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ABSTRACT 

Among the current mechanisms to perform traffic measurement and 

classification, Deep Packet Inspection (DPI) is the most used among Internet Service 

Providers (ISP) and network managers due to its accuracy. However, the present 

speed of the current Internet links is forcing such motoring task to rely on specialized 

hardware and software, instead of commodity ones present on common PCs. This is 

caused by the heavy processing performed by comparisons made between the 

packet’s payload, from a given flow, against networked applications’ signatures, 

commonly expressed as regular expressions. 

This thesis presents some techniques aiming to optimize DPI systems, 

without appealing to dedicated hardware and software solutions. At first, it is shown 

how a precise architecture software design can leave an open path to further 

optimizations. After that, some techniques intending to optimize the time spent with 

regular expression matching operations are evaluated: analysis of only the first 7 

packets of a given flow, payload truncating e regular expressions rewriting. Then, 

with the mentioned techniques and optimizations, it was possible to obtain a 

reduction of almost 100% on the packet loss rate of a DPI system, running on a Linux 

box with an incoming rate of 900Mbit/s, and increase the volume classification 

completeness on 250%. It is worth telling that all evaluations were performed with 

real trace files, collected at a backbone of one of the most important Brazilian ISPs. 

 

Keywords: Computer Networks Performance, Deep Packet Inspection, Traffic 

Analysis. 
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RESUMO 

Dentre os atuais mecanismos de monitoração, medição e classificação de 

tráfego, Deep Packet Inspection (DPI) é o mais utilizado entre Provedores de Acesso 

a Internet e administradores de redes, devido a sua precisão. Porém, por causa das 

atuais velocidades de tráfego que os enlaces vêm alcançando, esse tipo de 

monitoração torna-se inviável com dispositivos de hardware e software encontrados 

em PCs comuns, com isso, tal monitoração, comumente utiliza-se de dispositivos de 

hardware e software especializados. Essa inviabilidade é causada pelo pesado 

processamento, decorrente das comparações feitas na carga útil (payload) de cada 

pacote, de um determinado fluxo, com assinaturas aplicações de rede, geralmente 

representadas por expressões regulares. 

O presente trabalho propõe técnicas visando a otimização de sistemas 

baseados em DPI, utilizando hardware e software presentes em PCs comuns. 

Primeiro será mostrado como uma boa arquitetura de tais sistemas pode abrir 

caminho para diversas otimizações. Após isso, técnicas visando diminuir o tempo 

gasto em operações de matching com expressões regulares serão aplicadas: 

análise dos 7 primeiros pacotes de um determinado fluxo, diminuição do payload a 

ser analisado e reescritas de expressões regulares. Com tais técnicas e otimizações, 

foi possível diminuir em quase 100% a taxa de perda de pacotes de um sistema DPI, 

operando a 900Mbit/s numa máquina com Linux, assim como aumentar em 250% o 

volume de tráfego classificado pelo mesmo. Vale salientar que todos os 

experimentos foram realizados com traces de pacotes reais, coletados no backbone 

de um dos maiores provedores de acesso à Internet do Brasil. 

 

Palavras-Chave: Análise de Tráfego, Deep Packet Inspection, Desempenho de 

Redes de Computadores.  
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1 INTRODUCTION 

Internet Service Providers (ISP) and network administrators always had 

deep interest about knowing what type of traffic is going through their backbone. 

Therefore, network administrators and managers need to constantly perform network 

monitoring and traffic analysis. Such tasks are very important to provide overall 

information about the network status, such as: network problems, protocols and 

applications that are being used by users and other information about their network 

infrastructure. Additionally, this management must be very precise, since erroneous 

assumptions about the network, provided by monitoring mechanisms, can lead to 

undesirable expenses. 

One of the most used types of network monitoring technique is the Traffic 

Classification, which can be online and offline. In order to know about network traffic 

characteristics instantly, ISPs and network managers are commonly relying on Online 

Traffic Classification (OTC). OTC is a great aid to traffic management, since the ISPs 

can take decisions and some management actions in real time, according to the 

traffic that is flowing through their backbone. For example, they can decrease, or 

increase, the Quality of Service (QoS) of some determined application, or block 

anomalous flows. In the past, OTC was based on the well known port approach, 

where Internet applications had well-known port numbers to send and receive their 

packets. However, with the current dynamic behavior of the Internet, mainly caused 

by peer-to-peer (P2P) applications [11], this type of classification is not sufficient and 

accurate anymore, since there are applications that use tunneling, e.g. through 

HTTP, to bypass firewalls and thousands of new applications, using different port 

numbers. Additionally, the classification based on the port-application tuple is not 

efficient to detect malicious flows and attacks over the Internet. 

Nowadays, since the traditional Traffic Classification based on port 

numbers is not efficient anymore, OTC is relying on Deep Packet Inspection (DPI), 

which is the monitoring approach that provides the most detailed information about 

the packets that are traversing the network. DPI systems capture the whole packet 

and try to perform some kind of matching, between the packet’s payload and an 

application signature, commonly represented by Regular Expressions (RegEx). 

Therefore, DPI systems are considered the most precise and maintainable, since 
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RegExes can fully describe various protocols’ messages and expressions can be 

modified or added to the system, in order to fix some broken pattern, or recognize 

new applications. 

In order to deploy systems with good classification completeness, those 

DPI systems are equipped with a huge set of RegEx signatures, representing a great 

variety of Internet applications. However, the RegEx matching process performed by 

DPI systems is the most expensive task on such applications, consuming over 90% 

of the CPU time in the whole system [26]. Therefore, the high processing time 

consumed by the RegEx matching forces DPI systems to use specialized hardware 

and software solutions, striving to obtain good performance, especially on high speed 

links. Additionally, in their majority, such hardware and software solutions used by 

DPI systems, and the DPI system itself, are quite expensive, since these use 

dedicated high end technology components to achieve the highest performance and 

effectiveness possible. Consequently those systems are not financially feasible to 

some end users and companies. 

Deploying DPI systems that are able to deal with high speed links (e.g. 

1Gbit/s) in commodity hardware and software is still an open challenge, among the 

industry and academic community. Such challenges are mainly caused by the huge 

and rapid growth of the speed of the Internet links, therefore that type of classification 

is becoming even more difficult to accomplish, without packet loss and while 

maintaining the desirable performance. Therefore, the scientific community has been 

working on how to achieve classification accuracy and performance, in order to 

combine good accuracy and acceptable, or zero, loss rate. 

Traditionally, DPI systems that use commodity software commonly rely on 

Linux-based Operating Systems (OS), which are the most used systems for network 

applications. But Linux suffers from degradation, in packet capture throughput, when 

handling high speed links. Such degradation is attributed to the additional packet 

copy performed from the kernel space to the user space, where the application, 

which the packet is destined for, is operating. Therefore, to a Traffic Classification 

Application, that copy, represents an overhead that can lead to performance 

decrease. Also, traditional OSs, such as Linux, are deployed to be general purpose 

systems, sharing all resources with other process and applications, instead of 

dedicated OSs that are deployed, with improved capabilities, serving dedicated 

applications, such as network monitoring tools. Additionally, commodity PCs and 
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NICs are not prepared to deal with high loads of traffic. They do not have dedicated 

components, such as network processors, buses and memory, and therefore they 

have a poor performance when submitted to extreme loads. 

To improve DPI systems, the research community has been working on 

several approaches such as multicore architectures [14], algorithms to enhance the 

performance of RegEx matching [26], Linux kernel modifications that lead to no 

packet copies [5][6], Graphic Processing Units (GPU) usage [8], etc. Additionally, 

some optimizations in DPI systems are done by means of dedicated and expensive 

hardware, which incredibly outperforms software solutions. 

As seen in the previous paragraphs, obtaining good performance in DPI 

systems, using commodity hardware and software, such as on a common Linux box, 

is still an open problem within the research and industry community. Therefore, this 

thesis aims at showing how some architectural and software layer modifications can 

lead to considerable performance gains, using commodity hardware. With those 

gains, a system that was not able to deal with 100Mbit/s without losing packets, will 

reach 900Mbit/s with almost no losses and no decrease in classification 

completeness. To show such gains, a traditional DPI system, running on a Linux box, 

relying on commodity hardware and on common DPI features, is taken as a baseline. 

Those common features are sequential processing, libpcap library for packet capture, 

general purpose Hash Table and a set of RegExes signatures. Then some 

optimizations are performed, within this DPI system, in several levels, in order to 

obtain the best performance possible without appealing to specialized hardware 

solutions. First, an architectural level optimization is made, in order to take advantage 

and fully utilize all available resources of the measurement machine. After that, a 

slight modification on how packets are forwarded to user space is implemented and a 

data structure level optimization is performed. Additionally, this thesis shows how 

other two techniques can lead to a considerable enhancement to this DPI system, 

such techniques are Packet Counting and Payload Truncating. At last, but not at 

least, this thesis will also show how subtle modifications on some RegExes 

signatures can increase its processing speed, reducing the size of the generated 

state machine. 

The remainder of this thesis is organized as follows: 
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• Section 2: this section presents the essential background needed for the 

thesis understanding, covering topics such as Regular Expressions, Deep 

Packet Inspection and packet capture mechanism on Linux-based 

systems. Additionally the DPI system that is restructured by this work is 

presented; 

• Section 3: it presents the related work that has been done in the research 

community; 

• Section 4: the proposed project for the thesis is presented in this section. It 

also describes the proposed architecture that was implemented, in order to 

enhance the DPI system presented at section 2. Finally it presents the 

methodology that is followed by the evaluations performed; 

• Section 5: this section shows the evaluation results obtained with the new 

architecture and proposed approaches; 

• Section 6: this section has an open space to discuss some important 

points that were observed; 

• Section 7:  at this section, the main concluding remarks of the thesis are 

going to be presented. Additionally, this section presents some possible 

future works. 
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2 BACKGROUND 

A brief description of Regular Expressions, Deep Packet Inspection 

Systems and the mechanism of packet capture in Linux based systems is given, in 

order to provide the essential background needed for the remainder of this thesis. 

2.1 Regular Expressions 

RegEx is a set of strings, which represent a pattern used to match a 

certain string of characters. They provide an enormous expressiveness without 

necessity to express the desired patterns one by one, so a RegEx can fully 

represents a complete protocol communication. Additionally they are widely used in 

computer science, from compilers and programming languages to text editors. 

Also, RegExes use a formal language to describe it, having two widely 

known writing patterns, namely POSIX [19] and Perl [17]. Its formal language has a 

set of metacharacters, used to build a RegEx, which are described at Table 2.1. 

RegExes are commonly represented as state machines, which can be 

Deterministic Finite Automata (DFA), Non-Deterministic Finite Automata (NFA) and 

Extended Finite Automata (XFA). These automata can consume lots of memory if the 

RegEx is too complex and also take a huge amount of time to report a successful 

match. Additionally, one of the things that is directly interconnected with the matching 

time is the number of quantifiers used in the RegEx (* and +), which are greedy 

operators, matching as much as they can. For instance, if a pattern like r.*e is going 

to search for patterns in the string “regular expressions”, the reported match would 

be “regular expre” when “re” would suffice. This additional searching time does not 

play a big difference in applications that do not have to give results in real time or 

deal with low traffic rate. But when those matching are performed in real time 

systems, or those that deal with high traffic rates, this additional time can be crucial. 

Therefore, RegExes must be carefully written, in order to perform acceptable 

searching times. 

The DPI system described on this thesis relies on RegExes to perform the 

packet classification. Therefore, for instance, it contains signatures like 

http/(0\.9|1\.0|1\.1) [1-5][0-9][0-9] [\x09-\x0d -~]* and ^ssh-[12]\.[0-9], which 

respectively represent the HTTP and SSH protocols. Later, this thesis shows that the 
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matching time can be reduced when those patterns are rewritten, eliminating some 

unnecessary quantifiers. 
Table 2.1 – RegEx metacharacters 

Metacharacter Meaning Example 

. Matches any character, 
excepts new line 

A.B can match any string 
that has an A, another 

character after it and a B 

| OR operator, a pattern can 
match any of its side 

AB|CD represents a 
RegEx that can match any 

substring AB or CD 

() 
Used to group a set of 

patterns inside a unique 
pattern 

A(C|D)E can match ACE or 
ADE substrings 

? 
Denotes a matching of 

zero or one occurrence of 
the preceding pattern 

ABC?D can match ABCD 
or ABD substrings 

* Matches the preceding 
pattern zero or more times 

AB*C represents a string 
that has an A, an 

undefined number of Bs 
and a C 

+ 
Similar to *, but instead of 

denoting zero or more 
repetitions it denotes one 

or more repetitions 

AB+C matches a substring 
with, at least, one B 
between A and C 

{M,N} Repetition of patterns 
A{2,8} says that A will 

appear at least 2 times and 
at most 8 times 

[ ] Represents a class of 
characters 

[ABC]D can match a 
substring that has an A, B 

or C before a D 

^ 
Anchor. Says that the 

RegEx must start with the 
pattern that immediately 

follows it 

^ABC denotes a string that 
must start with an A 

[^] 
Matches any characters, 
except those inside the 

bracket 

[^A]BC matches any 
substring that has a 

character different than A 
before BC 

$ End of string B$ matches any string that 
ends with the character B 

2.2 Deep Packet Inspection 

Deep Packet Inspection (DPI) systems aim at analyzing, indentifying and 

classifying the traffic that is going through the network. Such systems accomplish 

these tasks by comparing messages within the packet’s payload against strings, 

which represent signatures of applications, web attacks or some desired content to 

be scanned. Commonly, the used signatures rely their description on the use of 
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RegEx. This has improved their expressiveness and can represent a set of 

signatures in a single string. This type of classification, with comparisons performed 

using RegEx, is often seen as the most reliable of currently available techniques for 

traffic classification. One strong reason for that is that currently, traffic classification 

cannot rely on information given by the port-application tuple, because of a variety of 

applications that use well-known ports (e.g. port 80) to pass through firewalls, e.g. 

P2P applications. Hence, port classification can lead to misleading results. 

Since DPI systems have good classification accuracy, ISPs have been 

recently relying on such products, because of its effective way of knowing what is 

going through their backbone. Throughout the global Internet, ISPs use DPI systems 

to perform different kinds of services, like: 

1. Content based filtering and charging: ISPs can block, filter or even charge 

customers that are using certain kind of applications (maybe undesirable 

ones) within their network. Examples of these include Voice over IP (VoIP) 

and P2P applications. 

2. Lawful Intercept: ISPs are commonly required by various governments to 

perform some kind of lawful intercept when needed by law enforcement 

agencies. 

3. Quality of Service (QoS): Some applications like VoIP and Video over 

Demand (VoD) require low latency and higher priority against common 

traffic, such as web browsing. Knowing the traffic is the first step towards 

giving it higher QoS when desirable. 

Also, commonly, Intrusion Detection Systems (IDS), like Snort [24] and 

Bro [25], rely on DPI to detect attacks from the Web. For that purpose they have a 

large database of signatures used to identify Buffer Overflow attacks, Malware, 

worms and viruses within the packet’s payload. 

With regard to the signature matching process, RegEx libraries are used 

to perform such task, by taking the signature, expressed by some RegEx, and 

building their state machines representations. After the state machine’s creation, the 

packet’s payload is analyzed by those machines searching for a successful match 

with the represented RegEx. Additionally, there are many commercial and non-

commercial tools that use RegEx for traffic identification and classification, like Snort, 

Bro, L7-filter [10] and PacketLogic [20] (from Procera Networks), which are widely 
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used. The L7-filter has a wide and open RegEx signature database, which is used by 

the scientific community and identifies over a hundred of well-known applications. 

DPI systems perform very heavy processing operations, having RegEx 

matching as the most expensive. Therefore, in order to achieve a high packet 

capture rate over high speed Internet links (e.g. 1Gbps), some optimizations must be 

made to avoid high packet loss rates. Such loss can be described as a classical 

Producer Consumer problem: The packet incoming rate is higher than the packet 

consumption rate (i.e. packet inspection), due to the heavy and resource consuming 

operations performed (e.g. RegEx matching). Consequently, the Operating System 

buffers rapidly become overwhelmed by packets and subsequent packets are then 

dropped. 

2.2.1 TAM (Traffic Analyzer Module) 

The DPI system described on this thesis, called TAM (acronym for Traffic 

Analyzer Module), uses RegExes signatures provided by L7-filter DPI system, non 

RegEx signatures from IPP2P project [9] and other signatures that were created by 

packet’s payload inspection. Those signatures represent more than 60 applications 

falling into 9 different application’s classes, which are listed at Table 2.2. Additionally, 

TAM was developed using the C language relying on the traditional libpcap library, 

for packet capture, and the C library regex for RegEx matching. 

TAM has four modules, 1) the capture module, which is responsible for the 

online packet capture from an Ethernet device (Figure 2.1), 2) the aggregation 

module, which is responsible for aggregating the packets in flows (Figure 2.2), 3) the 

classification module, which compares the packet’s payload (only packets that 

belongs to unclassified flows) with the RegExes signatures, aiming to classify that 

packet’s flow (Figure 2.3) and 4) the cleanup module, which is responsible to go 

through every entry in the Hash Table and verify whether the flow has expired 

(Figure 2.4). 

The Capture Module, presented in Figure 2.1, dequeues the IP packets 

from the capture buffer, checks the layer 4 protocol and forwards them to the 

Aggregation Module. Additionally, it waits until the other modules finish their 

operations to resume his activities, dequeuing the next packet. 
 

 



Table 2.2 – Recognized Classes and Applications 

Class Application 

P2P 

eDonkey 
BitTorrent 

KaZaA 
Gnutella 
SoulSeek 

Ares 
Mute 

EarthStation 
Xdcc 

Direct Connect 
Waste 

GoBoogy 
Soribada 
WinMX 
Napster 
MP2P 

Web HTTP 

Chat 

AIM 
Yahoo Messenger 
MSN Messenger 

IRC 

Network Management 

DNS 
NetBios 
NBDS 
NBNS 

BootStrap 

Streaming 

Video Over HTTP 
RTSP 

Video Over HTTP (QuickTime) 
Audio Over HTTP 

E-mail 
IMAP 
POP3 
SMTP 

Data FTP 
MySQL 

VoIP Skype 

Secure SSH 
SSL 
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Figure 2.1 – TAM's Capture Module 



 
Figure 2.2 – TAM's Aggregation Module 

As seen at Figure 2.2, the Aggregation module synchronizes the Hash 

Table with the analysis thread, by the locking operation. Then it checks whether the 

flow that represents the received packet exists in the Hash Table, creating a new one 

if it does not exist. If the flow exists and has expired, the module writes it to an output 

file and creates a new flow with the incoming packet. After that, the flow’s reverse 

flow is sought in the Hash Table and the same expiration check is performed. Finally, 

those information, flow and reverse flow, are forwarded to the Classification Module. 

The Classification Module, depicted at Figure 2.3, checks whether the flow 

is already classified. If its reverse flow exists and it was previously classified, then the 

flow that is being analyzed receives that classification, if it is unclassified. However, if 

the flow already has a classification, it only updates its information (byte volume, 

timestamp and number of frames). When the Classification Module finishes its 

execution, it returns to the Aggregation Module to unlock the Hash Table. 

Finally, the Cleanup Module, depicted at Figure 4.2, synchronizes the 

Hash Table by the locking operation and checks each flow. If the flow has expired, it 

is removed from the Hash Table and written to an output file. Otherwise, the Cleanup 

Module retrieves the next flow from the Hash Table. 
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Figure 2.3 – TAM's Classification Module 

 
Figure 2.4 – TAM's Cleanup Module 
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The main objective of TAM is to capture all the packets that are traversing 

the network, classify those packets on the fly, aggregating them in flows with the 

lowest packet loss rate. Initially, TAM was developed to run in a 34Mbit/s backbone, 

at the Point of Presence of Pernambuco (PoP-PE), linked with the Point of Presence 



22 
 

of Rio de Janeiro (PoP-RJ), working with no loss of packets at this speed. But TAM’s 

requirements have changed; now it has to run at high performance networks, 

reaching 1Gbit/s of speed. Now, TAM has to capture, aggregate and classify packets 

losing the less number of packets possible without decreases in classification 

completeness. 

Those Flows, constantly mentioned in this thesis, consist of a 

unidirectional series of IP packets with the same source and destination addresses, 

port numbers and layer 3 protocol (this set of information is commonly called the 

flow’s 5-tuple). Additionally, the aggregation in the format of flows can group all 

relevant information about a set of packets in a unique registry and, consequently, 

reduces the storage space occupied by the traffic related information. 

In order to reduce memory consumption by the identified flows, TAM 

establishes a timeout of 64 seconds to write out the expired flows. So if a flow does 

not receive any packets in an interval of 64 seconds, its entry will be deleted from the 

hash table and it will be written to an output file. Therefore, there is a thread in TAM 

that is triggered in intervals of 5 minutes and it scans the whole hash table, searching 

for expired flows. This thread must be synchronized with the analysis thread, to 

handle some problems that are going to be described later on this section. 

The present system faces some problems, which cause poor packet 

capture performance. One of the main problems is the packet capture model 

performed by libpcap. This poor performance can be explained by the time spent with 

unnecessary packet copies, performed by Linux-based systems, from kernel space 

to user space. Another problem is the general purpose Hash Table used by this 

version, which resolves collisions by chaining, i.e. each Hash Table bucket has a 

single linked list, so objects that have the same key are inserted on the list. Such 

Hash Table implementation has some bottlenecks, which were identified: 

• With a single linked list, every removal operation, of an element X, has to 

perform a search operation in the table, in order to get the element that is 

placed before X in the list and makes it “next” pointer point to the element 

after X. 

• Particularly in this Hash Table, when an insertion is going to be performed, 

it first checks whether the element, which is going to be inserted, exists in 

the table. Such check is unnecessary, since the element is searched at the 
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Hash Table before its insertion, so the information about its existence in 

the Hash Table is known beforehand. 

Another problem, which really compromises the performance of TAM, is 

the time that the system will stay without analyzing any packets, because of the Hash 

Table cleanup thread. This occur because the cleanup operation has to be 

synchronized with the main analysis thread, since the cleanup module can be 

removing an expired flow from the hash table at the same time that the analysis 

thread is accessing such flow. Even this module resulting on some packet losses, 

this cleanup operation is really necessary because of some reasons: 

• Memory consumption monitoring is an essential task in real time systems 

(so is in TAM) and therefore flushing out expired flows to an output file is 

very important, in order to avoid memory leaks. 

• Performing a periodically Hash Table cleaning can lead to a shorter search 

time, since there will be less flows in the linked lists, leading to reduced 

flow searching time. 

2.3 Packet Capture Mechanism 

An explanation about the packet capture process and its details within a 

Linux-based system is important for a better understanding of the problems that are 

faced by a typical capture model. In the section that follows the packet journey inside 

the Linux Kernel is dissected. Additionally, this section describes the core structure 

for packet capture, namely Socket. 

2.3.1 Packet Reception 

Here, in order to understand how packet capture, using libpcap, and 

kernel sockets work on Linux-based systems, a brief description about the frame 

reception and processing inside the Kernel is given. The Figure 2.5 describes the 

frame reception flow inside the kernel and the pointed numbers during the text are 

referring to the steps depicted by the figure. 

Whenever a packet arrives at the NIC, it is first copied into memory. It then 

triggers an interrupt, which will be handled by the NIC driver (1). Therefore, the driver 

disables future interrupts and allocates a sk_buff (short for socket buffer) 

structure, which is the packet representation inside the kernel, fetches the data from 
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the NIC buffer into the new sk_buff, in most cases via Direct Memory Access 

(DMA), and invokes netif_rx, which is the generic network reception handler. 

The netif_rx (2) function puts a pointer to the new sk_buff inside the 

CPU’s queue for incoming packets (there is one queue for each CPU), raises a 

software interrupt (softirq) and returns the congestion level of the queue to the 

caller. Please note that in the event that this queue is full, the incoming packet is then 

discarded. The function that processes the softirqs is known as do_softirq (3). 

It checks a bit mask and calls the appropriate handling routine, which represents the 

set bit. In this thesis, the interrupt of our interest is the NET_RX_SOFTIRQ (which is 

softirq raised when a packet has arrived) and the handle routine is the 

net_rx_action (4), which basically dequeues the first packet from the current CPU 

queue and calls the processing functions, present on two protocol handler lists. 

Protocol handlers are functions which are registered into the kernel to 

handle specifics types of packets, such functions are registered in two lists: 

ptype_all and ptype_base (containing respectively protocol handlers for all types 

of packets and for specific protocols). The functions registered inside ptype_all list 

are those with the ETH_P_ALL flag (for generic packets), the ones at ptype_base 

are the others with ETH_P_* flags (e.g. ETH_P_IP, for IP packets). So, 

net_rx_action loops, until there are no packets to be dequeued or a threshold of 

maximum number of packets has been reached, calling each protocol handler 

registered, to take care of the incoming packet (NET_RX_SOFTIRQ is enabled again, 

if net_rx_action leaves a non empty queue of packets). 

The protocol handler function responsible for handling IP packets is the 

ip_rcv (5) function. It performs all the integrity checks on the IP packet (checksum, 

header fields, etc.) and then, if the packet is considered correct, passes the packet to 

any Netfilter hook registered and finally calls ip_rcv_finish. 

The ip_rcv_finish (6) function deals with packet routing. Within it, the 

ip_route_input function, decides whether the packet will be forwarded or locally 

delivered. Finally, the function ip_local_deliver is called. 

ip_local_deliver (7) deals with IP defragmentation (reassembling the 

fragmented packets) and then, similarly to ip_rcv, it calls 

ip_local_deliver_finish (8), but before that it also calls Netfilter hooks. Next, 
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the ip_local_deliver_finish takes care of the tasks that are still pending for 

the packet to be passed to upper layers, additionally it also checks if there are any 

RAW Sockets listening, in order to forward the packets to them, by calling the 

raw_v4_input function. 

Therefore, after ip_local_deliver_finish checks whether there are 

any raw socket opened, it calculates a hash function based on the protocol number 

present at the IP header, and gets back the layer 4 function that will handle the 

packet. Such functions are registered in a Hash Table, called inet_protos, which 

is filled when the Linux kernel is initialized, with the layer 4 protocol handlers. These 

handlers are called tcp_v4_rcv, udp_rcv, icmp_rcv and igmp_rcv, 

representing each of the layer 4 protocols. Those layer 4 functions should return a 

value indicating if an ICMP Destination Unreachable message has to be returned to 

the packet sender, which must occur if the layer 4 protocols do not find a socket 

opened that matches the incoming packet. 

If the packet contains a TCP segment, then the tcp_v4_rcv (9) handler 

is the function that will be called. It performs some header integrity checks, searches 

whether there are any sockets listening for TCP packets and performs the TCP Finite 

State Machine processing. If a TCP socket was registered inside the kernel, then the 

filter expressions, registered with each socket, are evaluated, in order to decide 

whether the packet should be forwarded to a current socket or not. If the packet 

passes the filter then the tcp_v4_do_rcv function is called, otherwise a value 

indicating that an ICMP Destination Unreachable packet should be sent back. 

After the filtering process, the corresponding function, which matches the 

current state of the TCP connection, is called. If the connection has been already 

established, the function tcp_rcv_established (11) is called, where 

acknowledgements mechanisms and header processing are going to be performed. 

Additionally, at tcp_rcv_established, the function data_ready (12) will be 

called, which will alert the current process, owning the socket, that a packet has 

arrived and is ready to be consumed. 

On the other hand, if the packet contains a UDP segment, the process is 

much simpler. At udp_rcv (10), some header and integrity checks are performed 

and then the same tasks as in those for TCP handlers are performed including: 



search for a UDP socket matching the current packet (if no socket is found the 

packet is discarded), filtering (sk_filter function) and finally calls data_ready. 
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Figure 2.5 – Frame Reception on Linux 
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2.3.2 Sockets 

When a programmer opens a socket (by invoking the socket system call) 

for packet reception, internally the kernel calls __sock_create, which will create a 

new a sock structure (the kernel representation of sockets), and registers a protocol 

handler for the specified protocol. 

The socket function has the following interface: socket(int family, 

int type, int protocol), where: 

• family: Refers to the protocol family that the user will handle with the 

socket (e.g. PF_INET for sockets based on IPv4 protocol, PF_PACKET for 

sockets which want to communicate directly with the link layer) 

• type: The type of the socket communication semantics, common types 

are: 

o SOCK_STREAM: Provides sequenced, reliable, two-way, connection-

based byte streams (commonly used with TCP connections) 

o SOCK_DGRAM: Datagrams support (commonly used by UDP 

connections) 

o SOCK_RAW: Allow users to have access to lower-level 

communication protocols. The protocol stack processing stops at 

layer 3, the packet is not forwarded to layer 4 processing. 

• protocol: The protocol of the packets that the socket will receive (e.g. 

ETH_P_IP for IP, ETH_P_ALL for all types of packets, etc.)  

These sockets are basically represented as a queue which stores pointers 

to packets inside the kernel and each of these sockets is responsible for a class of 

packets. The PF_PACKET, for instance, handles all the packets that arrive at the 

Network Interface Card (NIC) and skips all the processing that is usually performed 

by the TCP/IP stack inside the kernel (depicted at Figure 2.5). On the other hand, the 

PF_INET socket only deals with IP packets, but there are other types of sockets that 

only deal with TCP, UDP packets, etc., at the Linux protocol stack. 

When an application is capturing packets using libpcap library, it first 

registers a PF_PACKET kernel socket, inside the kernel to handle all packets that are 

arriving in the NIC. Therefore, whenever a packet arrives at the NIC, an interruption 

is triggered to call the corresponding kernel driver for that NIC. Next, the packet is 
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copied to the driver and a pointer to the packet is stored inside every socket’s queue 

that matches the packet type, therefore the Linux Socket Filter (LSF) registered with 

such socket will filter the packet and decide whether it will be copied to user space or 

not. In summary, the capture process performs the following operations: packet copy 

from the NIC to the driver, pointer storage at PF_PACKET socket queue and another 

packet copy from kernel to user space. 
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3 RELATED WORK 

A great deal of work has been done among the scientific community in 

order to achieve higher performance and accuracy in traffic analysis and 

classification. In [22] Schneider performs a deep analysis on how packet capture 

works on both BSD and Linux based systems. Additionally he points out some 

problems that exist in the present model of capture, such as packet copying 

operations. 

Deri, in [5], proposes a new type of kernel socket, called PF_RING, which 

is able to improve dramatically the packet capture rate on Linux-based systems. He 

has patched the Linux kernel, in order to make available to users that new kind of 

socket. Using PF_RING sockets, the packet does not have to travel through all the 

network protocol stack processing, like it usually does, but instead a straight path 

from kernel to user space is taken. This new socket is based on a circular buffer, a 

memory region to handle incoming packets, which is shared between kernel and user 

spaces. Hence, user applications can directly access the packet that is queued in the 

ring, thus avoiding the expensive packet copy operation. He has evaluated his 

technique and compared it to other approaches for packet capture, like libpcap and 

Mmap libpcap [15] and showed that his solution outperforms them. Another important 

point in this work is that it also provides the user with a SDK, to build plugins for 

packet capture applications based on PF_RING. 

After the PF_RING release, Deri in [6] extended his work and proposed 

nCap. This is seen as yet a further improvement to the packet capture rate in Linux-

based systems. The author created a solution for packet capture and transmission at 

wire speed (bellow 1Gbps), creating a straight path from the NIC driver to user 

applications. When a network adapter is opened for packet capture it becomes a 

dedicated device for such task. Then the kernel no longer has control of it anymore 

letting only the application to transmit or receive packets from the adapter. Instead of 

creating one circular buffer, shared between kernel and user space (like PF_RING), 

nCap creates two: one buffer for incoming packets and another one for outgoing 

packets. These are directly managed by the network adapter, without any 

intervention from the kernel. So whenever a packet arrives at the network adapter, it 

copies the packet directly to the incoming buffer and alerts the kernel that a new 
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packet has arrived. His evaluation showed that this approach has better performance 

than PF_RING, and this was the case regardless of packet size. But, as nCap is at 

driver layer, it is bound to a specific kind of NIC, the Intel GE 32-bit. 

Schneider et al. on [21]  argue that with the current PC commodity 

architectures is impossible to reach 10Gbit/s capture rates, due to serious 

bottlenecks faced by the bus bandwidth and disk throughput. Nowadays the fastest 

bus bandwidth transfer that can be achieved with PCI-Express busses and it is 

around 8000 Mbytes/s, although the actual boards only use those busses for graphic 

cards. Also the actual disk throughput, for writing operations, is not enough to 

support a throughput from a 10Gbit links. Because of these problems, the authors, in 

order to handle 10Gbit/s traffic load, proposed to split the traffic among 10 machines, 

each one receiving traffic at most of 1Gbit. They built a testbed with a switch, to split 

all incoming traffic (at 10Gbit) among the machines and then tested it with different 

Operating Systems and processors. They have measured the packet capture rate 

among FreeBSD and Linux Operating Systems and AMD Opteron and Intel Xeon 

processors, having the combination of FreeBSD/AMD outperforming the others. 

Additionally they pointed out the time spent on copies made from kernel space to 

user space and emphasized the use of device polling for better performance. 

Bernaille et al. [3] performed a study on how to classify a TCP flow with 

low CPU consumption. His approach consisted of analyzing the size of the first five 

packets of a TCP flow. He applied some techniques of machine learning, in order to 

build a training database of flow’s behavior (based on the size of the first five 

packets), extracted from a packet trace file collected at a university’s backbone. 

Therefore, he showed that by analyzing only the packet’s size, a high packet capture 

rate can be achieved, since no expensive operations, such as RegEx matching. 

Although that approach has several drawbacks including: 1) the fact that it does not 

perform well for very short flows (with less than five packets), 2) it needs to track the 

reverse flow (sometimes the reverse flow does not follow the same path), so running 

this technique at an ISP router, for instance, over a link that sees only a single side of 

the conversation makes it ineffective, 3) packet’s size is a not very precise 

classification criterion as different applications can have the same packet size 

distribution and 4) finally it is not applicable to UDP flows.  

Sen et al. in [23], made a study on peer-to-peer (P2P) application 

classification, using signature matching and performing analysis on five widely known 
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P2P protocols: KaZaA, eDonkey, DirectConnect, Gnutella and BitTorrent. They used 

fixed string signatures of those protocols, mentioned previously, to evaluate the 

accuracy of those signatures. They were able to show that the packet examination is 

only needed on the first packets of a given flow (less than 10 packets), which led to 

less than 5% of false positive rate, in some protocols. 

Regarding RegEx matching, Yu et al. [26] proposed a fast and memory-

efficient solution to RegEx matching for payload scanning. The authors consider only 

DFA-based approaches because NFA-based approaches are inefficient on serial 

processors or processors with limited parallelism (e.g., multi-core CPUs in 

comparison to FPGAs). They focused on general-purpose processor-based 

architectures. In order to achieve good performance, the authors analyzed the 

computational and storage cost of building individual DFAs for matching RegEx, and 

identified the structural characteristics of the RegEx in network applications. Based 

on such analysis, they proposed two rewriting rules that can dramatically reduce the 

size of the resulting DFAs. Next, techniques to combine intelligently multiple DFAs 

into a small number of groups to improve the matching speed were developed. The 

rewritten rules reduced some DFAs by as much as 98% and 99% of their original 

size. On the other hand, the grouping algorithms generated DFAs 2 to 3 orders of 

magnitude faster than widely used NFA implementation and 1 to 3 orders of 

magnitude faster than a commonly used DFA-based parser. 

In [12], Kumar et al. introduced a new representation for RegEx, called 

Delayed Input DFA (D2FA). This modification in the original DFA formalism 

substantially reduces space requirements as compared to a DFA. The D2FA is based 

on a technique used in the Aho-Corasick string matching algorithm [1]. The authors 

observed that, in the case of practical rule-sets from commonly used in network 

intrusion detection system, many groups of states share sets of outgoing transitions. 

Therefore, to explore the redundancy present in these DFAs, they introduced a 

special kind of transitions called default transitions. With these modifications when 

matching an input string, a default transition is used to determine the next state, 

whenever the current state has no outgoing edge labeled with the current input 

character. The main idea is to reduce the number of edges of a given automaton, but 

recognizing the same set of patterns. That approach can generally reduce the 

number of edges by more than 95% for the more complex DFAs that arise in network 
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applications, dramatically reducing the space needed to represent the DFA. They 

also created some heuristics to construct an efficient D2FA. 

In [14], Villa et al. proposed a string searching algorithm, based on the 

Aho-Corasick algorithm, to process separate chunks of the input text. They also used 

the multicore approach, IBM Cell Broadband Engine, in order to achieve a good 

throughput in string matching processing. Their approach consisted of breaking the 

input text in chunks, which would then be processed by different DFAs, achieving 

high byte throughput. 

The authors in [7] have shown some ways to obtain considerable 

performance gains, when analyzing packet’s trace files. Their techniques consisted in 

only analyze the first packets of a given flow and truncate the packet’s payload, in 

order to reduce the size of the message which would be inspected by the DPI 

system. With the packet counting technique, they reported that by establishing 7 

packets as a threshold would be sufficient to successfully classify a flow. Also it is 

worth telling that performing analysis only within the first 7 packets of a flow can 

dramatically reduce the processing time (almost 80%). Additionally, they have shown 

that analyzing only first 750 bytes of a packet’s payload can lead to a good balance 

between performance and accuracy. In spite of the obtained results, they did not 

combine the two techniques, in order to evaluate how the classification behaves, and 

only performed offline analysis. This thesis combines the two techniques and checks 

their impact on classification. Also all experiments were done with online traffic, in 

different transmission rates. 
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4 PROJECT DESCRIPTION 

The present thesis aims to improve the packet capture rate and speed of 

TAM (described at section 2.2.1). For such purpose, this thesis presents a new 

architecture for it, in order to achieve higher packet capture throughput. As a starting 

point, the original version of TAM relies on the libpcap library, for packet capture, a 

general purpose Hash Table (in order to aggregate the incoming packets in flow 

structures) and a set of RegEx, representing the applications previously presented at 

Table 2.2. Therefore its performance is going to be evaluated when it receives 

different loads of traffic. After that, comparisons are going to be made with the new 

version, in order to note how much performance was gained with the proposed 

architecture. 

Both versions have the following modules: 

• Packet Capture Module: Responsible for grabbing the packet that has 

arrived at the NIC and forward it to the Aggregation Module. 

• Aggregation Module: This module will be responsible to search at the 

Hash Table for the packet’s flow. The module will create the flow, if it does 

not exist yet. Additionally it will perform flow’s timeout checks and search 

the reverse flow of the packet. 

• Classification Module: This module will perform the application 

identification task, comparing the packet’s payload against TAM’s 

signature database. 

• Cleanup Module: This module will be triggered for execution, on intervals 

of 5 minutes. It will go through every Hash Table entry, checking if there 

are expired flows, if so, such flows will be removed from the Hash Table 

and written to an output file. 

Later, this thesis will show that Original TAM version has problems even 

when dealing with low loads of traffic, losing a great amount of packets. These 

problems are attributed to the packet capture mode, with libpcap, the general 

purpose Hash Table that it uses and the RegEx matching operations. Additionally 

this thesis will show how these problems were put aside by the proposed architecture 

and techniques. 
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4.1 Proposed Architecture 

This section aims at explaining the New Architecture proposed for TAM. 

Since its requirements have changed, it has to deal with packet incoming rate, in high 

speed links. 

4.1.1 Multicore Architecture 

Nowadays, multicore architectures are widely deployed and used, among 

industry and end users. On the other hand, the previous version of TAM was relying 

on a sequential execution flow, not fully exploiting the available resources of the 

measurement machine. Additionally, when the cleanup module starts it execution, 

the capture, aggregation and classification modules are blocked, in order to handle 

synchronization problems. This is necessary to avoid scenarios where the cleanup 

module is deleting a flow from the Hash Table, at the same time that the 

classification module is trying to classify it. Therefore, when this module was 

executed, the capture module had to stop to dequeue packets from the capture 

buffer, dropping the packets that were arriving, due to overflow on such buffer. 

In order to solve the presented problem, a new multi-threaded architecture 

was deployed which has got several threads effectively working in parallel. Each one 

of these threads will act as an independent TAM, having the first three modules 

described at section 4, namely Packet Capture, Aggregation and Classification 

modules. Each worker thread will have its own capture buffer using PF_RING and an 

ID number (starting from 0 for the first thread). Now, all the heavy work is distributed 

among several threads and there are several packet capture buffers. 

Additionally several tests were performed, in order to discover the best 

thread’s number threshold. After that, it was observed that this model performs better 

with 4 worker threads, which fits better with testbed’s measurement machine 

processor (described at section 4.2). 

4.1.2 Load Balance Module (LBM) 

Even with a multicore approach, this new architecture still has some 

problems and it has to deal with two different levels of synchronization: 

• Each thread must be locked when the cleanup module starts its 

operation. 
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• Only one thread would be working a time, since they must be 

synchronized with each other, in order to avoid different threads 

modifying the same flow in Hash Table. 

Additionally, by opening one buffer for packet capture per worker thread, 

all those buffers would contain the same packets, since there is nothing responsible 

to distribute the incoming packets among threads. Therefore, a mechanism to detect 

that a packet is already being analyzed by another worker thread would have to be 

implemented. Also, even with the mentioned mechanism, the buffers would be full of 

packets that could be later dropped by the worker thread, because of other thread 

already analyzing it. 

Since different threads can analyze different packets of the same flow, the 

Hash Table has to be shared among them. Consequently, the worker threads have to 

be synchronized, having only one thread accessing the Hash Table a time, leading to 

a sequential execution. 

All those problems could be eliminated if the threads were independent, 

without necessity to share information among each other. This could be achieved if 

the flows were divided by threads, namely if different threads were not analyzing 

different packets of the same flow. Therefore, no thread synchronization would be 

necessary, since each thread would have their own set of flows, leading to full 

parallel execution. Also, each thread could have a private Hash Table, decreasing 

the time spent to search a flow. 

This problem could be eliminated if each worker thread performed the 

following operations: 

1) The worker thread dequeues a packet from its capture buffer 

2) Checks whether it belongs to its set of flows or not, by applying some 

hash function 

3) If does not belong, drop the packet, otherwise analyzes it 

But this implementation would overload the threads’ capture buffers with 

packets that would be dropped in the future, also dropping packets that belong to the 

thread’s set of flows due to lack of space inside the its capture buffer. 

For such purpose a Load Balance Module (LBM) was integrated in this 

new architecture, which was implemented as a Linux Kernel Module. This module is 

responsible to distribute the packet load among the worker threads, in a way that 



different threads will not have packets of the same flow, avoiding many 

synchronization problems. This module will intercept all packets that are arriving at 

the NIC, before their entrance on the capture buffers, filling the threads’ buffers only 

with packets that belong to it. With LBM this new TAM can have a private Hash Table 

for each thread, since each thread will always have its own set of flows, consequently 

it does not have to share flow’s information among the other threads. 

 
Figure 4.1 – New Architecture 

The key point of the LBM is a simple and effective hash function that is 

calculated whenever a packet arrives at NIC. Such function is described at Equation 

1. 
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Equation 1 - Hash Function 

ܦܫ݀ܽ݁ݎ݄ݐ ൌ ሺܿݎܵܲܫ  ݐݏܦܲܫ  ݐݎܲܿݎ4ܵݎ݁ݕ݈ܽ  ݐݎܲݐݏܦ4ݎ݁ݕ݈ܽ

  ݏ݀ܽ݁ݎ݄݂ܱܶݎܾ݁݉ݑ݊ ࢊ ሻ݈ܿݐݎ3ܲݎ݁ݕ݈ܽ



The presented function sums up the following fields, present in the IP 

packet: IPSrc and IPDst, representing, respectively source and destination IP 

addresses; layer4SrcPort and layer4DstPort representing, respectively source and 

destination ports, present on the layer 4 protocol (TAM only deals with TCP, UDP 

and ICMP protocols) and layer3Protocol, which represents the protocol number that 

is encapsulated by IP protocol. Therefore, the equation gets that result and makes a 

module operation with the number of worker threads, resulting in the thread ID 

representing the thread that will receive the packet. With this simple hashing function 

LBM can guarantee that a given flow, and its reverse, will be always forwarded to the 

same thread. Also, now it is possible for each thread to have its own Hash Table, 

thus reducing the time spent with flow search. This New Architecture is depicted in 

Figure 4.1. 

4.1.3 Unique Cleanup Module 

As seen previously at section 2.2.1, the original TAM version has 

undesirable packet losses, because of the analysis thread being blocked by the 

cleanup module. Since this New Architecture now has a private Hash Table per 

thread, it can have an important gain with a unique cleanup module, which is 

depicted at Figure 4.2. 
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Figure 4.2 – Unique Cleanup Module 
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Since the cleanup module will only clean one Hash Table a time, the New 

Architecture still have N-1 threads fully working in parallel. Therefore the whole 

system would not be blocked, as it occurred in the previous version, thus increasing 

the packet capture rate. However, if a cleanup module was implemented for each 

thread, there would a probability that the system could have all cleanup modules 

running at the same time, thus having the same problem faced by the Original TAM 

version. 

4.1.4 Additional Optimizations 

It is widely known that the most expensive operation in DPI systems is the 

RegEx matching process, so the modifications proposed will not suffice when the 

system is dealing with very high speed links (e.g. 1Gbit/s). Therefore some other 

optimizations are proposed, which are going to be integrated to this New 

Architecture. 

RegEx matching performance is directly interconnected with the size of 

the generated state machine, representing the expression. For instance, if a RegEx 

is full of wildcards (*) its state machine’s size can become exponential, which 

dramatically decreases RegEx matching performance. In order to reduce such 

latency, some RegEx signatures are going to be rewritten, aiming at the reduction of 

the size of the generated state machine, but without loss of precision (i.e. the 

rewritten patterns continue matching the strings that were matched by the original 

patterns). 

The authors in [7] have shown that DPI systems can successfully classify 

a flow by only analyzing its first packets, having 7 as the best threshold. They have 

also have shown that only a fraction of the payload is needed, in order to 

successfully classify a flow. Additionally, with those modifications, they have 

achieved a considerable gain in the time spent to analyze the packets. Therefore, 

adding such techniques to the New Architecture is believed to dramatically reduce 

the packet loss rate, when dealing with high throughputs. At first, performance gains 

obtained when applying the packet counting technique, using 7 packets as the 

threshold, are analyzed. Next, the New Architecture truncates the packet’s payload, 

using only its first 750 bytes. Finally the New Architecture mixes those techniques 

and the obtained gains are going to be evaluated. 



4.2 Methodology 

In order to evaluate the packet capture rate in a scenario, in which 

different loads of traffic are being generated to a measurement machine, a testbed 

described in Figure 4.3 was built. 

 
Figure 4.3 – Testbed Architecture 

The testbed is composed with the following machinery: 

• Measurement Machine (M): This machine receives packets from the 

switch, which aggregates traffic generated by all slave machines. Is at this 

machine that the DPI software runs and analyzes the traffic.  

• Slaves Machines (S1, S2, and S3): These machines will generate traffic, 

at different rates, to the measurement machine. 

• Dlink Switch (SW): In order to aggregate the traffic generated from the 

three slave machines, a Gigabit switch was placed in the path between the 

slaves and the measurement machine. The switch will receive traffic from 

the slaves, on a separate port for each and then aggregate that traffic and 

forward it to a Gigabit port, which is connected to the measurement 

machine. 
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Table 4.1 – Testbed Configuration 

Machine Processor 
RAM 

Memory 
Administrative NIC

Traffic 
Generator/Receiver NIC 

HD 
Operating 

System 

M 
Intel Xeon X3210 

Quad-core 
4GB DDR Onboard Gigabit Offboard, 3Com Gigabit 

3x 500GB 

Sata HDs 
Linux, 2.6 

S1 
Intel Xeon 5110 

Dual-core 
2GB DDR Onboard Gigabit Offboard, 3Com Gigabit 

1x 250GB 

Sata HD 
Linux, 2.6 

S2 
AMD Athlon 64x2 

Dual-core 
1GB DDR Offboard 10/100Mbit Onboard, nVidia Gigabit 

1x 300GB 

Sata HD 
Linux, 2.6 

S3 
AMD Athlon 64x2 

Dual-core 
1GB DDR Onboard Gigabit Offboard , Intel Gigabit 

1x 300GB 

Sata HD 
Linux, 2.6 

The rate of the traffic generated by the slave machines was varied, in 

order to evaluate how much traffic each TAM version can handle, evaluating the 

packet loss rate. The starting point was 100Mbit/s, after that the traffic rate 

generation was increased by a factor of 100, up to 900Mbit/s. Therefore, the 

performance of the New Architecture is evaluated and compared against the old one, 

when dealing with different rates. Summarizing, this work aims at showing how subtle 

modifications can lead to important improvements without appealing to dedicated 

hardware solutions, using only commodity ones. 

It is worth telling that all experiments were performed using real packet-

level traces collected at one of the largest ISPs in Brazil. A router port was mirrored, 

in order to not interfere in the normal transit traffic, which consists of traffic from/to 

around 50.000 ADSL subscribers. To make the collected data more representative of 

the traffic diversity, the network was sniffed for several days, accumulating almost 

6TB of real Internet traffic in different periods of the day. Therefore, a representative 

sample from this collection was selected, to be replayed to the measurement 

machine, such replay was done by the tcpreplay1 tool running in all slave machines. 

The following metrics are considered: 

1) Packet Loss Rate 

This is the most important metric, since packet losses are the main 

problem faced by DPI systems and they directly impact the classification 

completeness. Therefore, the New Architecture is evaluated when receiving 

different traffic rates and compared with the Original TAM version. 

2) Classification Completeness 

                                                 
1 http://tcpreplay.synfin.net/trac/ 
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There is no sense in making a DPI system that loses no packets, by 

applying different techniques, but does not have good classification 

completeness. Therefore, the techniques that can impact on the classification 

completeness, namely packet counting, payload truncating and pattern 

rewriting, are going to be evaluated in other to measure their impact in 

classification. 

  



5 EVALUATION AND RESULTS 

In this section, the results of the evaluations performed on each version, 

are shown. The factor that is going to be considered in the evaluation is the packet 

incoming rate. This factor will assume different levels, starting at 100Mbit/s up to 

900Mbit/s, varying by 100Mbit/s. 

5.1 Original TAM 

As mentioned previously, this version is the baseline, i.e. the performance 

gains obtained are compared against it. 

At first, it is shown how TAM performs on the lowest incoming rate 

(100Mbit/s), at the graph in Figure 5.1. To build this graph, time bins of one minute 

were established, then the packets that have arrived at this time bin and also how 

much of those packets were dropped during the bin, were computed. 

 
Figure 5.1 – Packet Loss, Original TAM 100Mbit/s 

As presented at the graph, even with the lowest packet incoming rate, the 

original TAM has serious losses of packets, reaching almost 60%. The graph also 

shows the expected behavior when the cleanup thread is triggered. 
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The cleanup operation is very expensive, since it blocks the analysis 

module in order to remove expired flows from the Hash Table. This block is caused 

by the synchronization necessary between the two modules, assuring that each 
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thread will access its critical region (the Hash Table) alone. Therefore there will be a 

short period of time that no packets are going to be dequeued from the packet’s 

queue, leading to packet losses, since that the packet transmission will not stop. This 

behavior is depicted at Figure 5.1, which is represented by the loss peaks every 5 

minutes, reaching 100% of packet loss at the cleanup period. 

Additionally, as expected, the packet loss keeps growing as the incoming 

rate grows, losing almost all packets when it reaches 900Mbit/s. Such poor 

performance is caused by 4 key points, namely RegEx matching, the cleanup 

operation, Hash Table operations and libpcap. 

Another problem of this version is that it uses the traditional libpcap library 

for packet capture, so it has got the additional packet copy operation (from kernel 

space to user space), which can lead to some degradation in the packet capture 

mechanism and consequently increase the packet loss rate. 

Finally, RegEx matching operation is the main bottleneck of TAM, being 

responsible for about 90% of all processing time. Additionally there are some 

RegExes that generate huge automata, impacting directly in the matching time spent 

by the TAM’s classification module. 

Aiming to enhance the performance of TAM, each problem described 

above was attacked, in order to have gains in all levels. 

5.2 New Architecture Results 

5.2.1 Hash Table Optimization 

The results, of the Original TAM version, confirmed that its architecture 

has a high packet loss rate, getting even higher as the packet speed grows. Such 

losses are mainly generated by the RegEx matching, which is very expensive and 

the packet copies operations performed by libpcap, but the general purpose Hash 

Table has its contribution. Previously, at section 2.2.1, the unnecessary table lookup 

operations, in the insertion and removal tasks performed by the general purpose 

Hash Table, were pointed. Therefore, as the number of flows grows these additional 

table lookups become more and more expensive. 

For that reason, aiming at confirming the expensiveness of these 

operations, a code profiling in the Original TAM was done, and the result is described 

in Table 5.1. Additionally, in order to analyze only the Hash Table operations, the 
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classification module was removed in this experiment. This table just proves that 

those operations are contributing to packet losses, since they consume additional 

CPU cycles, which could be wasted with packet handling. 
Table 5.1 – Code Profiling result, Old Hash Table 

Function Duration per call (milliseconds) % total time spent in TAM 

Insertion 0.00044 1.9 

Removal 0.00030 1.1 

Cleanup Module 1826 3 

At a glance, the time spent in insertion and removal operations do not 

seem to be expensive, within TAM. But they are responsible for 1.9% and 1.1% of all 

execution time of TAM. Nevertheless, the function that deserves more attention is the 

Cleanup Module, spending almost 2 seconds in each execution, namely almost 2 

seconds with no packets withdraw from the capture buffer, which is unacceptable to 

a system that must handle a 1Gbit/s incoming rate. 

To reduce such overhead a new Hash Table was built from scratch, also 

resolving collision by chaining, but having a double linked list instead single linked 

one. Additionally, there is no more verification of whether the element which is going 

to be inserted exists in the table. Therefore, with this new structure the time 

complexity of O(1) (constant) is now guaranteed, for the removal and insertion tasks, 

since insertion and removal will only consist of moving pointers operations. 

In order to only evaluate and compare the performance of both Hash 

Tables, the classification module was removed from TAM and then two versions, one 

using the old Hash Table and the other using the new one, were evaluated with the 

highest incoming rate, i.e. 900Mbit/s, in order to perform a stress test. The packet 

loss rate was evaluated, when there are only operations of capture and flow 

aggregation in TAM. The best Hash Table would be the one that has less packet 

loss. The results are presented in Figure 5.2. 

As seen in Figure 5.2, the loss rate of the New Hash Table is slightly 

smaller than the losses of the old one, reaching around 8% with the new Hash Table, 

and 10% with the old one. However, this difference is more representative when the 

results present the number of packets received and lost, by each version. 

 



 
Figure 5.2 – Hash Tables' Packet Losses 

As seen on Table 5.2, the new Hash Table drops much lesser packets 

than the old one, having over 7.5 million packets of difference. 
Table 5.2 – Received/Dropped Packets by each version 

Hash Table Received Packets Dropped Packets 

New 395336588 33704370 

Old 397342393 41273020 

These gains in the packet capture rate were obtained due to the time 

reduction suffered in the Hash Table operations, mainly because of the Cleanup 

Module. This critical module has suffered a reduction in its execution time of more 

than 70%. Now, none of the functions is responsible for more than 1.8% of all TAM’s 

execution time. These results are shown in Table 5.3. 
Table 5.3 – Code Profiling result, New Hash Table 

Function Duration per call (milliseconds) % total time spent in TAM 

Insertion 0.00010 0.3 

Removal 0.00012 0.4 

Cleanup Module 506 1.8 

5.2.2 Optimized TAM Architecture 

In this section, the results obtained with the New Architecture are going to 

be compared and some comments will be made about some performance gains 

obtained. It is worth telling that all the following results, in the next sections, were 

achieved with the classification module activated. 
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This version has changed the packet capture mechanism, from libpcap to 

PF_RING (described on section 3). Now, with the shared circular buffer between 



kernel and user space, unnecessary packet copies are avoided, increasing the 

packet throughput. Additionally, the user applications can access the packet directly 

from the buffer, avoiding expensive system calls (which are performed in the classical 

packet capture model with sockets). Therefore, with these new features provided by 

PF_RING, the packet reception speed was improved. 

Also, the New Architecture is using the new deployed Hash Table, which 

has shown better performance, when compared with the old one at section 5.2.1. 

With this new Hash Table, a considerable processing time gain was obtained, since 

that, now, the insertion and removal tasks operate in constant time (O(1)). 

Figure 5.3 shows that the New Architecture absolutely outperforms the 

original one in a incoming rate of 100Mbit/s, having only few peaks at the beginning 

of the analysis.  Since that, at the application startup almost every packet that arrives 

represents a new flow, therefore it tries to classify almost every packet, leading to 

such loss peaks. However, when those flows are becoming classified by the 

application and the rate of new flows starts to reduce, it does not lose packets 

anymore. However its final loss rate is of 0.54%, what is almost imperceptible. 

‘  
Figure 5.3 – Packet Loss, New Architecture 100Mbit/s 
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When the packet incoming rate is increased, the new version starts to lose 

a considerable amount of packets, but it stills losing much less than the Original 

TAM. Nevertheless, at the comparison made between the two versions, at Figure 

5.4, is noted that the New Architecture dramatically improves the packet capture rate 

up to 500Mbit/s. Even though, with incoming rates greater than 500Mbit/s, the gain is 



not too considerable, reducing from 93% to 86.48%, 94.71% to 90%, 94.90% to 

91.60%, 96.29% to 92.09% and from 96.57% to 93.03, representing respectively 

500, 600, 700, 800 and 900Mbit/s. 

 
Figure 5.4 – Packet Loss, Original TAM vs. New Architecture 

All those performance gains are attributed to the optimizations that were 

made in different levels of TAM: the Hash Table, packet capture and synchronization 

optimizations. 

One of the key optimizations was the modification of the capture and 

analysis module. Therefore, the new multicore architecture, distributing the capture 

and analysis work among several threads has mitigated this problem. But only this 

would not suffice, since all worker threads would have to be synchronized, in order to 

not modify the same flow at the same time, since there can be different threads 

dealing with the same flow. Therefore LBM was built, eliminating such problem, since 

it will guarantee that there will exist a N:1 relation between flows and threads. Thus, 

the worker threads will effectively work in parallel. Additionally, the single cleanup 

module can guarantee that, even when it starts its operations, there will be, at least, 

N-1 threads working. 

Also, it is worth telling that some gains in the packet capture rate were 

obtained due to the optimizations performed within the Hash Table, eliminating the 

additional operations that were performed with the insertion and removal tasks 

(section 5.2.1). 

As a final evaluation, the hash function, used to distribute the load 

between threads, was tested in order to prove that it equally distributes packets 

between threads. If this function did not make an equal load balance, there would be 
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an overloaded thread, causing high losses of packets. To evaluate this possibility, 

some tests were performed in order to guarantee that the LBM almost equally 

distribute packets among the worker threads. The results of such tests are presented 

at Figure 5.5. 

 
Figure 5.5 – Packet Distribution among Threads 

5.2.3 Packet Counting Evaluation 

Additionally, as said on previous sections, the New Architecture will be 

evaluated with the packet counting technique, inspecting only the first 7 packets of a 

given flow, analyzing its behavior. Therefore the New Architecture was modified, in 

order to inspect only the first 7 packets of a given flow. The evaluation results are 

presented at Figure 5.6. 

 
Figure 5.6 – Packet Loss, Original TAM vs. New Architecture (first 7 packets) 
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The results show that the packet loss rate can be dramatically reduced 

when the RegEx matching is performed in, at most, the first 7 packets of a given flow, 



having only 38.58% as the highest packet loss rate, against 96.57% of the version 

that analyzes all packets, until classify the flow. Even not analyzing all packets of a 

flow, the classification completeness does not suffer decreases. Instead, the graph 

shown at Figure 5.7 shows that this approach was able to classify much more flows 

then the version that analyzes all packets. 

 
Figure 5.7 – Classification Completeness, first 7 packets analysis – 700Mbit/s (Flows) 

As depicted at Figure 5.7, the version that analyzes all packets from a 

given flow, was not able to classify only around 30% of all flows, while the other 

version, analyzing only the first 7 packets, is not able to classify around 23%. This 

difference is not too significant, but it is composed of flows with huge traffic volume 

(shown at this section on the volume analysis). Another point that must be noticed is 

the number of Non Payload flows, which is around 54% on the version that analyzes 

all packets, against 16% on the other version. The high number of Unknown flows 

occurs because the version that analyzes all packets has a high packet loss rate, 

reaching 94.9% at 700Mbit/s, so there is a high probability that those lost packets 

could contain payload the signature of an application recognized by TAM, leading to 

high number of Unknown flows. The same behavior is applied to the Non Payload 

flows, since the lost packets can be the ones that were carrying payload, leading to a 

high number of Non Payload flows. Therefore, since the traffic that is replayed to 

both versions are the same, these Non Payload flows are misclassified.  
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On the other hand, the version that analyzes only the first 7 packets of a 

given flow has a lower number of Unknown and Non Payload flows, since it captures 

more packets. So there is a higher probability for this version to catch the flow’s 

packets that have payload and some recognized signature. Additionally, those gains 

obtained, in the classification completeness, are more significant than it appears to 

be, since only 1% represents more than 130000 flows. The Table 5.4 shows that, 

due to less packet loss, the number of flows and byte volume captured by the New 

Architecture, analyzing only the first 7 packets, is incredibly higher than the flows and 

byte volume captured by the Original TAM. 
Table 5.4 – Analyzed traffic statistics (700 Mbit/s) 

Version Number of Flows Captured Volume Captured (GB) 

Analyzing all packets 3222939 6.56 

Analyzing first 7 packets 13149126 136.86 

This difference in classification gets even higher when the classified 

volume is considered, instead of flows, as seen in Figure 5.8. The New Architecture, 

analyzing only the first 7 packets, is able to classify almost 77% of all analyzed traffic 

volume, against 25% on the Original TAM. 

 
Figure 5.8 – Classification Completeness first 7 packets analysis – 700Mbit/s (Bytes) 

The volume of unclassified traffic volume is incredibly high in the Original 

TAM, reaching 70.34% against 22.69%, in the New Architecture analyzing only the 

first 7 packets of a flow. Also, the volume of Non Payload traffic represents 4.47%, in 
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the Original TAM version, against 0.65%, in the new version. These results are 

caused because of elephant flows (with huge byte volume) that could not be 

classified due to several packet losses in Original TAM (94.90% in 700Mbit/s) and 

now can be classified with the New Architecture. Additionally these elephant flows 

are basically composed by huge data transfers (P2P, WEB and Streaming Flows), 

which have their protocol signature present in few packets, most at the beginning of 

the flow, probably lost by the Original TAM. 

5.2.4 Payload Truncating Evaluation 

Now the results obtained with the New Architecture analyzing only the first 

750 payload bytes are going to be shown at Figure 5.9. 

 
Figure 5.9 – Packet Loss, Original TAM vs. New Architecture (750 bytes of payload) 

As shown in Figure 5.9, the packet loss rate had a considerable reduction 

when the payload truncating technique was applied, but not too noticeable as the 

results shown with the packet counting technique, presented at Figure 5.6. It 

happens because with the payload truncating technique it is still losing a great 

amount of packets when the incoming rate gets over 300Mbit/s. However, it starts 

losing no packets at the 100Mbit/s and 200Mbit/s rates, against 56.94% and 79.11%, 

respectively, at the Original TAM. Additionally the packet losses at the highest rate 

(900Mbit/s) have suffered a considerable reduction, from 96.57% to 84.72%. 
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In addition, a new evaluation was proposed, in order to reduce even more 

the packet loss rate. Such evaluation consisted on mixing the two techniques, 

namely payload truncating and packet counting. The results of this mixing are very 

impressive, shown in Figure 5.10. 



 
Figure 5.10 – Packet Loss, Original TAM vs. New Architecture (7 packets + 750 bytes) 

This experiment was useful to show how the bottleneck identification is 

important in real time systems, which was the RegEx matching process. Therefore, 

optimizing its execution could lead to an incredibly decrease in packet loss rate, 

having 0.17% as the highest rate in 900Mbit/s. 

 
Figure 5.11 – Classification Completeness, 750 bytes analysis – 700Mbit/s (Flows) 

Additionally, these experiments had the same behavior of the other 

performed at the previous section, regarding the impact on classification. As seen of 

Figure 5.11. The number of unclassified flows, when inspecting only the first 750 

bytes of payload is around 27.58%, whereas the original TAM analyzing full payload 

is around 29%. But, the number of Non Payload flows in the original TAM is around 
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54%, against 37% when analyzing the first 750 Bytes of payload. The justification for 

such behavior is the same that occurred with the packet counting evaluation: Greater 

number of packets captured. Figure 5.12 shows the classification completeness, 

regarding the byte volume, between the Original TAM and the New Architecture 

inspecting only the first 750 bytes of payload. As expected the classified volume has 

increased and the unclassified byte volume has decreased. 

 
Figure 5.12 – Classification Completeness, 750 bytes analysis – 700Mbit/s (Bytes) 

 
Figure 5.13 – Classification Completeness, 7 Packets and 750 bytes analysis – 700Mbit/s (Flows) 
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Finally, Figure 5.13 and Figure 5.14 show the classification completeness, 

regarding volume amount and number of flows that were classified on the 

comparison made between the Original TAM and the New Architecture inspecting 

only the first 7 packets and 750 bytes of payload. The New Architecture was able to 

classify more than 60% of all flows and almost 80% of all byte volume. 

 

Figure 5.14 – Classification Completeness, 7 Packets and 750 bytes analysis – 700Mbit/s (Bytes) 

5.2.5 Evaluation with Rewritten Patterns 

It has been seen that the main bottleneck of TAM is the RegEx matching 

operation. So, in order to obtain some performance gains, some patterns, that were 

using unnecessary greedy quantifiers like * and +, were rewritten. Such modification 

on those patterns have reduced its generated automata size and consequently 

reduced its searching time. 

For instance, TAM has the following pattern to recognize the HTTP 

protocol, described at Figure 5.15. 

 
Figure 5.15 – HTTP RegEx 

 This pattern has a greedy quantifier at its end, which denotes zero or 

more repetitions of any characters in the range specified inside the brackets (3rd 
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Block). However, this quantifier is completely unnecessary, since that a payload, to 

successfully match this RegEx, only needs to have the first two blocks of the 

expression, making no difference whether there are more characters or not after 

these blocks. This indifference is caused by the quantifier *, denoting zero or more 

repetitions. Thus, removing the final block of this expression can lead to a 

considerable gain in the matching speed, since the greedy quantifier will not be 

present spending unnecessary time, looking for more characters. Additionally, if the 

state machine has reach the 2nd block of the expression, the RegEx has already 

performed a successfully match. Therefore, the resulting expression, after the 

rewriting operation is depicted at Figure 5.16. 

 
Figure 5.16 – Rewritten HTTP RegEx 

Other RegExes have suffered subtle modifications like the one performed 

on the HTTP RegEx. For instance, TAM has got the following signature to classify the 

IRC chat application, depicted at Figure 5.17. 

 
Figure 5.17 – IRC RegEx 

This RegEx has several greedy quantifiers, which can be removed without 

loss of correctness in classification. Therefore, the quantifiers present at the 2nd, 4th, 

6th and 8th can be removed of the RegEx, by the same justification given with the 

HTTP RegEx. After that, TAM has a new RegEx for IRC identification depicted at 

Figure 5.18 

 
Figure 5.18 – IRC RegEx Rewritten 

The presented RegExes at this section were not the only expressions that 

were rewritten, there were other rewritten RegExes following the same idea of HTTP 

and IRC. These subtle modifications in the RegExes used by TAM have lead to 
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considerable performance and, consequently, packet capture rate gains, which are 

present on the graph at Figure 5.19. 

As seen on the graph presented at Figure 5.19, the packet loss rate was 

reduced from 56.94% to 0.0%, in 100Mbit/s, and from 96.57% to 90.32%, in 

900Mbit/s. Also, as expected, the classification completeness has increased, due to 

more packets captured, as shown in Figure 5.20. 

 
Figure 5.19 – Packet Loss, Original TAM vs. New Architecture (Rewritten Patterns) 

 
Figure 5.20 – Classification Completeness, Rewritten Patterns – 700Mbit/s (Flows) 

The number of unclassified flows has reduced from 29.48% to 28.40%, 

whereas the number of Non Payload flows has reduced from 53.67% to 40.84% and 

the number of Classified has almost double from 16.85% to 30.77%, which represent 
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a considerable gain. As said on previous sections, this slight reduction in the number 

of unclassified flows, from the Original TAM to the New Architecture, is very 

important, since they represent flows with huge volume of traffic. Therefore, Figure 

5.21 proves it. Since, the classified volume has increased from 23.27% to 51.78%. 

 
Figure 5.21 – Classification Completeness, Rewritten Patterns – 700Mbit/s (Bytes) 

5.2.6 All Techniques Together 

Now, in order to obtain the highest packet capture rate, the techniques 

mentioned on this thesis were combined with the New Architecture, leading to an 

incredible improvement in both packet capture rate and classification completeness. 

The results obtained in the packet loss metric analysis are shown at Figure 5.22. 

 
Figure 5.22 – Packet Loss, Original TAM vs. New Architecture (all techniques) 
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Also, the New Architecture mixed with the other techniques has started to 

lose packets only at 800Mbit/s. Thus reducing from 96.57%, with the Original TAM 

performing at 900Mbit/s, to 0.15%, with the New Architecture and the techniques 

mixed together. 

 
Figure 5.23 – Classification Completeness, Mixed Techniques – 700Mbit/s (Flows) 

Additionally, the classification completeness reached the greater number 

of classified flows, when compared with the previous results. The Figure 5.23 shows 

the achieved results. The number of unclassified flows has reduced from 29.48%, 

with Original TAM, to 23.02%, with the New Architecture and mixed techniques and 

the number of classified flows has changed from only 17% to 61.51%. Also, the 

number of Non Payload flows has suffered greater reduction, from 53.67% to 

15.47%. 

When analyzing the classification completeness, regarding the byte 

volume that was classified, the obtained results are even better, as seen in Figure 

5.24. The Unknown traffic volume, have reduced from 73.15% to 21.45% and the 

Non Payload traffic volume from 3.58% to 0.63%, thus representing a considerable 

gain. Hence, the New Architecture mixed with all presented techniques has bumped 

the number of classified volume, from 23% to almost 80%, a gain of 250%. 
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Figure 5.24 – Classification Completeness, Mixed Techniques – 700Mbit/s (Bytes) 
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6 DISCUSSION 

In the previous sections, some optimizations were discussed, 

implemented and evaluated. One of the key points was to confirm that problem 

solving always start with a carefully architecture and design planning, combined with 

correct choice of the used data structure. Those points were reflected on the 

combination of the Multi-threaded approach and LBM, in architecture and design, 

and the Hash Table optimization, in data structure choice. Additionally, without those 

preliminary optimizations, none of the presented gains would be possible to achieve, 

since they were the core of the new system. 

However, the presented optimizations, namely packet counting and 

payload truncating, have to be used with care. The payload truncating technique, for 

instance, can change the traffic profile of the analyzed network, since other 

signatures could perform a successful match, instead of the correct one that would 

match at the truncated payload’s block. Hence, choosing a low level of truncating can 

lead to optimization gains, with no considerable changes in classification. 

Additionally, if the packet counting is performed with a small number of packet’s 

threshold, a great amount of traffic can migrate to the Unknown Class, since some 

applications’ protocol do not put their signatures in the first packets of a flow. 
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7 CONCLUDING REMARKS 

This thesis has shown how DPI system developers can take advantage of 

subtle modifications that lead to considerable performance gains. Now, DPI systems 

that were not able to deal with high packet incoming rate (e.g. 1Gbps) can handle 

such load of traffic with increase in the classification completeness. Additionally, such 

modifications empower DPI systems, in order to provide ISPs with a wider view of 

what is passing through their network, aggregating a great amount of traffic 

information. 

Those mentioned performance gains are summarized in the steps made in 

each optimization phase, thus resulting in a gain of almost 100%, reducing from 

96.57% of packet losses, in the Original TAM, to 0.15%, in the New Architecture with 

all optimizations together. Additionally, this thesis has shown how DPI systems can 

take a great advantage when analyzing the first packets of a given flow, and 

truncated payload, with considerable gain in classification completeness. 

Finally, there are some future works that are worth performing, in order to 

obtain even better results. 

In section 5.2.5 the results have shown that RegEx rewriting is a valuable 

technique that can lead to considerable performance, without huge effort. However, 

only few RegExes were rewritten, those that presented the most critical problems, in 

set of about 40 RegExes. Hence, inspecting the other RegExes, searching for 

problematic signatures, and rewriting them can lead to interesting results. 

Additionally, there are other RegEx libraries that can be evaluated and compared 

with the one used in TAM, such libraries are for instance: libpcre [16] (used in Snort) 

and Boost Xpressive [4]. 

Also, those used thresholds in the Packet Counting and Packet Truncated 

techniques, namely 7 packets and 750 bytes, could be evaluated in order to find if 

they can be reduced, without decrease in classification completeness. 

Last, but not least, if the task performed by LBM could be performed in 

hardware level some gains could be obtained. For instance, a commodity Intel 

Network Card (Intel PRO/1000 PT) distributes the packet load between different 

processors, guaranteeing that different processors will not receive packets belonging 

to the same flow. Thus, with the interruption rate for incoming packets divided among 



62 
 

processors, each worker thread could be “pinned” to only work in a given core, 

increasing the cache hit rate when dealing with packets from their set of flows. 
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