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ABSTRACT 

The identification and classification of the traffic that is traversing a 

network link is a very important task performed by Internet Service Providers 

(ISP) administrators, in order to have a better comprehension of the applications 

being used by their users and to analyze how their network is prepared to provide 

a quality service to their customers. Among all the mechanisms used to classify 

network traffic, the Deep Packet Inspection (DPI) is the most used technique. 

However it is a mandatory requirement that the ISP DPI system must have a 

good set of application protocol signatures, in order to have an accurate traffic 

classification and an acceptable completeness level. Building this set of 

signatures is a very time consuming task and demands a high expertise, in order 

to make them very accurate and specific for each application. 

This thesis presents a set of tools capable to ease the job of 

construction, test and characterization of signatures for DPI systems. Three tools 

were built for this purpose: (i) a signature generator, capable of identifying 

common substrings used by an application protocol and merging them into 

signatures; (ii) a pattern generator, which will help the user characterize all the 

aspects of the generated signature; (iii) and a traffic generator that is responsible 

for creating totally configurable per application class flows, whose packet payload 

will carry signatures that can be detected by DPI systems. 

    

Keywords: Deep Packet Inspection, Signature Generation, Traffic Analysis, 

Computer Networks, Traffic Generation. 
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RESUMO 

Identificar e classificar o tráfego que passa através de um enlace de 

rede é uma tarefa extremamente importante realizada pelos administradores de 

provedores de serviços de Internet, a fim de obter uma melhor compreensão 

acerca das aplicações mais frequentemente utilizadas pelos seus usuários e de 

analisar o quanto a sua rede está preparada para prover serviços de qualidade 

aos seus clientes. Dentre os mecanismos utilizados para classificar o trafégo de 

uma rede, a técnica de Deep Packet Inspection (DPI) é a mais utilizada. 

Entretanto é necessário que o sistema de DPI dos provedores de serviço tenha 

um bom conjunto de assinaturas para conseguir classificar o trafégo de forma 

precisa e com um nível aceitável de completude. Construir tais assinaturas é 

uma tarefa que exige bastante tempo e conhecimento especialista, a fim de 

torná-las extremamente precisas e específicas para cada aplicação. 

Este trabalho apresenta um conjunto de ferramentas capazes de 

minimizar o trabalho de construir, testar e caracterizar assinaturas usadas por 

sistemas de DPI. Três ferramentas foram construídas com este propósito: (i) um 

gerador de assinaturas, capaz de identificar as cadeias de caracteres que são 

mais utilizadas pelos protocolos das aplicações e transformá-las em assinaturas;  

(ii) um gerador de padrões, o qual irá ajudar o usuário a listar todos os aspectos 

das assinaturas geradas; e, por fim, (iii) um gerador de tráfego responsável por 

gerar fluxos por classe de aplicação de forma totalmente configurável pelo 

usuário, os quais terão pacotes contendo, em sua carga útil, assinaturas que 

podem ser identificadas por sistemas de DPI. 

 

Palavras-Chave: Análise de Tráfego, Deep Packet Inspection, Redes de 

Computadores, Geração de Tráfego, Geração de Assinaturas.  
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1 INTRODUCTION 

Internet Service Providers (ISP) and network administrators want to 

identify the kind of traffic that is passing through their backbone, in order to provide a 

better service to their customers, by offering them a high quality of service, and to 

plan and manage their infrastructure. Classifying network traffic according to its 

applications is a very important matter for a broad range of network areas, including 

traffic shaping, differentiated services, QoS improvement and billing. These are very 

important concerns to ISPs.   

Many studies have been conducted in the traffic classification area, 

leading to the development of many classification methods. Some of them, like port 

based classification are no longer effective enough, due to dynamic port usage by 

some applications, especially P2P, and to traffic tunneling, for example, over HTTP. 

Other techniques used to classify network traffic are Machine Learning algorithms, 

application communication behavior analysis and payload based methods.  

The Payload based methods are very effective and precise at traffic 

identification. They consist of inspecting the entire payload of a packet, seeking 

signatures and patterns which can point to a unique application. Once the payload 

matches a signature, we are able to classify the packet and unravel which application 

does it belongs to. This method is also known as Deep packet inspection (DPI) and is 

a very time consuming and a CPU-intensive activity, consuming over 90% of the 

processor power in the whole system [13], even when it is performed in off-line mode 

(on a previously captured trace file). Due to their high accuracy, DPI systems are 

broadly used both in the scientific community and by private companies. A very 

famous DPI system is an Intrusion Detection and Prevention System (IDS/IPS) called 

Snort [8] which can detect what applications are passing through the ISP backbone 

and also identify and block incoming attacks or unwanted operations, such as port 

scanning.  

A DPI system must seek signatures within the payload of the packets to 

accurately classify a flow. Such approach is not new to the Internet worm research 

community [6] (e.g., intrusion detection systems); however, their focus is limited to 

identifying the security threatening traffic only. This work is focused on the application 

identification among innocuous traffic which widens the target traffic to be identified. It 
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is also worth mentioning that the characteristics of worm and system invasion 

attempts signatures are very different from common user application signatures. 

Worm-like signatures can be very unspecific once the purpose is only to block a 

current attack, not to identify what kind of attack is passing on the wire. A single 

hexadecimal value can characterize a buffer overflow that can be used on an 

enormous variety of different attacks. Application traffic signatures must be unique 

and very specific, once the ISP managers want to know exactly what application it is, 

in order to either block, provide a differentiated service experience to the end user or 

to charge a different price for the application usage. 

The use of regular expressions to describe application signatures is 

becoming very common in flow classification. A flow is identified by a 5-tuple: source 

IP address, source port, destination IP address, destination port, and transport 

protocol. This classification method can provide a very efficient and accurate 

matching mechanism. However, the regular expression matching process requires an 

enormous computational power, which is not scalable for online traffic identification. 

The way that the regular expression is constructed has a direct impact on the flow 

classification and on the total matching performance.  Despite this fact, several DPI 

systems use regular expressions to represent application signatures. The already 

mentioned Snort intrusion detection/prevention system (IDS/IPS) has more than 1000 

application signatures and offers the user the possibility to insert new regular 

expressions on demand. 

In order to achieve a high precision on traffic identification with DPI 

systems, the signatures used on the matching process must be well constructed and 

very application specific, to avoid false positives, i.e., misclassifications. A long time 

is spent in the manual extraction of application patterns by a network specialist, 

which requires a preceding knowledge of the application protocol being studied or an 

empirical packet payload inspection for pattern recognition. Both activities are very 

time consuming and  susceptible to failures which make the signature 

maintainability and update process a very difficult task. Sometimes this process may 

become even harder, by the fact that many protocols specifications are proprietary, 

i.e., not available to the community.    

Automatically generating an application signature is a very important task 

to help ISP managers update and maintain their traffic analyzer system signature 
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database, improving accuracy and performance. They can build signatures more 

efficiently without needing to manually inspect a captured packet trace file. This 

thesis will describe an application signature generator that can point out common 

patterns that appear frequently on a given set of pre-captured flows stored on a trace 

file. As will be outlined, the intention is not to generate signatures in real time, but 

offline, with a set of flows that belong specifically to the target application. This thesis 

is going to describe the system architecture and algorithm, the options that can be 

used to tune the tool, and the parameters that must be adjusted for each application 

to increase the signature relevance. It is worth mentioning that this tool only creates 

substrings that can uniquely identify an application. This work does not automatically 

generate regular expressions, but the substrings generated can ease the regular 

expression construction process, since the ISP manager will have a clue on which 

set of substrings he should pay more attention to when building a regular expression 

for a specific application. 

Another contribution of this work is the creation of a pattern generator that 

will support the elaboration of histograms on three aspects that can help on the 

signature matching process: packet size distribution, the offset in which the signature 

is found on the packet payload, and in which packet of the flow the signature occurs. 

These three histograms can be created for each signature generated by our tool, 

following its format only. An extra feature of the pattern generator is the possibility to 

divide the histograms per transport layer protocol, once the signature can be carried 

out by UDP and/or TCP packets. 

With all those information in addition to the signatures, a traffic analyzer 

can be used to classify flows by application in online mode. But what happens if the 

application to which the signatures are being created never appears in the ISP 

backbone at the present moment? There is dynamicity in the network applications 

and it may have considerable changes from one network to another. One application 

may be very popular in other WANs but not on the specifically WAN being analyzed. 

Even though not popular or having a remote probability to be present, some 

application signatures would be desired to make part of the signature database. 

Besides, the ISP manager may need to deploy his new generated DPI signatures on 

a totally controlled environment without affecting the rest of the network, and perform 

the matching process at wire speed, controlling the traffic generated by each 
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application class, such as P2P file sharing, video streaming or web. How would an 

ISP administrator test online a new generated signature set? 

In face of the high speed of current networks, the most viable direction in 

terms of cost to test modern LANs is by emulation: inject synthetic traffic, measuring 

their responses, and analyzing the results. It is clearly necessary to generate traffic 

that is very similar to the actual, in terms of either high speed and statistical 

properties. 

To test signatures within a real environment, this diploma thesis proposes 

a traffic generator which will create real network packets possessing detectable 

payload information, according to an application packet size distribution, also having 

application signatures that respect the packet order that carries the signature on the 

flow and the signature offset within the packet payload. Such signature information 

regarding order and offset is provided by the automatic signature generation process. 

The traffic generator is a fully configurable tool that can generate traffic for a set of 

specified signatures, even if they belong to different applications. The user can inform 

the volume of traffic that should be created for each application class, and which 

fraction of the total volume each individual application will represent.  

This tool can also be used in stress tests of network equipments, such as 

a router or switch, or can also be used to check if a firewall or IDS/IPS is working 

properly. The traffic generator must be able to generate traffic at wire speed, in order 

to measure how much efficiency a traffic analyzer may perform online, thus, the 

performance of the data generation and transference plays an important role on its 

construction. 

The remainder of this thesis is organized as follows: 

 Section 2: presents the underlying background needed for the thesis 

understanding, covering Regular Expressions, Deep Packet Inspection, 

packet transmission mechanism on Linux-based systems and Linux timing 

functions; 

 Section 3: presents the related work that has been found in literature; 

 Section 4: the proposed project for the thesis is presented in this section. 

The complete signature generation algorithm and its features will be 

outlined. It will also describe all the options and parameters that must be 

set to generate the signatures, as well as their impact on the generation 
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process. The pattern generator tool and a description of the traffic 

generator architecture is presented in this section either, explaining the 

initial parameters and configuration, as well as the methodology created to 

evaluate it; 

 Section 5: this section shows the signatures generated for sample 

applications and the evaluation results obtained by the traffic and pattern 

generator tools; 

 Section 6: this section opens up a space for discussion on some important 

points that were observed; 

 Section 7: finally, the main concluding remarks of the thesis are presented 

in this section. Besides, some possible future works. 
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2 BACKGROUND 

This Section contains a brief description of Deep Packet Inspection (DPI) 

systems, the format of the signatures that are generally used by DPI systems, 

Regular expressions, Linux socket programming API, packet transmission, and 

resolution and control of Linux timers, in order to provide the essential background 

needed for the remainder of this thesis. 

2.1 Deep Packet Inspection 

Deep Packet Inspection (DPI) systems, also called complete packet 

inspection and information extraction, focus on analyzing, indentifying and classifying 

the traffic that is traversing the network, by examining the content of the packet 

payload as it passes through probe point on the network. It can be used as a packet 

filter to drop frames which may carry viruses, spams, intrusion attempts, worms, or 

may either work as an application identifier to perform network traffic shaping. Those 

systems accomplish these tasks by comparing part of the packet data against strings, 

which represent signatures of the content to be scanned. DPI systems can classify 

data flows to make flow control shaping, or can scan every packet of a data link, 

demanding more computational power. Some DPI systems also enable advanced 

security functions, being very effective against buffer overflow attacks, denial of 

service (Dos) attacks, shell code insertion, SQL injection, and other sophisticated 

intrusions, working as a wire speed stateful firewall. 

Besides the security concerns that an ISP manager must have, DPI 

systems provide a very accurate form of identifying applications used by the 

subscribers. The DPI approach is more effective than the simple port-application 

comparison, once this technique became very limited, due to protocol tunneling to 

overcome firewalls barriers. The DPI systems have a good classification accuracy. 

ISPs have been recently relying on such solutions. Throughout the global Internet, 

ISPs use DPI systems to perform different kinds of services, like: 

1. Lawful Intercept: ISPs are commonly required by various governments 

around the world to perform some kind of lawful intercept when needed by 

law enforcement agencies; 
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2. Policy definition and enforcement: service providers obligated by the 

service level agreement with their customers may use DPI to detect 

copyright infringements, illegal materials, and unfair use of bandwidth. In 

some countries, these kind of inspection are only allowed with a 

government or court warranty. Policies can be defined in a way to allow or 

block connection to or from certain IP addresses, certain protocols or even 

heuristics that identify certain applications; 

3. Content based filtering and charging: ISPs can block, filter or even charge 

customers that are using certain kind of applications (maybe undesirable 

ones) within their network. Examples include blocking Voice over IP (VoIP) 

and P2P applications; 

4. Quality of Service (QoS): some applications like VoIP and Video over 

Demand (VoD) require low latency and high priority against common traffic, 

such as web browsing.  

2.2 Regular Expressions 

Regular Expressions (RegEx) is a set of strings that represent a pattern 

used to match a certain string of characters. They provide an enormous 

expressiveness without needing to express the desired patterns one by one. They 

are widely used in computer science, from compilers and programming languages to 

text editors. RegExes are commonly represented as state machines and can be 

implemented as Deterministic Finite Automata (DFA) state machines or as Non-

Deterministic Finite Automata (NFA). These state machines can grow exponentially, 

demanding a large amount of memory and computational power during the matching 

process. DPI systems usually rely on RegEx to perform their inspection process. 

Examples of two RegEx signatures of P2P applications used to classify network flows 

can be found on table 2.1. 

 

Table 2.1 - Regular Expression used to identify network applications. 

Application Signature 

Emule (^(\xe3|\xc5).(\x01|\x54|\x93|\xa4|\x4c|\x85|\x86|\x87|\x92|\x60|\x55|\x4

7|\x40) 
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BitTorrent (\x13)BitTorrent Protocol(\x23) 

 

2.3 Signature formats 

A signature may be a portion of the packet payload data that is static and 

distinguishable for applications, which can be described as a sequence of ASCII 

characters or hex values. There exist many other types of signature formats, as will 

be presented later in this section. Due to the complexity of application protocols, the 

signatures that will represent them must be very generic and expressive in order to 

provide good classification accuracy. Signatures based on regular expressions are 

powerful, leading to accurate matches, although it suffers performance problems, as 

they can take a long time processing in software-like pattern matching solutions. The 

performance depends also on the expression length. Besides it is complex to be built 

in hardware, because they can be very difficult to construct, even though they are 

commonly used on DPI systems to identify normal applications or malware-like traffic. 

Newsome et al. has discussed three types of worm signatures [5]. They are 

conjunction signatures, token-subsequence signatures and Bayes signatures: 

 Conjunction signatures: consists of an unordered set of tokens that identify 

data flows. A flow matches a conjunction signature if all tokes in the set are 

found in its payload in any order; 

 Token-subsequence signatures: the signature is an ordered set of tokens. A 

flow matches a token subsequence signature if the flow contains the 

sequence of substrings in the signature with the same ordering. Signatures 

of this type can easily be expressed as regular expressions. Given the 

same set of tokens, a token subsequence signature will be more specific 

than a conjunction signature, because of the former ordering constraint; 

 Bayes signatures: consists of a set of tokens, each of which is associated 

with a score, and an overall threshold. In contrast with the previous types, 

Bayes signatures provide a probabilistic matching. Given a flow, the 

probability that the flow belongs to the application is computed using the 

scores of the substrings present in the flow. If the resulting probability is 

over the threshold, the flow is classified as the application type.  
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To Identify application protocols, the signatures must be very specific, to 

identify a flow uniquely. Discover that a flow might carry a worm-like signature will be 

sufficient for a DPI system that is focused on system invasion prevention, without 

need to point out which worm it was. Application protocols may have similarities that 

will lead a classification system to behave inappropriately.  

2.4 Packet Transmission Mechanism 

This section contemplates an explanation on raw packet transmission, and 

details on how to transmit packets within a Linux-based system, which is important 

for a better understanding of the problems that are encountered in the construction of 

a typical traffic generator. Raw socket is a software interface through which an 

application can have full control of the packets that are being sent or received in the 

network. In the following section, the raw packet journey inside the Linux Kernel is 

detailed.  

2.4.1. Sockets 

Packet sockets are used to receive or send raw packets at the device 

driver, i.e. OSI Layer 2 level. They allow a programmer to implement protocol 

modules in user space on the top of the physical layer. 

When a programmer opens a socket by invoking the socket system call 

for the packet transmission, the kernel internally calls __sock_create, which will 

create a new sock structure (the kernel representation of sockets), and register a 

handler for the specified protocol. 

The socket function has the following interface: socket(int family, 

int type, int protocol), where: 

 family: refers to the protocol family that the user will handle within the 

socket, e.g. PF_INET for sockets based on IPv4 protocol, PF_PACKET for 

sockets which want to communicate directly with the link layer; 

 type: is the type of the socket communication semantics, examples of 

common types are: 

o SOCK_STREAM: provides ordered, reliable, two-way, connection-

based byte streams, commonly used with TCP connections;  
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o SOCK_DGRAM: datagram support, commonly used by UDP 

connections. The user can define headers of OSI Layers 3 and 4; 

o SOCK_RAW: allow users to have access to lower-level 

communication protocols. This kind of socket can define the 

headers from OSI Layer 4 to the link level. Packets created with this 

type of sockets are passed to the device driver without any changes. 

 protocol: The protocol of the packets, e.g. ETH_P_IP for IP, 

ETH_P_ALL for all types of packets.  

Internally, these sockets are basically represented as a queue which 

stores pointers to packets inside the kernel and each of these queues is responsible 

for a class of packets.  

The PF_PACKET, for instance, handles all the packets that comes in or will 

be go out of on the Network Interface Card (NIC) and skips all the processing that is 

usually performed by the TCP/IP protocol stack inside the kernel. It allows 

applications to access the network driver directly, so a programmer can implement 

network protocols in the user space.  

The PF_INET socket only deals with IP packets, but there are other types 

of sockets that only deal with TCP, UDP, and other sort of packets, at the Linux 

protocol stack. Raw sockets are not compatible with PF_INET. Figure 1 illustrates the 

path of a packet into the Linux protocol stack. The dev_queue_xmit will be better 

explained in the next Section. On Linux systems, only super users are allowed to 

open socket connections. 

 The link level header is available at an independent physical layer 

address structure called sockaddr_ll. On raw packet transmissions, the programmer 

uses this structure to inform the physical layer addresses.  
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Figure 1 - Linux socket's path 

2.5 Packet Transmission with PF_PACKET sockets 

Whenever an application needs to send a raw packet through the network, 

within a PF_PACKET socket, it is done by invoking the write() or send() Linux system 

calls, which will makes Linux trap to the kernel and allocates a sk_buff (short for 

socket buffer) structure, which is the packet representation inside the kernel, and 

fetches the data from the user space into the new sk_buff. It then invokes 

dev_queue_xmit, passing the sk_buff as a parameter, which will queue a buffer 

for transmission to a network driver inside the kernel and will transfer frames from 

this kernel queue to the driver outgoing-frame buffer. When dev_queue_xmit is 

called, all the information required to the frame transmission, such as the outgoing 

device, the next hop, and its link layer address is ready. If a programmer is working 
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with PF_PACKET sockets, his application must guarantee all these features. The 

sk_buff contains the outgoing device reference, a pointer to the beginning of the 

packet payload and its length. The main tasks of dev_queue_xmit are as follows: 

(i) checking whether the frame is composed of fragments and if the device can 

handle them through scatter/gather DMA operations, combining the fragments if the 

device is incapable of doing so; (ii) verify if the OSI layer 4 checksum is computed; 

(iii) and select which frame will be transmitted, i.e. copied to the network drive egress 

buffer. Regarding that some devices, like the loopback device, do not have a queue 

to store the packets, whenever a frame is passed to dev_queue_xmit it is delivered 

to the NIC buffer. The dev_queue_xmit function puts a pointer to a sk_buff 

inside the CPU queue for egress packets (there is one queue for each CPU), and 

then raises a software interrupt (softirq), and returns the congestion level of the 

queue to the caller. Please note that in the event that this queue is full, the new 

outcoming packets are discarded. The function that processes the softirqs is 

known as do_softirq. It checks a bit mask and calls the appropriate handling 

routine, which represents the set bit. For transmission, the interrupt of interest is the 

NET_TX_SOFTIRQ, which can be raised in two cases: 

 When the transmission is enable on the device and it is assured that the 

frames waiting to be sent are actually sent when all the needed conditions 

are met, i.e., when the device has enough memory to handle it. 

 When the device driver asks the net_tx_action softirqd to take care of 

it. 

The net_tx_action handle routine, which will treat the IRQ raised, 

deallocate all the buffers that have been added at the device driver by dequeuing the 

first packet from the current CPU queue and will try to grab the lock of the device 

egress queue to transmit the frames. The handler net_tx_action schedules a 

device for transmission if it could not grab the lock of the device egress queue 

(making it unable to transmit), by calling the netif_schedule function, preparing it 

to send frames later. The net_tx_action handler routine is also called in two 

situations, which are when there are devices waiting to transmit and when it is time to 

do housekeeping onto the buffers that will not be used anymore by the kernel.  



23 

 

Almost all devices use a queue to schedule egress traffic and the kernel 

can use queuing disciplines to arrange the frames in a more efficient order for 

transmission. A detailed discussion about traffic control and its queuing disciplines is 

out of the scope.  

2.6 Linux Timers 

Countless computerized activities are driven by timing measurements. 

Schedule actions to be performed somewhere in the future is a necessity that every 

operating system has. A mechanism to deal with activities scheduled to run at some 

relatively precise time must be built. Any microprocessor that wishes to support an 

operating system must have a programmable interval timer that periodically interrupts 

the processor. This periodic interrupt is known as a system clock tick and it works as 

a system‟s regent, orchestrating its activities.  

Linux has a very simple view of what time is; it measures time in clock 

ticks since the system booted. Timing measurements are performed by several 

hardware circuits based on fixed-frequency oscillators and counters. All system times 

are based on this measurement, which is known as jiffies after the globally available 

variable of the same name. It has two types of system timers, both of them are queue 

routines to be called at some system time but they are slightly different in their 

implementations. The Figure 2 shows both mechanisms.  
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Figure 2 - Linux timers 

The Linux used to have an old timer mechanism that had a static array of 

32 pointers to timer_struct data structures and a mask of active timers, represented 

by timer_active.  

Where the timers should go in the timer table is defined statically. Entries 

are added into this table mostly at system initialization time. The newer Linux 

mechanism uses a linked list of timer_list data structures held in ascending expiry 

time order.  

Both methods use time in jiffies as an expiration time, so that a timer that 

attempt to run in five seconds would have to convert it to units of jiffies and add that 

to the current system time to get the system time in jiffies when the timer should 

expire. Every system clock ticks the timer bottom half handler and marks it as active, 

so that when the scheduler next runs, the timer queues get processed. The timer 

bottom half handler processes both types of system timer. For the old system timers 

the timer_active bit mask is check for bits that are set.  

If the time for an active timer has expired, its timer routine is called and its 

active bit is cleared. For new system timers, the entries in the linked list of timer_list 

data structures are checked.  
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Every expired timer is removed from the list and its routine is called. The 

new timer mechanism has the advantage of being able to pass an argument to the 

timer routine.  

2.7 Sleep and Nanosleep time functions 

The sleep function makes a running thread or process became inactive 

for a certain period of time specified in seconds. When the elapsed time arrives, an 

interrupt is raised for the sleeping process. The nanosleep function has the same 

functionality as sleep, but it has a higher timer resolution: it receives a time struct as 

input expressed in nanoseconds. 

 The current implementation of nanosleep is based on the normal kernel 

timer mechanism, which has a resolution of 1/HZ s (i.e, 10 ms on Linux/i386 and 

1 ms on Linux/Alpha). Therefore, nanosleep pauses for at least the specified time, 

however it can take up to 10 ms longer than specified until the process becomes 

runnable again.  

As some applications require much more precise pauses (e.g., in order to 

control some time-critical hardware), nanosleep is also capable of short high-

precision pauses. If the process is scheduled under a real-time policy like 

SCHED_FIFO (first-in, first-out) or SCHED_RR (round-robin), then pauses of up to 

2 ms will be performed as busy waits with microsecond precision.  

The nanosleep function shall return a value of 0 on success and -1 on 

failure or if interrupted. This latter case is different from sleep which returns 0 if the 

requested time has elapsed, or the number of seconds left to sleep. 
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3 RELATED WORK 

Researchers have done a lot of work in classifying network traffic 

according to the applications. A naive internet application traffic identification 

technique such as port-based identifications does not guarantee accuracy and 

precision anymore due to the diversity of today‟s internet traffic. Besides, a lot of 

applications use tunnels, such as HTTP tunnels, and dynamic port allocation to 

circumvent port-based blocking by firewalls. In addition to the native port based 

method, there are some new methods including machine learning algorithms based 

on flow statistical information [2], application communication pattern based methods 

[9] and payload based methods [4]. 

The machine learning techniques classify network traffic using flows 

information and traffic characteristics, such as average size of packets, inter arrival 

time between packets, protocol usage, etc. McGregor et al. [10] used machine 

learning techniques for clustering flows, in order to achieve a high precision of the 

classification, but they found that some applications could not be well classified with 

this approach. ACAS [3] uses the first N bytes payload as the input to train a machine 

learning model and uses it to classify flows. However, using the first N bytes payload 

directly may introduce too much noise during the training phase, leading to poor 

classification accuracy. 

Mingjiang Ye et al. [9] introduced a behavioral method to classify P2P 

traffic, by studying the characteristics of P2P applications. They recognize a P2P flow 

by checking pieces of data being downloaded and uploaded. If a flow has the same 

data block on an upload and on a download flow, inside a parameterized time 

interval, the associated flows are classified as P2P. Their approach proved to be very 

effective on a wide range of P2P applications, such as on many BitTorrent [14] 

clients.  

Moore et al. used application signatures to classify network traffic in [4]. 

They used the signatures in two ways: searching them in single packets and 

searching them in the first 1KB payload of flows. They have pointed that matching 

signatures in first 1KB payload is enough for a good classification, which could help 

to generate signatures more quickly and with less memory usage. They have not 

discussed how to generate signatures. Sen et al. have generated some P2P 
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signatures manually by analyzing their application-layer protocol [11] through 

available documentation and packet-level traces. P2P applications was mostly 

focused because of its high traffic usage and complexity, besides their proprietary 

protocols, which difficult their deployment. Sen et al. signatures were very precise 

and well constructed, but were somehow limited. They created signatures that could 

be found only in the beginning of the packets, in order to accelerate and ease the 

classification phase, which can be very efficient it terms of matching speed but can 

lead to a huge amount of unclassified traffic. They also paid more attention to the 

P2P download flows, instead of the signaling ones. The reason was that signaling 

flows correspond to less traffic volume, than download flows. The amount of time 

spent on the generation phase was not minimal and must be remade if new protocol 

versions appear in a near future. Their methods used the common strings appearing 

on the applications flows to generate signatures. 

Automatic signature generation tools have been studied recently in worm 

detection area [5][6][7]. A worm is a self-replicate program: it remotely exploits 

software vulnerabilities on a victim host, in a way that the victim becomes infected, 

and begins to remotely infect other victims. 

The EarlyBird worm signature generator system [7], generates overlapping 

fixed-length content block over each byte offset for each sample flow, and extracts 

the content blocks appearing many time as a whole signature. By sifting through 

network traffic for content strings that are both frequently repeated and widely 

dispersed, they could automatically identify new worms and their precise signature. 

Their signature generation was made online on a single network sensor. They stated 

that an optimal algorithm could work as follows: For each packet passing through the 

network, the content is extracted and all substrings are processed and indexed into a 

prevalence table that is incremented every time the substring is found. This table 

implements a histogram of all observed substrings. This table keeps two lists, 

containing IP addresses that are searched and updated each time a substring 

counter is incremented. Sorting this table on the substring count and the size of the 

address lists will produce the set of likely worm traffic. Substrings that are not widely 

dispersed are discarded, leaving only the worm-like content. To scale to high-speed 

links, the EarlyBird algorithm uses a different approach from the optimal one 

proposed, but in essence it works quite similar.  
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The Autograph system [6] generates worm-like signatures by selecting 

TCP suspicious flows (a flow that might carry some threat) from an online monitor 

and sending them to a distribute machine, which will store that flows on disk. 

Autograph reassembles the payload of a given flow, making it become a single 

contiguous block of data. Them it divides the payload of the flows into variable-length 

substrings using a Content-based Payload Partitioning schema based on Rabin 

fingerprints. The number of generated substrings is reduced, although short common 

substrings can be missed using the partition schema. After the payload partition 

phase, Autograph measures the frequency, with which a substring occurs across all 

suspicious flow‟s payload, and proposes the most frequent ones to be signatures 

candidates. Autograph incorporates a blacklisting technique into signature 

generation. An administrator may configure Autograph with a blacklist of disallowed 

signatures, in an effort to prevent the system from generating signatures that will 

cause false positives. The blacklist is simply a set of strings. Any signature Autograph 

selects that is a substring of an entry in the blacklist is discarded. 

Besides the worm signature generators, mentioned previously, there are 

some works aiming at application signature generation. Byung-Chul et al. [2] have 

studied the application signature generation problem. They propose the LASER 

algorithm which tries to find the longest common subsequence among samples 

without any prior knowledge of the application protocol. The longest common 

subsequence extracted from sample flows is chose to be the application signature. 

To improve the system performance, the LASER algorithm only considers the flow‟s 

first N packets to generate the signatures. It also groups the packets by its size, since 

large packets are not likely to carry the same kind of information as the small ones. 

The algorithm compares two samples to get the longest common subsequence 

between them, and then compares it with other samples iteratively to refine it. Their 

paper showed that it is a challenge to generate signatures when there is a lot of 

noise on the samples, for example, common substrings that repeatedly appear on the 

sample flows, but do not belong to the application protocol. It is worth mentioning that 

they generated signatures in form of substrings, instead of regular expressions. 

Mingjiang Ye et al. [1] built a tool called AutoSig, to generate application 

signature automatically, by combining the techniques used on the Autograph and on 

EarlyBird systems. Their algorithm consists on dividing the payload of a set of flows 
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in short substrings called shingles, extract the ones that constantly appear in a 

certain amount of flows and merge them if they are neighbors or overlap. As the 

LASER algorithm, they also generated signatures in form of substrings, not as 

regular expressions. Even though their signatures led to a very good flow 

classification, they needed to calibrate some commonality threshold parameters used 

by the algorithm manually, in order to achieve a perfect signature, which reduces the 

automation of the process.   

Many traffic generators have been proposed on the literature, but none 

have focused on generating synthetic packets with detectable payload. Traffic 

generators are mainly implemented as user-space applications, like RUDE [17] and 

MGEN [18].  

RUDE is able to instantiate a number of simultaneous patterns of traffic, 

but provides a non-extensible script language. RUDE‟s architecture does not provide 

any explicit support for extensible interfaces and is not suitable to work at high rates. 

RUDE also includes a traffic collector called CRUDE, which can be used to receive 

and log the traffic created.  

MGEN provides both a command line and a Graphical User Interface 

(GUI) for traffic generation on user-space. It supports different UNIX-based OS‟s, but 

its accuracy is limited because of the system timers used (as presented on Section 2, 

on Linux kernels the normal timer resolution is only 10ms).  

KUTE [16] (formerly known as UDPGen) is an UDP traffic generator 

designed to achieve high performance over Gigabit-Ethernet. It is a Linux 2.6 kernel 

module that operates directly on the network device driver, avoiding moving data 

from user space to kernel space, which causes a high delay on packet transmission. 

The user can configure the source and destination IP addresses, source and 

destination ports, packet rate, packet length, duration of the flow, packet‟s payload, 

Time to Live (TTL), Type of Service (ToS), and whether UDP checksums and IP 

identification field should be used.  

The Internet Traffic Generator (ITG) [19] focuses on reproducing TCP and 

UDP traffic and replicating samples of stochastic processes for inter-departure time 

and packet size. It is comparable in performance with RUDE and MGEN, although it 

provides more traffic patterns. The Browny and Robust Traffic Engine (BRUTE [20]) 

is a PC-based traffic generator which takes advantages of the capabilities of Linux 
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Kernel 2.4 – 2.6, to generate traffic at high rates. In a gigabit Ethernet scenario, on a 

commodity machine running Linux, the highest throughput achieved with BRUTE was 

1.09 Mfps (Mega Frame (packets) per seconds). BRUTE was designed as a user 

space application, aiming to obtain a high flexibility at the expense of a slight 

increase of latency. It is easily extensible through optimized functions for 

implementing additional traffic sources.  

There are many others traffic generators and traffic simulators, which are 

much more complex once they implement real traffic behaviors, on the open source 

community available for free downloads on the internet, ranging from very efficient 

generators to more simple ones. In addition, there are many others traffic generators 

implemented as hardware platforms, like the very efficient Agilent [25] traffic 

generators. However none has a focus on generating traffic for DPI systems testing, 

with configurable traffic profile on the application level, transmitting packets with 

detectable and real payload. The traffic generator proposed by this thesis is very 

specific for this goal, although it can be used for network nodes stress tests, and is 

totally implemented for commodity platforms, requiring only a reliable NIC to achieve 

a good performance. 
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4 PROJECT DESCRIPTION 

The present thesis aims to build three tools that together ease the work of 

an ISP administrator or DPI manufacturer, to construct signatures, for traffic 

application identification and profiling, and to test the generated signatures online. It 

is not on the scope of these tools to help on worm-like or other kinds of malware 

signatures construction. The traffic generator can be used as a network stresser, to 

test the capabilities of a switch or router, although it does not provide support for that. 

It focuses solely on generating controlled and detectable traffic from one point to 

another on the same local area network. 

During the next sections, this thesis will describe how the signature, 

pattern and traffic generator work. All the tools run on Ubuntu 8.10 machines, with 

kernel 2.6.  

4.1 The Signature Generator (SigGen)  

This Section aims at explaining how the signature generator tool (SigGen) 

works. It also includes all the improvements proposed by this work, in order to 

generate more accurate signatures and to decrease the amount of false positives 

signatures. A simple command-lined user interface is also explained to simplify the 

tool usage.    

4.1.1. Signature Definition 

First of all it is important to mention that the SigGen will generate 

signatures, for application protocols, in format of substrings, as LASER [2] and 

AutoSig [1]. Like the systems, mentioned previously, SigGen will not create regular 

expressions. Its work is to point the most relevant substring found on the given set of 

sampled flows, in order of relevance, combining substrings if they appear on the 

same set of flows. The generated substrings will represent uniquely an application 

and can be used for traffic classification. The signatures are generated as a 

sequence of hexadecimal values, if it is not printable, or as sequence of ASCII 

values, if it is printable, just as the samples signatures extracted from [1] showed in 

table 1. 
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Table 4.1 - Sample AutoSig Signatures. \0x20 means a blank space in hex 

Application Signature 

FTP [220\0x20];[220\0x20][FTP\0x20server\0x20]; 

[221\0x20Goodbye]; 

HTTP [HTTP/1.]; [GET\0x20/][HTTP/1.]; 

 

As presented on Table 4.1, the signatures may be a single string, like 

“[HTTP/1.]” or it can be the combination of two strings, like the FTP signature 

“[220\0x20][FTP\0x20server\0x20]”. If the signature is a combination of strings, 

means that it is necessary to find all those strings on the same flow. Notice that these 

substrings can be directly transformed into a regular expression, although it may not 

be efficient. If a specialist wants to write a regular expression with these signatures, a 

manual packet trace analysis is still required, but at least he will be aware of the most 

important substring to consider. 

4.1.2. The Generation Algorithm 

SigGen is mostly based on the algorithm proposed by Mingjiang Ye et al. 

[1] with some improvements to generate the signatures and to reduce the number of 

false positives. The AutoSig has 3 distinct phases, namely the substring generation, 

aggregation and signature construction. Figure 3 illustrates the AutoSig signature 

generation process.  

 
Figure 3 - AutoSig signature generation phases 

 

SigGen follows the same AutoSig three phases, doing an extra verification 

on the end of the second phase to exclude signatures previously marked by the 
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blacklist. As the AutoGraph system, SigGen allows the user to specify strings that he 

already knows that are not specific enough for that application, like an “HTTP/1.1” 

pattern. This feature is called blacklisting a substring, and will be further explained on 

this thesis. Another extra feature that SigGen includes is the possibility to split the 

flows into control and data flows; in order to decrease the noise caused by packets 

with different purpose, mixed up on the same flows set. The input of the algorithm is 

a set of sample flows which belongs uniquely to a certain known application and 

gives as output signatures capable of identifying such application. It is out of the 

scope of this thesis to explain how the sample flows were captured. It is worth 

mentioning that a process sniffer was used to capture only the traffic that was 

generated by a certain application, dumping it to a file. All the flows were captured on 

a machine connected to the GPRT (Network and Telecommunication Research 

Group) local area network, which is part of the UFPE (Federal University of 

Pernambuco) network, which is connected to the Brazilian RNP (National Research 

Network).  

The sample flows are organized on a hash table, where they are going to 

be stored. Even though hash tables offers a better access time on elements 

searching, most of the signature generation time will be spent on sequential iterations 

through all flows. The reason why a hash table was chose is to ease the flow‟s 

payload mount phase. A hash function is calculated for each packet of the trace file 

and the payload of the first 10 packets is mounted sequentially and stored on a 

correspondent flow structure. Besides Moore et al. [4], other studies proved that by 

analyzing only the first packets of a flow it is enough to classified such flow [12]. If the 

sample flows are a very large set, the algorithm may require a large amount of 

memory, since during all phases the data (from the first 10 packets) of the sampled 

flows will be kept on memory. Tables showing the memory required by different sized 

traces will be presented on Section 5. If the user wants to divide the sample flow into 

control and data, he must inform a packet size limit. It is recommended that the user 

runs the PatternGen (which will be explained later on this thesis) to see graphically 

the packet size distribution of the application packets. Data flows tend to be larger 

than control ones. SigGen divides the flows according to the packet size informed; 

mounting the large sized ones separately from the little sized and then processes all 

phases for both data and control flows, generating different substrings.  
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The first phase on the generation process, called shingles generation, 

consists of dividing the payload of each flow into small and equal lengthened pieces 

of data, called by Mingjiang Ye et al. shingles. A common substring can produce a lot 

of common shingles. For example, „BitTorrent‟ is a common substring in BitTorrent 

protocol. When shingle size is 5, there are 6 common shingles from the common 

substring, which are: „BitTo‟, „itTor‟, „tTorr‟, „Torre‟, „orren‟ and „rrent‟. A flow payload 

data division into shingles is represented by Figure 4.  

 

Figure 4 - Shingles Division 

 

The data pieces that appear frequently in more than a certain amount of 

flows will be extracted and kept on a separate common shingles table that maps 

each shingle with a set of unique flows containing it. Figure 5 represents this 

common shingles table.  

 

Figure 5 - Shingles and unique flows table 

One can notice that the reason why flows were chosen is because the 

signatures will be used on flows identification, not on packets identification. Extracting 

the shingles that appears commonly on a certain amount of packets will lead to poor 

traffic classification, once it may happen that a certain shingle appear more than once 
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on a single flow, but do not appear constantly on the rest of the samples. As stated 

by Mingjiang Ye et al., application signatures usually tend to be smaller than worm 

like signature. To circumvent that, small shingle sized are extracted from the flows, 

being the length four the most adequate, as showed by Mingjiang Ye et al. For 

precision reasons and to ease the comparisons and implementation, the „00‟ hex 

decimals characters were extracted from the flows payload. There also exist some 

regular expressions matching libraries that do not recognize „00‟ hex values.  

After extracting common shingles and storing them on a separate table 

that stores the unique flows in which the shingles occur, SigGen needs to merge the 

encountered shingles to transform them in larger substrings. The substring 

aggregation phase consists of merging the most common pieces of data found, if 

they are overlapped or adjacent, and test if these combined substrings appear in a 

certain parameterized amount of flows. SigGen tries to merge each shingle from the 

common shingle table without concerning to order. The process is done sequentially. 

If it reaches the end, and a merging has occurred, it rewinds to the beginning and 

continues, till no merge happen. SigGen implements the adaptive merge algorithm 

proposed by Mingjiang Ye et al. Before explicit the adaptive algorithm, let‟s discuss 

about the most simple substring merge algorithm, the greedy merging.  

This algorithm consists in simply merging two substrings if they are 

overlapped or adjacent, and then this merged substring can be further merged with 

others substrings. The algorithm does not take into account the relevance of this 

combined substring on the sample flows set. For example: while generate substrings 

for a famous Chinese IP2PTV application called tvants, a generator can separate two 

common shingles to merge, “TVANTS” and “ SHARE”. If it checks on the data stored 

from the sample flows, it will discover that there are many occurrences of the 

substring “TVANTS SHARE”, proving that this two shingles are adjacent.  But the 

string “TVANTS” by itself, appears in much more flows than the combined one. So 

the greedy algorithm would produce a substring that recognizes fewer flows. 

The adaptive merging algorithm focus on generating substrings that will 

classify as many unique flows as possible. Using the most common shingle table as 

input the merge score for shingle X and shingle Y is given by the formula illustrated 

by Figure 6. 
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Figure 6 - Calculating shingles merging score 

Flows(x) represents all the unique flows mapped by the most common shingle table, 

flows(xy) means all the unique flows containing the combination of shingle x and y (if 

they overlaps the combination will be a proper merging of them, if not, it is assumed 

that they are neighbors and a simple concatenation is made) and flows(x) U flows(y) 

means all the unique flows that contains both shingle X or shingle Y. To merge two 

strings SigGen compares the value returned by the formula with a parameterized 

value S, ranging from 0.0 to 1.0, which can be given by SigGen as an input by the 

user. If the user does not inform the S, 0.8 is the default value used. If the calculated 

value returned by the formula is equal or greater than S, the two shingles are 

merged. Figure 7 extracted from the Mingjiang Ye et al. work, illustrates an example 

of its use. Regard that AutoSig uses 0.9 as the default S value. 

 

Figure 7 - Adaptive merging algorithm 

 

After trying to merge all the shingles, SigGen, checks the resulting 

substrings with a blacklist configured by the user. The blacklist consists solely by 

strings that shall not be considered if pointed by the substring merging phase. These 

blacklisted strings tend to be ones that do not identify uniquely the application 

protocol begin analyzed. SigGen simply discard the string that are equal to a 
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blacklisted one or contains a blacklisted as a substring. In this same step, SigGen 

also discard substrings that are contained on others, being or not on the blacklist. 

On the signature construction phase, the substrings are arranged on a 

sibling tree like structure (Figure 8), in which a parent has a list of children, all of them 

brothers, in order to combine two substrings on the same signature.  

 

Figure 8 - Sibling Tree 

 

Each node of the tree represents a substring and the root node is the 

empty string. If the flow set containing a substring Y is a subset of the flow set of 

another substring X, the node representing Y will become a children of the X node‟s, 

if not they will become brothers. It means that the set of flows of X contains not only 

the substring X but some of them also contain the substring Y. After constructing the 

tree, a path from the root to any leaf will become a signature. The main difference 

against the AutoSig signature construction phase is that they do not use sibling trees. 

As mentioned before, the tool cannot generate signatures totally autonomously. After 

the generation phase, a human is needed to manually refine the generated 

signatures by changing the parameters values to create more refined signatures. 

Figure 9 shows the command line help of the SigGen tool. Options –M and –c are the 

adaptive merge score and the percentage of flows that a given shingle most appears 

to be added on the common shingles table respectively. Their default values are 0.8 

and 0.1. The user also has the possibility to generate a signature file that can be 

used by both the PatternGen and the TrafficGen tools.  
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Figure 9 - SigGen command line help 

4.2 The Pattern Generator (PatternGen)  

This Section aims on describe the PatternGen tool, which will generate a 

series of histograms that may help the use of the SigGen tool and to construct the 

traffic generator (TrafficGen) configuration file.  

3.2.1 The Patterns Generated 

The histograms generated by the PatternGen tool are listed below: 

 Application packet size histogram: This histogram represents the packet 

size distribution of a given application. 

 Signature packet size histogram: Instead of create a unique distribution 

packet size histogram for the entire application, it can generate a 

distribution packet size for each signature. The signatures can be informed 

as an input file and can be generated by the SigGen tool or can be 

handmade.  

 Signature offset histogram: PatternGen can generate a histogram 

containing the offsets of the payloads that carry a given signature. This 

feature might be useful while building regular expressions. 
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 Signature Flow Packet Occurrence: This feature generates a histogram 

that represents in which packet of a certain flow a given signature 

appears. For example, it can tell that the signature “BitTorrent” usually 

appears with more frequency on the 5th and 6th packet of the sample flows. 

The number of bins and the upper limit on the X axis of the histogram can 

be informed by the user. It is also possible to generate different histograms for UDP 

and TCP packets separately. Figure 10 illustrates the patternGen command line help.  

 

 
Figure 10 - PatterGen command line help 

4.3 The Traffic Generator (TrafficGen)  

After creating the application signatures with SigGen and include then on 

his DPI system, an ISP administrator may want to verify if they are working properly. 

If his DPI works online, the administrator can use the TrafficGen to create detectable 

traffic between two nodes on a Local Area Network. TrafficGen generates flows 

following a configuration file, in which the user can set the amount of traffic for a 

certain application class, configuring the traffic profile generated. For example, the 

traffic can be 80% constituted by P2P file sharing applications and 20% of normal 

Web flows. Each application class can have different percentages of per-application 

traffic. Performance and memory required to run the TrafficGen will be shown on 
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Section 5. It is not the focus of the tool to be a real traffic simulator, like the discrete 

event network simulator ns-2 [23] environment. The goal of TrafficGen is only to 

produce configurable and detectable application flows for DPI systems classification 

tests. 

3.3.1 The Configuration File 

In order to create a totally controlled traffic, following a packet size 

distribution, a payload format, and a traffic application profile, the user must configure 

a XML that will be parsed and interpreted by TrafficGen. Figure 11 brings an example 

of a valid XML accepted by TrafficGen.  

 

 
Figure 11 - Xml configuration file 
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The tag “CLASS” specify each application class that will be considered on 

the traffic generation. Each XML can have as many classes as the user wants. 

Section 5 has some comparisons between the number of application classes and the 

TrafficGen performance. The “WEIGHT” tag inside “CLASS” represents the 

percentage of the traffic that the class will have and the tag “NAME” only show its 

name, for indexing purposes. A class can have as many “SIZE” tag as it needs. Each 

“SIZE” tag represents a bin of the IP packet size histogram distribution that this 

application class follows. “SIZE” tag will be further explained later. Every class 

contains one or more “APPS” tags, which describes a certain application that belongs 

to that class. Figure 11 has the description of a P2P class that will be responsible for 

20% of the generated traffic, containing only one application; in this case it is the file 

sharing application BitTorrent.  

The “APPS” tag will contain only one “PATTERN” tag that will describe the 

application‟s signature to be placed on the generated packets‟ payload. The pattern 

can be the same signature generated by SigGen tool. If the user wants to add more 

than one signature per application, he must be aware of the amount of traffic that 

each signature will represent on the total belonging to that application. The 

“WEIGHT” tag represents the contribution that this application will has on the total 

traffic of the application class. The “PROTO” tag means the UDP or the TCP 

transport Layer protocols that the application might use. A single “APPS” tag can only 

have two “PROTO” tags, TCP and UDP. Each “PROTO” may have as many 

“ORDER”, “OFFSET” and “SIZE” tags as the user wants. The “ORDER” tag 

describes each bin of the flow packet order histogram in which the signature is found.  

“SIZE” represents the same as it did inside the “CLASS” tag, but instead of 

representing the entire application class packet size distribution, it describes only the 

distribution of a certain application that uses “PROTO” as its transport protocol. If the 

“SIZE” inside a “PROTO” tag is greater than the “SIZE” of a “CLASS” tag, the 

protocol size will be the one chose, otherwise the class one will. “OFFSET” 

represents where the signature pattern will be placed inside the packet‟s payload, 

i.e., in which offset of the payload the pattern will start. This three tags have the tags 

“FROM”, “TO” and “OCCUR”, and they represents the same for all. “FROM” means 

the upper bound of the bin, “TO” means the lower, and “OCCUR” means the 

occurrences on that bin. TrafficGen uses the medium value of the bounds to 
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represent the bin. If the application uses both TCP and UDP as its transport protocol, 

the tag “WEIGHT” sets the amount of traffic that each protocol will represent on the 

traffic of that application. 

3.3.2 TrafficGen Architecture 

 

Figure 12 - TrafficGen architecture 

The TrafficGen architecture consists of five components. Figure 12 shows 

a big picture of the architecture. A dashed line from one component to another 

means that it uses the other features to implement its goals. Figure 13 shows the 

components interaction as a sequence diagram. 
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Figure 13 - TrafficGen Components Sequence Diagram 

The MainControllerC controls all the TrafficGen execution. This 

component is responsible for initiate the global variables, parse the command line 

options, initialize a PF_PACKET socket (see Section 2 for more details) with the 

egress interface, and set the TrafficGen process‟s priority and initialize the thread 

that will be responsible for parse the XML file, create the flows, create the packets for 

each flow and send the traffic. It is also possible for TrafficGen to work multithreaded 

as show Figure 14. On multithreaded executions, each thread will have its own 

instance of each component, to avoid complex synchronizations, and its own socket 

with the interface.  
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Figure 14 - Multithreaded Architecture 

The FlowGeneratorC is responsible for creating the flows. Before begins 

the packets transmission, TrafficGen creates a pool of flows, to avoid consuming the 

CPU while transmitting the packets. It creates for each application a UDP and a TCP 

flow containing 150 packets. If the application only uses TCP as its transport 

protocol, the UDP flow will never be sent nor will packets be created for it. 

FlowGeneratorC uses the XMLParserC component to parse the xml configuration file 

and store it on hash tables, mapping a given application class to its respective 

weight, each single application to its weight and so on. After the parsing, 

FlowGeneratorC creates the packets using the PacketCreatorC component for each 

flow, following the traffic profile configured. To decide which application packet will be 

sent, which size the packet will have, and so on, PacketCreatorC generates a 

random number, ranging from 0 to 1, and choose how the packets will look like 

according the weights of the xml file. For example, if PacketCreatorC generates 0.7 
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randomly to choose which size a packet will have, the bin representing 70% of the 

selected application packet size, according to the xml file, will be chose. 

PacketCreatorC also includes the Ethernet (TrafficGen only works with Ethernet 

frames), IP and TCP or UDP headers on the packet. All packets belonging to a flow 

will have the same source and destination ip addresses and the same source and 

destination ports numbers. 

PacketForwarderC will execute right after the flows creation. It is 

responsible for sending the packets through PF_PACKET sockets, and will loop 

forever till the user terminates the process by typing CTRL+C, making the 

MainControllerC stop the forward routine. If TrafficGen is running with multithreads, 

each thread will have a different socket with the same interface. Currently TrafficGen 

only transmit packets through a single NIC. If all the packets of a certain flow have 

been sent, TrafficGen starts sending the flow again from the beginning. Figure 15 

shows TrafficGen command line help. TrafficGen allows the user to inform the source 

and destination IPs to be placed on the packets, as well as the source and 

destination MAC address. 

 

 

Figure 15 - TrafficGen Command Line help 

 Figure 16 presents an example of a packet generated by TrafficGen on 

the interface of a very popular network protocol analyzer (also known as a traffic 

sniffer) called wireshark [24]. As is shown, TrafficGen places the signature on the 
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exact offset of the payload, indicated on the XML configuration file, and fills the rest 

of the payload with random characters. 

 

 

Figure 16 - TrafficGen Generated Packet on Wireshark 

 

3.3.3 Controlling the generation rate 

Generate traffic on controlled rates are important to organize a network 

testbed environment. Different machines generating packets on random rates are not 

well suited for large scale tests, speacially on DPI system online tests. TrafficGen is 

capable of control the packet forwarding rate in Mbits/s, through an input value given 

by the user.  

To implement the rate control, TrafficGen sums all the bits sent by the 

NIC. Assuming that the user chose 500Mbits/s as its preferable rate, TrafficGen will 

divide a second into ten 100 ms (microseconds) bins. Dividing 500 by 10, TrafficGen 

discover that it will need to send 50 Mbits during 100ms. If the summing of the sent 

bits reaches 50 Mbits, or more, and 100ms has not been elapsed, TrafficGen sleeps 

for the rest of the time, till 100ms, using the Linux nanosleep function. Nanosleep 
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was chose due to its nanosecond timing resolution. If TrafficGen sends 50 Mbits in 

more than 100ms, it does not sleeps and continue sending packets on the machine 

maximum speed. 

The decision to divide the second into ten 100ms bins was made to avoid 

a high burstiness on the first portion a second of the generation traffic, which could 

make a switch or a router discard packets. If TrafficGen do not divide the second, on 

the first microseconds of a second the NIC was going to transmit packets on the 

maximum speed that it could and would sleep till one second elapsed, generating 

burst on the beginning of a second. Reducing the bursts on windows of 100ms, 

distribute the rates on a more uniform manner, decreasing the loss probability.  

TrafficGen only permits speed control on its single thread version. The multithread 

version generates packets at the NIC full speed. 
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5 EVALUATION AND RESULTS  

In this section, the results of the evaluations performed on each tool are 

presented. For each tool are presented different results. For SigGen, are presented 

some signatures from famous P2P applications such as BitTorrent, Ares, and Emule 

and from a web streaming application such as Sopcast. It was also generated 

signatures for IP2PTV applications such as Tvants and Tvuplayer. Both are very 

famous Chinese TV broadcast applications. Besides the signatures, this Section 

presents the memory requirements for different sized trace files, the influence that 

the parameters have on the generation process and the precision of the signatures 

on flow classification.  

For PatternGen, are presented some histogram generated by the tool for 

each option that it provides. To evaluate TrafficGen, some performance tests were 

needed. The maximum throughput (in Mbps) that the tool could perform for different 

numbers of applications as well as the memory required on each test.  

5.1 Evaluating the Signature Generator (SigGen)  

In order to provide a proof-of-concept that SigGen is capable of 

automatically generate signatures for applications protocols, this section will present 

some of the patterns founded by SigGen. Table 5.1 shows the packet trace captured 

by the already mentioned process sniffer. 

Table 5.1 - Trace File captured for SigGen 

Application Trace File size Number of Flows 

BitTorrent 1.1 GB 32404 

Ares 14 MB 3097 

Emule 115 MB 5890 

Sopcast 337 MB 1724 

Tvants 162 MB 1256 

Tvuplayer 504 MB 4482 

 

SigGen were evaluated while generating signatures for all the applications 

on Table 5.1 in all aspects. Considering different values of the merge score 
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parameter and different types of common substring selection threshold, the relevance 

of these parameters on the number of substrings generated will be presented as 

follows. Figure 17 shows different values of the common substring selection 

threshold the number of substring generated, without dividing the flows into data and 

control. Remember that this threshold ranges from 0 to 1. For the tests performed on 

Figure 17 the merge score parameter had the same value 0.4 for tests performed for 

each application. 

 

 

Figure 17 - Common Shingle Selection Parameter Variation 

 

As expected, the amount of substring generated with values close to 0 is 

bigger than with values close to 1. This happens because it is very difficult to have 

patterns that are present in more than 70% of the flows, but this may vary from 

application to application. The user must set this parameter empirically for each 

application trace file, trying to find signatures that occur in the maximum numbers of 

flows as possible. 

Figure 18 shows the relationship between the numbers of generated 

substring with the merge score parameter. As the common substring selection 

threshold, the merge score also ranges from 0 to 1. 
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Figure 18 - Merge Score Parameter Variation 

One can infer from Figure 18 that depending on the application trace file, 

lower merge score values tends to generate fewer substrings than higher ones. This 

is explained by the fact that for lower merge score values, the resultant merged 

substring must appear in fewer flows, making SigGen merge the substrings more 

frequently. With higher merge score values, SigGen may not merge the strings 

correctly, creating the signatures as shorter sequences. Regard that if it is used lower 

values of merge score, SigGen will work similar to the greedy merge algorithm, 

generating unspecific and generic signatures. It is important to understand that these 

results were obtained with the trace files illustrated on Table 5.1. For different traces, 

the results probably will not be similar. 

Table 5.2 - SigGen memory usage 

Application RAM Memory Required 

BitTorrent 1,92 GB 

Ares 44 MB 

Emule 171 MB 

Sopcast 451 MB 

Tvants 94 MB 

Tvuplayer 1,055 GB 

 

Table 5.2 show the average amount of RAM memory required to generate 

the signatures from the applications protocols. Large trace file requires more memory 



51 

 

than small ones because the flows payload must be kept on the memory during all 

signature generation process. A copy of the flows must also be stored to compose 

the common shingles and unique flows table, although this table will only have the 

basic flow attributes (same protocol, source and destination IP addresses and port 

numbers), without needing to store the flows payload. If many common shingles are 

selected, and there are many flows on the trace file, SigGen will need GBytes of 

RAM memory. If the machine supports memory swapping, SigGen will work properly 

even with large trace files, although it may lead to a poor performance, due to the 

necessity of page swapping by the OS memory management process, and may 

compromise the use of the machine by others concurrent processes. The biggest 

tested file was 1 GB, as can be seen on Table 5.1. 

 

Table 5.3 - Signatures Generated 

Application Signature 

BitTorrent [\0x13BitTorrent Protocol\0x20]; 

Ares [\0x08\0x01\0x02\0x01\0x06]; 

Emule [0x02\0x01\0x01\0x18http://emule-

project.net\0x03\0x01\0x11]; 

Sopcast [\0x05(\0x05\0x02];[\0x13\0x88\0x02\0x02]; 

Tvants [TVANTS SHARE\0x08\0x06\0x11\0x01PV\0x11]; 

Tvuplayer [\0xFF\0xFF\0xFF\0xFF\0x13\0x88\0x02\0x02]; 

 

Table 5.3 shows some signatures generated by SigGen for the traces 

presented on Table 5.1. Table 5.3 only has the most relevant signature extracted 

from the sample flows with SigGen, i.e., the patterns that appeared on more sample 

flows as possible. Some signatures were generated by using the blacklist and the 

flow division feature. Many signatures pointed by SigGen may lead to poor 

classification, biasing to false-positives. This may happen because SigGen can 

encounter patterns that are only common on the used trace file. For example, on the 

BitTorrent tests, SigGen pointed the hash value used to identify the file being 

transferred as a common string. Although it indeed was presented on many flows, it 

will not be a good pattern to classify flows with a DPI system, because it is too 
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specific for the trace collected. To circumvent these problems, the user can use the 

blacklist feature, to discard signatures that he knows that can lead to false-positives 

on future classifications. 

5.2 Evaluating the Pattern Generator (PatternGen)  

To evaluate the PatternGen, this Section will expose the histogram that 

can be generated with it. PatternGen generates the histogram on two different types 

of files; a text file, representing each bin of the histogram and its occurrence, and a 

PNG graph file generated with the Linux GNU Scientific Library (GSL) [22].  

 

Figure 19 - Tvants Packet Size distribution File 

Figure 19 and Figure 20 illustrate a histogram text file containing all the 

bins of the histogram and an application packet size histogram graph generated by 

PatternGen for Tvants application trace file, mentioned on Table 5.1, respectively.  
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Figure 20 - Tvants packet size distribution graph 

PatternGen creates the histogram File because the user may use it to 

configure the TrafficGen XML profile if the bins values. The graph is generated to 

make possible for the user to visualize all the modes of the histogram, to choose one 

bin as the Data-Control flows division limit, before execute SigGen. On Figure 20 

graph, 800 lengthened packets could be the application Data-Control flows division 

limit, as this histogram seems to be bimodal.  

The user can generate a packet size histogram for each transport layer 

protocol, UDP and TCP, once many applications uses TCP for control traffic and 

UDP for data transfer. Figure 21 and Figure 22 illustrate the same tvants distribution 

for UDP and TCP protocol, respectively.  
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Figure 21 - Tvants TCP packet size distribution graph 

 

Figure 22 - Tvants UDP packet size distribution graph 
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As expected, Figure 21 and 22 kept the bimodal characteristic of the 

distribution. By looking at the Figures, it is noticeable that the TCP traffic are mostly 

composed by small sized packets, probably with control responsibilities, and the UDP 

are used to transport large data files. These insights are very valuable to SigGen, 

once the user can generate signatures to identify solely control or data flows. 

 The others histograms generated by PatternGen are similar to those 

presented on this Section. Another interesting option that PatternGen offers to the 

user is the possibility to visualize a histogram containing the exact position that the 

generated signature appears on the packets‟ flows payload. Figure 23 shows a graph 

of the signature “TVANTS SHARE\0x08\0x06\0x11\0x01PV\0x11”, from tvants 

application, generated by SigGen. 

 

 

Figure 23 - Tvants signature offset distribution 

 

By Figure 23 one can see that the signature occur more often on the 25th 

byte of the packets‟ payload.   
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5.3 Evaluating the Traffic Generator (TrafficGen)  

TrafficGen, as a traffic generator tool, will be evaluated by different 

aspects. One aspect is the total transmission throughput, measured in Mbps (Mega 

bits per second) and in Mpkts/sec (Mega packets per second), once it is important to 

quantify its generating capabilities. A comparison between the single thread and 

multithread versions will be presented, as well as the total RAM memory required and 

the CPU usage rates. Another important aspect is the scalability of the tool, while 

generating traffics for different numbers of class and per applications classes. A 

graph containing its measurements will be provided on this Section. The machine 

used for the traffic generation is described on Table 5.4. 

Table 5.4 – Traffic Generator Machine Configuration 

Machine Processor 
RAM 

Memory 
Administrative NIC 

Traffic 

Generator/Receiver NIC 
HD 

Operating 

System 

M 
Intel Xeon X3210 

Quad-core 
4GB DDR Onboard Gigabit Offboard, 3Com Gigabit 

3x 500GB 

Sata HDs 
Linux, 2.6 

4.3.1 TrafficGen Throughput   

Figure 24 and 25 shows the transmission rates achieved by TrafficGen 

single thread and multithread version, respectively. The machine generated traffic 

through 20 min each. 

 

Figure 24 - TrafficGen Single Thread Version 
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Figure 25 - TrafficGen Multithread Version 

On its single thread version, TrafficGen reached an average throughput of 

630 Mbits/s, transmitting 0.51 Mpkts/sec creating 1200 different flows from three 

different applications. It was needed to verify its performance on packets per second 

to see if it could generate high rates even with small sized packets. The packets 

generated on these tests were 112 Bytes sized from IP to application OSI layer, 

excluding the Ethernet frame portion. The transmission throughput generated by the 

multithread version was not much different than the single thread, reaching 750 

Mbits/sec on average, sending 0.61 Mpkts/sec, creating 4800 different flows from 

three different applications. The same IP lengthened packets were generated. 

Although the throughput have not improved much on the multithread version, in terms 

of packets per second it could create 0.1 Mega extra packets per second, which is a 

very considerable improvement, making the multithread version more suitable for 

send small sized packets.   

Table 5.5 shows the memory consumed and the CPU used by each 

TrafficGen version. Regard that the single thread version is capable of control the 

generation rates, while the multithread works on the machine and NIC maximum 

speed, although the throughput tests were conducted without rate controlling. The 

390% CPU usage is the sum of the four machine cores. 

 



58 

 

Table 5.5 - TrafficGen memory and CPU requirements 

Version CPU usage RAM memory used 

Single Thread 100% - one core 278 MB 

Multi Thread 390% - four cores 1,04 GB 

4.3.2 TrafficGen Scalability  

It is important to test TrafficGen on different scenarios to see how it 

behaves and scales. To tests its scalability, while executing with different kinds of 

traffic profiles, tests with 10, 20, 30, 40 and 50 different applications were made. The 

most relevant scale attributes considered on each test where the memory required, 

the total throughput in Mbits/sec and in Mpkts/sec.  All the tests were performed with 

the Single thread version running at its full capacity, without the rate control option, 

and the configuration XML files with the same packet size, to not add a difference on 

the total traffic outputted in Mbits/s between the tests. Additionally, the tests were 

executed for 20 min each.  

Table 5.6 shows the different amount of memory required for each 

TrafficGen execution. 

 

 

Table 5.6 - Scalability Memory Requirements 

Number of Applications RAM memory required 

10 661 MB 

20 1,27 GB 

30 1,89 GB 

40 2,26 GB 

50 2,95 GB 

 

As expected, when more applications are added to the traffic profile XML, 

more memory TrafficGen will consume. This happens because it is necessary to 

keep all the flows, and its packets, on memory during the execution. Hence, more 

applications implicates on more memory usage.  



59 

 

Table 5.7 shows the average throughput in Mbits/sec and in Mpkts/sec for 

each different test. 

 

Table 5.7 - Scale Throughput 

Number of Applications Throughput in Mbits/s Throughput in Mpkts/s 

10 590 0.455 

20 582 0.440 

30 578 0.422 

40 572 0.384 

50 556 0.358 

 

As expected, by adding more applications to the configuration file the 

throughput in Mbits/sec and in Mpkts/s produced by TrafficGen reduces. This 

happens because TrafficGen must decide, by generating random numbers, which 

packet from which application will be sent on the socket. With more applications, 

more complex this decision will be. Regard that this result were achieved on the 

machine described by Table 5.4.   
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6 DISCUSSION  

In the previous section a set of tools aiming at ease the work of an ISP 

administrator of construct, maintain and update signatures for its DPI systems were 

described. SigGen generates new signatures, pointing out the most common patterns 

that appear on a set of pre-captured sample flows, PatternGen creates histograms 

and helps to characterize the generated signatures and finally TrafficGen creates real 

point to point traffic flows, with packets containing detectable signatures by DPI 

systems. 

Although the tools aid the ISP administrator on signatures construction 

and deployment, a human intervention is still needed, due to the specificities that 

each application has in face of the others, turning the parameters calibration a 

difficult task. Besides that, to generate signatures capable of classify as many flows 

as possible, within a high precision, it is important that a human check the signatures 

found and evaluate them, discarding false-positives and noise patterns. Finally, if a 

DPI works with regular expressions, further analysis may be required to turn the 

substrings into RegEx. SigGen is also requires a lot of memory to run its 

experiments, which can make its performance less efficient due to the necessity of 

pages swapping. SigGen also does not shows the volume in bytes involved on the 

flows that carry a certain generated signature. This are a very important statistic, 

because a signature can appear in many flows, but these flows may not represent a 

lot of traffic in bytes. Additionally, the sample flows used as input can impact directly 

on the generated patterns. The tools presented here plays an important role on the 

signature generation process, in which they can reduce the time spent on the most 

critical task, which is the most common and relevant substrings identification, besides 

the possibility of test the new signatures on real traffic simulations.   

Additionally, it was not evaluated on this thesis how TrafficGen works on 

real online DPI tests, in order to check how it is respecting the configuration XML file, 

due to the lack of a DPI system that could recognize the generated signatures. Build 

one was out of the scope of this thesis. Further tests must be performed, in order to 

evaluate if its precision is accurate and if it can be largely used by DPI systems 

manufactures on online tests. Only offline tests, to check if the packets were being 

correctly created, during its construction were performed. 
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7 CONCLUDING REMARKS AND FUTURE WORKS 

This thesis presented a set of tools that might be used by DPI system 

maintenance personnel to construct, update and test the signatures used on traffic 

classification. The time spent to perform this task will be reduced, and the necessity 

of extra consultancy from a protocol expert will be discarded. Besides reduce the 

signature construction time, the tools aid the user to build more efficient and accurate 

signatures, making its DPI system more reliable on traffic classification. 

The signature generator, SigGen, proved to be very effective on 

signatures creation, although it uses too much memory and must have its parameters 

calibrated manually, which make it less automatically, but ease the signatures 

construction job. It is better to use SigGen with large trace flows file, although it may 

require more memory, it will generate more accurate and specific signatures. To 

reduce the noise on the generated signatures, it is recommended to divide the flows 

into Data and Control, as well as the blacklist feature, to discard probably false-

positives patterns. A further study on its memory usage is required on future works, 

besides an extended analysis on the viability of an automatic parameter calibration to 

avoid the human intervention dependence. Inform the amount of bytes the flows that 

carry a specific signature is also a good contribution to be further included. More 

tests with the signatures precision shall also be included.  

PatternGen usage is very straight-forward and must be used as an extra 

tool on signature characterization, to analyze the exact position of the signatures on 

the packets‟ payload and to know exactly in which flow‟s packet it appears, besides 

to have a further analysis on the protocol that carries the signatures most commonly 

and how is the average packet size. These are very important characteristics to build 

more efficient DPI system signatures. 

Finally, the traffic generator TrafficGen is a tool that provides to the user 

the possibility of test its new signatures online, by generating point to point 

configured traffic, controlling the generation rates, the traffic profile per application 

class and per specific application. TrafficGen can also be used for network stress and 

DPI performance tests. Test TrafficGen online on a real DPI system that can identify 

the signatures being sent is an important aspect to be analyzed on future works. 
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