaoAcesso

+ String getTipo) #boolean veriicarAcesso(Siring, SHing, Sting, Sng)

+ boolean equals(Object)
+int hashCode()

+void setinNulo(String)
+void setNome(String)
+void setTamanho(String)
-+ oid setTipo(String)

boolean verificarServidorGrupos(String, String, String)
boolean verificarlsuarioSenha(String, String)

+ ArrayList<String> organizarPreCondicoes Tabelas(ATayLISt<Sting>)
+ boolean verificarAcesso(Sitring, String, String, String)

+void inicializar TipoBD()

+void setBancoDados(String, String, String, int)

+void setindicadorDeletes{boolean)

+void setindicadorinsertsUpdates(boolean)

+void setTipoSaida(Stringl])

-+ oid sincronizar(String, String, String, ArrayList<String>)

~Connection aConexan
- ResultSet aDadosBancoDalos.
- String aL oginBancoDados.

- String aNmBancoDados:

- String aSenhaBancoDados

t

4

~ IRepositorio repositorio

VerificacaoAcessoPadra RegraNegocio
boolean verflicar SevidorGrupos(String, Stg, SUMG) | | ArrayList<Siring> aArrayTabelasAoReTerentes
boolean verificarUsuarioSenha(String, String) -BancoDados buAvo
- BancoDatos hiFonte
TemplateSincronismo - IRepositorio repositorio
- Saida saida
- String aTipoBD

boolean compararEstruturasBD{ATayList<Coluna>, ArrayList<Coluna>)
#void sincronizar(Repositorio, BancoDados, BancoDados, boolean, boolean, Saida)
#void verificarinsertsUpdatesDeletes(BancoDados, BancoDados, boolean, boolean)

t

SincronismoPadrao

boolean compararEstruturasBD{ATayList<Coluna>, ArrayList<Coluna>)

#void verificarinsertsUpdatesDeletes(BancoDados, BancoDados, boolean, boolean)
- void verificarDeletes(ResultSet, Connection)

- void verificarinsertsUpdates(ResultSet, Connection)

- hoolean aindicadorDeletes
- boolean aindicadorinsertsUpdates

void finalize()

+ Connection getConexao()
+ResultSet getbadosBancoDados()
+String getL oginBancoDados()
+String getNmBancoDados()

+ String getSenhaBancoDados()
+void setConexao(Connection)
+void setDadosBancoDados(ResultSet)
+void setl oginBancoDados(String)
+void setNmBancoDados(String)

+ void setSenhaBancoDados(String)

+ ArrayList<String> organizarPreCondicoes Tabelas(ATayLISt<Stng>)
+ boolean verificarAcesso(Sitring, String, String, String)
+void inicializar TipoBD()

+void setBancoDados(String, String, String, int)

+void setindicadorDeletes{boolean)

+void setindicadorinsertsUpdates(boolean)

+void setTipoSaida(Stringl])

+void sincronizar(String, String, String, ArrayList<String>)
- String getEsquemaTabela(String)

- String getListaTabelasSemSelecao(ArrayList<String>)

- String getNomeTabela(String)

- boolean verificarExistenciaBD(BancoDados)

- void reiniciarUmaTabela{ResultSet, Connection, boolean)

Saida

~String[l tipoSaida
#woid gerarSaida(Sting)

-void gerarArquivo(String)

- void gerarEmail(String)

- void gerarSaidaPadrao(String)

Figura 3.2: Diagrama de Classes do módulo de regra de negócio

3.2.1 Coluna

Essa classe é uma representação do que a ferramenta entende como sendo os elementos que compõem uma coluna de uma tabela de um BD. Os quatro atributos escolhidos para representar essa entidade foram:

· Nome - O nome da coluna que se encontra nos meta-dados do BD;

· Tipo - O tipo específico da coluna relativo ao BD, possivelmente um tipo proprietário;

· Tamanho - Tamanho da coluna; e

· Indicador Nulo - Informa se o campo aceita a entrada nula ou não.

3.2.2 BancoDados

Representação de um banco de dados. Para a ferramenta, um banco de dados possui como variáveis internas:

· Nome - O nome do Banco de dados;

· Login - O login utilizado no arquivo de propriedades relativo a esse banco de dados;

· Senha - A senha utilizada no arquivo de propriedades relativa a esse banco de dados;

· Dados - Um conjunto de registros que formam os dados recuperados de um banco de dados para sincronização; e

· Conexão - Uma referência a conexão com o banco de dados em questão.

3.2.3 Saida

Classe responsável por gerar uma saída para o usuário com o SQL necessário para sincronizar dados e/ou estruturas entre grupos de servidores. A saída se dará na forma que o usuário especificou em seus parâmetros de entrada, podendo ser tanto em arquivo com extensão SQL ou em tela.

3.2.4 FactoryVerificacaoAcesso

Instância do padrão de projetos Parameterized Factory Method, essa classe recebe um parâmetro de entrada que informa qual tipo de algoritmo de verificação de acesso deve ser instanciado. Nesse caso foi combinado o padrão de projeto em questão com o Template Method como será visto na classe TemplateVerificacaoAcesso, para uma maior abstração de código em termos de que forma a validação de acesso se dará.

3.2.5 TemplateVerificacaoAcesso

Instância do padrão de projetos Template Method, é uma abstração que recebe os logins, senhas e bancos de dados e estabelece que é necessário haver tanto uma validação de um usuário com sua senha como a validação desse usuário em termos de agrupamentos lógicos de servidores. É definido aqui apenas o molde. A implementação real dessa classe pode ser qualquer uma que implemente seus métodos abstratos. Portanto, tem-se maior flexibilidade para futuras alterações. No caso do Legado, a classe que a estende é a VerificacaoAcessoPadrao.

3.2.6 VerificacaoAcessoPadrao

Utiliza-se do módulo utilitário para recuperar informações sobre grupos de servidores e liga usuários a tais grupos. Caso o usuário tenha acesso ao grupo no qual o servidor de banco de dados em questão faz parte e caso o usuário tenha entrado com uma senha válida, o acesso é liberado.

3.2.7 FactorySincronismo

Instância do padrão de projetos Parameterized Factory Method, essa classe recebe um parâmetro de entrada que informa qual tipo de algoritmo de sincronismo entre os bancos de dados deve ser instanciado. Nesse caso, assim como no caso da validação de acesso, também combinou-se o padrão de projeto em questão com o Template Method para uma maior abstração de código em termos de que forma as comparações entre BD ocorrerão.

3.2.8 TemplateSincronismo

Instância do padrão de projetos Template Method, é uma abstração que recebe os parâmetros do módulo de interface com o usuário e define que uma comparação estrutural e de dados ocorrerá, mas não especifica como isso se dará, pois a classe que efetivamente vai implementar esse comportamento será, no caso do Legado, a classe SincronismoPadrao. Mas, vale a pena lembrar que qualquer classe que estender TemplateSincronismo e implementar seus métodos abstratos será uma opção válida de retorno, o que configura outra camada de flexibilidade para o software. Pode-se, por exemplo, imaginar uma possível alteração nesse ponto quando for alterada a versão do JDBC [26], pois diferentes serviços provindos do JDBC dão margem a diferentes alternativas para executar o sincronismo.

3.2.9 SincronismoPadrao

Compara as estruturas das tabelas, coluna a coluna, verificando os atributos já citados da classe Coluna e depois varre a seleção da tabela fonte e vai verificando, registro a registro, na seleção da tabela alvo se o registro existe. Caso ele não exista, o comando SQL de inserção de tal registro na tabela alvo é gerado. Caso o registro já exista, são comparados os valores de todos os campos da tabela(salvo os definidos como ignorados) a procura de eventuais necessidades de criação de comandos SQL para alteração de banco. Após todas as inserções e alterações terem sido geradas, um processo semelhante é efetuado na procura de registros obsoletos na tabela alvo, que não mais existam na tabela fonte, e então o comando SQL de remoção é gerado. Foram procuradas alternativas mais eficientes do que essa acima, mas dadas as limitações do JDBC, não foi concebido um modo de fazer as referidas comparações de forma mais eficaz sem alterar a estrutura das tabelas em si (o que as empresas normalmente não desejam) ou então sem jogar tudo na memória do computador (o que muitas máquinas convencionais não agüentariam).

3.2.10 IRegraNegocio

Interface pela qual a camada de interação com o usuário se comunica, ou seja, é o local de entrada e saída da camada de regra de negócio. Nessa interface são definidos os serviços a serem providos por essa camada na forma de assinaturas de métodos, obrigando assim que a classe que vá implementar essa interface tenha um comportamento que, ao menos, supra os serviços descritos nessa classe.

3.2.11 RegraNegocio

É a classe que implementa os serviços dessa camada. É responsável pela lógica interna da ferramenta. Para tal, ela se utiliza das classes já mencionadas deste módulo. Essa classe também invoca a camada inferior, a de dados, para prover os serviços necessários para que todos os requisitos funcionais e não funcionais definidos na solução proposta estejam presentes no Legado.

3.3 Módulo de Interface de Dados

As classes que compõem este módulo são a instanciação da abstração da camada de interface de dados no padrão arquitetural proposto. São seis classes e estão destinadas a interagir , de forma direta ou indireta, com o BD por meio de comandos comuns a todos os SGBD que aceitem JDBC. A seguir, a Figura 3.3 mostra a representação UML desse módulo. Sub-seções descreverão as classes.

[image: image16.png]FactoryBD

+ Stafic ICategoriaBD getCategoriaBD(String)

<sinterface>>
IRepositorio

<sinterface>>
ICategoriaBD

N

+ ArrayList<Coluna> getArrayColunasAtualizaversAND)

+ ArrayList<Coluna> getArrayColunasAtualizaveisFonte()
+ ArrayList<Coluna> getArrayColunasPKAN()

+ ArrayList<Coluna> getArrayColunasPKFonte()

+ ArrayList<String> getTabelasPai(String, String, Connection)
+ ResultSet recuperarDadosBD{Connection)

+ String criarEstruturaTabela()

+String destruirTabela()

+String getAlteracaoColuna()

+ String getDeletes()

+ String getinserts()

+String getPreparedStatement()

+String getUpdates()

+void atualizarRegistro(ResultSet, ResultSet)

+woid criarTodosRegistros(ResultSet)

-+ void definirMetaDados{Connection, Connection, boolean)
+void inserirColuna(Coluna)

+void inserirRegistro(ResultSet)

+void removerColunaiColuna)

+ void removerRegistro{ResultSet)

+Connection conectar(String, String, String)

+ String definirTamanhoCriacaoColuna(String, String)

+ hoolean verificarAspas(String)

+ boolean verificarExistenciaTabela(String, String, Connection)

A

DB28D

+Connection conectar(String, String, String)

+ String definirTamanhoCriacaoColuna(String, String)

+ hoolean verificarAspas(String)

+ boolean verificarExistenciaTabela(String, String, Connection)

P

~Siring aNmColunaFK
- String aNmColunaPK

- String aNmESquemaFk

- String aNmEsquemaPk

- String aNmFK

- String aNmPK

- String aNmTabelaFK

- String aNmTabelaPK

#String getNmColunaFK()
#String getNmColunaPK()
#String getNmESquemaFK()
#String getNmESquemaPK()

String getNmFK()

String getNmPHK()

#String getNmTabelaFK()
#String getNmTabelaPK()
#void setNmColunaFK(String)
#void setNmColunaPH(String)

void setNmESquemaFK(String)
void setNmESquemaPK(String)
#void setNmFK(String)

#void setNmPK(String)

#void setNmTabelaFK(String)
#void setNmTabelaPK(String)

A

Repositorio

~AmayList<Coluna> aArrayColunasAtualizaveisAvo
- ArrayList<Coluna> aArrayColunasAtualizaveisFonte
- ArrayList<Coluna> arrayColunasPKAlo

- ArrayList<Colunia> arrayColunasPKFonte

- ArrayList<Coluna> arrayColunasTodasAlvo

- ArrayList<Coluna> arrayColunasTodasFonte

- ArrayList<FK> aArTayF

- ArrayList<String> arrayColunasignoradas

- ArrayList<String> aAirayTabelasAutoReferentes.

- ICategoriaBD categoriaBD

- String aNmEsquema

- String aNmTabela

- String aSelecao

- StringBuilder strAlteracaoColuna

- StringBuilder strbeletes

- StringBuilder strinserts

- StringBuilder strupdates

+ ArrayList<Coluna> getArrayColunasAtualizaveisAND)
+ ArrayList<Coluna> getArrayColunasAtualizaveisFonte()
+ ArrayList<Coluna> getArrayColunasPKAN()

+ ArrayList<Coluna> getArrayColunasPKFonte()

+ ArrayList<String> getTabelasPai(String, String, Connection)
+ ResultSet recuperarDadosBD{Connection)

+ String criarEstruturaTabela()

+String destruirTabela()

+String getAlteracaoColuna()

+ String getDeletes()

+ String getinserts()

+String getPreparedStatement()

+String getUpdates()

+void atualizarRegistro(ResultSet, ResultSet)

+woid criarTodosRegistros(ResultSet)

-+ void definirMetaDados{Connection, Connection, boolean)
+void inserirColuna(Coluna)

+void inserirRegistro(ResultSet)

+void removerColunaiColuna)

+void removerRegistro{ResultSet)

- ArrayList<Coluna> criarArrayTodasColunas(ResultSet)
- ArrayList<FK> criarArrayFK(ResultSet)

- String gerarDeleteColuna(Coluna)

- String gerarDeleteUimaLinha(ResultSet)

- String gerarinsertColunaColuna)

- String gerarinsertUmaLinha{ResultSet)

- String gerarUpdateUmaLinha(ResultSet, ResultSet)

- String getClausulaoPreparedStatement()

- String getClausulaPreenchida(ResultSet)

- String getListaNomesColuna(ArrayList<FK>, int)

- String getOrderBy(String, String, Connection)

- String trocarQuebraL inha(String)

- oid criarArraysColunasAuxiliares(ResultSet, int)

Figura 3.3: Diagrama de Classes do módulo de interface de dados

3.3.1 FK

Classe utilizada basicamente para verificação de referências entre tabelas (pre-condições) e na criação de tabelas quando necessário.

3.3.2 FactoryBD

Instância do padrão de projetos Parameterized Factory Method, essa classe recebe um parâmetro de entrada que informa qual o SGBD que será utilizado e, a partir daí, uma instância válida será retornada. Tal instância será válida porque será uma subclasse de ICategoriaBD, que é uma interface com as assinaturas de todos os métodos que se deve implementar para a ferramenta poder utilizar o SGBD.

3.3.3 ICategoriaBD

Interface que define quais serviços devem existir para se efetuar determinados tipos de operação que são dependentes de banco de dados, como por exemplo a forma de se conectar ao SGBD ou o nome dos tipos de dados dele. Para se operar a ferramenta com algum SGBD, basta criar uma subclasse de ICategoria.

3.3.4 DB2BD

Instância de ICategoriaBD adaptada especialmente para o SGBD DB2 da IBM, essa classe implementa os métodos dependentes de SGBD e utilizam recursos específicos do DB2.

3.3.5 IRepositorio

Interface pela qual a camada de regra de negócio se comunica com o BD, ou seja, é o local de entrada e saída da camada de dados. Nessa interface define-se os serviços a serem providos por essa camada na forma de assinaturas de métodos, obrigando assim que a classe que vá implementar essa interface tenha um comportamento que, ao menos, supra os serviços descritos nessa classe.

3.3.6 Repositorio

É a classe que implementa os serviços dessa camada. É responsável pelos acessos ao BD e, para tal, ela se utiliza das classes já mencionadas deste módulo. Todos os comandos SQL padrão que vão para o JDBC saem dessa classe (Com exceção, claro, da classe dependente de SGBD DB2BD) e é aqui que são recuperados os dados para sincronização, bem como meta-informações das tabelas tais como as chaves primárias e chaves estrangeiras das mesmas.

3.4 Módulo Utilitário

As classes que compõem este módulo são utilitárias e separam-se das demais abstrações da arquitetura proposta de camadas por terem um papel à parte e não localizado. São quatro classes, sendo uma delas, a de criptografia, um mini-projeto open-source de terceiros que é disponibilizado gratuitamente na Internet e utilizada no Legado por simplicidade, visto que criptografar e descriptografar entradas não faz parte do escopo da solução inicial e também pela complexidade de utilização da API nativa de Java para tal propósito. A seguir, a Figura 3.4 mostra a representação UML desse módulo. Nas sub-seções a seguir haverá uma explicação cada classe.

[image: image17.png]uti

Baset4

* stafic Siring getDataHora()

+ static String removeEspacosDuplos{String)
+ static boolean verificarlgualdadeArrays(Arrayl ist<Coluna>, Arraytist<Coluna>)

Propriedades

static Propriedades instancia

<sinterface>>
Constantes

+ String recuperarFabricanteBD()

+String recuperarTipoAcesso()

+ String recuperarTipoSincronismo()

+ String recuperarUsuarioSenha(String)

+ String]] recuperarGruposDoUsuario(String)

+ String[] recuperarServidoresDeUmGrupo(String)
+ String[][] recuperarConfiguracoesBD()

+ static Propriedades getinstancia()

- String recuperarPropriedade(String, String, String)

+ static final String ARGUNO
+ static final String EMAIL

+ static final String FORMATO_DATA

+ static final String SAIDA_PADRAO

+ static final boolean DESTRUIR_TABELA_ALVO_NAO
+ static final boolean DESTRUIR_TABELA_ALVO_SIM
+ static final boolean METADADOS_FONTE _E_ALVO
+ static final boolean METADADOS_SOMENTE_FONTE
+ static final int ALVO

+ static final int Fi

+ static final int FONTE

+ static final int PK

+ static Object decodeToObject(string)

+ static String encodeBytes(byte[])

+ static String encodeBytes(tytel], int)

+ static String encodeBytes(bytel, int, int)

+ static String encodeBytes(byte[l, int,int,int)
+ static String encodeFromFile(String)

+ static String encodeObject(Serializable)

+ static String encodeObject(Serializable, int)
+ static byte[] decode(String)

+ static bytel] decode(String, int)

+ static byte[] decode(bytel])

+ static byte[] decode(bytel],int, in, i)

+ static byte[] decodeFromFile(String)

+ static byte[] encodeBytesToBytes(byte[])

+ static byte[] encodeBytesToBytes(bytell, int, int,int)
+ static void decodeFileToFile(String, String)

+ static void decodeToFile(String, String)

+ static void encode(ByteBuffer, ByteBuffer)

+ static void encode(ByteBufter, CharBuffer)

+ static void encodeFileToFile(String, String)

+ static void encodeToFile(tel], String)

- static bytel] encode3tod (bytel[l, byte(l, int, int)
- static ytel] encode3tod el int,int, bytefl, int, int)
- static ytel] getAlphabet(int)

- static bytel] getDecodabet(int)

- static int decodedto3(ytel], int, bytef], int, int)

Figura 3.4: Diagrama de Classes do módulo utilitário

3.4.1 Base64

Essa classe não foi implementada no Legado e é uma solução open-source alternativa ao complexo conjunto de classes da API nativa de Java que deve ser utilizado para prover os serviços que essa classe dá suporte. Tais serviços são claros: criptografar e descriptografar uma dada entrada. Isso é utilizado para que as senhas salvas não fiquem expostas em texto não seguro [27].

3.4.2 Constantes

Interface que define as constantes que são utilizadas pelo Legado com a finalidade de dar clareza ao código fonte.

3.4.3 Util

Classe composta de três métodos auxiliares simples (com nomes auto-explicativos) que podem ser utilizados em qualquer lugar do Legado, aqui agrupadas por questão de reuso de software.

3.4.4 Propriedades

Classe Singleton que recupera parâmetros em arquivos de configuração. Esses arquivos serão detalhados na seção sobre arquivos de configuração e entrada de dados.

3.5 Módulo de Arquivos de Configuração e Entrada de Dados
Esses quatro arquivos são onde estão armazenadas as propriedades de configuração do software e parâmetros de entrada para o mesmo. Caso a classe Propriedades fosse alterada para acessar uma outra forma de persistência de dados, tal como um novo BD, então esses quatro arquivos que serão descritos a seguir teriam de ser propriamente realocados no referido meio de persistência.

3.5.1 CONFIG_BD.properties

Nesse arquivo estão contidas as informações que o usuário deve prover ao software para receber uma saída adequada às suas necessidades. Esse arquivo deve ser deixado em algum lugar onde o usuário que está executando o software tenha acesso à escrita, para que ele possa alterar esses dados quando precisar.

São essas informações:

· Nome no BD fonte (possivelmente mais de um);

· Login para acessar o BD fonte (mais de um, no caso de múltiplos servidores);

· Senha criptografada para acessar o BD fonte (mais de uma, no caso de múltiplos servidores);

· Nome no BD alvo (possivelmente mais de um);

· Login para acessar o BD alvo (mais de um, no caso de múltiplos servidores);

· Senha criptografada para acessar o BD alvo (mais de uma, no caso de múltiplos servidores);

· Seleção de dados a ser sincronizada, pode ser dada na forma de uma tabela inteira ou só de uma seleção dela;

· Colunas a serem ignoradas pela ferramenta;

· Tipos de saída a serem geradas;

· Indicador de se será feita a sincronização de dados em termos de inserções e de alterações;

· Indicador de se será feita a sincronização de dados em termos de remoções;

· O SGBD a ser utilizado;

· Tipo do algoritmo de sincronização a ser utilizado; e

· Tipo de algoritmo de verificação de acesso do usuário.

3.5.2 USUARIOS_SENHAS.properties

Nesse arquivo está a ligação entre o usuário que está rodando a ferramenta e a sua senha cadastrada e criptografada. Este arquivo, mesmo estando com a senha criptografada, não deve estar disponível para escrita para o usuário da ferramenta, pois se assim fosse, haveria a possibilidade de ele alterar o nome de determinado usuário ou até criar outro. O acesso a esse arquivo deve ser somente de leitura para o usuário, porém pode ser liberado para escrita a um grupo seleto de pessoas. Isso pode ser facilmente feito colocando-se este arquivo em uma pasta remota onde só determinado grupo de usuários teria acesso de escrita.

3.5.3 GRUPOS_SERVIDORES.properties

Aqui está a ligação entre cada grupo lógico de BD e o nome real de cada um deles. O tratamento de segurança em termos de acesso à escrita e à leitura desse arquivo é exatamente como a do arquivo de USUARIOS_SENHA.properties

3.5.4 USUARIOS_GRUPOS.properties

Aqui está a ligação entre cada usuário e os grupos lógicos de BD que esse usuário tem acesso. O tratamento de segurança em termos de acesso à escrita e à leitura desse arquivo é exatamente como a do arquivo de USUARIOS_SENHA.properties

3.6 Visão Arquitetural de Alto Nível

De forma geral, pode-se apresentar a visão da arquitetura implementada como mostrado na Figura 3.5.

[image: image18.png]InterfaceUisuario

“ArrayList<String> ahrrayColunasignoratas
- ArrayList<String> aTahelas

- IRegraNegocio regraNegocio

- String aNmEsquema

- String aNmTabela

- String aSelecao

- String[] aLoginBDAND

- String[] aLoginBDFonte

- String[] aNmBDAND

- String[] aNmBDFonte

- String[] aSenhaBDANo

- String[] aSenhaBDFonte.

- Stringl] aTipoSaida

- hoolean aindicadorDeletes

- boolean alndicadorinsertsUpdates

<sinterface>>
IRegraNegocio

<sinterface>>
IRepositorio

+ ArrayList<String> organizarPreCondicoes Tabelas(ATayLISt<Sting>)
+ boolean verificarAcesso(Sitring, String, String, String)

+void inicializar TipoBD()

+void setBancoDados(String, String, String, int)

+void setindicadorDeletes{boolean)

+void setindicadorinsertsUpdates(boolean)

~boolean validarConfiguracoesBD()

- boolean verificarPropriedadeBooleana(String)
- void definirAtributosUI(String)

~void definirTabela(String)

- void inicializarSincronizacao(String, String)

- void recuperarConfiguracoesBD(

+void setTipoSaida(Stringl])
+oid sincronizar(String, String, String, ArrayList<String>)
A
|
|
|
RegraNegocio
~ArrayList<String> ahrrayTabelasAutoReforentos.
- BancoDados hdlvo
- BancoDados hdFonte
- IRepositorio repositorio
- Saila saida
- String aTipoBD

- hoolean aindicadorDeletes
- boolean aindicadorinsertsUpdates

+ ArrayList<Coluna> getArrayColunasAtualizaversAND)

+ ArrayList<Coluna> getArrayColunasAtualizaveisFonte()
+ ArrayList<Coluna> getArrayColunasPKAN()

+ ArrayList<Coluna> getArrayColunasPKFonte()

+ ArrayList<String> getTabelasPai(String, String, Connection)
+ ResultSet recuperarDadosBD{Connection)

+ String criarEstruturaTabela()

+String destruirTabela()

+String getAlteracaoColuna()

+ String getDeletes()

+ String getinserts()

+String getPreparedStatement()

+String getUpdates()

+void atualizarRegistro(ResultSet, ResultSet)

+woid criarTodosRegistros(ResultSet)

-+ void definirMetaDados{Connection, Connection, boolean)
+void inserirColuna(Coluna)

+void inserirRegistro(ResultSet)

+void removerColunaiColuna)

+ void removerRegistro{ResultSet)

+ ArrayList<String> organizarPreCondicoes Tabelas(ATayLISt<Stng>)
+ boolean verificarAcesso(Sitring, String, String, String)
+void inicializar TipoBD()

+void setBancoDados(String, String, String, int)

+void setindicadorDeletes{boolean)

+void setindicadorinsertsUpdates(boolean)

+void setTipoSaida(Stringl])

+void sincronizar(String, String, String, ArrayList<String>)
- String getEsquemaTabela(String)

- String getListaTabelasSemSelecao(ArrayList<String>)

- String getNomeTabela(String)

- boolean verificarExistenciaBD(BancoDados)

- void reiniciarUmaTabela{ResultSet, Connection, boolean)

A
T

Repositorio

~AmayList<Coluna> aArrayColunasAtualizaveisAvo
- ArrayList<Coluna> aArrayColunasAtualizaveisFonte
- ArrayList<Coluna> arrayColunasPKAlo

- ArrayList<Colunia> arrayColunasPKFonte

- ArrayList<Coluna> arrayColunasTodasAlvo

- ArrayList<Coluna> arrayColunasTodasFonte

- ArrayList<FK> aArTayF

- ArrayList<String> arrayColunasignoradas

- ArrayList<String> aAirayTabelasAutoReferentes.

- ICategoriaBD categoriaBD

- String aNmEsquema

- String aNmTabela

- String aSelecao

- StringBuilder strAlteracaoColuna

- StringBuilder strbeletes

- StringBuilder strinserts

- StringBuilder strupdates

+ ArrayList<Coluna> getArrayColunasAtualizaveisAND)
+ ArrayList<Coluna> getArrayColunasAtualizaveisFonte()
+ ArrayList<Coluna> getArrayColunasPKAN()

+ ArrayList<Coluna> getArrayColunasPKFonte()

+ ArrayList<String> getTabelasPai(String, String, Connection)
+ ResultSet recuperarDadosBD{Connection)

+ String criarEstruturaTabela()

+String destruirTabela()

+String getAlteracaoColuna()

+ String getDeletes()

+ String getinserts()

+String getPreparedStatement()

+String getUpdates()

+void atualizarRegistro(ResultSet, ResultSet)

+woid criarTodosRegistros(ResultSet)

-+ void definirMetaDados{Connection, Connection, boolean)
+void inserirColuna(Coluna)

+void inserirRegistro(ResultSet)

+void removerColunaiColuna)

+void removerRegistro{ResultSet)

- ArrayList<Coluna> criarArrayTodasColunas(ResultSet)
- ArrayList<FK> criarArrayFK(ResultSet)

- String gerarDeleteColuna(Coluna)

- String gerarDeleteUimaLinha(ResultSet)

- String gerarinsertColunaColuna)

- String gerarinsertUmaLinha{ResultSet)

- String gerarUpdateUmaLinha(ResultSet, ResultSet)

- String getClausulaoPreparedStatement()

- String getClausulaPreenchida(ResultSet)

- String getListaNomesColuna(ArrayList<FK>, int)

- String getOrderBy(String, String, Connection)

- String trocarQuebraL inha(String)

- void criarArraysColunasAuiliares(ResultSet, int)

Figura 3.5: Visão arquitetural de alto nível da ferramenta

Nota-se que a arquitetura da ferramenta se encontra compatível com a da solução proposta, onde as três camadas se comunicam somente por intermédio de interfaces, as quais garantem os serviços de uma camada inferior para a superior.

4. Experimentação
[image: image19]
Neste seção serás exemplificado o comportamento do Legado diante de determinados contextos. Cada sub-seção mostrará em termos de tipo de ação, entrada, saída e tempo de resposta como a ferramenta se comporta diante de um determinado cenário. Assume-se que em todos os cenários a seguir tem-se como entrada o parâmetro indicador de que a saída deverá ser em tela e em arquivo.

4.1 Tabelas com a mesma estrutura

Abaixo estão cenários nos quais a ação é sempre a de sincronismo de dados, visto que em todas as sub-seções a seguir, a ferramenta comparou as estruturas e não encontrou diferença.

4.1.1 Uma tabela com poucas centenas de registros

· As entradas foram o nome da tabela sem sub-seleções e os parâmetros indicadores de que tanto inserções e alterações quanto remoções deveriam ser criadas;

· A saída foi formada por poucos comandos insert, update e delete que diferiam de uma base para outra. Essa saída encontra-se no Apêndice; e

· O tempo de resposta para geração da saída foi da ordem de um segundo.

4.1.2 Duas tabelas com poucas centenas de registros, mas com sub-seleções e interdependências

· As entradas foram os nomes das tabelas, sendo que a segunda tinha uma chave estrangeira para a primeira, com sub-seleções em ambas para que somente determinada parte destas tabelas fossem comparadas e os parâmetros indicadores de que tanto inserções e alterações quanto remoções deveriam ser criadas;

· A saída foi o comando SQL referente as poucas inserções, alterações e remoções que precisavam ser geradas para que houvesse sincronismo de dados. Vale a pena ressaltar aqui, que foi gerado o comando SQL das tabelas em ordem tal que a interdependência entre elas (a segunda tinha uma chave estrangeira para a primeira) não gera problemas na hora da execução do referido comando SQL. A saída encontra-se no Apêndice; e

· O tempo de resposta para geração da saída também foi da ordem de um segundo.

4.1.3 Uma tabela com uma dezena de milhares de registros

· As entradas foram o nome da tabela sem sub-seleções e indicador de que comandos de inserções, alterações e remoções deveriam ser criados;

· A saída foi vazia em termos de comando SQL de sincronismo de dados, pois foi comparada a tabela com uma cópia de si mesma em outro banco de dados; e

· O tempo de processamento, apesar de uma saída vazia, foi de cinqüenta e oito segundos.

4.1.4 Uma tabela com três dezenas de milhares de registros e com parâmetros de sincronização diferentes

· As entradas foram o nome da tabela sem sub-seleções e, primeiro o indicador de que somente inserções e alterações deveriam ser realizadas, depois o indicador de que somente as remoções deveriam ser criadas, e, por último, as três operações sendo realizadas;

· A saída foi o comando SQL de sincronismo de dados entre as tabelas que se encontra no Apêndice de forma simplificada por questões de espaço, pois foram gerados muitos registros; e

· O tempo de processamento foi de quatro minutos e trinta e cinco segundos para a geração das inserções e alterações, quatro minutos e vinte segundos só para geração das remoções e, para geração de tudo, oito minutos e cinqüenta e sete segundos.

4.1.5 Uma tabela de grande volume de dados

· As entradas foram o nome da tabela sem sub-seleções e o indicador de que comandos de inserções, alterações e remoções deveriam ser criados;

· A saída foi vazia, pois foi comparada a tabela com ela mesma; e

· O tempo de processamento, apesar da saída vazia, foi de vinte e quatro minutos e trinta segundos para processar centro e trinta mil registros.

4.2 Tabelas com estruturas diferentes

Abaixo estão cenários nos quais se tem sempre diferenças entre a estrutura das tabelas, seja uma coluna faltando ou seja a tabela inteira que não existe.

4.2.1 Tabela com uma coluna a menos no alvo

· As entradas foram o nome da tabela sem sub-seleções e o indicador de que comandos de inserções, alterações e remoções deveriam ser criados;

· A saída foi um arquivo contendo o comando SQL, mostrado no Apêndice, que adiciona a coluna na tabela do banco de dados alvo; e

· O tempo de processamento, por ser só o tempo de verificar os metadados das tabelas, é menos do que um segundo.

4.2.2 Tabela existente na fonte, mas não no alvo

· As entradas foram o nome da tabela sem sub-seleções e o indicador de que comandos de inserções, alterações e remoções deveriam ser criados;

· A saída foi um arquivo contendo o comando SQL que cria toda a estrutura da tabela no banco destino e depois adiciona os registros que existiam na fonte para o banco de dados alvo. Esse arquivo se encontra no Apêndice; e

· O tempo de processamento, por ser só o tempo de verificar os metadados das tabelas, é menos do que um segundo.

4.2.3 Tabela existente na fonte, mas não no alvo e se referenciando a outra tabela

· Esse cenário é semelhante ao anterior, mudando a saída, a qual gera também o comando SQL para definição de uma ligação entre a tabela a ser criada e a que ela se referencia. O código no Apêndice.

4.2.4 Alteração de chave primária

· As entradas foram o nome da tabela sem sub-seleções e o indicador de que comandos de inserções, alterações e remoções deveriam ser criados;

· A saída foi um arquivo contendo o comando SQL que destrói a tabela destino e, em seguida, cria toda a estrutura da tabela novamente, adicionando os registros que existiam na fonte para o banco de dados alvo. Esse arquivo se encontra no Apêndice; e

· Tomando como desprezível o tempo de comparação de metadados, o tempo de processamento é igual ao tempo de leitura dos registros da tabela fonte, e, portanto, menor que nos casos onde é necessário haver comparação.

5. Conclusões

[image: image20]
No decorrer deste trabalho foi apresentado um contexto em que um ambiente corporativo sofre, devido aos motivos expostos, com problemas de integridade tanto de dados quanto estrutural no que diz respeito a seus BD.

5.1 Principais Contribuições

Foi proposta uma solução para esse cenário, na qual foram discutidos os requisitos funcionais e não funcionais que deveria ter e os serviços que deveria prover.

Uma implementação dessa solução, o sistema denominado Legado, foi desenvolvida baseada em diagramas UML. Também, foram descritas as classes que o compõem, de modo quer se pudesse notar que a referida implementação realmente atende aos propósitos deste trabalho.

Percebe-se também que é importante centrar na modularização do software e projetá-lo já com o intuito de facilitar futuras modificações, pois assim se estar agregando o valor de extensibilidade para que se customize o software em qualquer cenário corporativo, bastando para isso alterar um único ponto de variação (uma única classe) no software para se reutilizar da solução em outro contexto.

5.2 Limitações

Temos como principais limitações da solução concebida:

· Não há suporte a Triggers [28]; e

· Não há suporte a Stored Procedures [29].

5.3 Sugestões de Trabalho Futuro

Como trabalho futuro, portanto, sugere-se a adequação da solução concebida para o suporte a Triggers e a Stored Procedures.

Há, também, outros pontos de melhoria visíveis em termos da instância da solução apresentada, o sistema o Legado. Como exemplo, pode-se citar a interface com o usuário. Ela está adequada para utilização em ambientes baseados em Unix [30], mas suas configurações de entrada poderiam vir, ao invés de arquivos de configuração, de uma interface gráfica mais amigável para com o usuário, no caso da ferramenta executar em um ambiente desktop.

6. Referências

[image: image21]
[1] - Raul F. Chong, Xiaomei Wang, Michael Dang, Dwaine R. Snow. Understanding DB2. 2a Edição, 2007.

[2] - http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.ii.doc/admin/cfpprg12.htm (Último acesso em 23/05/2009)

[3] - http://www.devart.com/dbforge/sql/schemacompare/overview.html (Último acesso em 23/05/2009)

[4] - http://www.microsoft.com/sql/default.mspx (Último acesso em 03/06/2009)

[5] - http://freshmeat.net/projects/sqlsync/ (Último acesso em 23/05/2009)

[6] - http://www.dswsoft.com/sqlbalance.php (Último acesso em 23/05/2009)

[7] - http://www.sybase.com/ (Último acesso em 03/06/2009)

[8] - http://www.mysql.com/ (Último acesso em 03/06/2009)

[9] - http://www.sqlmanager.net/ (Último acesso em 23/05/2009)

[10] - http://www.dbbalance.com/ (Último acesso em 23/05/2009)

[11] - http://www.spectralcore.com/syncdatabase/ (Último acesso em 23/05/2009)

[12] - http://www.bizkit.ru/ (Último acesso em 23/05/2009)

[13] - http://www.xsqlsoftware.com/ (Último acesso em 23/05/2009)

[14] - http://www.webyog.com/ (Último acesso em 23/05/2009)

[15] - http://sourceforge.net/projects/dabcos/ (Último acesso em 23/05/2009)

[16] - http://sourceforge.net/projects/iradbmanager/ (Último acesso em 23/05/2009)

[17] - http://sourceforge.net/projects/dbupdaterprj/ (Último acesso em 23/05/2009)

[18] - http://pt.wikipedia.org/wiki/SQL/ (Último acesso em 03/06/2009)

[19] - Joshua Bloch. Effective Java. 2a Edição, 2008.

[20] - http://www.adobe.com/devnet/coldfusion/articles/ntier.html (Último acesso em 23/05/2009)

[21] - Gamma, Helm, Johnson, Vlissides - Design Patterns, Elements Of Reusable Object Oriented Software, 1998

[22] - http://pt.wikipedia.org/wiki/Chave_primária (Último acesso em 23/05/2009)

[23] - http://en.wikipedia.org/wiki/Foreign_key (Último acesso em 23/05/2009)

[24] - http://www.eclipse.org/ (Último acesso em 23/05/2009)

[25] - Martin Fowler, Kendall Scott. 2a Edição, 2004

[26] - http://java.sun.com/javase/technologies/database/ (Último acesso em 23/05/2009)

[27] - http://iharder.net/base64 (Último acesso em 23/05/2009)

[28] - http://en.wikipedia.org/wiki/Database_trigger (Último acesso em 03/06/2009)

[29] – Paul Yip, Drew Bradstock, Hana Curtis, Michael X. Gao, Zamil Janmohamed, Clara Liu, Fraser McArthur. DB2 SQL Procedural Language for Linux, Unix and Windows. 1a Edição, 2003.
[30] - Evi Nemeth, Garth Snyder, Scott Seebass, Trent H. Hein. UNIX System Administration Handbook. 3a Edição, 2001

7. Apêndice

[image: image22]
Esse Apêndice apresenta o conjunto de saídas em arquivo da ferramenta Legado, separadas pelo contexto em que foram geradas. Algumas dessas saídas estão com “...” para indicar que a lógica da inserção, ou da alteração ou da remoção continua, e que foram omitidos alguns registros por questões de simplicidade, organização e espaço.

7.1 Saídas de sincronização de dados

Aqui serão expostas as saídas em que a ferramenta detectou que não havia diferenças estruturais entre as tabelas.

7.1.1 Uma tabela com poucas centenas de registros
Usando-se o parâmetro TABELAS=TGE_SISTEMA, tem-se:

INSERT INTO ADMAPO.TGE_SISTEMA (SISTEMA_CD, SISTEMA_DS, SISTEMA_NM_GESTOR, SISTEMA_IN_ATU_ESTRUT_ORGN, SISTEMA_IN_ATU_CAE, SISTEMA_IN_ATIVIDADE_ONLINE, SISTEMA_DH_INCL, USUARIO_CD_INCL, USUARIO_CD_JOB, SNCTRS_DH_ULT_ALTR) VALUES ('GAI', 'SDADAS', 'SISTEMA GAI', 'N', 'N', 'S', '2005-09-08 13:21:21.167000', '1 ', 'null', '2005-09-08 13:21:21.167000')
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA SCA' WHERE SISTEMA_CD = 'SCA'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA UTL' WHERE SISTEMA_CD = 'UTL'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA TGE', SISTEMA_IN_ATU_ESTRUT_ORGN = 'S' WHERE SISTEMA_CD = 'TGE'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA ACG' WHERE SISTEMA_CD = 'ACG'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA AMA' WHERE SISTEMA_CD = 'AMA'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GCC' WHERE SISTEMA_CD = 'GCC'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA PRT' WHERE SISTEMA_CD = 'PRT'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GAE' WHERE SISTEMA_CD = 'GAE'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA DEF' WHERE SISTEMA_CD = 'DEF'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GDF', SISTEMA_IN_ATU_ESTRUT_ORGN = 'S' WHERE SISTEMA_CD = 'GDF'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA AAJ' WHERE SISTEMA_CD = 'AAJ'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GCD' WHERE SISTEMA_CD = 'GCD'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GAF', SISTEMA_IN_ATU_ESTRUT_ORGN = 'N' WHERE SISTEMA_CD = 'GAF'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA CMT' WHERE SISTEMA_CD = 'CMT'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GPF' WHERE SISTEMA_CD = 'GPF'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA ACO' WHERE SISTEMA_CD = 'ACO'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA FPI', SISTEMA_IN_ATIVIDADE_ONLINE = 'N' WHERE SISTEMA_CD = 'FPI'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA CTB' WHERE SISTEMA_CD = 'CTB'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GFE' WHERE SISTEMA_CD = 'GFE'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GNA' WHERE SISTEMA_CD = 'GNA'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GFU' WHERE SISTEMA_CD = 'GFU'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA PLO' WHERE SISTEMA_CD = 'PLO'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA AJU' WHERE SISTEMA_CD = 'AJU'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA ATP' WHERE SISTEMA_CD = 'ATP'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'Ronaldo Bonifácio', USUARIO_CD_JOB = 'NULL' WHERE SISTEMA_CD = 'GRC'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GBP' WHERE SISTEMA_CD = 'GBP'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GDL' WHERE SISTEMA_CD = 'GDL'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GAP' WHERE SISTEMA_CD = 'GAP'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA PLF' WHERE SISTEMA_CD = 'PLF'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA PPA' WHERE SISTEMA_CD = 'PPA'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA SIA' WHERE SISTEMA_CD = 'SIA'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GDP' WHERE SISTEMA_CD = 'GDP'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GIV' WHERE SISTEMA_CD = 'GIV'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA IIG' WHERE SISTEMA_CD = 'IIG'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA SPL' WHERE SISTEMA_CD = 'SPL'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA PRF', USUARIO_CD_INCL = '1 ' WHERE SISTEMA_CD = 'PRF'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GPP' WHERE SISTEMA_CD = 'GPP'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA PCT' WHERE SISTEMA_CD = 'PCT'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_DS = 'GESTÃO DE CORRESPONDÊNCIAS EFISCO', SISTEMA_NM_GESTOR = 'SISTEMA GCE', USUARIO_CD_INCL = '1 ' WHERE SISTEMA_CD = 'GCE'
UPDATE ADMAPO.TGE_SISTEMA SET USUARIO_CD_INCL = '1 ', USUARIO_CD_JOB = '50001 ' WHERE SISTEMA_CD = 'GSN'
UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_IN_ATU_ESTRUT_ORGN = 'S' WHERE SISTEMA_CD = 'MSG'
DELETE FROM ADMAPO.TGE_SISTEMA WHERE SISTEMA_CD = 'SIM'
DELETE FROM ADMAPO.TGE_SISTEMA WHERE SISTEMA_CD = 'XXX'

7.1.2 Duas tabelas com poucas centenas de registros mas com sub-seleções e interdependências

Usando-se o parâmetro TABELAS=ADMAPO.UTL_SCRIPT_JOB[scriptjob_Cd between 8000 and 8999]@ admapo.tge_sistemA [sistema_cd like 'GA%'], tem-se:

INSERT INTO ADMAPO.TGE_SISTEMA (SISTEMA_CD, SISTEMA_DS, SISTEMA_NM_GESTOR, SISTEMA_IN_ATU_ESTRUT_ORGN, SISTEMA_IN_ATU_CAE, SISTEMA_IN_ATIVIDADE_ONLINE, SISTEMA_DH_INCL, USUARIO_CD_INCL, USUARIO_CD_JOB, SNCTRS_DH_ULT_ALTR) VALUES ('GAI', 'SDADAS', 'SISTEMA GAI', 'N', 'N', 'S', '2005-09-08 13:21:21.167000', '1 ', 'null', '2005-09-08 13:21:21.167000')

UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GAE' WHERE SISTEMA_CD = 'GAE'

UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GAF', SISTEMA_IN_ATU_ESTRUT_ORGN = 'N' WHERE SISTEMA_CD = 'GAF'

UPDATE ADMAPO.TGE_SISTEMA SET SISTEMA_NM_GESTOR = 'SISTEMA GAP' WHERE SISTEMA_CD = 'GAP'

INSERT INTO ADMAPO.UTL_SCRIPT_JOB (SCRIPTJOB_CD, SCRIPTJOB_NM_ARQUIVO, SCRIPTJOB_SI, USUARIO_CD, SISTEMA_CD, SCRIPTJOB_DS, SCRIPTJOB_CD_FUNCAO_PARM, SCRIPTJOB_IN_USUARIO, SNCTRS_DH_ULT_ALTR) VALUES (8521, 'JobVerificarInconsistenciaBaixas', 'A', '1', 'CMT', 'VERIFICA BAIXAS E DOCUMENTOS ARRECADADOS', null, 'N', '2008-07-01 09:16:02.550000')

INSERT INTO ADMAPO.UTL_SCRIPT_JOB (SCRIPTJOB_CD, SCRIPTJOB_NM_ARQUIVO, SCRIPTJOB_SI, USUARIO_CD, SISTEMA_CD, SCRIPTJOB_DS, SCRIPTJOB_CD_FUNCAO_PARM, SCRIPTJOB_IN_USUARIO, SNCTRS_DH_ULT_ALTR) VALUES (8892, 'JobEmitirRelatorioNotasFiscaisRetidasNasTransportadoras', 'A', '1', 'CMT', 'EMITIR RELATORIO NOTAS FISCAIS RETIDAS NAS TRANSPORTADORAS', null, 'S', '2008-11-06 09:50:51.192000')

INSERT INTO ADMAPO.UTL_SCRIPT_JOB (SCRIPTJOB_CD, SCRIPTJOB_NM_ARQUIVO, SCRIPTJOB_SI, USUARIO_CD, SISTEMA_CD, SCRIPTJOB_DS, SCRIPTJOB_CD_FUNCAO_PARM, SCRIPTJOB_IN_USUARIO, SNCTRS_DH_ULT_ALTR) VALUES (8893, 'JobEmitirRelatorioNotasFiscaisRetidasNaTransportadora', 'A', '1', 'CMT', 'EMITIR RELATORIO NOTAS FISCAIS RETIDAS NA TRANSPORTADORA', null, 'S', '2008-11-06 09:51:46.734000')

INSERT INTO ADMAPO.UTL_SCRIPT_JOB (SCRIPTJOB_CD, SCRIPTJOB_NM_ARQUIVO, SCRIPTJOB_SI, USUARIO_CD, SISTEMA_CD, SCRIPTJOB_DS, SCRIPTJOB_CD_FUNCAO_PARM, SCRIPTJOB_IN_USUARIO, SNCTRS_DH_ULT_ALTR) VALUES (8894, 'JobInconsistenciaCMTxGPF', 'A', '1', 'CMT', 'VERIFICA INCONSISTENCIAS ENTRE O CMT E O GPF', null, 'N', '2008-07-01 09:16:02.550000')

INSERT INTO ADMAPO.UTL_SCRIPT_JOB (SCRIPTJOB_CD, SCRIPTJOB_NM_ARQUIVO, SCRIPTJOB_SI, USUARIO_CD, SISTEMA_CD, SCRIPTJOB_DS, SCRIPTJOB_CD_FUNCAO_PARM, SCRIPTJOB_IN_USUARIO, SNCTRS_DH_ULT_ALTR) VALUES (8896, 'JobCorrigirCamposExtrato', 'A', '1', 'CMT', 'CORRIGE CAMPOS DO EXTRATO(CMTEXTRATO_VL_ANISTIADO, CMTEXTRATO_VL_ICMS...)', null, 'N', '2008-07-01 09:16:02.550000')

UPDATE ADMAPO.UTL_SCRIPT_JOB SET USUARIO_CD = '1' WHERE SCRIPTJOB_CD = 8000

UPDATE ADMAPO.UTL_SCRIPT_JOB SET USUARIO_CD = '2', SCRIPTJOB_DS = 'EMITIR RELATORIO NOTAS FISCAIS RETIDAS NA TRANSPORTADORA', SCRIPTJOB_IN_USUARIO = 'N' WHERE SCRIPTJOB_CD = 8015

UPDATE ADMAPO.UTL_SCRIPT_JOB SET USUARIO_CD = '2', SCRIPTJOB_DS = 'EMITIR RELATORIO NOTAS FISCAIS RETIDAS NAS TRANSPORTADORAS', SCRIPTJOB_IN_USUARIO = 'N' WHERE SCRIPTJOB_CD = 8016

DELETE FROM ADMAPO.UTL_SCRIPT_JOB WHERE SCRIPTJOB_CD = 8018

DELETE FROM ADMAPO.UTL_SCRIPT_JOB WHERE SCRIPTJOB_CD = 8019

DELETE FROM ADMAPO.UTL_SCRIPT_JOB WHERE SCRIPTJOB_CD = 8898

Vale a pena ressaltar que, apesar da tabela UTL_SCRIPT_JOB ter sido solicitada para sincronização primeiro, o software gerou a comparação do TGE_SISTEMA antes pois há uma chave estrangeira entre as tabelas, e na ordem acima não haverá conflitos na hora de executar o código SQL.

7.1.3 Uma tabela com três dezenas de milhares de registros e com parâmetros de sincronização diferente

Usando-se o parâmetro TABELAS=ADMPLN.PLO_TETO_ORCAMENTARIO, tem-se:

INSERT INTO ADMPLN.PLO_TETO_ORCAMENTARIO (EXERC_DT_ANO, TETOORC_CD, UNIDORC_CD, FONTERECUR_CD, FONTERECUR_SQ, CATEGECON_CD, CATEGECON_SQ, GRDESP_CD, GRDESP_SQ, TETOORC_VL_PRIMEIRO_ANO, TETOORC_VL_SEGUNDO_ANO, TETOORC_VL_TERCEIRO_ANO, TETOORC_VL_QUARTO_ANO, PLOOPERA_SQ, TETOORC_IN_EXC_LOGICA, USUARIO_CD, SNCTRS_DH_ULT_ALTR) VALUES (2004, 494, 56080, '0101000000', 1, 3, 1, 1, 1, 11284000.00, 10200000.00, 10120000.00, 0.00, 2, 'N', '9', '2004-06-07 20:45:53.548794')

INSERT INTO ADMPLN.PLO_TETO_ORCAMENTARIO (EXERC_DT_ANO, TETOORC_CD, UNIDORC_CD, FONTERECUR_CD, FONTERECUR_SQ, CATEGECON_CD, CATEGECON_SQ, GRDESP_CD, GRDESP_SQ, TETOORC_VL_PRIMEIRO_ANO, TETOORC_VL_SEGUNDO_ANO, TETOORC_VL_TERCEIRO_ANO, TETOORC_VL_QUARTO_ANO, PLOOPERA_SQ, TETOORC_IN_EXC_LOGICA, USUARIO_CD, SNCTRS_DH_ULT_ALTR) VALUES (2005, 495, 56080, '0101000000', 1, 3, 1, 1, 1, 11284000.00, 10200000.00, 10120000.00, 0.00, 2, 'N', '9', '2004-06-22 15:20:33.164000')

INSERT INTO ADMPLN.PLO_TETO_ORCAMENTARIO (EXERC_DT_ANO, TETOORC_CD, UNIDORC_CD, FONTERECUR_CD, FONTERECUR_SQ, CATEGECON_CD, CATEGECON_SQ, GRDESP_CD, GRDESP_SQ, TETOORC_VL_PRIMEIRO_ANO, TETOORC_VL_SEGUNDO_ANO, TETOORC_VL_TERCEIRO_ANO, TETOORC_VL_QUARTO_ANO, PLOOPERA_SQ, TETOORC_IN_EXC_LOGICA, USUARIO_CD, SNCTRS_DH_ULT_ALTR) VALUES (2006, 496, 56080, '0101000000', 1, 3, 1, 1, 1, 11284000.00, 10200000.00, 10120000.00, 0.00, 2, 'N', '9', '2005-06-29 09:27:57.046000')

...

UPDATE ADMPLN.PLO_TETO_ORCAMENTARIO SET TETOORC_VL_PRIMEIRO_ANO = 4700000.00, TETOORC_VL_SEGUNDO_ANO = 4836000.00, TETOORC_VL_TERCEIRO_ANO = 5800000.00, TETOORC_VL_QUARTO_ANO = 7580800.00 WHERE EXERC_DT_ANO = 2004 AND TETOORC_CD = 2

UPDATE ADMPLN.PLO_TETO_ORCAMENTARIO SET TETOORC_VL_PRIMEIRO_ANO = 4700000.00, TETOORC_VL_SEGUNDO_ANO = 4836000.00, TETOORC_VL_TERCEIRO_ANO = 5800000.00, TETOORC_VL_QUARTO_ANO = 7580800.00 WHERE EXERC_DT_ANO = 2005 AND TETOORC_CD = 3

UPDATE ADMPLN.PLO_TETO_ORCAMENTARIO SET TETOORC_VL_PRIMEIRO_ANO = 4700000.00, TETOORC_VL_SEGUNDO_ANO = 4836000.00, TETOORC_VL_TERCEIRO_ANO = 5800000.00, TETOORC_VL_QUARTO_ANO = 7580800.00 WHERE EXERC_DT_ANO = 2006 AND TETOORC_CD = 4

...

DELETE FROM ADMPLN.PLO_TETO_ORCAMENTARIO WHERE EXERC_DT_ANO = 2005 AND TETOORC_CD = 2229

DELETE FROM ADMPLN.PLO_TETO_ORCAMENTARIO WHERE EXERC_DT_ANO = 2006 AND TETOORC_CD = 2230

DELETE FROM ADMPLN.PLO_TETO_ORCAMENTARIO WHERE EXERC_DT_ANO = 2007 AND TETOORC_CD = 2231

...

A saída acima é a referente ao uso do indicador de geração tanto de inserções e alterações como de remoções. Se fosse acionado somente o parâmetro de remoções, sairia somente o último bloco acima.

7.2 Saídas de sincronização estrutural
Aqui serão expostas as saídas em que a ferramenta detectou que havia diferenças estruturais entre as tabelas.

7.2.1 Tabela com uma coluna a menos no alvo

ALTER TABLE ADMFIN.GRC_SOLICITACAO_RELATORIO ADD GRCSOLREL_TX_APELIDO VARCHAR(50)

7.2.2 Tabela com uma coluna cujo tamanho é diferente em dois bancos de dados

No cenário abaixo, tem-se que houve remoção da coluna antiga e inserção da nova, pois no caso específico do SGBD DB2, uma coluna do tipo VARCHAR não pode diminuir de tamanho com o comando normal de alteração de coluna.

ALTER TABLE ADMAPO.TESTE_TG DROP SOBRENOME

ALTER TABLE ADMAPO.TESTE_TG ADD SOBRENOME VARCHAR(49)

7.2.3 Tabela existente na fonte, mas não no alvo

CREATE TABLE ADMAPO.TESTE_TG (ID INTEGER NOT NULL, NOME VARCHAR(255) NOT NULL, SOBRENOME VARCHAR(50) , PRIMARY KEY (ID))

7.2.4 Tabela existente na fonte, mas não no alvo e se referenciando a outra tabela

CREATE TABLE ADMAPO.TESTE_TG (ID INTEGER NOT NULL, NOME VARCHAR(255) NOT NULL, SOBRENOME VARCHAR(50) , SISTEMA CHAR(3) NOT NULL, PRIMARY KEY (ID))

ALTER TABLE ADMAPO.TESTE_TG ADD CONSTRAINT TESTE_FK FOREIGN KEY (SISTEMA) REFERENCES ADMAPO.TGE_SISTEMA (SISTEMA_CD) ON DELETE RESTRICT ON UPDATE RESTRICT

7.2.5 Alteração de chave primária

Nesse caso, como alterações de chave primária exigem que a tabela seja recriada no caso do SGBD DB2, então primeiro é destruída a tabela alvo, depois criada com a estrutura adequada e, por fim, povoada com quaisquer dados que houvessem na tabela fonte.

DROP TABLE ADMAPO.TESTE_TG

CREATE TABLE ADMAPO.TESTE_TG (ID INTEGER NOT NULL, NOME VARCHAR(255) NOT NULL, SOBRENOME VARCHAR(50) , SISTEMA CHAR(3) NOT NULL, PRIMARY KEY (ID))

ALTER TABLE ADMAPO.TESTE_TG ADD CONSTRAINT TESTE_FK FOREIGN KEY (SISTEMA) REFERENCES ADMAPO.TGE_SISTEMA (SISTEMA_CD) ON DELETE RESTRICT ON UPDATE RESTRICT

INSERT INTO ADMAPO.TESTE_TG (ID, NOME, SOBRENOME) VALUES (1, 'luis', 'bastos')

INSERT INTO ADMAPO.TESTE_TG (ID, NOME, SOBRENOME) VALUES (2, 'luis2', 'bastos2')

INSERT INTO ADMAPO.TESTE_TG (ID, NOME, SOBRENOME) VALUES (3, 'luis3', 'bastos3')

Assinaturas

[image: image23]

Fernando da Fonseca de Souza

Orientador

Luís Otávio Peixoto Bastos

Aluno
9

