

Federal University of Pernambuco

Graduation in Computer Science

Informatics Center
2009.1

 ALYSSON FEITOZA SANTOS

AUTOMATIC SIGNATURE GENERATION
Diploma Thesis

Advisor: Djamel Sadok (jamel@cin.ufpe.br)
Co-advisor: Stênio Fernandes (stenio@gprt.ufpe.br)

Recife, PE
2009

Federal University of Pernambuco

Graduation in Computer Science

Informatics Center
2009.1

AUTOMATIC SIGNATURE GENERATION
Diploma Thesis

Advisor: Djamel Sadok (jamel@cin.ufpe.br)
Co-advisor: Stênio Fernandes (stenio@gprt.ufpe.br)

Recife, PE

2009

Diploma Thesis presented to the
Informatics Center of the Federal
University of Pernambuco by Alysson
Feitoza Santos, advised by Prof. PhD.
Djamel Sadok, as a requirement to
obtain the Bachelor of Science degree
in Computer Science.

3

APPROVAL SHEET

ALYSSON FEITOZA SANTOS

AUTOMATIC SIGNATURE GENERATION

Thesis approved on June 29th, 2009.

Thesis Committee

__

Prof. Djamel Fawzi Hadj Sadok, PhD – UFPE

(Advisor)

__

Prof. Nelson Souto Rosa, PhD – UFPE

(Examiner)

4

To the people that have always believed in me

and that participate, directly or not, to my

success: My family, friends, girlfriend,

classmates, professors and work colleagues.

These last 4 and half years were the best time

of my life, till so.

“My foothold is tenoned and mortised in granite, I laugh at what you call dissolution, and

I know the amplitude of time.”

Walt Whitman

5

ACKNOWLEDGEMENTS

At first, I would like to remark that the following acknowledgments are not

only for those who have helped me on this thesis, but for all that have been with me

during my academic years. It is also important to remark that those

acknowledgements are not in order of importance.

I‟d like to thank my father Aloysio Santos and my mother Maria de Lourdes

Santos, for all the support, love and dedication toward myself through all these years.

Not less important than my parents, I also would like to thank my sister Daniely

Santos who have always believed in me.

I cannot forget to sincerely thank my advisor Djamel Sadok, for the all

support within this thesis and in GPRT. Not less important, I would like to thank

Judith Kelner, for the previous year of support and acknowledgment at GPRT. I also

want to thank my Project Manager and Co-Advisor Stênio Fernandes, who always

clarified my ideas, giving me the necessary technical support for this thesis, besides

motivating me to make a differentiated work.

To all those who have been with me on this undergraduate journey at the

Informatics Center (even those that have quit the course but remained my friends),

for all nights working (sometimes just chatting) together, discussions, parties,

meetings and unforgettable times: Brá, Fanf and Shiru (longtime friends, since

kindergarten times), Faga, Diru, Lui, Pit, Fifu, Borba, Andrezão, Kila, Bei, Biru, Paaty,

Carol, André Paraíba, Bruno Apebão, Zu, Inó (Whose Father married my parents.

Yes, he used to be a priest.), Denisson, Javael, Caio Peter, Mário (Mário who?),

Tiago, Crazy João, João Paulo, Jera and Espanta.

 I also would like to thank my girlfriend Helga (Namoradinha) for all the

kindness and patience with me, besides all the support and love.

Additionally, I would like to thank all my colleagues at GPRT, for all

friendship, advices and support provided: Arthur Callado (the oracle), Rafael

Antonello, Ana Cristina, Thiago Xeroso (the man), Thiago Rocam, Leo, Manu, Nadia,

Feitosão, Bruno, Ademir, Chico, Digão, Rover, Rodrigo Germano, Hachid, Kalil and

Josias.

Please forgive me if I forgot someone.

6

ABSTRACT

The identification and classification of the traffic that is traversing a

network link is a very important task performed by Internet Service Providers

(ISP) administrators, in order to have a better comprehension of the applications

being used by their users and to analyze how their network is prepared to provide

a quality service to their customers. Among all the mechanisms used to classify

network traffic, the Deep Packet Inspection (DPI) is the most used technique.

However it is a mandatory requirement that the ISP DPI system must have a

good set of application protocol signatures, in order to have an accurate traffic

classification and an acceptable completeness level. Building this set of

signatures is a very time consuming task and demands a high expertise, in order

to make them very accurate and specific for each application.

This thesis presents a set of tools capable to ease the job of

construction, test and characterization of signatures for DPI systems. Three tools

were built for this purpose: (i) a signature generator, capable of identifying

common substrings used by an application protocol and merging them into

signatures; (ii) a pattern generator, which will help the user characterize all the

aspects of the generated signature; (iii) and a traffic generator that is responsible

for creating totally configurable per application class flows, whose packet payload

will carry signatures that can be detected by DPI systems.

Keywords: Deep Packet Inspection, Signature Generation, Traffic Analysis,

Computer Networks, Traffic Generation.

7

RESUMO

Identificar e classificar o tráfego que passa através de um enlace de

rede é uma tarefa extremamente importante realizada pelos administradores de

provedores de serviços de Internet, a fim de obter uma melhor compreensão

acerca das aplicações mais frequentemente utilizadas pelos seus usuários e de

analisar o quanto a sua rede está preparada para prover serviços de qualidade

aos seus clientes. Dentre os mecanismos utilizados para classificar o trafégo de

uma rede, a técnica de Deep Packet Inspection (DPI) é a mais utilizada.

Entretanto é necessário que o sistema de DPI dos provedores de serviço tenha

um bom conjunto de assinaturas para conseguir classificar o trafégo de forma

precisa e com um nível aceitável de completude. Construir tais assinaturas é

uma tarefa que exige bastante tempo e conhecimento especialista, a fim de

torná-las extremamente precisas e específicas para cada aplicação.

Este trabalho apresenta um conjunto de ferramentas capazes de

minimizar o trabalho de construir, testar e caracterizar assinaturas usadas por

sistemas de DPI. Três ferramentas foram construídas com este propósito: (i) um

gerador de assinaturas, capaz de identificar as cadeias de caracteres que são

mais utilizadas pelos protocolos das aplicações e transformá-las em assinaturas;

(ii) um gerador de padrões, o qual irá ajudar o usuário a listar todos os aspectos

das assinaturas geradas; e, por fim, (iii) um gerador de tráfego responsável por

gerar fluxos por classe de aplicação de forma totalmente configurável pelo

usuário, os quais terão pacotes contendo, em sua carga útil, assinaturas que

podem ser identificadas por sistemas de DPI.

Palavras-Chave: Análise de Tráfego, Deep Packet Inspection, Redes de

Computadores, Geração de Tráfego, Geração de Assinaturas.

8

TABLE OF CONTENT

1 Introduction ..11

2 Background ...16

2.1 Deep Packet Inspection ...16

2.2 Regular Expressions ...17

2.3 Signature formats ..18

2.4 Packet Transmission Mechanism ...19

2.4.1. Sockets ..19

2.5 Packet Transmission with PF_PACKET sockets ..21

2.6 Linux Timers ..23

2.7 Sleep and Nanosleep time functions ...25

3 Related Work ..26

4 Project Description ..31

4.1 The Signature Generator (SigGen) ..31

4.1.1. Signature Definition ...31

4.1.2. The Generation Algorithm ...32

4.2 The Pattern Generator (PatternGen) ..38

3.2.1 The Patterns Generated ...38

4.3 The Traffic Generator (TrafficGen) ...39

3.3.1 The Configuration File ..40

3.3.2 TrafficGen Architecture ..42

3.3.3 Controlling the generation rate ..46

5 Evaluation and Results ..48

5.1 Evaluating the Signature Generator (SigGen) ...48

5.2 Evaluating the Pattern Generator (PatternGen) ...52

5.3 Evaluating the Traffic Generator (TrafficGen) ...56

4.3.1 TrafficGen Throughput ...56

4.3.2 TrafficGen Scalability..58

6 Discussion ...60

7 Concluding Remarks and Future Works ...61

References ..62

9

LIST OF FIGURES
Figure 1 - Linux socket's path .. 21

Figure 2 - Linux timers ... 24

Figure 3 - AutoSig signature generation phases .. 32

Figure 4 - Shingles Division ... 34

Figure 5 - Shingles and unique flows table ... 34

Figure 6 - Calculating shingles merging score .. 36

Figure 7 - Adaptive merging algorithm ... 36

Figure 8 - Sibling Tree ... 37

Figure 9 - SigGen command line help .. 38

Figure 10 - PatterGen command line help .. 39

Figure 11 - Xml configuration file.. 40

Figure 12 - TrafficGen architecture .. 42

Figure 13 - TrafficGen Components Sequence Diagram .. 43

Figure 14 - Multithreaded Architecture ... 44

Figure 15 - TrafficGen Command Line help ... 45

Figure 16 - TrafficGen Generated Packet on Wireshark ... 46

Figure 17 - Common Shingle Selection Parameter Variation ... 49

Figure 18 - Merge Score Parameter Variation .. 50

Figure 19 - Tvants Packet Size distribution File ... 52

Figure 20 - Tvants packet size distribution graph ... 53

Figure 21 - Tvants TCP packet size distribution graph ... 54

Figure 22 - Tvants UDP packet size distribution graph ... 54

Figure 23 - Tvants signature offset distribution ... 55

Figure 24 - TrafficGen Single Thread Version .. 56

Figure 25 - TrafficGen Multithread Version .. 57

10

LIST OF TABLES

Table 2.1 - Regular Expression used to identify network applications. 17

Table 4.1 - Sample AutoSig Signatures. \0x20 means a blank space in hex 32

Table 5.1 - Trace File captured for SigGen .. 48

Table 5.2 - SigGen memory usage .. 50

Table 5.3 - Signatures Generated .. 51

Table 5.4 – Traffic Generator Machine Configuration ... 56

Table 5.5 - TrafficGen memory and CPU requirements ... 58

Table 5.6 - Scalability Memory Requirements .. 58

Table 5.7 - Scale Throughput ... 59

11

1 INTRODUCTION

Internet Service Providers (ISP) and network administrators want to

identify the kind of traffic that is passing through their backbone, in order to provide a

better service to their customers, by offering them a high quality of service, and to

plan and manage their infrastructure. Classifying network traffic according to its

applications is a very important matter for a broad range of network areas, including

traffic shaping, differentiated services, QoS improvement and billing. These are very

important concerns to ISPs.

Many studies have been conducted in the traffic classification area,

leading to the development of many classification methods. Some of them, like port

based classification are no longer effective enough, due to dynamic port usage by

some applications, especially P2P, and to traffic tunneling, for example, over HTTP.

Other techniques used to classify network traffic are Machine Learning algorithms,

application communication behavior analysis and payload based methods.

The Payload based methods are very effective and precise at traffic

identification. They consist of inspecting the entire payload of a packet, seeking

signatures and patterns which can point to a unique application. Once the payload

matches a signature, we are able to classify the packet and unravel which application

does it belongs to. This method is also known as Deep packet inspection (DPI) and is

a very time consuming and a CPU-intensive activity, consuming over 90% of the

processor power in the whole system [13], even when it is performed in off-line mode

(on a previously captured trace file). Due to their high accuracy, DPI systems are

broadly used both in the scientific community and by private companies. A very

famous DPI system is an Intrusion Detection and Prevention System (IDS/IPS) called

Snort [8] which can detect what applications are passing through the ISP backbone

and also identify and block incoming attacks or unwanted operations, such as port

scanning.

A DPI system must seek signatures within the payload of the packets to

accurately classify a flow. Such approach is not new to the Internet worm research

community [6] (e.g., intrusion detection systems); however, their focus is limited to

identifying the security threatening traffic only. This work is focused on the application

identification among innocuous traffic which widens the target traffic to be identified. It

12

is also worth mentioning that the characteristics of worm and system invasion

attempts signatures are very different from common user application signatures.

Worm-like signatures can be very unspecific once the purpose is only to block a

current attack, not to identify what kind of attack is passing on the wire. A single

hexadecimal value can characterize a buffer overflow that can be used on an

enormous variety of different attacks. Application traffic signatures must be unique

and very specific, once the ISP managers want to know exactly what application it is,

in order to either block, provide a differentiated service experience to the end user or

to charge a different price for the application usage.

The use of regular expressions to describe application signatures is

becoming very common in flow classification. A flow is identified by a 5-tuple: source

IP address, source port, destination IP address, destination port, and transport

protocol. This classification method can provide a very efficient and accurate

matching mechanism. However, the regular expression matching process requires an

enormous computational power, which is not scalable for online traffic identification.

The way that the regular expression is constructed has a direct impact on the flow

classification and on the total matching performance. Despite this fact, several DPI

systems use regular expressions to represent application signatures. The already

mentioned Snort intrusion detection/prevention system (IDS/IPS) has more than 1000

application signatures and offers the user the possibility to insert new regular

expressions on demand.

In order to achieve a high precision on traffic identification with DPI

systems, the signatures used on the matching process must be well constructed and

very application specific, to avoid false positives, i.e., misclassifications. A long time

is spent in the manual extraction of application patterns by a network specialist,

which requires a preceding knowledge of the application protocol being studied or an

empirical packet payload inspection for pattern recognition. Both activities are very

time consuming and susceptible to failures which make the signature

maintainability and update process a very difficult task. Sometimes this process may

become even harder, by the fact that many protocols specifications are proprietary,

i.e., not available to the community.

Automatically generating an application signature is a very important task

to help ISP managers update and maintain their traffic analyzer system signature

13

database, improving accuracy and performance. They can build signatures more

efficiently without needing to manually inspect a captured packet trace file. This

thesis will describe an application signature generator that can point out common

patterns that appear frequently on a given set of pre-captured flows stored on a trace

file. As will be outlined, the intention is not to generate signatures in real time, but

offline, with a set of flows that belong specifically to the target application. This thesis

is going to describe the system architecture and algorithm, the options that can be

used to tune the tool, and the parameters that must be adjusted for each application

to increase the signature relevance. It is worth mentioning that this tool only creates

substrings that can uniquely identify an application. This work does not automatically

generate regular expressions, but the substrings generated can ease the regular

expression construction process, since the ISP manager will have a clue on which

set of substrings he should pay more attention to when building a regular expression

for a specific application.

Another contribution of this work is the creation of a pattern generator that

will support the elaboration of histograms on three aspects that can help on the

signature matching process: packet size distribution, the offset in which the signature

is found on the packet payload, and in which packet of the flow the signature occurs.

These three histograms can be created for each signature generated by our tool,

following its format only. An extra feature of the pattern generator is the possibility to

divide the histograms per transport layer protocol, once the signature can be carried

out by UDP and/or TCP packets.

With all those information in addition to the signatures, a traffic analyzer

can be used to classify flows by application in online mode. But what happens if the

application to which the signatures are being created never appears in the ISP

backbone at the present moment? There is dynamicity in the network applications

and it may have considerable changes from one network to another. One application

may be very popular in other WANs but not on the specifically WAN being analyzed.

Even though not popular or having a remote probability to be present, some

application signatures would be desired to make part of the signature database.

Besides, the ISP manager may need to deploy his new generated DPI signatures on

a totally controlled environment without affecting the rest of the network, and perform

the matching process at wire speed, controlling the traffic generated by each

14

application class, such as P2P file sharing, video streaming or web. How would an

ISP administrator test online a new generated signature set?

In face of the high speed of current networks, the most viable direction in

terms of cost to test modern LANs is by emulation: inject synthetic traffic, measuring

their responses, and analyzing the results. It is clearly necessary to generate traffic

that is very similar to the actual, in terms of either high speed and statistical

properties.

To test signatures within a real environment, this diploma thesis proposes

a traffic generator which will create real network packets possessing detectable

payload information, according to an application packet size distribution, also having

application signatures that respect the packet order that carries the signature on the

flow and the signature offset within the packet payload. Such signature information

regarding order and offset is provided by the automatic signature generation process.

The traffic generator is a fully configurable tool that can generate traffic for a set of

specified signatures, even if they belong to different applications. The user can inform

the volume of traffic that should be created for each application class, and which

fraction of the total volume each individual application will represent.

This tool can also be used in stress tests of network equipments, such as

a router or switch, or can also be used to check if a firewall or IDS/IPS is working

properly. The traffic generator must be able to generate traffic at wire speed, in order

to measure how much efficiency a traffic analyzer may perform online, thus, the

performance of the data generation and transference plays an important role on its

construction.

The remainder of this thesis is organized as follows:

 Section 2: presents the underlying background needed for the thesis

understanding, covering Regular Expressions, Deep Packet Inspection,

packet transmission mechanism on Linux-based systems and Linux timing

functions;

 Section 3: presents the related work that has been found in literature;

 Section 4: the proposed project for the thesis is presented in this section.

The complete signature generation algorithm and its features will be

outlined. It will also describe all the options and parameters that must be

set to generate the signatures, as well as their impact on the generation

15

process. The pattern generator tool and a description of the traffic

generator architecture is presented in this section either, explaining the

initial parameters and configuration, as well as the methodology created to

evaluate it;

 Section 5: this section shows the signatures generated for sample

applications and the evaluation results obtained by the traffic and pattern

generator tools;

 Section 6: this section opens up a space for discussion on some important

points that were observed;

 Section 7: finally, the main concluding remarks of the thesis are presented

in this section. Besides, some possible future works.

16

2 BACKGROUND

This Section contains a brief description of Deep Packet Inspection (DPI)

systems, the format of the signatures that are generally used by DPI systems,

Regular expressions, Linux socket programming API, packet transmission, and

resolution and control of Linux timers, in order to provide the essential background

needed for the remainder of this thesis.

2.1 Deep Packet Inspection

Deep Packet Inspection (DPI) systems, also called complete packet

inspection and information extraction, focus on analyzing, indentifying and classifying

the traffic that is traversing the network, by examining the content of the packet

payload as it passes through probe point on the network. It can be used as a packet

filter to drop frames which may carry viruses, spams, intrusion attempts, worms, or

may either work as an application identifier to perform network traffic shaping. Those

systems accomplish these tasks by comparing part of the packet data against strings,

which represent signatures of the content to be scanned. DPI systems can classify

data flows to make flow control shaping, or can scan every packet of a data link,

demanding more computational power. Some DPI systems also enable advanced

security functions, being very effective against buffer overflow attacks, denial of

service (Dos) attacks, shell code insertion, SQL injection, and other sophisticated

intrusions, working as a wire speed stateful firewall.

Besides the security concerns that an ISP manager must have, DPI

systems provide a very accurate form of identifying applications used by the

subscribers. The DPI approach is more effective than the simple port-application

comparison, once this technique became very limited, due to protocol tunneling to

overcome firewalls barriers. The DPI systems have a good classification accuracy.

ISPs have been recently relying on such solutions. Throughout the global Internet,

ISPs use DPI systems to perform different kinds of services, like:

1. Lawful Intercept: ISPs are commonly required by various governments

around the world to perform some kind of lawful intercept when needed by

law enforcement agencies;

17

2. Policy definition and enforcement: service providers obligated by the

service level agreement with their customers may use DPI to detect

copyright infringements, illegal materials, and unfair use of bandwidth. In

some countries, these kind of inspection are only allowed with a

government or court warranty. Policies can be defined in a way to allow or

block connection to or from certain IP addresses, certain protocols or even

heuristics that identify certain applications;

3. Content based filtering and charging: ISPs can block, filter or even charge

customers that are using certain kind of applications (maybe undesirable

ones) within their network. Examples include blocking Voice over IP (VoIP)

and P2P applications;

4. Quality of Service (QoS): some applications like VoIP and Video over

Demand (VoD) require low latency and high priority against common traffic,

such as web browsing.

2.2 Regular Expressions

Regular Expressions (RegEx) is a set of strings that represent a pattern

used to match a certain string of characters. They provide an enormous

expressiveness without needing to express the desired patterns one by one. They

are widely used in computer science, from compilers and programming languages to

text editors. RegExes are commonly represented as state machines and can be

implemented as Deterministic Finite Automata (DFA) state machines or as Non-

Deterministic Finite Automata (NFA). These state machines can grow exponentially,

demanding a large amount of memory and computational power during the matching

process. DPI systems usually rely on RegEx to perform their inspection process.

Examples of two RegEx signatures of P2P applications used to classify network flows

can be found on table 2.1.

Table 2.1 - Regular Expression used to identify network applications.

Application Signature

Emule (^(\xe3|\xc5).(\x01|\x54|\x93|\xa4|\x4c|\x85|\x86|\x87|\x92|\x60|\x55|\x4

7|\x40)

18

BitTorrent (\x13)BitTorrent Protocol(\x23)

2.3 Signature formats

A signature may be a portion of the packet payload data that is static and

distinguishable for applications, which can be described as a sequence of ASCII

characters or hex values. There exist many other types of signature formats, as will

be presented later in this section. Due to the complexity of application protocols, the

signatures that will represent them must be very generic and expressive in order to

provide good classification accuracy. Signatures based on regular expressions are

powerful, leading to accurate matches, although it suffers performance problems, as

they can take a long time processing in software-like pattern matching solutions. The

performance depends also on the expression length. Besides it is complex to be built

in hardware, because they can be very difficult to construct, even though they are

commonly used on DPI systems to identify normal applications or malware-like traffic.

Newsome et al. has discussed three types of worm signatures [5]. They are

conjunction signatures, token-subsequence signatures and Bayes signatures:

 Conjunction signatures: consists of an unordered set of tokens that identify

data flows. A flow matches a conjunction signature if all tokes in the set are

found in its payload in any order;

 Token-subsequence signatures: the signature is an ordered set of tokens. A

flow matches a token subsequence signature if the flow contains the

sequence of substrings in the signature with the same ordering. Signatures

of this type can easily be expressed as regular expressions. Given the

same set of tokens, a token subsequence signature will be more specific

than a conjunction signature, because of the former ordering constraint;

 Bayes signatures: consists of a set of tokens, each of which is associated

with a score, and an overall threshold. In contrast with the previous types,

Bayes signatures provide a probabilistic matching. Given a flow, the

probability that the flow belongs to the application is computed using the

scores of the substrings present in the flow. If the resulting probability is

over the threshold, the flow is classified as the application type.

19

To Identify application protocols, the signatures must be very specific, to

identify a flow uniquely. Discover that a flow might carry a worm-like signature will be

sufficient for a DPI system that is focused on system invasion prevention, without

need to point out which worm it was. Application protocols may have similarities that

will lead a classification system to behave inappropriately.

2.4 Packet Transmission Mechanism

This section contemplates an explanation on raw packet transmission, and

details on how to transmit packets within a Linux-based system, which is important

for a better understanding of the problems that are encountered in the construction of

a typical traffic generator. Raw socket is a software interface through which an

application can have full control of the packets that are being sent or received in the

network. In the following section, the raw packet journey inside the Linux Kernel is

detailed.

2.4.1. Sockets

Packet sockets are used to receive or send raw packets at the device

driver, i.e. OSI Layer 2 level. They allow a programmer to implement protocol

modules in user space on the top of the physical layer.

When a programmer opens a socket by invoking the socket system call

for the packet transmission, the kernel internally calls __sock_create, which will

create a new sock structure (the kernel representation of sockets), and register a

handler for the specified protocol.

The socket function has the following interface: socket(int family,

int type, int protocol), where:

 family: refers to the protocol family that the user will handle within the

socket, e.g. PF_INET for sockets based on IPv4 protocol, PF_PACKET for

sockets which want to communicate directly with the link layer;

 type: is the type of the socket communication semantics, examples of

common types are:

o SOCK_STREAM: provides ordered, reliable, two-way, connection-

based byte streams, commonly used with TCP connections;

20

o SOCK_DGRAM: datagram support, commonly used by UDP

connections. The user can define headers of OSI Layers 3 and 4;

o SOCK_RAW: allow users to have access to lower-level

communication protocols. This kind of socket can define the

headers from OSI Layer 4 to the link level. Packets created with this

type of sockets are passed to the device driver without any changes.

 protocol: The protocol of the packets, e.g. ETH_P_IP for IP,

ETH_P_ALL for all types of packets.

Internally, these sockets are basically represented as a queue which

stores pointers to packets inside the kernel and each of these queues is responsible

for a class of packets.

The PF_PACKET, for instance, handles all the packets that comes in or will

be go out of on the Network Interface Card (NIC) and skips all the processing that is

usually performed by the TCP/IP protocol stack inside the kernel. It allows

applications to access the network driver directly, so a programmer can implement

network protocols in the user space.

The PF_INET socket only deals with IP packets, but there are other types

of sockets that only deal with TCP, UDP, and other sort of packets, at the Linux

protocol stack. Raw sockets are not compatible with PF_INET. Figure 1 illustrates the

path of a packet into the Linux protocol stack. The dev_queue_xmit will be better

explained in the next Section. On Linux systems, only super users are allowed to

open socket connections.

 The link level header is available at an independent physical layer

address structure called sockaddr_ll. On raw packet transmissions, the programmer

uses this structure to inform the physical layer addresses.

21

Figure 1 - Linux socket's path

2.5 Packet Transmission with PF_PACKET sockets

Whenever an application needs to send a raw packet through the network,

within a PF_PACKET socket, it is done by invoking the write() or send() Linux system

calls, which will makes Linux trap to the kernel and allocates a sk_buff (short for

socket buffer) structure, which is the packet representation inside the kernel, and

fetches the data from the user space into the new sk_buff. It then invokes

dev_queue_xmit, passing the sk_buff as a parameter, which will queue a buffer

for transmission to a network driver inside the kernel and will transfer frames from

this kernel queue to the driver outgoing-frame buffer. When dev_queue_xmit is

called, all the information required to the frame transmission, such as the outgoing

device, the next hop, and its link layer address is ready. If a programmer is working

22

with PF_PACKET sockets, his application must guarantee all these features. The

sk_buff contains the outgoing device reference, a pointer to the beginning of the

packet payload and its length. The main tasks of dev_queue_xmit are as follows:

(i) checking whether the frame is composed of fragments and if the device can

handle them through scatter/gather DMA operations, combining the fragments if the

device is incapable of doing so; (ii) verify if the OSI layer 4 checksum is computed;

(iii) and select which frame will be transmitted, i.e. copied to the network drive egress

buffer. Regarding that some devices, like the loopback device, do not have a queue

to store the packets, whenever a frame is passed to dev_queue_xmit it is delivered

to the NIC buffer. The dev_queue_xmit function puts a pointer to a sk_buff

inside the CPU queue for egress packets (there is one queue for each CPU), and

then raises a software interrupt (softirq), and returns the congestion level of the

queue to the caller. Please note that in the event that this queue is full, the new

outcoming packets are discarded. The function that processes the softirqs is

known as do_softirq. It checks a bit mask and calls the appropriate handling

routine, which represents the set bit. For transmission, the interrupt of interest is the

NET_TX_SOFTIRQ, which can be raised in two cases:

 When the transmission is enable on the device and it is assured that the

frames waiting to be sent are actually sent when all the needed conditions

are met, i.e., when the device has enough memory to handle it.

 When the device driver asks the net_tx_action softirqd to take care of

it.

The net_tx_action handle routine, which will treat the IRQ raised,

deallocate all the buffers that have been added at the device driver by dequeuing the

first packet from the current CPU queue and will try to grab the lock of the device

egress queue to transmit the frames. The handler net_tx_action schedules a

device for transmission if it could not grab the lock of the device egress queue

(making it unable to transmit), by calling the netif_schedule function, preparing it

to send frames later. The net_tx_action handler routine is also called in two

situations, which are when there are devices waiting to transmit and when it is time to

do housekeeping onto the buffers that will not be used anymore by the kernel.

23

Almost all devices use a queue to schedule egress traffic and the kernel

can use queuing disciplines to arrange the frames in a more efficient order for

transmission. A detailed discussion about traffic control and its queuing disciplines is

out of the scope.

2.6 Linux Timers

Countless computerized activities are driven by timing measurements.

Schedule actions to be performed somewhere in the future is a necessity that every

operating system has. A mechanism to deal with activities scheduled to run at some

relatively precise time must be built. Any microprocessor that wishes to support an

operating system must have a programmable interval timer that periodically interrupts

the processor. This periodic interrupt is known as a system clock tick and it works as

a system‟s regent, orchestrating its activities.

Linux has a very simple view of what time is; it measures time in clock

ticks since the system booted. Timing measurements are performed by several

hardware circuits based on fixed-frequency oscillators and counters. All system times

are based on this measurement, which is known as jiffies after the globally available

variable of the same name. It has two types of system timers, both of them are queue

routines to be called at some system time but they are slightly different in their

implementations. The Figure 2 shows both mechanisms.

24

Figure 2 - Linux timers

The Linux used to have an old timer mechanism that had a static array of

32 pointers to timer_struct data structures and a mask of active timers, represented

by timer_active.

Where the timers should go in the timer table is defined statically. Entries

are added into this table mostly at system initialization time. The newer Linux

mechanism uses a linked list of timer_list data structures held in ascending expiry

time order.

Both methods use time in jiffies as an expiration time, so that a timer that

attempt to run in five seconds would have to convert it to units of jiffies and add that

to the current system time to get the system time in jiffies when the timer should

expire. Every system clock ticks the timer bottom half handler and marks it as active,

so that when the scheduler next runs, the timer queues get processed. The timer

bottom half handler processes both types of system timer. For the old system timers

the timer_active bit mask is check for bits that are set.

If the time for an active timer has expired, its timer routine is called and its

active bit is cleared. For new system timers, the entries in the linked list of timer_list

data structures are checked.

25

Every expired timer is removed from the list and its routine is called. The

new timer mechanism has the advantage of being able to pass an argument to the

timer routine.

2.7 Sleep and Nanosleep time functions

The sleep function makes a running thread or process became inactive

for a certain period of time specified in seconds. When the elapsed time arrives, an

interrupt is raised for the sleeping process. The nanosleep function has the same

functionality as sleep, but it has a higher timer resolution: it receives a time struct as

input expressed in nanoseconds.

 The current implementation of nanosleep is based on the normal kernel

timer mechanism, which has a resolution of 1/HZ s (i.e, 10 ms on Linux/i386 and

1 ms on Linux/Alpha). Therefore, nanosleep pauses for at least the specified time,

however it can take up to 10 ms longer than specified until the process becomes

runnable again.

As some applications require much more precise pauses (e.g., in order to

control some time-critical hardware), nanosleep is also capable of short high-

precision pauses. If the process is scheduled under a real-time policy like

SCHED_FIFO (first-in, first-out) or SCHED_RR (round-robin), then pauses of up to

2 ms will be performed as busy waits with microsecond precision.

The nanosleep function shall return a value of 0 on success and -1 on

failure or if interrupted. This latter case is different from sleep which returns 0 if the

requested time has elapsed, or the number of seconds left to sleep.

26

3 RELATED WORK

Researchers have done a lot of work in classifying network traffic

according to the applications. A naive internet application traffic identification

technique such as port-based identifications does not guarantee accuracy and

precision anymore due to the diversity of today‟s internet traffic. Besides, a lot of

applications use tunnels, such as HTTP tunnels, and dynamic port allocation to

circumvent port-based blocking by firewalls. In addition to the native port based

method, there are some new methods including machine learning algorithms based

on flow statistical information [2], application communication pattern based methods

[9] and payload based methods [4].

The machine learning techniques classify network traffic using flows

information and traffic characteristics, such as average size of packets, inter arrival

time between packets, protocol usage, etc. McGregor et al. [10] used machine

learning techniques for clustering flows, in order to achieve a high precision of the

classification, but they found that some applications could not be well classified with

this approach. ACAS [3] uses the first N bytes payload as the input to train a machine

learning model and uses it to classify flows. However, using the first N bytes payload

directly may introduce too much noise during the training phase, leading to poor

classification accuracy.

Mingjiang Ye et al. [9] introduced a behavioral method to classify P2P

traffic, by studying the characteristics of P2P applications. They recognize a P2P flow

by checking pieces of data being downloaded and uploaded. If a flow has the same

data block on an upload and on a download flow, inside a parameterized time

interval, the associated flows are classified as P2P. Their approach proved to be very

effective on a wide range of P2P applications, such as on many BitTorrent [14]

clients.

Moore et al. used application signatures to classify network traffic in [4].

They used the signatures in two ways: searching them in single packets and

searching them in the first 1KB payload of flows. They have pointed that matching

signatures in first 1KB payload is enough for a good classification, which could help

to generate signatures more quickly and with less memory usage. They have not

discussed how to generate signatures. Sen et al. have generated some P2P

27

signatures manually by analyzing their application-layer protocol [11] through

available documentation and packet-level traces. P2P applications was mostly

focused because of its high traffic usage and complexity, besides their proprietary

protocols, which difficult their deployment. Sen et al. signatures were very precise

and well constructed, but were somehow limited. They created signatures that could

be found only in the beginning of the packets, in order to accelerate and ease the

classification phase, which can be very efficient it terms of matching speed but can

lead to a huge amount of unclassified traffic. They also paid more attention to the

P2P download flows, instead of the signaling ones. The reason was that signaling

flows correspond to less traffic volume, than download flows. The amount of time

spent on the generation phase was not minimal and must be remade if new protocol

versions appear in a near future. Their methods used the common strings appearing

on the applications flows to generate signatures.

Automatic signature generation tools have been studied recently in worm

detection area [5][6][7]. A worm is a self-replicate program: it remotely exploits

software vulnerabilities on a victim host, in a way that the victim becomes infected,

and begins to remotely infect other victims.

The EarlyBird worm signature generator system [7], generates overlapping

fixed-length content block over each byte offset for each sample flow, and extracts

the content blocks appearing many time as a whole signature. By sifting through

network traffic for content strings that are both frequently repeated and widely

dispersed, they could automatically identify new worms and their precise signature.

Their signature generation was made online on a single network sensor. They stated

that an optimal algorithm could work as follows: For each packet passing through the

network, the content is extracted and all substrings are processed and indexed into a

prevalence table that is incremented every time the substring is found. This table

implements a histogram of all observed substrings. This table keeps two lists,

containing IP addresses that are searched and updated each time a substring

counter is incremented. Sorting this table on the substring count and the size of the

address lists will produce the set of likely worm traffic. Substrings that are not widely

dispersed are discarded, leaving only the worm-like content. To scale to high-speed

links, the EarlyBird algorithm uses a different approach from the optimal one

proposed, but in essence it works quite similar.

28

The Autograph system [6] generates worm-like signatures by selecting

TCP suspicious flows (a flow that might carry some threat) from an online monitor

and sending them to a distribute machine, which will store that flows on disk.

Autograph reassembles the payload of a given flow, making it become a single

contiguous block of data. Them it divides the payload of the flows into variable-length

substrings using a Content-based Payload Partitioning schema based on Rabin

fingerprints. The number of generated substrings is reduced, although short common

substrings can be missed using the partition schema. After the payload partition

phase, Autograph measures the frequency, with which a substring occurs across all

suspicious flow‟s payload, and proposes the most frequent ones to be signatures

candidates. Autograph incorporates a blacklisting technique into signature

generation. An administrator may configure Autograph with a blacklist of disallowed

signatures, in an effort to prevent the system from generating signatures that will

cause false positives. The blacklist is simply a set of strings. Any signature Autograph

selects that is a substring of an entry in the blacklist is discarded.

Besides the worm signature generators, mentioned previously, there are

some works aiming at application signature generation. Byung-Chul et al. [2] have

studied the application signature generation problem. They propose the LASER

algorithm which tries to find the longest common subsequence among samples

without any prior knowledge of the application protocol. The longest common

subsequence extracted from sample flows is chose to be the application signature.

To improve the system performance, the LASER algorithm only considers the flow‟s

first N packets to generate the signatures. It also groups the packets by its size, since

large packets are not likely to carry the same kind of information as the small ones.

The algorithm compares two samples to get the longest common subsequence

between them, and then compares it with other samples iteratively to refine it. Their

paper showed that it is a challenge to generate signatures when there is a lot of

noise on the samples, for example, common substrings that repeatedly appear on the

sample flows, but do not belong to the application protocol. It is worth mentioning that

they generated signatures in form of substrings, instead of regular expressions.

Mingjiang Ye et al. [1] built a tool called AutoSig, to generate application

signature automatically, by combining the techniques used on the Autograph and on

EarlyBird systems. Their algorithm consists on dividing the payload of a set of flows

29

in short substrings called shingles, extract the ones that constantly appear in a

certain amount of flows and merge them if they are neighbors or overlap. As the

LASER algorithm, they also generated signatures in form of substrings, not as

regular expressions. Even though their signatures led to a very good flow

classification, they needed to calibrate some commonality threshold parameters used

by the algorithm manually, in order to achieve a perfect signature, which reduces the

automation of the process.

Many traffic generators have been proposed on the literature, but none

have focused on generating synthetic packets with detectable payload. Traffic

generators are mainly implemented as user-space applications, like RUDE [17] and

MGEN [18].

RUDE is able to instantiate a number of simultaneous patterns of traffic,

but provides a non-extensible script language. RUDE‟s architecture does not provide

any explicit support for extensible interfaces and is not suitable to work at high rates.

RUDE also includes a traffic collector called CRUDE, which can be used to receive

and log the traffic created.

MGEN provides both a command line and a Graphical User Interface

(GUI) for traffic generation on user-space. It supports different UNIX-based OS‟s, but

its accuracy is limited because of the system timers used (as presented on Section 2,

on Linux kernels the normal timer resolution is only 10ms).

KUTE [16] (formerly known as UDPGen) is an UDP traffic generator

designed to achieve high performance over Gigabit-Ethernet. It is a Linux 2.6 kernel

module that operates directly on the network device driver, avoiding moving data

from user space to kernel space, which causes a high delay on packet transmission.

The user can configure the source and destination IP addresses, source and

destination ports, packet rate, packet length, duration of the flow, packet‟s payload,

Time to Live (TTL), Type of Service (ToS), and whether UDP checksums and IP

identification field should be used.

The Internet Traffic Generator (ITG) [19] focuses on reproducing TCP and

UDP traffic and replicating samples of stochastic processes for inter-departure time

and packet size. It is comparable in performance with RUDE and MGEN, although it

provides more traffic patterns. The Browny and Robust Traffic Engine (BRUTE [20])

is a PC-based traffic generator which takes advantages of the capabilities of Linux

30

Kernel 2.4 – 2.6, to generate traffic at high rates. In a gigabit Ethernet scenario, on a

commodity machine running Linux, the highest throughput achieved with BRUTE was

1.09 Mfps (Mega Frame (packets) per seconds). BRUTE was designed as a user

space application, aiming to obtain a high flexibility at the expense of a slight

increase of latency. It is easily extensible through optimized functions for

implementing additional traffic sources.

There are many others traffic generators and traffic simulators, which are

much more complex once they implement real traffic behaviors, on the open source

community available for free downloads on the internet, ranging from very efficient

generators to more simple ones. In addition, there are many others traffic generators

implemented as hardware platforms, like the very efficient Agilent [25] traffic

generators. However none has a focus on generating traffic for DPI systems testing,

with configurable traffic profile on the application level, transmitting packets with

detectable and real payload. The traffic generator proposed by this thesis is very

specific for this goal, although it can be used for network nodes stress tests, and is

totally implemented for commodity platforms, requiring only a reliable NIC to achieve

a good performance.

31

4 PROJECT DESCRIPTION

The present thesis aims to build three tools that together ease the work of

an ISP administrator or DPI manufacturer, to construct signatures, for traffic

application identification and profiling, and to test the generated signatures online. It

is not on the scope of these tools to help on worm-like or other kinds of malware

signatures construction. The traffic generator can be used as a network stresser, to

test the capabilities of a switch or router, although it does not provide support for that.

It focuses solely on generating controlled and detectable traffic from one point to

another on the same local area network.

During the next sections, this thesis will describe how the signature,

pattern and traffic generator work. All the tools run on Ubuntu 8.10 machines, with

kernel 2.6.

4.1 The Signature Generator (SigGen)

This Section aims at explaining how the signature generator tool (SigGen)

works. It also includes all the improvements proposed by this work, in order to

generate more accurate signatures and to decrease the amount of false positives

signatures. A simple command-lined user interface is also explained to simplify the

tool usage.

4.1.1. Signature Definition

First of all it is important to mention that the SigGen will generate

signatures, for application protocols, in format of substrings, as LASER [2] and

AutoSig [1]. Like the systems, mentioned previously, SigGen will not create regular

expressions. Its work is to point the most relevant substring found on the given set of

sampled flows, in order of relevance, combining substrings if they appear on the

same set of flows. The generated substrings will represent uniquely an application

and can be used for traffic classification. The signatures are generated as a

sequence of hexadecimal values, if it is not printable, or as sequence of ASCII

values, if it is printable, just as the samples signatures extracted from [1] showed in

table 1.

32

Table 4.1 - Sample AutoSig Signatures. \0x20 means a blank space in hex

Application Signature

FTP [220\0x20];[220\0x20][FTP\0x20server\0x20];

[221\0x20Goodbye];

HTTP [HTTP/1.]; [GET\0x20/][HTTP/1.];

As presented on Table 4.1, the signatures may be a single string, like

“[HTTP/1.]” or it can be the combination of two strings, like the FTP signature

“[220\0x20][FTP\0x20server\0x20]”. If the signature is a combination of strings,

means that it is necessary to find all those strings on the same flow. Notice that these

substrings can be directly transformed into a regular expression, although it may not

be efficient. If a specialist wants to write a regular expression with these signatures, a

manual packet trace analysis is still required, but at least he will be aware of the most

important substring to consider.

4.1.2. The Generation Algorithm

SigGen is mostly based on the algorithm proposed by Mingjiang Ye et al.

[1] with some improvements to generate the signatures and to reduce the number of

false positives. The AutoSig has 3 distinct phases, namely the substring generation,

aggregation and signature construction. Figure 3 illustrates the AutoSig signature

generation process.

Figure 3 - AutoSig signature generation phases

SigGen follows the same AutoSig three phases, doing an extra verification

on the end of the second phase to exclude signatures previously marked by the

33

blacklist. As the AutoGraph system, SigGen allows the user to specify strings that he

already knows that are not specific enough for that application, like an “HTTP/1.1”

pattern. This feature is called blacklisting a substring, and will be further explained on

this thesis. Another extra feature that SigGen includes is the possibility to split the

flows into control and data flows; in order to decrease the noise caused by packets

with different purpose, mixed up on the same flows set. The input of the algorithm is

a set of sample flows which belongs uniquely to a certain known application and

gives as output signatures capable of identifying such application. It is out of the

scope of this thesis to explain how the sample flows were captured. It is worth

mentioning that a process sniffer was used to capture only the traffic that was

generated by a certain application, dumping it to a file. All the flows were captured on

a machine connected to the GPRT (Network and Telecommunication Research

Group) local area network, which is part of the UFPE (Federal University of

Pernambuco) network, which is connected to the Brazilian RNP (National Research

Network).

The sample flows are organized on a hash table, where they are going to

be stored. Even though hash tables offers a better access time on elements

searching, most of the signature generation time will be spent on sequential iterations

through all flows. The reason why a hash table was chose is to ease the flow‟s

payload mount phase. A hash function is calculated for each packet of the trace file

and the payload of the first 10 packets is mounted sequentially and stored on a

correspondent flow structure. Besides Moore et al. [4], other studies proved that by

analyzing only the first packets of a flow it is enough to classified such flow [12]. If the

sample flows are a very large set, the algorithm may require a large amount of

memory, since during all phases the data (from the first 10 packets) of the sampled

flows will be kept on memory. Tables showing the memory required by different sized

traces will be presented on Section 5. If the user wants to divide the sample flow into

control and data, he must inform a packet size limit. It is recommended that the user

runs the PatternGen (which will be explained later on this thesis) to see graphically

the packet size distribution of the application packets. Data flows tend to be larger

than control ones. SigGen divides the flows according to the packet size informed;

mounting the large sized ones separately from the little sized and then processes all

phases for both data and control flows, generating different substrings.

34

The first phase on the generation process, called shingles generation,

consists of dividing the payload of each flow into small and equal lengthened pieces

of data, called by Mingjiang Ye et al. shingles. A common substring can produce a lot

of common shingles. For example, „BitTorrent‟ is a common substring in BitTorrent

protocol. When shingle size is 5, there are 6 common shingles from the common

substring, which are: „BitTo‟, „itTor‟, „tTorr‟, „Torre‟, „orren‟ and „rrent‟. A flow payload

data division into shingles is represented by Figure 4.

Figure 4 - Shingles Division

The data pieces that appear frequently in more than a certain amount of

flows will be extracted and kept on a separate common shingles table that maps

each shingle with a set of unique flows containing it. Figure 5 represents this

common shingles table.

Figure 5 - Shingles and unique flows table

One can notice that the reason why flows were chosen is because the

signatures will be used on flows identification, not on packets identification. Extracting

the shingles that appears commonly on a certain amount of packets will lead to poor

traffic classification, once it may happen that a certain shingle appear more than once

35

on a single flow, but do not appear constantly on the rest of the samples. As stated

by Mingjiang Ye et al., application signatures usually tend to be smaller than worm

like signature. To circumvent that, small shingle sized are extracted from the flows,

being the length four the most adequate, as showed by Mingjiang Ye et al. For

precision reasons and to ease the comparisons and implementation, the „00‟ hex

decimals characters were extracted from the flows payload. There also exist some

regular expressions matching libraries that do not recognize „00‟ hex values.

After extracting common shingles and storing them on a separate table

that stores the unique flows in which the shingles occur, SigGen needs to merge the

encountered shingles to transform them in larger substrings. The substring

aggregation phase consists of merging the most common pieces of data found, if

they are overlapped or adjacent, and test if these combined substrings appear in a

certain parameterized amount of flows. SigGen tries to merge each shingle from the

common shingle table without concerning to order. The process is done sequentially.

If it reaches the end, and a merging has occurred, it rewinds to the beginning and

continues, till no merge happen. SigGen implements the adaptive merge algorithm

proposed by Mingjiang Ye et al. Before explicit the adaptive algorithm, let‟s discuss

about the most simple substring merge algorithm, the greedy merging.

This algorithm consists in simply merging two substrings if they are

overlapped or adjacent, and then this merged substring can be further merged with

others substrings. The algorithm does not take into account the relevance of this

combined substring on the sample flows set. For example: while generate substrings

for a famous Chinese IP2PTV application called tvants, a generator can separate two

common shingles to merge, “TVANTS” and “ SHARE”. If it checks on the data stored

from the sample flows, it will discover that there are many occurrences of the

substring “TVANTS SHARE”, proving that this two shingles are adjacent. But the

string “TVANTS” by itself, appears in much more flows than the combined one. So

the greedy algorithm would produce a substring that recognizes fewer flows.

The adaptive merging algorithm focus on generating substrings that will

classify as many unique flows as possible. Using the most common shingle table as

input the merge score for shingle X and shingle Y is given by the formula illustrated

by Figure 6.

36

Figure 6 - Calculating shingles merging score

Flows(x) represents all the unique flows mapped by the most common shingle table,

flows(xy) means all the unique flows containing the combination of shingle x and y (if

they overlaps the combination will be a proper merging of them, if not, it is assumed

that they are neighbors and a simple concatenation is made) and flows(x) U flows(y)

means all the unique flows that contains both shingle X or shingle Y. To merge two

strings SigGen compares the value returned by the formula with a parameterized

value S, ranging from 0.0 to 1.0, which can be given by SigGen as an input by the

user. If the user does not inform the S, 0.8 is the default value used. If the calculated

value returned by the formula is equal or greater than S, the two shingles are

merged. Figure 7 extracted from the Mingjiang Ye et al. work, illustrates an example

of its use. Regard that AutoSig uses 0.9 as the default S value.

Figure 7 - Adaptive merging algorithm

After trying to merge all the shingles, SigGen, checks the resulting

substrings with a blacklist configured by the user. The blacklist consists solely by

strings that shall not be considered if pointed by the substring merging phase. These

blacklisted strings tend to be ones that do not identify uniquely the application

protocol begin analyzed. SigGen simply discard the string that are equal to a

37

blacklisted one or contains a blacklisted as a substring. In this same step, SigGen

also discard substrings that are contained on others, being or not on the blacklist.

On the signature construction phase, the substrings are arranged on a

sibling tree like structure (Figure 8), in which a parent has a list of children, all of them

brothers, in order to combine two substrings on the same signature.

Figure 8 - Sibling Tree

Each node of the tree represents a substring and the root node is the

empty string. If the flow set containing a substring Y is a subset of the flow set of

another substring X, the node representing Y will become a children of the X node‟s,

if not they will become brothers. It means that the set of flows of X contains not only

the substring X but some of them also contain the substring Y. After constructing the

tree, a path from the root to any leaf will become a signature. The main difference

against the AutoSig signature construction phase is that they do not use sibling trees.

As mentioned before, the tool cannot generate signatures totally autonomously. After

the generation phase, a human is needed to manually refine the generated

signatures by changing the parameters values to create more refined signatures.

Figure 9 shows the command line help of the SigGen tool. Options –M and –c are the

adaptive merge score and the percentage of flows that a given shingle most appears

to be added on the common shingles table respectively. Their default values are 0.8

and 0.1. The user also has the possibility to generate a signature file that can be

used by both the PatternGen and the TrafficGen tools.

38

Figure 9 - SigGen command line help

4.2 The Pattern Generator (PatternGen)

This Section aims on describe the PatternGen tool, which will generate a

series of histograms that may help the use of the SigGen tool and to construct the

traffic generator (TrafficGen) configuration file.

3.2.1 The Patterns Generated

The histograms generated by the PatternGen tool are listed below:

 Application packet size histogram: This histogram represents the packet

size distribution of a given application.

 Signature packet size histogram: Instead of create a unique distribution

packet size histogram for the entire application, it can generate a

distribution packet size for each signature. The signatures can be informed

as an input file and can be generated by the SigGen tool or can be

handmade.

 Signature offset histogram: PatternGen can generate a histogram

containing the offsets of the payloads that carry a given signature. This

feature might be useful while building regular expressions.

39

 Signature Flow Packet Occurrence: This feature generates a histogram

that represents in which packet of a certain flow a given signature

appears. For example, it can tell that the signature “BitTorrent” usually

appears with more frequency on the 5th and 6th packet of the sample flows.

The number of bins and the upper limit on the X axis of the histogram can

be informed by the user. It is also possible to generate different histograms for UDP

and TCP packets separately. Figure 10 illustrates the patternGen command line help.

Figure 10 - PatterGen command line help

4.3 The Traffic Generator (TrafficGen)

After creating the application signatures with SigGen and include then on

his DPI system, an ISP administrator may want to verify if they are working properly.

If his DPI works online, the administrator can use the TrafficGen to create detectable

traffic between two nodes on a Local Area Network. TrafficGen generates flows

following a configuration file, in which the user can set the amount of traffic for a

certain application class, configuring the traffic profile generated. For example, the

traffic can be 80% constituted by P2P file sharing applications and 20% of normal

Web flows. Each application class can have different percentages of per-application

traffic. Performance and memory required to run the TrafficGen will be shown on

40

Section 5. It is not the focus of the tool to be a real traffic simulator, like the discrete

event network simulator ns-2 [23] environment. The goal of TrafficGen is only to

produce configurable and detectable application flows for DPI systems classification

tests.

3.3.1 The Configuration File

In order to create a totally controlled traffic, following a packet size

distribution, a payload format, and a traffic application profile, the user must configure

a XML that will be parsed and interpreted by TrafficGen. Figure 11 brings an example

of a valid XML accepted by TrafficGen.

Figure 11 - Xml configuration file

41

The tag “CLASS” specify each application class that will be considered on

the traffic generation. Each XML can have as many classes as the user wants.

Section 5 has some comparisons between the number of application classes and the

TrafficGen performance. The “WEIGHT” tag inside “CLASS” represents the

percentage of the traffic that the class will have and the tag “NAME” only show its

name, for indexing purposes. A class can have as many “SIZE” tag as it needs. Each

“SIZE” tag represents a bin of the IP packet size histogram distribution that this

application class follows. “SIZE” tag will be further explained later. Every class

contains one or more “APPS” tags, which describes a certain application that belongs

to that class. Figure 11 has the description of a P2P class that will be responsible for

20% of the generated traffic, containing only one application; in this case it is the file

sharing application BitTorrent.

The “APPS” tag will contain only one “PATTERN” tag that will describe the

application‟s signature to be placed on the generated packets‟ payload. The pattern

can be the same signature generated by SigGen tool. If the user wants to add more

than one signature per application, he must be aware of the amount of traffic that

each signature will represent on the total belonging to that application. The

“WEIGHT” tag represents the contribution that this application will has on the total

traffic of the application class. The “PROTO” tag means the UDP or the TCP

transport Layer protocols that the application might use. A single “APPS” tag can only

have two “PROTO” tags, TCP and UDP. Each “PROTO” may have as many

“ORDER”, “OFFSET” and “SIZE” tags as the user wants. The “ORDER” tag

describes each bin of the flow packet order histogram in which the signature is found.

“SIZE” represents the same as it did inside the “CLASS” tag, but instead of

representing the entire application class packet size distribution, it describes only the

distribution of a certain application that uses “PROTO” as its transport protocol. If the

“SIZE” inside a “PROTO” tag is greater than the “SIZE” of a “CLASS” tag, the

protocol size will be the one chose, otherwise the class one will. “OFFSET”

represents where the signature pattern will be placed inside the packet‟s payload,

i.e., in which offset of the payload the pattern will start. This three tags have the tags

“FROM”, “TO” and “OCCUR”, and they represents the same for all. “FROM” means

the upper bound of the bin, “TO” means the lower, and “OCCUR” means the

occurrences on that bin. TrafficGen uses the medium value of the bounds to

42

represent the bin. If the application uses both TCP and UDP as its transport protocol,

the tag “WEIGHT” sets the amount of traffic that each protocol will represent on the

traffic of that application.

3.3.2 TrafficGen Architecture

Figure 12 - TrafficGen architecture

The TrafficGen architecture consists of five components. Figure 12 shows

a big picture of the architecture. A dashed line from one component to another

means that it uses the other features to implement its goals. Figure 13 shows the

components interaction as a sequence diagram.

43

Figure 13 - TrafficGen Components Sequence Diagram

The MainControllerC controls all the TrafficGen execution. This

component is responsible for initiate the global variables, parse the command line

options, initialize a PF_PACKET socket (see Section 2 for more details) with the

egress interface, and set the TrafficGen process‟s priority and initialize the thread

that will be responsible for parse the XML file, create the flows, create the packets for

each flow and send the traffic. It is also possible for TrafficGen to work multithreaded

as show Figure 14. On multithreaded executions, each thread will have its own

instance of each component, to avoid complex synchronizations, and its own socket

with the interface.

44

Figure 14 - Multithreaded Architecture

The FlowGeneratorC is responsible for creating the flows. Before begins

the packets transmission, TrafficGen creates a pool of flows, to avoid consuming the

CPU while transmitting the packets. It creates for each application a UDP and a TCP

flow containing 150 packets. If the application only uses TCP as its transport

protocol, the UDP flow will never be sent nor will packets be created for it.

FlowGeneratorC uses the XMLParserC component to parse the xml configuration file

and store it on hash tables, mapping a given application class to its respective

weight, each single application to its weight and so on. After the parsing,

FlowGeneratorC creates the packets using the PacketCreatorC component for each

flow, following the traffic profile configured. To decide which application packet will be

sent, which size the packet will have, and so on, PacketCreatorC generates a

random number, ranging from 0 to 1, and choose how the packets will look like

according the weights of the xml file. For example, if PacketCreatorC generates 0.7

45

randomly to choose which size a packet will have, the bin representing 70% of the

selected application packet size, according to the xml file, will be chose.

PacketCreatorC also includes the Ethernet (TrafficGen only works with Ethernet

frames), IP and TCP or UDP headers on the packet. All packets belonging to a flow

will have the same source and destination ip addresses and the same source and

destination ports numbers.

PacketForwarderC will execute right after the flows creation. It is

responsible for sending the packets through PF_PACKET sockets, and will loop

forever till the user terminates the process by typing CTRL+C, making the

MainControllerC stop the forward routine. If TrafficGen is running with multithreads,

each thread will have a different socket with the same interface. Currently TrafficGen

only transmit packets through a single NIC. If all the packets of a certain flow have

been sent, TrafficGen starts sending the flow again from the beginning. Figure 15

shows TrafficGen command line help. TrafficGen allows the user to inform the source

and destination IPs to be placed on the packets, as well as the source and

destination MAC address.

Figure 15 - TrafficGen Command Line help

 Figure 16 presents an example of a packet generated by TrafficGen on

the interface of a very popular network protocol analyzer (also known as a traffic

sniffer) called wireshark [24]. As is shown, TrafficGen places the signature on the

46

exact offset of the payload, indicated on the XML configuration file, and fills the rest

of the payload with random characters.

Figure 16 - TrafficGen Generated Packet on Wireshark

3.3.3 Controlling the generation rate

Generate traffic on controlled rates are important to organize a network

testbed environment. Different machines generating packets on random rates are not

well suited for large scale tests, speacially on DPI system online tests. TrafficGen is

capable of control the packet forwarding rate in Mbits/s, through an input value given

by the user.

To implement the rate control, TrafficGen sums all the bits sent by the

NIC. Assuming that the user chose 500Mbits/s as its preferable rate, TrafficGen will

divide a second into ten 100 ms (microseconds) bins. Dividing 500 by 10, TrafficGen

discover that it will need to send 50 Mbits during 100ms. If the summing of the sent

bits reaches 50 Mbits, or more, and 100ms has not been elapsed, TrafficGen sleeps

for the rest of the time, till 100ms, using the Linux nanosleep function. Nanosleep

47

was chose due to its nanosecond timing resolution. If TrafficGen sends 50 Mbits in

more than 100ms, it does not sleeps and continue sending packets on the machine

maximum speed.

The decision to divide the second into ten 100ms bins was made to avoid

a high burstiness on the first portion a second of the generation traffic, which could

make a switch or a router discard packets. If TrafficGen do not divide the second, on

the first microseconds of a second the NIC was going to transmit packets on the

maximum speed that it could and would sleep till one second elapsed, generating

burst on the beginning of a second. Reducing the bursts on windows of 100ms,

distribute the rates on a more uniform manner, decreasing the loss probability.

TrafficGen only permits speed control on its single thread version. The multithread

version generates packets at the NIC full speed.

48

5 EVALUATION AND RESULTS

In this section, the results of the evaluations performed on each tool are

presented. For each tool are presented different results. For SigGen, are presented

some signatures from famous P2P applications such as BitTorrent, Ares, and Emule

and from a web streaming application such as Sopcast. It was also generated

signatures for IP2PTV applications such as Tvants and Tvuplayer. Both are very

famous Chinese TV broadcast applications. Besides the signatures, this Section

presents the memory requirements for different sized trace files, the influence that

the parameters have on the generation process and the precision of the signatures

on flow classification.

For PatternGen, are presented some histogram generated by the tool for

each option that it provides. To evaluate TrafficGen, some performance tests were

needed. The maximum throughput (in Mbps) that the tool could perform for different

numbers of applications as well as the memory required on each test.

5.1 Evaluating the Signature Generator (SigGen)

In order to provide a proof-of-concept that SigGen is capable of

automatically generate signatures for applications protocols, this section will present

some of the patterns founded by SigGen. Table 5.1 shows the packet trace captured

by the already mentioned process sniffer.

Table 5.1 - Trace File captured for SigGen

Application Trace File size Number of Flows

BitTorrent 1.1 GB 32404

Ares 14 MB 3097

Emule 115 MB 5890

Sopcast 337 MB 1724

Tvants 162 MB 1256

Tvuplayer 504 MB 4482

SigGen were evaluated while generating signatures for all the applications

on Table 5.1 in all aspects. Considering different values of the merge score

49

parameter and different types of common substring selection threshold, the relevance

of these parameters on the number of substrings generated will be presented as

follows. Figure 17 shows different values of the common substring selection

threshold the number of substring generated, without dividing the flows into data and

control. Remember that this threshold ranges from 0 to 1. For the tests performed on

Figure 17 the merge score parameter had the same value 0.4 for tests performed for

each application.

Figure 17 - Common Shingle Selection Parameter Variation

As expected, the amount of substring generated with values close to 0 is

bigger than with values close to 1. This happens because it is very difficult to have

patterns that are present in more than 70% of the flows, but this may vary from

application to application. The user must set this parameter empirically for each

application trace file, trying to find signatures that occur in the maximum numbers of

flows as possible.

Figure 18 shows the relationship between the numbers of generated

substring with the merge score parameter. As the common substring selection

threshold, the merge score also ranges from 0 to 1.

50

Figure 18 - Merge Score Parameter Variation

One can infer from Figure 18 that depending on the application trace file,

lower merge score values tends to generate fewer substrings than higher ones. This

is explained by the fact that for lower merge score values, the resultant merged

substring must appear in fewer flows, making SigGen merge the substrings more

frequently. With higher merge score values, SigGen may not merge the strings

correctly, creating the signatures as shorter sequences. Regard that if it is used lower

values of merge score, SigGen will work similar to the greedy merge algorithm,

generating unspecific and generic signatures. It is important to understand that these

results were obtained with the trace files illustrated on Table 5.1. For different traces,

the results probably will not be similar.

Table 5.2 - SigGen memory usage

Application RAM Memory Required

BitTorrent 1,92 GB

Ares 44 MB

Emule 171 MB

Sopcast 451 MB

Tvants 94 MB

Tvuplayer 1,055 GB

Table 5.2 show the average amount of RAM memory required to generate

the signatures from the applications protocols. Large trace file requires more memory

51

than small ones because the flows payload must be kept on the memory during all

signature generation process. A copy of the flows must also be stored to compose

the common shingles and unique flows table, although this table will only have the

basic flow attributes (same protocol, source and destination IP addresses and port

numbers), without needing to store the flows payload. If many common shingles are

selected, and there are many flows on the trace file, SigGen will need GBytes of

RAM memory. If the machine supports memory swapping, SigGen will work properly

even with large trace files, although it may lead to a poor performance, due to the

necessity of page swapping by the OS memory management process, and may

compromise the use of the machine by others concurrent processes. The biggest

tested file was 1 GB, as can be seen on Table 5.1.

Table 5.3 - Signatures Generated

Application Signature

BitTorrent [\0x13BitTorrent Protocol\0x20];

Ares [\0x08\0x01\0x02\0x01\0x06];

Emule [0x02\0x01\0x01\0x18http://emule-

project.net\0x03\0x01\0x11];

Sopcast [\0x05(\0x05\0x02];[\0x13\0x88\0x02\0x02];

Tvants [TVANTS SHARE\0x08\0x06\0x11\0x01PV\0x11];

Tvuplayer [\0xFF\0xFF\0xFF\0xFF\0x13\0x88\0x02\0x02];

Table 5.3 shows some signatures generated by SigGen for the traces

presented on Table 5.1. Table 5.3 only has the most relevant signature extracted

from the sample flows with SigGen, i.e., the patterns that appeared on more sample

flows as possible. Some signatures were generated by using the blacklist and the

flow division feature. Many signatures pointed by SigGen may lead to poor

classification, biasing to false-positives. This may happen because SigGen can

encounter patterns that are only common on the used trace file. For example, on the

BitTorrent tests, SigGen pointed the hash value used to identify the file being

transferred as a common string. Although it indeed was presented on many flows, it

will not be a good pattern to classify flows with a DPI system, because it is too

52

specific for the trace collected. To circumvent these problems, the user can use the

blacklist feature, to discard signatures that he knows that can lead to false-positives

on future classifications.

5.2 Evaluating the Pattern Generator (PatternGen)

To evaluate the PatternGen, this Section will expose the histogram that

can be generated with it. PatternGen generates the histogram on two different types

of files; a text file, representing each bin of the histogram and its occurrence, and a

PNG graph file generated with the Linux GNU Scientific Library (GSL) [22].

Figure 19 - Tvants Packet Size distribution File

Figure 19 and Figure 20 illustrate a histogram text file containing all the

bins of the histogram and an application packet size histogram graph generated by

PatternGen for Tvants application trace file, mentioned on Table 5.1, respectively.

53

Figure 20 - Tvants packet size distribution graph

PatternGen creates the histogram File because the user may use it to

configure the TrafficGen XML profile if the bins values. The graph is generated to

make possible for the user to visualize all the modes of the histogram, to choose one

bin as the Data-Control flows division limit, before execute SigGen. On Figure 20

graph, 800 lengthened packets could be the application Data-Control flows division

limit, as this histogram seems to be bimodal.

The user can generate a packet size histogram for each transport layer

protocol, UDP and TCP, once many applications uses TCP for control traffic and

UDP for data transfer. Figure 21 and Figure 22 illustrate the same tvants distribution

for UDP and TCP protocol, respectively.

54

Figure 21 - Tvants TCP packet size distribution graph

Figure 22 - Tvants UDP packet size distribution graph

55

As expected, Figure 21 and 22 kept the bimodal characteristic of the

distribution. By looking at the Figures, it is noticeable that the TCP traffic are mostly

composed by small sized packets, probably with control responsibilities, and the UDP

are used to transport large data files. These insights are very valuable to SigGen,

once the user can generate signatures to identify solely control or data flows.

 The others histograms generated by PatternGen are similar to those

presented on this Section. Another interesting option that PatternGen offers to the

user is the possibility to visualize a histogram containing the exact position that the

generated signature appears on the packets‟ flows payload. Figure 23 shows a graph

of the signature “TVANTS SHARE\0x08\0x06\0x11\0x01PV\0x11”, from tvants

application, generated by SigGen.

Figure 23 - Tvants signature offset distribution

By Figure 23 one can see that the signature occur more often on the 25th

byte of the packets‟ payload.

56

5.3 Evaluating the Traffic Generator (TrafficGen)

TrafficGen, as a traffic generator tool, will be evaluated by different

aspects. One aspect is the total transmission throughput, measured in Mbps (Mega

bits per second) and in Mpkts/sec (Mega packets per second), once it is important to

quantify its generating capabilities. A comparison between the single thread and

multithread versions will be presented, as well as the total RAM memory required and

the CPU usage rates. Another important aspect is the scalability of the tool, while

generating traffics for different numbers of class and per applications classes. A

graph containing its measurements will be provided on this Section. The machine

used for the traffic generation is described on Table 5.4.

Table 5.4 – Traffic Generator Machine Configuration

Machine Processor
RAM

Memory
Administrative NIC

Traffic

Generator/Receiver NIC
HD

Operating

System

M
Intel Xeon X3210

Quad-core
4GB DDR Onboard Gigabit Offboard, 3Com Gigabit

3x 500GB

Sata HDs
Linux, 2.6

4.3.1 TrafficGen Throughput

Figure 24 and 25 shows the transmission rates achieved by TrafficGen

single thread and multithread version, respectively. The machine generated traffic

through 20 min each.

Figure 24 - TrafficGen Single Thread Version

57

Figure 25 - TrafficGen Multithread Version

On its single thread version, TrafficGen reached an average throughput of

630 Mbits/s, transmitting 0.51 Mpkts/sec creating 1200 different flows from three

different applications. It was needed to verify its performance on packets per second

to see if it could generate high rates even with small sized packets. The packets

generated on these tests were 112 Bytes sized from IP to application OSI layer,

excluding the Ethernet frame portion. The transmission throughput generated by the

multithread version was not much different than the single thread, reaching 750

Mbits/sec on average, sending 0.61 Mpkts/sec, creating 4800 different flows from

three different applications. The same IP lengthened packets were generated.

Although the throughput have not improved much on the multithread version, in terms

of packets per second it could create 0.1 Mega extra packets per second, which is a

very considerable improvement, making the multithread version more suitable for

send small sized packets.

Table 5.5 shows the memory consumed and the CPU used by each

TrafficGen version. Regard that the single thread version is capable of control the

generation rates, while the multithread works on the machine and NIC maximum

speed, although the throughput tests were conducted without rate controlling. The

390% CPU usage is the sum of the four machine cores.

58

Table 5.5 - TrafficGen memory and CPU requirements

Version CPU usage RAM memory used

Single Thread 100% - one core 278 MB

Multi Thread 390% - four cores 1,04 GB

4.3.2 TrafficGen Scalability

It is important to test TrafficGen on different scenarios to see how it

behaves and scales. To tests its scalability, while executing with different kinds of

traffic profiles, tests with 10, 20, 30, 40 and 50 different applications were made. The

most relevant scale attributes considered on each test where the memory required,

the total throughput in Mbits/sec and in Mpkts/sec. All the tests were performed with

the Single thread version running at its full capacity, without the rate control option,

and the configuration XML files with the same packet size, to not add a difference on

the total traffic outputted in Mbits/s between the tests. Additionally, the tests were

executed for 20 min each.

Table 5.6 shows the different amount of memory required for each

TrafficGen execution.

Table 5.6 - Scalability Memory Requirements

Number of Applications RAM memory required

10 661 MB

20 1,27 GB

30 1,89 GB

40 2,26 GB

50 2,95 GB

As expected, when more applications are added to the traffic profile XML,

more memory TrafficGen will consume. This happens because it is necessary to

keep all the flows, and its packets, on memory during the execution. Hence, more

applications implicates on more memory usage.

59

Table 5.7 shows the average throughput in Mbits/sec and in Mpkts/sec for

each different test.

Table 5.7 - Scale Throughput

Number of Applications Throughput in Mbits/s Throughput in Mpkts/s

10 590 0.455

20 582 0.440

30 578 0.422

40 572 0.384

50 556 0.358

As expected, by adding more applications to the configuration file the

throughput in Mbits/sec and in Mpkts/s produced by TrafficGen reduces. This

happens because TrafficGen must decide, by generating random numbers, which

packet from which application will be sent on the socket. With more applications,

more complex this decision will be. Regard that this result were achieved on the

machine described by Table 5.4.

60

6 DISCUSSION

In the previous section a set of tools aiming at ease the work of an ISP

administrator of construct, maintain and update signatures for its DPI systems were

described. SigGen generates new signatures, pointing out the most common patterns

that appear on a set of pre-captured sample flows, PatternGen creates histograms

and helps to characterize the generated signatures and finally TrafficGen creates real

point to point traffic flows, with packets containing detectable signatures by DPI

systems.

Although the tools aid the ISP administrator on signatures construction

and deployment, a human intervention is still needed, due to the specificities that

each application has in face of the others, turning the parameters calibration a

difficult task. Besides that, to generate signatures capable of classify as many flows

as possible, within a high precision, it is important that a human check the signatures

found and evaluate them, discarding false-positives and noise patterns. Finally, if a

DPI works with regular expressions, further analysis may be required to turn the

substrings into RegEx. SigGen is also requires a lot of memory to run its

experiments, which can make its performance less efficient due to the necessity of

pages swapping. SigGen also does not shows the volume in bytes involved on the

flows that carry a certain generated signature. This are a very important statistic,

because a signature can appear in many flows, but these flows may not represent a

lot of traffic in bytes. Additionally, the sample flows used as input can impact directly

on the generated patterns. The tools presented here plays an important role on the

signature generation process, in which they can reduce the time spent on the most

critical task, which is the most common and relevant substrings identification, besides

the possibility of test the new signatures on real traffic simulations.

Additionally, it was not evaluated on this thesis how TrafficGen works on

real online DPI tests, in order to check how it is respecting the configuration XML file,

due to the lack of a DPI system that could recognize the generated signatures. Build

one was out of the scope of this thesis. Further tests must be performed, in order to

evaluate if its precision is accurate and if it can be largely used by DPI systems

manufactures on online tests. Only offline tests, to check if the packets were being

correctly created, during its construction were performed.

61

7 CONCLUDING REMARKS AND FUTURE WORKS

This thesis presented a set of tools that might be used by DPI system

maintenance personnel to construct, update and test the signatures used on traffic

classification. The time spent to perform this task will be reduced, and the necessity

of extra consultancy from a protocol expert will be discarded. Besides reduce the

signature construction time, the tools aid the user to build more efficient and accurate

signatures, making its DPI system more reliable on traffic classification.

The signature generator, SigGen, proved to be very effective on

signatures creation, although it uses too much memory and must have its parameters

calibrated manually, which make it less automatically, but ease the signatures

construction job. It is better to use SigGen with large trace flows file, although it may

require more memory, it will generate more accurate and specific signatures. To

reduce the noise on the generated signatures, it is recommended to divide the flows

into Data and Control, as well as the blacklist feature, to discard probably false-

positives patterns. A further study on its memory usage is required on future works,

besides an extended analysis on the viability of an automatic parameter calibration to

avoid the human intervention dependence. Inform the amount of bytes the flows that

carry a specific signature is also a good contribution to be further included. More

tests with the signatures precision shall also be included.

PatternGen usage is very straight-forward and must be used as an extra

tool on signature characterization, to analyze the exact position of the signatures on

the packets‟ payload and to know exactly in which flow‟s packet it appears, besides

to have a further analysis on the protocol that carries the signatures most commonly

and how is the average packet size. These are very important characteristics to build

more efficient DPI system signatures.

Finally, the traffic generator TrafficGen is a tool that provides to the user

the possibility of test its new signatures online, by generating point to point

configured traffic, controlling the generation rates, the traffic profile per application

class and per specific application. TrafficGen can also be used for network stress and

DPI performance tests. Test TrafficGen online on a real DPI system that can identify

the signatures being sent is an important aspect to be analyzed on future works.

62

REFERENCES

[1] Mingjiang Ye, Jianping Wu, Ke Xu, “AutoSig-Automatically Generating Signatures
for Applications”, Proc. Of IEEE 9th International Conference on Computer and
Information Technology (ICTI), Xiamen, China, October 11 – 14 , 2009 .

[2] Byung-Chul Park, Young J. Won, Myung-Sup Kim, and James Won-Ki Hong.

„Towards Automated Application Signature Generation for Traffic Identification,‟
Proc. of the IEEE/IFIP Network Operations and Management Symposium (NOMS
2008), Salvador, Brazil, April 2008, pp. 160-167.

[3] Haffner, P., Sen, S., Spatscheck, O., and Wang, D. 2005. ACAS: automated

construction of application signatures. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Mining Network Data (Philadelphia, Pennsylvania, USA,
August 26 - 26, 2005). MineNet '05. ACM, New York, NY, 197-202.

[4] A. Moore and K. Papagiannaki, „Toward the Accurate Identification of Network

Applications‟, Passive and Active Measurements Workshop, Boston, MA, USA,
March 31, April 1, 2005.

[5] Newsome, J., Karp, B., and Song, D. 2005. Polygraph: Automatically Generating

Signatures for Polymorphic Worms. In Proceedings of the 2005 IEEE Symposium
on Security and Privacy (May 08 - 11, 2005). SP. IEEE Computer Society,
Washington, DC, 226-241.

[6] Kim H, Karp B. Autograph: Toward automatic distributed worm signature

detection. In: Proc. of the USENIX Security Symp. Diego, 2004. 271-286.

[7] Singh, S., Estan, C., Varghese, G., and Savage, S. 2004. Automated worm

fingerprinting. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation – Volume 6 (San Francisco, CA, December 06
- 08, 2004). USENIX Association, Berkeley, CA, 4-4.

[8] www.snort.org – Accessed on March 1, 2009.

[9] Mingjiang Ye, Jianping Wu, Ke Xu, Dah Ming Chiu, „Identify P2P Traffic by

Inspecting Data Transfer Behaviour‟, In Proceedings of IFIP Networking, Aachen,
Germany, May 11 – 15, 2009;

[10] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow Clustering Using Machine

Learning Techniques. In PAM, 2004.

[11] S. Sen O. Spatscheck and D. Wang, “Accurate, Scalable In-Network Identification

of P2P Traffic Using Application Signatures,” Proc. Of ACM WWW‟04, 2004.

63

[12] Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., and Salamatian, K. 2006.
“Traffic classification on the fly,” SIGCOMM Comput. Commun. Rev. 36, 2 (Apr.
2006), 23-26.

[13] Yu, F., Chen, Z., Diao, Y., Lakshman, T. V. and Katz, R. H., “Fast and memory-

efficient regular expression matching for deep packet inspection,” Proceedings of
the 2006 ACM/IEEE Symposium on Architecture for Networking and
Communications Systems. ANCS '06. ACM, New York, NY, 93-102, 2006.

[14] http://www.bittorrent.com/ – Accessed on March 12, 2009.

[15] Antichi G., Di Pietro A., Ficara D., Giordano S., Procissi G., Vitucci F., "Design of

a High Performance Traffic Generator on Network Processor", DSD08 -
Euromicro, Sept. 03, 2008, Parma Italy

[16] S. Zander, D. Kennedy, e G. Armitage. KUTE – A High Performance Kernel-

based UDP Traffic Engine. Technical Report 050118A, January 2005, Swinburne
University of Technology, Melbourne Australia.

[17] http://rude.sourceforge.net – Accessed on April 23, 2009.

[18] http://mgen.pf.itd.nrl.navy.mil/ – Accessed on April 23, 2009.

[19] A. Botta, A. Dainotti, A. Pescapè, “Multi-protocol and multi-platform traffic

generation and measurement”. INFOCOM 2007 DEMO Session, May 2007,
Anchorage (Alaska, USA).

[20] N. Bonelli, S. Giordano, G. Procissi, R. Secchi, “Brute: A high performance and

extensible traffic generator,” in Proceedings of SPECTS05, July 24-28, 2005,
Philadelphia, USA.

[21] Benvenuti, Christian, “Understanding Linux Network Internals”, U.S.A.: O‟Reilly,

December 2005.

[22] http://www.gnu.org/software/gsl/ - Accessed on June 10, 2009.

[23] http://www.isi.edu/nsnam/ns/ - Accessed on June 16, 2009.

[24] http://www.wireshark.org - Accessed on June 17, 2009.

[25] http://www.home.agilent.com/ - Accessed on June 03, 2009.

