Federal University of Pernambuco
Graduation in Computer Science
Informatics Center
2009.1

Author: Alysson Feitoza Santos (afs5@cin.ufpe.br)

Advisor: Djamel Sadok (jamel@cin.ufpe.br)
Co-advisor: Stênio Fernandes (stenio@gprt.ufpe.br)

Recife, March 03, 2009
Table of Contents

31.
Present Context

42.
Related Work

53.
Project Description

53.1.
Signature Definition

53.2.
The Generation Algorithm

64.
Work Plan

6References

1. Present Context
Internet Service Providers (ISP) and network administrators want to identify the kind of traffic that is passing through their backbone, in order to better serve their customers, by offering them a high quality of service, and to plan and manage their infrastructure. Classifying network traffic according to its applications is a very important matter for a broad range of network areas, including traffic shaping, differentiated services, QoS improvement and billing. These are very important concerns to ISPs.
Many studies have been conducted in the traffic classification area, leading to the development of many classification methods. Some of them, like port based classification are no longer effective, due to dynamic port usage by some applications, especially P2P, and to traffic tunneling, for example, over HTTP. Other techniques used to classify network traffic are Machine Learning algorithms, application communication behavior analysis and payload based methods.

The Payload based methods are very effective and precise at traffic identification. They consist of inspecting the entire payload of a packet, seeking signatures and patterns which can point to a unique application. Once the payload matches a signature, we are able to classify the packet and tell which application it represents. This method is also known as Deep packet inspection (DPI) and is a very time consuming and a process intensive activity, even when it is done off line (on a previously captured trace file). Due to their high precision, DPI systems are broadly used both in the scientific community and by private companies.
A signature is a portion of payload data that is static and distinguishable for applications, which can be described as a sequence of ASCII characters or hex values. Such approach is not new to the Internet worm research community [6] (e.g., intrusion detection systems); however, their focus is limited to identifying the security threatening traffic only. In this work, we focus on the application identification among innocuous traffic which widens the target traffic to be identified.
The usage of regular expressions to describe application signatures is becoming very common in flow (a flow is the 5-tuple: source IP address, source port, destination IP address, destination port, and protocol) classification, due to the fact that it can provide a very efficient matching mechanisms. However, if the regular expression is not constructed correctly, it can ledd to a poor classification, besides it requires a lot of computational power, which is not scalable for an online traffic identification. Despite this, a lot of DPI systems use regular expressions to represent an application signature. The Snort intrusion detection/prevention system (IDS/IPS) has more than 1000 application signatures and offers the user the possibility to insert new regular expressions on demand.
In order to achieve a high precision of traffic identification with DPI systems, the signatures used on the matching process must be well constructed and very application specific, to avoid false positives, i.e., misclassifications. Most of the time, the applications are extracted manually by a network specialist, which requires a preceding knowledge of the application’s protocol being studied or an empirical packet payload inspection for pattern recognition. Both activities are very time demanding which turns difficult the signature maintainability and update process. Sometimes this process may become even harder, by the fact that many protocols specifications are proprietary, i.e., not available to the community.
2. Related Work

Researchers have done a lot of work in classifying network traffic according to the applications. In addition to the native port based method, there are some new methods including machine learning algorithms based on flow statistical information [2], application communication pattern based methods [9] and payload based methods[4].
The machine learning techniques classify network traffic using flows information and traffic characteristics, such as average size of packets, inter arrival time between packets, protocol usage, etc. McGregor et al. [4] used machine learning techniques for clustering flows, in order to achieve a high precision of the classification, but they found that some applications couldn’t be well classified with this approach. ACAS [4] uses the first N bytes payload as the input to train a machine learning model and uses it to classify flows. However, using the first N bytes payload directly may introduce too much noise during the training phase.

Mingjiang Ye et al. [9] introduced a behavioral method to classify P2P traffic, by studying the characteristics of P2P applications. They recognize a P2P flow by checking pieces of data being downloaded and uploaded. If a flow has the same data block on an upload and on a download flow, inside a parameterized time interval, the associated flows are classified as P2P.
Moore et al. use application signatures to classify network traffic in [4]. They use the signatures in two ways, one is searching them in single packets and the other is searching them in the first 1KB payload of flows. They have pointed out that matching signatures in first 1KB payload is enough for classification, which could help to generate signatures more quickly and with less memory usage. They have not discussed how to generate signatures. Sen et al. manually analyze the several P2P protocols to get the signatures in [11]. Their signatures were very precise and well constructed, but the amount of time spent on the generation phase was not minimal. Their methods used the common strings appearing on the applications flows to generate signatures.
Automatic signature generation tools have been studied recently in worm detection area [5][6][7], like the EarlyBird systems, which generates overlapping fixed-length content block over each byte offset for each sample flow, and extracts the content blocks appearing many time as a whole signature. Since common substrings found in application protocols are very short [1], the EarlyBird approach is not applied to generate application signatures. The Autograph system [6] divides payload of flows into variable-length content blocks using Content-based Payload Partitioning schema. The number of generated strings is reduced, but short common strings can be missed using the partition schema.
Besides the worm signature generators, as mentioned previously, there are some works aiming at application signature generation. Byung-Chul et al. [2] have studied the application signature generation problem. They propose the LASER algorithm which tries to find the longest common subsequence among samples. The longest common subsequence is extracted from sample flows to be the signature of the given application. The algorithm compares two samples to get the longest common subsequence between them, and then compares it with other samples iteratively to refine it. Their paper showed that it is a challenge to generate signatures when there is a lot of noise on the samples, for example, common substrings that repeatedly appear on the sample flows, but do not belong to the application protocol. It is worth mentioning that they generated signatures in form of substrings, not as regular expressions
Mingjiang Ye et al. [1] built a tool called AutoSig, to automatically generate application signature, by combining the techniques used on the Autograph and on EarlyBird systems. Their algorithm consists in dividing the payload of a set of flows in short substrings called shingles, extract the ones that constantly appear in a certain amount of flows and merge these then, if they overlap or are neighbors. As the LASER algorithm, they also generated signatures in form of substrings, not as regular expressions. Even though their signatures led to a very good flow classification, they needed to calibrate some commonality threshold parameters used by the algorithm manually, in order to achieve a perfect signature, which reduces the automation of the process.

3. Project Description

This work focus on the construction of a tool capable of generating automatically applications signatures for deep packet inspection systems.

3.1. Signature Definition

The tool will generate strings in form of substrings, as the LASER [2] and AutoSig [1] did. The generated substrings will represent uniquely an application and can be used for traffic classification. The signatures can be generated as a sequence of Hex values, if it is not printable, or as sequence of ASCII values, if it is printable, just as the samples signatures extracted from [1] showed in table 1.
	Application
	Signature

	FTP
	[220\0x20];[220\0x20][FTP\0x20server\0x20];

[221\0x20Goodbye];

	HTTP
	[HTTP/1.]; [GET\0x20/][HTTP/1.];

Table 1; Sample AutoSig Signatures. \0x20 means a blank space in Hex.
As the signature on table 1, the signatures maybe a single string, like “[HTTP/1.]” or it can be the combination of two strings, like the FTP signature “[220\0x20][FTP\0x20server\0x20]”. If the signature is a combination, it means that to classify a flow as FTP, it is necessary to find both strings on the same flow. Notice that this substrings can be transformed into a regular expression, but it may not be efficient. If the specialist wants to write a regular expression with these signatures, a manual packet trace analysis is still required, and he should be aware of the signatures he is looking for.
3.2. The Generation Algorithm

Our tool will use mostly the algorithm proposed by Mingjiang Ye et al. [1] to generate the signatures. The AutoSig is divided into 3 distinct phases, being the substring generation, substring aggregation and signature construction. Figure 1 illustrates the AutoSig signature generation process. The input of the algorithm is a set of flows which belongs uniquely to a certain previously known application and gives as output signatures capable to identify that application. On the signature generation phase, the payload of each flow will be divided into small pieces of data. The pieces that appear constantly in more than a certain amount of flows will be extracted. The substring aggregation phase consists of merging the most common pieces of data found if they overlap or if they are neighbors, and these combined substrings should appear in a certain amount of flows. In the signature construction phase, they are arranged on a tree like structure, in order to combine two substrings on the same signature. The algorithm requires a large amount of memory, because during all the phases the data of the sampled flows will be kept.
[image: image1.png]ampreTrows of
Application

[Subq Suff Substring |

[Shing*Shingie
> isige] [— [Sbsting | > Subst Subsiring
Shingle
Subsiring
(Shing Shingie
Shingle Shingle Signature
Generation Merging Constuction

Figure 1
Besides Moore et al. [4], other studies proved that by analyzing only the first packets a flow can be classified [12]. To generate application signatures the AutoSig uses the first 1 KB of the flow. A combination of these two techniques will be proposed. We are going to use the first N packets of the flow. If the first N packets do not represent 1 KB. If the flow has less than 1 KB bytes, we are going to use the entire flow data.
As mentioned before, the tools couldn`t generate signatures totally autonomously. After the generation phase, a human is needed to manually refine the generated signatures. In order to improve the effectiveness of our tool, we are going to propose a new form of signature validation that can at least reduce the amount of noise signature generated. AutoSig tried to do that, but they needed to calibrate some of the algorithms parameters to achieve maximum quality. We are going to study how to calibrate these parameters automatically, or how to get rid of this parameter dependence.
4. Work Plan
Getting based on the project objectives described on the previous session, the following work plan is proposed.

	
	Period

	Task
	March
	April
	May
	June

	Collect application sample flows
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Implement the substring generation phase
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Implement the substring aggregation phase
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Implement the signature construction phase
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Implement a signature validation module.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Create signatures to test the tool.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Validate the generated signatures.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Document Writing
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

References
[1]
Mingjiang Ye, Jianping Wu, Ke Xu, “AutoSig-Automatically Generating Signatures for Applications ”, Departmente of Computer Science, Tsinghua Universirty, unplubished work, under submission.
[2]
Byung-Chul Park, Young J. Won, Myung-Sup Kim, and James Won-Ki Hong. ‘Towards Automated Application Signature Generation for Traffic Identification,’ Proc. of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2008), Salvador, Brazil, April 2008, pp. 160-167.
[3]
Haffner, P., Sen, S., Spatscheck, O., and Wang, D. 2005. ACAS: automated construction of application signatures. In Proceedings of the 2005 ACM SIGCOMM Workshop on Mining Network Data (Philadelphia, Pennsylvania, USA, August 26 - 26, 2005). MineNet '05. ACM, New York, NY, 197-202.
[4]
A. Moore and K. Papagiannaki, ‘Toward the Accurate Identification of Network Applications’, Passive and Active Measurements Workshop, Boston, MA, USA, March 31, April 1, 2005.
[5]
Newsome, J., Karp, B., and Song, D. 2005. Polygraph: Automatically Generating Signatures for Polymorphic Worms. In Proceedings of the 2005 IEEE Symposium on Security and Privacy (May 08 - 11, 2005). SP. IEEE Computer Society, Washington, DC, 226-241.
[6]
Kim H, Karp B. Autograph: Toward automatic distributed worm signature detection. In: Proc. of the USENIX Security Symp. Diego, 2004. 271-286
[7]
Singh, S., Estan, C., Varghese, G., and Savage, S. 2004. Automated worm fingerprinting. In Proceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation – Volume 6 (San Francisco, CA, December 06 - 08, 2004). USENIX Association, Berkeley, CA, 4-4.
[8]
www.snort.org – Accessed on March 1, 2009

[9]
Mingjiang Ye, Jianping Wu, Ke Xu, Dah Ming Chiu, ‘Identify P2P Traffic by Inspecting Data Transfer Behaviour’, In Proceedings of IFIP Networking, Aachen, Germany, May 11 – 15, 2009;
[10] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow Clustering Using Machine Learning Techniques. In PAM, 2004.
[11] S. Sen O. Spatscheck and D. Wang, “Accurate, Scalable In-Network Identification of P2P Traffic Using Application Signatures,” Proc. Of ACM WWW’04, 2004.
[12]
Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., and Salamatian, K. 2006. “Traffic classification on the fly,” SIGCOMM Comput. Commun. Rev. 36, 2 (Apr. 2006), 23-26
Signatures

__

Djamel Sadok

(Advisor)
__

Alysson Santos

(Student)
Recife, March 03, 2008
Automatic Signature Generation

Undergraduate Thesis Proposal

