
Federal University of Pernambuco

Graduation in Computer Science

Informatics Center
2008.2

THIAGO DE BARROS LACERDA

ON THE OPTIMIZATION
OF

DEEP PACKET INSPECTION
Diploma Thesis

Advisor: Djamel Sadok (jamel@cin.ufpe.br)
Co-advisor: Stênio Fernandes (stenio@gprt.ufpe.br)

Recife, PE
2008

Federal University of Pernambuco

Graduation in Computer Science

Informatics Center
2008.2

ON THE OPTIMIZATION
OF

DEEP PACKET INSPECTION
Diploma Thesis

 Diploma Thesis presented to the

Informatics Center of the Federal
University of Pernambuco by Thiago de
Barros Lacerda, advised by Prof. PhD.
Djamel Sadok. As requirement to obtain
the Bachelor of Science degree in
Computer Science.

Advisor: Djamel Sadok (jamel@cin.ufpe.br)
Co-advisor: Stênio Fernandes (stenio@gprt.ufpe.br)

Recife, PE
2008

II

III

APPROVAL SHEET

THIAGO DE BARROS LACERDA

ON THE OPTIMIZATION OF DEEP PACKET INSPECTION

Thesis approved on December 4th, 2008.

Thesis Committee

__

Prof. Djamel Fawzi Hadj Sadok, PhD – UFPE

(Advisor)

__

Prof. Nelson Souto Rosa, PhD – UFPE

(Examiner)

IV

To everyone that has supported me, in any
aspect: family, girlfriend, professors,
classmates, friends and work colleagues.
These four years and a half were very tough,
but worthwhile and I would do it all again, if
necessary.

“The significant problems we have cannot be solved at the same level of thinking with which
we created them.”

Albert Einstein

V

ACKNOWLEDGEMENTS

First of all, I would like to remark that the following acknowledgments are

not only for those who have helped me on this thesis, but for all that have been with

me during my academic years. It is also important to remark that those

acknowledgements are not in order of importance.

I’d like to thank my father Cândido Lacerda and my mother Catari

Lacerda, for those years of support, love and provided education.

I also want to thank my Project Manager and Co-Advisor Stênio

Fernandes, who always helped me when I needed, for all the support provided within

this work even with his “’to do’ buffer” full of important (and Canadian) things (tending

to overflow) to do. I cannot forget to sincerely thank my advisor Djamel Sadok, for all

support within this thesis and at GPRT. Not less important, I would like to thank

Judith Kelner, for all those almost 3 years of support at GPRT.

To all those who have been with me on this undergraduate journey at the

Informatics Center (especially those that worked together with me in “Projetão”), for

all nights working together, parties, meetings and unforgettable times of fun: Guedes

(also for all valuable and productive conversations about this work), Pigmeu (for all

rides and Friday’s beer time), Japa, David, Jesus (no, not the son of God) (even

considering me only a colleague), Digão (wheelbarrow), Janga Boy (for showing to

me that only modeling is enough), Gravatá, Seabra, Rilter Seabra (Seabra’s brother),

Rebeka (Rosalvão), Moxinho, Vivi, Xeifer, Chico (remainder of the name omitted, due

to its extensiveness) and Josias. I cannot forget to also thank Cavanhaque, Bigode

and Kelly, for all provided moments of happiness and fun.

My sincere thanks to Thaís, for all those years of support, advises, love

and patience when I had to spend nights and weekends working/studying at the

University.

Additionally, I would like to thank all my colleagues at GPRT, for all

friendship, advises, support and apprenticeship provided: Arthur Callado (the oracle),

Rafael Antonello (Patrão), Ana Cristina, Alysson (rubro-negro), Fabrício, Nadia,

Manu, Feitosa (the key’s lender), Duda, Rover, Rodrigo Germano, Hachid, Curupa,

Nacha and Kalil.

I would like to thank God.

Please forgive me, if I forgot someone.

VI

ABSTRACT

Among the current mechanisms to perform traffic measurement and

classification, Deep Packet Inspection (DPI) is the most used among Internet Service

Providers (ISP) and network managers due to its accuracy. However, the present

speed of the current Internet links is forcing such motoring task to rely on specialized

hardware and software, instead of commodity ones present on common PCs. This is

caused by the heavy processing performed by comparisons made between the

packet’s payload, from a given flow, against networked applications’ signatures,

commonly expressed as regular expressions.

This thesis presents some techniques aiming to optimize DPI systems,

without appealing to dedicated hardware and software solutions. At first, it is shown

how a precise architecture software design can leave an open path to further

optimizations. After that, some techniques intending to optimize the time spent with

regular expression matching operations are evaluated: analysis of only the first 7

packets of a given flow, payload truncating e regular expressions rewriting. Then,

with the mentioned techniques and optimizations, it was possible to obtain a

reduction of almost 100% on the packet loss rate of a DPI system, running on a Linux

box with an incoming rate of 900Mbit/s, and increase the volume classification

completeness on 250%. It is worth telling that all evaluations were performed with

real trace files, collected at a backbone of one of the most important Brazilian ISPs.

Keywords: Computer Networks Performance, Deep Packet Inspection, Traffic

Analysis.

VII

RESUMO

Dentre os atuais mecanismos de monitoração, medição e classificação de

tráfego, Deep Packet Inspection (DPI) é o mais utilizado entre Provedores de Acesso

a Internet e administradores de redes, devido a sua precisão. Porém, por causa das

atuais velocidades de tráfego que os enlaces vêm alcançando, esse tipo de

monitoração torna-se inviável com dispositivos de hardware e software encontrados

em PCs comuns, com isso, tal monitoração, comumente utiliza-se de dispositivos de

hardware e software especializados. Essa inviabilidade é causada pelo pesado

processamento, decorrente das comparações feitas na carga útil (payload) de cada

pacote, de um determinado fluxo, com assinaturas aplicações de rede, geralmente

representadas por expressões regulares.

O presente trabalho propõe técnicas visando a otimização de sistemas

baseados em DPI, utilizando hardware e software presentes em PCs comuns.

Primeiro será mostrado como uma boa arquitetura de tais sistemas pode abrir

caminho para diversas otimizações. Após isso, técnicas visando diminuir o tempo

gasto em operações de matching com expressões regulares serão aplicadas:

análise dos 7 primeiros pacotes de um determinado fluxo, diminuição do payload a

ser analisado e reescritas de expressões regulares. Com tais técnicas e otimizações,

foi possível diminuir em quase 100% a taxa de perda de pacotes de um sistema DPI,

operando a 900Mbit/s numa máquina com Linux, assim como aumentar em 250% o

volume de tráfego classificado pelo mesmo. Vale salientar que todos os

experimentos foram realizados com traces de pacotes reais, coletados no backbone

de um dos maiores provedores de acesso à Internet do Brasil.

Palavras-Chave: Análise de Tráfego, Deep Packet Inspection, Desempenho de

Redes de Computadores.

VIII

TABLE OF CONTENTS

1 Introduction ... 11

2 Background .. 15

2.1 Regular Expressions ... 15

2.2 Deep Packet Inspection .. 16

2.2.1 TAM (Traffic Analyzer Module) .. 18

2.3 Packet Capture Mechanism .. 23

2.3.1 Packet Reception ... 23

2.3.2 Sockets .. 27

3 Related Work .. 29

4 Project Description ... 33

4.1 Proposed Architecture ... 34

4.1.1 Multicore Architecture .. 34

4.1.2 Load Balance Module (LBM) .. 34

4.1.3 Unique Cleanup Module ... 37

4.1.4 Additional Optimizations ... 38

4.2 Methodology .. 39

5 Evaluation and Results ... 42

5.1 Original TAM ... 42

5.2 New Architecture Results .. 43

5.2.1 Hash Table Optimization .. 43

5.2.2 Optimized TAM Architecture .. 45

5.2.3 Packet Counting Evaluation ... 48

5.2.4 Payload Truncating Evaluation .. 51

5.2.5 Evaluation with Rewritten Patterns .. 54

5.2.6 All Techniques Together .. 57

6 Discussion .. 60

7 Concluding Remarks .. 61

References .. 63

IX

LIST OF FIGURES

Figure 2.1 – TAM's Capture Module .. 19
Figure 2.2 – TAM's Aggregation Module ... 20
Figure 2.3 – TAM's Classification Module ... 21
Figure 2.4 – TAM's Cleanup Module ... 21
Figure 2.5 – Frame Reception on Linux .. 26
Figure 4.1 – New Architecture ... 36
Figure 4.2 – Unique Cleanup Module .. 37
Figure 4.3 – Testbed Architecture ... 39
Figure 5.1 – Packet Loss, Original TAM 100Mbit/s ... 42
Figure 5.2 – Hash Tables' Packet Losses ... 45
Figure 5.3 – Packet Loss, New Architecture 100Mbit/s ... 46
Figure 5.4 – Packet Loss, Original TAM vs. New Architecture .. 47
Figure 5.5 – Packet Distribution among Threads .. 48
Figure 5.6 – Packet Loss, Original TAM vs. New Architecture (first 7 packets) 48
Figure 5.7 – Classification Completeness, first 7 packets analysis – 700Mbit/s (Flows) 49
Figure 5.8 – Classification Completeness first 7 packets analysis – 700Mbit/s (Bytes) 50
Figure 5.9 – Packet Loss, Original TAM vs. New Architecture (750 bytes of payload) 51
Figure 5.10 – Packet Loss, Original TAM vs. New Architecture (7 packets + 750 bytes) 52
Figure 5.11 – Classification Completeness, 750 bytes analysis – 700Mbit/s (Flows) 52
Figure 5.12 – Classification Completeness, 750 bytes analysis – 700Mbit/s (Bytes) 53
Figure 5.13 – Classification Completeness, 7 Packets and 750 bytes analysis – 700Mbit/s
(Flows) ... 53
Figure 5.14 – Classification Completeness, 7 Packets and 750 bytes analysis – 700Mbit/s
(Bytes) ... 54
Figure 5.15 – HTTP RegEx ... 54
Figure 5.16 – Rewritten HTTP RegEx ... 55
Figure 5.17 – IRC RegEx ... 55
Figure 5.18 – IRC RegEx Rewritten .. 55
Figure 5.19 – Packet Loss, Original TAM vs. New Architecture (Rewritten Patterns) 56
Figure 5.20 – Classification Completeness, Rewritten Patterns – 700Mbit/s (Flows) 56
Figure 5.21 – Classification Completeness, Rewritten Patterns – 700Mbit/s (Bytes) 57
Figure 5.22 – Packet Loss, Original TAM vs. New Architecture (all techniques) 57
Figure 5.23 – Classification Completeness, Mixed Techniques – 700Mbit/s (Flows) 58
Figure 5.24 – Classification Completeness, Mixed Techniques – 700Mbit/s (Bytes) 59

X

LIST OF TABLES

Table 2.1 – RegEx metacharacters ... 16
Table 2.2 – Recognized Classes and Applications .. 19
Table 4.1 – Testbed Configuration .. 40
Table 5.1 – Code Profiling result, Old Hash Table .. 44
Table 5.2 – Received/Dropped Packets by each version .. 45
Table 5.3 – Code Profiling result, New Hash Table ... 45
Table 5.4 – Analyzed traffic statistics (700 Mbit/s) .. 50

11

1 INTRODUCTION

Internet Service Providers (ISP) and network administrators always had

deep interest about knowing what type of traffic is going through their backbone.

Therefore, network administrators and managers need to constantly perform network

monitoring and traffic analysis. Such tasks are very important to provide overall

information about the network status, such as: network problems, protocols and

applications that are being used by users and other information about their network

infrastructure. Additionally, this management must be very precise, since erroneous

assumptions about the network, provided by monitoring mechanisms, can lead to

undesirable expenses.

One of the most used types of network monitoring technique is the Traffic

Classification, which can be online and offline. In order to know about network traffic

characteristics instantly, ISPs and network managers are commonly relying on Online

Traffic Classification (OTC). OTC is a great aid to traffic management, since the ISPs

can take decisions and some management actions in real time, according to the

traffic that is flowing through their backbone. For example, they can decrease, or

increase, the Quality of Service (QoS) of some determined application, or block

anomalous flows. In the past, OTC was based on the well known port approach,

where Internet applications had well-known port numbers to send and receive their

packets. However, with the current dynamic behavior of the Internet, mainly caused

by peer-to-peer (P2P) applications [11], this type of classification is not sufficient and

accurate anymore, since there are applications that use tunneling, e.g. through

HTTP, to bypass firewalls and thousands of new applications, using different port

numbers. Additionally, the classification based on the port-application tuple is not

efficient to detect malicious flows and attacks over the Internet.

Nowadays, since the traditional Traffic Classification based on port

numbers is not efficient anymore, OTC is relying on Deep Packet Inspection (DPI),

which is the monitoring approach that provides the most detailed information about

the packets that are traversing the network. DPI systems capture the whole packet

and try to perform some kind of matching, between the packet’s payload and an

application signature, commonly represented by Regular Expressions (RegEx).

Therefore, DPI systems are considered the most precise and maintainable, since

12

RegExes can fully describe various protocols’ messages and expressions can be

modified or added to the system, in order to fix some broken pattern, or recognize

new applications.

In order to deploy systems with good classification completeness, those

DPI systems are equipped with a huge set of RegEx signatures, representing a great

variety of Internet applications. However, the RegEx matching process performed by

DPI systems is the most expensive task on such applications, consuming over 90%

of the CPU time in the whole system [26]. Therefore, the high processing time

consumed by the RegEx matching forces DPI systems to use specialized hardware

and software solutions, striving to obtain good performance, especially on high speed

links. Additionally, in their majority, such hardware and software solutions used by

DPI systems, and the DPI system itself, are quite expensive, since these use

dedicated high end technology components to achieve the highest performance and

effectiveness possible. Consequently those systems are not financially feasible to

some end users and companies.

Deploying DPI systems that are able to deal with high speed links (e.g.

1Gbit/s) in commodity hardware and software is still an open challenge, among the

industry and academic community. Such challenges are mainly caused by the huge

and rapid growth of the speed of the Internet links, therefore that type of classification

is becoming even more difficult to accomplish, without packet loss and while

maintaining the desirable performance. Therefore, the scientific community has been

working on how to achieve classification accuracy and performance, in order to

combine good accuracy and acceptable, or zero, loss rate.

Traditionally, DPI systems that use commodity software commonly rely on

Linux-based Operating Systems (OS), which are the most used systems for network

applications. But Linux suffers from degradation, in packet capture throughput, when

handling high speed links. Such degradation is attributed to the additional packet

copy performed from the kernel space to the user space, where the application,

which the packet is destined for, is operating. Therefore, to a Traffic Classification

Application, that copy, represents an overhead that can lead to performance

decrease. Also, traditional OSs, such as Linux, are deployed to be general purpose

systems, sharing all resources with other process and applications, instead of

dedicated OSs that are deployed, with improved capabilities, serving dedicated

applications, such as network monitoring tools. Additionally, commodity PCs and

13

NICs are not prepared to deal with high loads of traffic. They do not have dedicated

components, such as network processors, buses and memory, and therefore they

have a poor performance when submitted to extreme loads.

To improve DPI systems, the research community has been working on

several approaches such as multicore architectures [14], algorithms to enhance the

performance of RegEx matching [26], Linux kernel modifications that lead to no

packet copies [5][6], Graphic Processing Units (GPU) usage [8], etc. Additionally,

some optimizations in DPI systems are done by means of dedicated and expensive

hardware, which incredibly outperforms software solutions.

As seen in the previous paragraphs, obtaining good performance in DPI

systems, using commodity hardware and software, such as on a common Linux box,

is still an open problem within the research and industry community. Therefore, this

thesis aims at showing how some architectural and software layer modifications can

lead to considerable performance gains, using commodity hardware. With those

gains, a system that was not able to deal with 100Mbit/s without losing packets, will

reach 900Mbit/s with almost no losses and no decrease in classification

completeness. To show such gains, a traditional DPI system, running on a Linux box,

relying on commodity hardware and on common DPI features, is taken as a baseline.

Those common features are sequential processing, libpcap library for packet capture,

general purpose Hash Table and a set of RegExes signatures. Then some

optimizations are performed, within this DPI system, in several levels, in order to

obtain the best performance possible without appealing to specialized hardware

solutions. First, an architectural level optimization is made, in order to take advantage

and fully utilize all available resources of the measurement machine. After that, a

slight modification on how packets are forwarded to user space is implemented and a

data structure level optimization is performed. Additionally, this thesis shows how

other two techniques can lead to a considerable enhancement to this DPI system,

such techniques are Packet Counting and Payload Truncating. At last, but not at

least, this thesis will also show how subtle modifications on some RegExes

signatures can increase its processing speed, reducing the size of the generated

state machine.

The remainder of this thesis is organized as follows:

14

• Section 2: this section presents the essential background needed for the

thesis understanding, covering topics such as Regular Expressions, Deep

Packet Inspection and packet capture mechanism on Linux-based

systems. Additionally the DPI system that is restructured by this work is

presented;

• Section 3: it presents the related work that has been done in the research

community;

• Section 4: the proposed project for the thesis is presented in this section. It

also describes the proposed architecture that was implemented, in order to

enhance the DPI system presented at section 2. Finally it presents the

methodology that is followed by the evaluations performed;

• Section 5: this section shows the evaluation results obtained with the new

architecture and proposed approaches;

• Section 6: this section has an open space to discuss some important

points that were observed;

• Section 7: at this section, the main concluding remarks of the thesis are

going to be presented. Additionally, this section presents some possible

future works.

15

2 BACKGROUND

A brief description of Regular Expressions, Deep Packet Inspection

Systems and the mechanism of packet capture in Linux based systems is given, in

order to provide the essential background needed for the remainder of this thesis.

2.1 Regular Expressions

RegEx is a set of strings, which represent a pattern used to match a

certain string of characters. They provide an enormous expressiveness without

necessity to express the desired patterns one by one, so a RegEx can fully

represents a complete protocol communication. Additionally they are widely used in

computer science, from compilers and programming languages to text editors.

Also, RegExes use a formal language to describe it, having two widely

known writing patterns, namely POSIX [19] and Perl [17]. Its formal language has a

set of metacharacters, used to build a RegEx, which are described at Table 2.1.

RegExes are commonly represented as state machines, which can be

Deterministic Finite Automata (DFA), Non-Deterministic Finite Automata (NFA) and

Extended Finite Automata (XFA). These automata can consume lots of memory if the

RegEx is too complex and also take a huge amount of time to report a successful

match. Additionally, one of the things that is directly interconnected with the matching

time is the number of quantifiers used in the RegEx (* and +), which are greedy

operators, matching as much as they can. For instance, if a pattern like r.*e is going

to search for patterns in the string “regular expressions”, the reported match would

be “regular expre” when “re” would suffice. This additional searching time does not

play a big difference in applications that do not have to give results in real time or

deal with low traffic rate. But when those matching are performed in real time

systems, or those that deal with high traffic rates, this additional time can be crucial.

Therefore, RegExes must be carefully written, in order to perform acceptable

searching times.

The DPI system described on this thesis relies on RegExes to perform the

packet classification. Therefore, for instance, it contains signatures like

http/(0\.9|1\.0|1\.1) [1-5][0-9][0-9] [\x09-\x0d -~]* and ^ssh-[12]\.[0-9], which

respectively represent the HTTP and SSH protocols. Later, this thesis shows that the

16

matching time can be reduced when those patterns are rewritten, eliminating some

unnecessary quantifiers.
Table 2.1 – RegEx metacharacters

Metacharacter Meaning Example

. Matches any character,
excepts new line

A.B can match any string
that has an A, another

character after it and a B

| OR operator, a pattern can
match any of its side

AB|CD represents a
RegEx that can match any

substring AB or CD

()
Used to group a set of

patterns inside a unique
pattern

A(C|D)E can match ACE or
ADE substrings

?
Denotes a matching of

zero or one occurrence of
the preceding pattern

ABC?D can match ABCD
or ABD substrings

* Matches the preceding
pattern zero or more times

AB*C represents a string
that has an A, an

undefined number of Bs
and a C

+
Similar to *, but instead of

denoting zero or more
repetitions it denotes one

or more repetitions

AB+C matches a substring
with, at least, one B
between A and C

{M,N} Repetition of patterns
A{2,8} says that A will

appear at least 2 times and
at most 8 times

[] Represents a class of
characters

[ABC]D can match a
substring that has an A, B

or C before a D

^
Anchor. Says that the

RegEx must start with the
pattern that immediately

follows it

^ABC denotes a string that
must start with an A

[^]
Matches any characters,
except those inside the

bracket

[^A]BC matches any
substring that has a

character different than A
before BC

$ End of string B$ matches any string that
ends with the character B

2.2 Deep Packet Inspection

Deep Packet Inspection (DPI) systems aim at analyzing, indentifying and

classifying the traffic that is going through the network. Such systems accomplish

these tasks by comparing messages within the packet’s payload against strings,

which represent signatures of applications, web attacks or some desired content to

be scanned. Commonly, the used signatures rely their description on the use of

17

RegEx. This has improved their expressiveness and can represent a set of

signatures in a single string. This type of classification, with comparisons performed

using RegEx, is often seen as the most reliable of currently available techniques for

traffic classification. One strong reason for that is that currently, traffic classification

cannot rely on information given by the port-application tuple, because of a variety of

applications that use well-known ports (e.g. port 80) to pass through firewalls, e.g.

P2P applications. Hence, port classification can lead to misleading results.

Since DPI systems have good classification accuracy, ISPs have been

recently relying on such products, because of its effective way of knowing what is

going through their backbone. Throughout the global Internet, ISPs use DPI systems

to perform different kinds of services, like:

1. Content based filtering and charging: ISPs can block, filter or even charge

customers that are using certain kind of applications (maybe undesirable

ones) within their network. Examples of these include Voice over IP (VoIP)

and P2P applications.

2. Lawful Intercept: ISPs are commonly required by various governments to

perform some kind of lawful intercept when needed by law enforcement

agencies.

3. Quality of Service (QoS): Some applications like VoIP and Video over

Demand (VoD) require low latency and higher priority against common

traffic, such as web browsing. Knowing the traffic is the first step towards

giving it higher QoS when desirable.

Also, commonly, Intrusion Detection Systems (IDS), like Snort [24] and

Bro [25], rely on DPI to detect attacks from the Web. For that purpose they have a

large database of signatures used to identify Buffer Overflow attacks, Malware,

worms and viruses within the packet’s payload.

With regard to the signature matching process, RegEx libraries are used

to perform such task, by taking the signature, expressed by some RegEx, and

building their state machines representations. After the state machine’s creation, the

packet’s payload is analyzed by those machines searching for a successful match

with the represented RegEx. Additionally, there are many commercial and non-

commercial tools that use RegEx for traffic identification and classification, like Snort,

Bro, L7-filter [10] and PacketLogic [20] (from Procera Networks), which are widely

18

used. The L7-filter has a wide and open RegEx signature database, which is used by

the scientific community and identifies over a hundred of well-known applications.

DPI systems perform very heavy processing operations, having RegEx

matching as the most expensive. Therefore, in order to achieve a high packet

capture rate over high speed Internet links (e.g. 1Gbps), some optimizations must be

made to avoid high packet loss rates. Such loss can be described as a classical

Producer Consumer problem: The packet incoming rate is higher than the packet

consumption rate (i.e. packet inspection), due to the heavy and resource consuming

operations performed (e.g. RegEx matching). Consequently, the Operating System

buffers rapidly become overwhelmed by packets and subsequent packets are then

dropped.

2.2.1 TAM (Traffic Analyzer Module)

The DPI system described on this thesis, called TAM (acronym for Traffic

Analyzer Module), uses RegExes signatures provided by L7-filter DPI system, non

RegEx signatures from IPP2P project [9] and other signatures that were created by

packet’s payload inspection. Those signatures represent more than 60 applications

falling into 9 different application’s classes, which are listed at Table 2.2. Additionally,

TAM was developed using the C language relying on the traditional libpcap library,

for packet capture, and the C library regex for RegEx matching.

TAM has four modules, 1) the capture module, which is responsible for the

online packet capture from an Ethernet device (Figure 2.1), 2) the aggregation

module, which is responsible for aggregating the packets in flows (Figure 2.2), 3) the

classification module, which compares the packet’s payload (only packets that

belongs to unclassified flows) with the RegExes signatures, aiming to classify that

packet’s flow (Figure 2.3) and 4) the cleanup module, which is responsible to go

through every entry in the Hash Table and verify whether the flow has expired

(Figure 2.4).

The Capture Module, presented in Figure 2.1, dequeues the IP packets

from the capture buffer, checks the layer 4 protocol and forwards them to the

Aggregation Module. Additionally, it waits until the other modules finish their

operations to resume his activities, dequeuing the next packet.

Table 2.2 – Recognized Classes and Applications

Class Application

P2P

eDonkey
BitTorrent

KaZaA
Gnutella
SoulSeek

Ares
Mute

EarthStation
Xdcc

Direct Connect
Waste

GoBoogy
Soribada
WinMX
Napster
MP2P

Web HTTP

Chat

AIM
Yahoo Messenger
MSN Messenger

IRC

Network Management

DNS
NetBios
NBDS
NBNS

BootStrap

Streaming

Video Over HTTP
RTSP

Video Over HTTP (QuickTime)
Audio Over HTTP

E-mail
IMAP
POP3
SMTP

Data FTP
MySQL

VoIP Skype

Secure SSH
SSL

19

Figure 2.1 – TAM's Capture Module

Figure 2.2 – TAM's Aggregation Module

As seen at Figure 2.2, the Aggregation module synchronizes the Hash

Table with the analysis thread, by the locking operation. Then it checks whether the

flow that represents the received packet exists in the Hash Table, creating a new one

if it does not exist. If the flow exists and has expired, the module writes it to an output

file and creates a new flow with the incoming packet. After that, the flow’s reverse

flow is sought in the Hash Table and the same expiration check is performed. Finally,

those information, flow and reverse flow, are forwarded to the Classification Module.

The Classification Module, depicted at Figure 2.3, checks whether the flow

is already classified. If its reverse flow exists and it was previously classified, then the

flow that is being analyzed receives that classification, if it is unclassified. However, if

the flow already has a classification, it only updates its information (byte volume,

timestamp and number of frames). When the Classification Module finishes its

execution, it returns to the Aggregation Module to unlock the Hash Table.

Finally, the Cleanup Module, depicted at Figure 4.2, synchronizes the

Hash Table by the locking operation and checks each flow. If the flow has expired, it

is removed from the Hash Table and written to an output file. Otherwise, the Cleanup

Module retrieves the next flow from the Hash Table.

20

Figure 2.3 – TAM's Classification Module

Figure 2.4 – TAM's Cleanup Module

21

The main objective of TAM is to capture all the packets that are traversing

the network, classify those packets on the fly, aggregating them in flows with the

lowest packet loss rate. Initially, TAM was developed to run in a 34Mbit/s backbone,

at the Point of Presence of Pernambuco (PoP-PE), linked with the Point of Presence

22

of Rio de Janeiro (PoP-RJ), working with no loss of packets at this speed. But TAM’s

requirements have changed; now it has to run at high performance networks,

reaching 1Gbit/s of speed. Now, TAM has to capture, aggregate and classify packets

losing the less number of packets possible without decreases in classification

completeness.

Those Flows, constantly mentioned in this thesis, consist of a

unidirectional series of IP packets with the same source and destination addresses,

port numbers and layer 3 protocol (this set of information is commonly called the

flow’s 5-tuple). Additionally, the aggregation in the format of flows can group all

relevant information about a set of packets in a unique registry and, consequently,

reduces the storage space occupied by the traffic related information.

In order to reduce memory consumption by the identified flows, TAM

establishes a timeout of 64 seconds to write out the expired flows. So if a flow does

not receive any packets in an interval of 64 seconds, its entry will be deleted from the

hash table and it will be written to an output file. Therefore, there is a thread in TAM

that is triggered in intervals of 5 minutes and it scans the whole hash table, searching

for expired flows. This thread must be synchronized with the analysis thread, to

handle some problems that are going to be described later on this section.

The present system faces some problems, which cause poor packet

capture performance. One of the main problems is the packet capture model

performed by libpcap. This poor performance can be explained by the time spent with

unnecessary packet copies, performed by Linux-based systems, from kernel space

to user space. Another problem is the general purpose Hash Table used by this

version, which resolves collisions by chaining, i.e. each Hash Table bucket has a

single linked list, so objects that have the same key are inserted on the list. Such

Hash Table implementation has some bottlenecks, which were identified:

• With a single linked list, every removal operation, of an element X, has to

perform a search operation in the table, in order to get the element that is

placed before X in the list and makes it “next” pointer point to the element

after X.

• Particularly in this Hash Table, when an insertion is going to be performed,

it first checks whether the element, which is going to be inserted, exists in

the table. Such check is unnecessary, since the element is searched at the

23

Hash Table before its insertion, so the information about its existence in

the Hash Table is known beforehand.

Another problem, which really compromises the performance of TAM, is

the time that the system will stay without analyzing any packets, because of the Hash

Table cleanup thread. This occur because the cleanup operation has to be

synchronized with the main analysis thread, since the cleanup module can be

removing an expired flow from the hash table at the same time that the analysis

thread is accessing such flow. Even this module resulting on some packet losses,

this cleanup operation is really necessary because of some reasons:

• Memory consumption monitoring is an essential task in real time systems

(so is in TAM) and therefore flushing out expired flows to an output file is

very important, in order to avoid memory leaks.

• Performing a periodically Hash Table cleaning can lead to a shorter search

time, since there will be less flows in the linked lists, leading to reduced

flow searching time.

2.3 Packet Capture Mechanism

An explanation about the packet capture process and its details within a

Linux-based system is important for a better understanding of the problems that are

faced by a typical capture model. In the section that follows the packet journey inside

the Linux Kernel is dissected. Additionally, this section describes the core structure

for packet capture, namely Socket.

2.3.1 Packet Reception

Here, in order to understand how packet capture, using libpcap, and

kernel sockets work on Linux-based systems, a brief description about the frame

reception and processing inside the Kernel is given. The Figure 2.5 describes the

frame reception flow inside the kernel and the pointed numbers during the text are

referring to the steps depicted by the figure.

Whenever a packet arrives at the NIC, it is first copied into memory. It then

triggers an interrupt, which will be handled by the NIC driver (1). Therefore, the driver

disables future interrupts and allocates a sk_buff (short for socket buffer)

structure, which is the packet representation inside the kernel, fetches the data from

24

the NIC buffer into the new sk_buff, in most cases via Direct Memory Access

(DMA), and invokes netif_rx, which is the generic network reception handler.

The netif_rx (2) function puts a pointer to the new sk_buff inside the

CPU’s queue for incoming packets (there is one queue for each CPU), raises a

software interrupt (softirq) and returns the congestion level of the queue to the

caller. Please note that in the event that this queue is full, the incoming packet is then

discarded. The function that processes the softirqs is known as do_softirq (3).

It checks a bit mask and calls the appropriate handling routine, which represents the

set bit. In this thesis, the interrupt of our interest is the NET_RX_SOFTIRQ (which is

softirq raised when a packet has arrived) and the handle routine is the

net_rx_action (4), which basically dequeues the first packet from the current CPU

queue and calls the processing functions, present on two protocol handler lists.

Protocol handlers are functions which are registered into the kernel to

handle specifics types of packets, such functions are registered in two lists:

ptype_all and ptype_base (containing respectively protocol handlers for all types

of packets and for specific protocols). The functions registered inside ptype_all list

are those with the ETH_P_ALL flag (for generic packets), the ones at ptype_base

are the others with ETH_P_* flags (e.g. ETH_P_IP, for IP packets). So,

net_rx_action loops, until there are no packets to be dequeued or a threshold of

maximum number of packets has been reached, calling each protocol handler

registered, to take care of the incoming packet (NET_RX_SOFTIRQ is enabled again,

if net_rx_action leaves a non empty queue of packets).

The protocol handler function responsible for handling IP packets is the

ip_rcv (5) function. It performs all the integrity checks on the IP packet (checksum,

header fields, etc.) and then, if the packet is considered correct, passes the packet to

any Netfilter hook registered and finally calls ip_rcv_finish.

The ip_rcv_finish (6) function deals with packet routing. Within it, the

ip_route_input function, decides whether the packet will be forwarded or locally

delivered. Finally, the function ip_local_deliver is called.

ip_local_deliver (7) deals with IP defragmentation (reassembling the

fragmented packets) and then, similarly to ip_rcv, it calls

ip_local_deliver_finish (8), but before that it also calls Netfilter hooks. Next,

25

the ip_local_deliver_finish takes care of the tasks that are still pending for

the packet to be passed to upper layers, additionally it also checks if there are any

RAW Sockets listening, in order to forward the packets to them, by calling the

raw_v4_input function.

Therefore, after ip_local_deliver_finish checks whether there are

any raw socket opened, it calculates a hash function based on the protocol number

present at the IP header, and gets back the layer 4 function that will handle the

packet. Such functions are registered in a Hash Table, called inet_protos, which

is filled when the Linux kernel is initialized, with the layer 4 protocol handlers. These

handlers are called tcp_v4_rcv, udp_rcv, icmp_rcv and igmp_rcv,

representing each of the layer 4 protocols. Those layer 4 functions should return a

value indicating if an ICMP Destination Unreachable message has to be returned to

the packet sender, which must occur if the layer 4 protocols do not find a socket

opened that matches the incoming packet.

If the packet contains a TCP segment, then the tcp_v4_rcv (9) handler

is the function that will be called. It performs some header integrity checks, searches

whether there are any sockets listening for TCP packets and performs the TCP Finite

State Machine processing. If a TCP socket was registered inside the kernel, then the

filter expressions, registered with each socket, are evaluated, in order to decide

whether the packet should be forwarded to a current socket or not. If the packet

passes the filter then the tcp_v4_do_rcv function is called, otherwise a value

indicating that an ICMP Destination Unreachable packet should be sent back.

After the filtering process, the corresponding function, which matches the

current state of the TCP connection, is called. If the connection has been already

established, the function tcp_rcv_established (11) is called, where

acknowledgements mechanisms and header processing are going to be performed.

Additionally, at tcp_rcv_established, the function data_ready (12) will be

called, which will alert the current process, owning the socket, that a packet has

arrived and is ready to be consumed.

On the other hand, if the packet contains a UDP segment, the process is

much simpler. At udp_rcv (10), some header and integrity checks are performed

and then the same tasks as in those for TCP handlers are performed including:

search for a UDP socket matching the current packet (if no socket is found the

packet is discarded), filtering (sk_filter function) and finally calls data_ready.

26

Figure 2.5 – Frame Reception on Linux

27

2.3.2 Sockets

When a programmer opens a socket (by invoking the socket system call)

for packet reception, internally the kernel calls __sock_create, which will create a

new a sock structure (the kernel representation of sockets), and registers a protocol

handler for the specified protocol.

The socket function has the following interface: socket(int family,

int type, int protocol), where:

• family: Refers to the protocol family that the user will handle with the

socket (e.g. PF_INET for sockets based on IPv4 protocol, PF_PACKET for

sockets which want to communicate directly with the link layer)

• type: The type of the socket communication semantics, common types

are:

o SOCK_STREAM: Provides sequenced, reliable, two-way, connection-

based byte streams (commonly used with TCP connections)

o SOCK_DGRAM: Datagrams support (commonly used by UDP

connections)

o SOCK_RAW: Allow users to have access to lower-level

communication protocols. The protocol stack processing stops at

layer 3, the packet is not forwarded to layer 4 processing.

• protocol: The protocol of the packets that the socket will receive (e.g.

ETH_P_IP for IP, ETH_P_ALL for all types of packets, etc.)

These sockets are basically represented as a queue which stores pointers

to packets inside the kernel and each of these sockets is responsible for a class of

packets. The PF_PACKET, for instance, handles all the packets that arrive at the

Network Interface Card (NIC) and skips all the processing that is usually performed

by the TCP/IP stack inside the kernel (depicted at Figure 2.5). On the other hand, the

PF_INET socket only deals with IP packets, but there are other types of sockets that

only deal with TCP, UDP packets, etc., at the Linux protocol stack.

When an application is capturing packets using libpcap library, it first

registers a PF_PACKET kernel socket, inside the kernel to handle all packets that are

arriving in the NIC. Therefore, whenever a packet arrives at the NIC, an interruption

is triggered to call the corresponding kernel driver for that NIC. Next, the packet is

28

copied to the driver and a pointer to the packet is stored inside every socket’s queue

that matches the packet type, therefore the Linux Socket Filter (LSF) registered with

such socket will filter the packet and decide whether it will be copied to user space or

not. In summary, the capture process performs the following operations: packet copy

from the NIC to the driver, pointer storage at PF_PACKET socket queue and another

packet copy from kernel to user space.

29

3 RELATED WORK

A great deal of work has been done among the scientific community in

order to achieve higher performance and accuracy in traffic analysis and

classification. In [22] Schneider performs a deep analysis on how packet capture

works on both BSD and Linux based systems. Additionally he points out some

problems that exist in the present model of capture, such as packet copying

operations.

Deri, in [5], proposes a new type of kernel socket, called PF_RING, which

is able to improve dramatically the packet capture rate on Linux-based systems. He

has patched the Linux kernel, in order to make available to users that new kind of

socket. Using PF_RING sockets, the packet does not have to travel through all the

network protocol stack processing, like it usually does, but instead a straight path

from kernel to user space is taken. This new socket is based on a circular buffer, a

memory region to handle incoming packets, which is shared between kernel and user

spaces. Hence, user applications can directly access the packet that is queued in the

ring, thus avoiding the expensive packet copy operation. He has evaluated his

technique and compared it to other approaches for packet capture, like libpcap and

Mmap libpcap [15] and showed that his solution outperforms them. Another important

point in this work is that it also provides the user with a SDK, to build plugins for

packet capture applications based on PF_RING.

After the PF_RING release, Deri in [6] extended his work and proposed

nCap. This is seen as yet a further improvement to the packet capture rate in Linux-

based systems. The author created a solution for packet capture and transmission at

wire speed (bellow 1Gbps), creating a straight path from the NIC driver to user

applications. When a network adapter is opened for packet capture it becomes a

dedicated device for such task. Then the kernel no longer has control of it anymore

letting only the application to transmit or receive packets from the adapter. Instead of

creating one circular buffer, shared between kernel and user space (like PF_RING),

nCap creates two: one buffer for incoming packets and another one for outgoing

packets. These are directly managed by the network adapter, without any

intervention from the kernel. So whenever a packet arrives at the network adapter, it

copies the packet directly to the incoming buffer and alerts the kernel that a new

30

packet has arrived. His evaluation showed that this approach has better performance

than PF_RING, and this was the case regardless of packet size. But, as nCap is at

driver layer, it is bound to a specific kind of NIC, the Intel GE 32-bit.

Schneider et al. on [21] argue that with the current PC commodity

architectures is impossible to reach 10Gbit/s capture rates, due to serious

bottlenecks faced by the bus bandwidth and disk throughput. Nowadays the fastest

bus bandwidth transfer that can be achieved with PCI-Express busses and it is

around 8000 Mbytes/s, although the actual boards only use those busses for graphic

cards. Also the actual disk throughput, for writing operations, is not enough to

support a throughput from a 10Gbit links. Because of these problems, the authors, in

order to handle 10Gbit/s traffic load, proposed to split the traffic among 10 machines,

each one receiving traffic at most of 1Gbit. They built a testbed with a switch, to split

all incoming traffic (at 10Gbit) among the machines and then tested it with different

Operating Systems and processors. They have measured the packet capture rate

among FreeBSD and Linux Operating Systems and AMD Opteron and Intel Xeon

processors, having the combination of FreeBSD/AMD outperforming the others.

Additionally they pointed out the time spent on copies made from kernel space to

user space and emphasized the use of device polling for better performance.

Bernaille et al. [3] performed a study on how to classify a TCP flow with

low CPU consumption. His approach consisted of analyzing the size of the first five

packets of a TCP flow. He applied some techniques of machine learning, in order to

build a training database of flow’s behavior (based on the size of the first five

packets), extracted from a packet trace file collected at a university’s backbone.

Therefore, he showed that by analyzing only the packet’s size, a high packet capture

rate can be achieved, since no expensive operations, such as RegEx matching.

Although that approach has several drawbacks including: 1) the fact that it does not

perform well for very short flows (with less than five packets), 2) it needs to track the

reverse flow (sometimes the reverse flow does not follow the same path), so running

this technique at an ISP router, for instance, over a link that sees only a single side of

the conversation makes it ineffective, 3) packet’s size is a not very precise

classification criterion as different applications can have the same packet size

distribution and 4) finally it is not applicable to UDP flows.

Sen et al. in [23], made a study on peer-to-peer (P2P) application

classification, using signature matching and performing analysis on five widely known

31

P2P protocols: KaZaA, eDonkey, DirectConnect, Gnutella and BitTorrent. They used

fixed string signatures of those protocols, mentioned previously, to evaluate the

accuracy of those signatures. They were able to show that the packet examination is

only needed on the first packets of a given flow (less than 10 packets), which led to

less than 5% of false positive rate, in some protocols.

Regarding RegEx matching, Yu et al. [26] proposed a fast and memory-

efficient solution to RegEx matching for payload scanning. The authors consider only

DFA-based approaches because NFA-based approaches are inefficient on serial

processors or processors with limited parallelism (e.g., multi-core CPUs in

comparison to FPGAs). They focused on general-purpose processor-based

architectures. In order to achieve good performance, the authors analyzed the

computational and storage cost of building individual DFAs for matching RegEx, and

identified the structural characteristics of the RegEx in network applications. Based

on such analysis, they proposed two rewriting rules that can dramatically reduce the

size of the resulting DFAs. Next, techniques to combine intelligently multiple DFAs

into a small number of groups to improve the matching speed were developed. The

rewritten rules reduced some DFAs by as much as 98% and 99% of their original

size. On the other hand, the grouping algorithms generated DFAs 2 to 3 orders of

magnitude faster than widely used NFA implementation and 1 to 3 orders of

magnitude faster than a commonly used DFA-based parser.

In [12], Kumar et al. introduced a new representation for RegEx, called

Delayed Input DFA (D2FA). This modification in the original DFA formalism

substantially reduces space requirements as compared to a DFA. The D2FA is based

on a technique used in the Aho-Corasick string matching algorithm [1]. The authors

observed that, in the case of practical rule-sets from commonly used in network

intrusion detection system, many groups of states share sets of outgoing transitions.

Therefore, to explore the redundancy present in these DFAs, they introduced a

special kind of transitions called default transitions. With these modifications when

matching an input string, a default transition is used to determine the next state,

whenever the current state has no outgoing edge labeled with the current input

character. The main idea is to reduce the number of edges of a given automaton, but

recognizing the same set of patterns. That approach can generally reduce the

number of edges by more than 95% for the more complex DFAs that arise in network

32

applications, dramatically reducing the space needed to represent the DFA. They

also created some heuristics to construct an efficient D2FA.

In [14], Villa et al. proposed a string searching algorithm, based on the

Aho-Corasick algorithm, to process separate chunks of the input text. They also used

the multicore approach, IBM Cell Broadband Engine, in order to achieve a good

throughput in string matching processing. Their approach consisted of breaking the

input text in chunks, which would then be processed by different DFAs, achieving

high byte throughput.

The authors in [7] have shown some ways to obtain considerable

performance gains, when analyzing packet’s trace files. Their techniques consisted in

only analyze the first packets of a given flow and truncate the packet’s payload, in

order to reduce the size of the message which would be inspected by the DPI

system. With the packet counting technique, they reported that by establishing 7

packets as a threshold would be sufficient to successfully classify a flow. Also it is

worth telling that performing analysis only within the first 7 packets of a flow can

dramatically reduce the processing time (almost 80%). Additionally, they have shown

that analyzing only first 750 bytes of a packet’s payload can lead to a good balance

between performance and accuracy. In spite of the obtained results, they did not

combine the two techniques, in order to evaluate how the classification behaves, and

only performed offline analysis. This thesis combines the two techniques and checks

their impact on classification. Also all experiments were done with online traffic, in

different transmission rates.

33

4 PROJECT DESCRIPTION

The present thesis aims to improve the packet capture rate and speed of

TAM (described at section 2.2.1). For such purpose, this thesis presents a new

architecture for it, in order to achieve higher packet capture throughput. As a starting

point, the original version of TAM relies on the libpcap library, for packet capture, a

general purpose Hash Table (in order to aggregate the incoming packets in flow

structures) and a set of RegEx, representing the applications previously presented at

Table 2.2. Therefore its performance is going to be evaluated when it receives

different loads of traffic. After that, comparisons are going to be made with the new

version, in order to note how much performance was gained with the proposed

architecture.

Both versions have the following modules:

• Packet Capture Module: Responsible for grabbing the packet that has

arrived at the NIC and forward it to the Aggregation Module.

• Aggregation Module: This module will be responsible to search at the

Hash Table for the packet’s flow. The module will create the flow, if it does

not exist yet. Additionally it will perform flow’s timeout checks and search

the reverse flow of the packet.

• Classification Module: This module will perform the application

identification task, comparing the packet’s payload against TAM’s

signature database.

• Cleanup Module: This module will be triggered for execution, on intervals

of 5 minutes. It will go through every Hash Table entry, checking if there

are expired flows, if so, such flows will be removed from the Hash Table

and written to an output file.

Later, this thesis will show that Original TAM version has problems even

when dealing with low loads of traffic, losing a great amount of packets. These

problems are attributed to the packet capture mode, with libpcap, the general

purpose Hash Table that it uses and the RegEx matching operations. Additionally

this thesis will show how these problems were put aside by the proposed architecture

and techniques.

34

4.1 Proposed Architecture

This section aims at explaining the New Architecture proposed for TAM.

Since its requirements have changed, it has to deal with packet incoming rate, in high

speed links.

4.1.1 Multicore Architecture

Nowadays, multicore architectures are widely deployed and used, among

industry and end users. On the other hand, the previous version of TAM was relying

on a sequential execution flow, not fully exploiting the available resources of the

measurement machine. Additionally, when the cleanup module starts it execution,

the capture, aggregation and classification modules are blocked, in order to handle

synchronization problems. This is necessary to avoid scenarios where the cleanup

module is deleting a flow from the Hash Table, at the same time that the

classification module is trying to classify it. Therefore, when this module was

executed, the capture module had to stop to dequeue packets from the capture

buffer, dropping the packets that were arriving, due to overflow on such buffer.

In order to solve the presented problem, a new multi-threaded architecture

was deployed which has got several threads effectively working in parallel. Each one

of these threads will act as an independent TAM, having the first three modules

described at section 4, namely Packet Capture, Aggregation and Classification

modules. Each worker thread will have its own capture buffer using PF_RING and an

ID number (starting from 0 for the first thread). Now, all the heavy work is distributed

among several threads and there are several packet capture buffers.

Additionally several tests were performed, in order to discover the best

thread’s number threshold. After that, it was observed that this model performs better

with 4 worker threads, which fits better with testbed’s measurement machine

processor (described at section 4.2).

4.1.2 Load Balance Module (LBM)

Even with a multicore approach, this new architecture still has some

problems and it has to deal with two different levels of synchronization:

• Each thread must be locked when the cleanup module starts its

operation.

35

• Only one thread would be working a time, since they must be

synchronized with each other, in order to avoid different threads

modifying the same flow in Hash Table.

Additionally, by opening one buffer for packet capture per worker thread,

all those buffers would contain the same packets, since there is nothing responsible

to distribute the incoming packets among threads. Therefore, a mechanism to detect

that a packet is already being analyzed by another worker thread would have to be

implemented. Also, even with the mentioned mechanism, the buffers would be full of

packets that could be later dropped by the worker thread, because of other thread

already analyzing it.

Since different threads can analyze different packets of the same flow, the

Hash Table has to be shared among them. Consequently, the worker threads have to

be synchronized, having only one thread accessing the Hash Table a time, leading to

a sequential execution.

All those problems could be eliminated if the threads were independent,

without necessity to share information among each other. This could be achieved if

the flows were divided by threads, namely if different threads were not analyzing

different packets of the same flow. Therefore, no thread synchronization would be

necessary, since each thread would have their own set of flows, leading to full

parallel execution. Also, each thread could have a private Hash Table, decreasing

the time spent to search a flow.

This problem could be eliminated if each worker thread performed the

following operations:

1) The worker thread dequeues a packet from its capture buffer

2) Checks whether it belongs to its set of flows or not, by applying some

hash function

3) If does not belong, drop the packet, otherwise analyzes it

But this implementation would overload the threads’ capture buffers with

packets that would be dropped in the future, also dropping packets that belong to the

thread’s set of flows due to lack of space inside the its capture buffer.

For such purpose a Load Balance Module (LBM) was integrated in this

new architecture, which was implemented as a Linux Kernel Module. This module is

responsible to distribute the packet load among the worker threads, in a way that

different threads will not have packets of the same flow, avoiding many

synchronization problems. This module will intercept all packets that are arriving at

the NIC, before their entrance on the capture buffers, filling the threads’ buffers only

with packets that belong to it. With LBM this new TAM can have a private Hash Table

for each thread, since each thread will always have its own set of flows, consequently

it does not have to share flow’s information among the other threads.

Figure 4.1 – New Architecture

The key point of the LBM is a simple and effective hash function that is

calculated whenever a packet arrives at NIC. Such function is described at Equation

1.

36

Equation 1 - Hash Function

ܦܫ݀ܽ݁ݎ݄ݐ ൌ ሺܿݎܵܲܫ ݐݏܦܲܫ ݐݎܲܿݎ4ܵݎ݁ݕ݈ܽ ݐݎܲݐݏܦ4ݎ݁ݕ݈ܽ

 ݏ݀ܽ݁ݎ݄݂ܱܶݎܾ݁݉ݑ݊ ࢊ ሻ݈ܿݐݎ3ܲݎ݁ݕ݈ܽ

The presented function sums up the following fields, present in the IP

packet: IPSrc and IPDst, representing, respectively source and destination IP

addresses; layer4SrcPort and layer4DstPort representing, respectively source and

destination ports, present on the layer 4 protocol (TAM only deals with TCP, UDP

and ICMP protocols) and layer3Protocol, which represents the protocol number that

is encapsulated by IP protocol. Therefore, the equation gets that result and makes a

module operation with the number of worker threads, resulting in the thread ID

representing the thread that will receive the packet. With this simple hashing function

LBM can guarantee that a given flow, and its reverse, will be always forwarded to the

same thread. Also, now it is possible for each thread to have its own Hash Table,

thus reducing the time spent with flow search. This New Architecture is depicted in

Figure 4.1.

4.1.3 Unique Cleanup Module

As seen previously at section 2.2.1, the original TAM version has

undesirable packet losses, because of the analysis thread being blocked by the

cleanup module. Since this New Architecture now has a private Hash Table per

thread, it can have an important gain with a unique cleanup module, which is

depicted at Figure 4.2.

37

Figure 4.2 – Unique Cleanup Module

38

Since the cleanup module will only clean one Hash Table a time, the New

Architecture still have N-1 threads fully working in parallel. Therefore the whole

system would not be blocked, as it occurred in the previous version, thus increasing

the packet capture rate. However, if a cleanup module was implemented for each

thread, there would a probability that the system could have all cleanup modules

running at the same time, thus having the same problem faced by the Original TAM

version.

4.1.4 Additional Optimizations

It is widely known that the most expensive operation in DPI systems is the

RegEx matching process, so the modifications proposed will not suffice when the

system is dealing with very high speed links (e.g. 1Gbit/s). Therefore some other

optimizations are proposed, which are going to be integrated to this New

Architecture.

RegEx matching performance is directly interconnected with the size of

the generated state machine, representing the expression. For instance, if a RegEx

is full of wildcards (*) its state machine’s size can become exponential, which

dramatically decreases RegEx matching performance. In order to reduce such

latency, some RegEx signatures are going to be rewritten, aiming at the reduction of

the size of the generated state machine, but without loss of precision (i.e. the

rewritten patterns continue matching the strings that were matched by the original

patterns).

The authors in [7] have shown that DPI systems can successfully classify

a flow by only analyzing its first packets, having 7 as the best threshold. They have

also have shown that only a fraction of the payload is needed, in order to

successfully classify a flow. Additionally, with those modifications, they have

achieved a considerable gain in the time spent to analyze the packets. Therefore,

adding such techniques to the New Architecture is believed to dramatically reduce

the packet loss rate, when dealing with high throughputs. At first, performance gains

obtained when applying the packet counting technique, using 7 packets as the

threshold, are analyzed. Next, the New Architecture truncates the packet’s payload,

using only its first 750 bytes. Finally the New Architecture mixes those techniques

and the obtained gains are going to be evaluated.

4.2 Methodology

In order to evaluate the packet capture rate in a scenario, in which

different loads of traffic are being generated to a measurement machine, a testbed

described in Figure 4.3 was built.

Figure 4.3 – Testbed Architecture

The testbed is composed with the following machinery:

• Measurement Machine (M): This machine receives packets from the

switch, which aggregates traffic generated by all slave machines. Is at this

machine that the DPI software runs and analyzes the traffic.

• Slaves Machines (S1, S2, and S3): These machines will generate traffic,

at different rates, to the measurement machine.

• Dlink Switch (SW): In order to aggregate the traffic generated from the

three slave machines, a Gigabit switch was placed in the path between the

slaves and the measurement machine. The switch will receive traffic from

the slaves, on a separate port for each and then aggregate that traffic and

forward it to a Gigabit port, which is connected to the measurement

machine.
39

40

Table 4.1 – Testbed Configuration

Machine Processor
RAM

Memory
Administrative NIC

Traffic
Generator/Receiver NIC

HD
Operating

System

M
Intel Xeon X3210

Quad-core
4GB DDR Onboard Gigabit Offboard, 3Com Gigabit

3x 500GB

Sata HDs
Linux, 2.6

S1
Intel Xeon 5110

Dual-core
2GB DDR Onboard Gigabit Offboard, 3Com Gigabit

1x 250GB

Sata HD
Linux, 2.6

S2
AMD Athlon 64x2

Dual-core
1GB DDR Offboard 10/100Mbit Onboard, nVidia Gigabit

1x 300GB

Sata HD
Linux, 2.6

S3
AMD Athlon 64x2

Dual-core
1GB DDR Onboard Gigabit Offboard , Intel Gigabit

1x 300GB

Sata HD
Linux, 2.6

The rate of the traffic generated by the slave machines was varied, in

order to evaluate how much traffic each TAM version can handle, evaluating the

packet loss rate. The starting point was 100Mbit/s, after that the traffic rate

generation was increased by a factor of 100, up to 900Mbit/s. Therefore, the

performance of the New Architecture is evaluated and compared against the old one,

when dealing with different rates. Summarizing, this work aims at showing how subtle

modifications can lead to important improvements without appealing to dedicated

hardware solutions, using only commodity ones.

It is worth telling that all experiments were performed using real packet-

level traces collected at one of the largest ISPs in Brazil. A router port was mirrored,

in order to not interfere in the normal transit traffic, which consists of traffic from/to

around 50.000 ADSL subscribers. To make the collected data more representative of

the traffic diversity, the network was sniffed for several days, accumulating almost

6TB of real Internet traffic in different periods of the day. Therefore, a representative

sample from this collection was selected, to be replayed to the measurement

machine, such replay was done by the tcpreplay1 tool running in all slave machines.

The following metrics are considered:

1) Packet Loss Rate

This is the most important metric, since packet losses are the main

problem faced by DPI systems and they directly impact the classification

completeness. Therefore, the New Architecture is evaluated when receiving

different traffic rates and compared with the Original TAM version.

2) Classification Completeness

1 http://tcpreplay.synfin.net/trac/

41

There is no sense in making a DPI system that loses no packets, by

applying different techniques, but does not have good classification

completeness. Therefore, the techniques that can impact on the classification

completeness, namely packet counting, payload truncating and pattern

rewriting, are going to be evaluated in other to measure their impact in

classification.

5 EVALUATION AND RESULTS

In this section, the results of the evaluations performed on each version,

are shown. The factor that is going to be considered in the evaluation is the packet

incoming rate. This factor will assume different levels, starting at 100Mbit/s up to

900Mbit/s, varying by 100Mbit/s.

5.1 Original TAM

As mentioned previously, this version is the baseline, i.e. the performance

gains obtained are compared against it.

At first, it is shown how TAM performs on the lowest incoming rate

(100Mbit/s), at the graph in Figure 5.1. To build this graph, time bins of one minute

were established, then the packets that have arrived at this time bin and also how

much of those packets were dropped during the bin, were computed.

Figure 5.1 – Packet Loss, Original TAM 100Mbit/s

As presented at the graph, even with the lowest packet incoming rate, the

original TAM has serious losses of packets, reaching almost 60%. The graph also

shows the expected behavior when the cleanup thread is triggered.

42

The cleanup operation is very expensive, since it blocks the analysis

module in order to remove expired flows from the Hash Table. This block is caused

by the synchronization necessary between the two modules, assuring that each

43

thread will access its critical region (the Hash Table) alone. Therefore there will be a

short period of time that no packets are going to be dequeued from the packet’s

queue, leading to packet losses, since that the packet transmission will not stop. This

behavior is depicted at Figure 5.1, which is represented by the loss peaks every 5

minutes, reaching 100% of packet loss at the cleanup period.

Additionally, as expected, the packet loss keeps growing as the incoming

rate grows, losing almost all packets when it reaches 900Mbit/s. Such poor

performance is caused by 4 key points, namely RegEx matching, the cleanup

operation, Hash Table operations and libpcap.

Another problem of this version is that it uses the traditional libpcap library

for packet capture, so it has got the additional packet copy operation (from kernel

space to user space), which can lead to some degradation in the packet capture

mechanism and consequently increase the packet loss rate.

Finally, RegEx matching operation is the main bottleneck of TAM, being

responsible for about 90% of all processing time. Additionally there are some

RegExes that generate huge automata, impacting directly in the matching time spent

by the TAM’s classification module.

Aiming to enhance the performance of TAM, each problem described

above was attacked, in order to have gains in all levels.

5.2 New Architecture Results

5.2.1 Hash Table Optimization

The results, of the Original TAM version, confirmed that its architecture

has a high packet loss rate, getting even higher as the packet speed grows. Such

losses are mainly generated by the RegEx matching, which is very expensive and

the packet copies operations performed by libpcap, but the general purpose Hash

Table has its contribution. Previously, at section 2.2.1, the unnecessary table lookup

operations, in the insertion and removal tasks performed by the general purpose

Hash Table, were pointed. Therefore, as the number of flows grows these additional

table lookups become more and more expensive.

For that reason, aiming at confirming the expensiveness of these

operations, a code profiling in the Original TAM was done, and the result is described

in Table 5.1. Additionally, in order to analyze only the Hash Table operations, the

44

classification module was removed in this experiment. This table just proves that

those operations are contributing to packet losses, since they consume additional

CPU cycles, which could be wasted with packet handling.
Table 5.1 – Code Profiling result, Old Hash Table

Function Duration per call (milliseconds) % total time spent in TAM

Insertion 0.00044 1.9

Removal 0.00030 1.1

Cleanup Module 1826 3

At a glance, the time spent in insertion and removal operations do not

seem to be expensive, within TAM. But they are responsible for 1.9% and 1.1% of all

execution time of TAM. Nevertheless, the function that deserves more attention is the

Cleanup Module, spending almost 2 seconds in each execution, namely almost 2

seconds with no packets withdraw from the capture buffer, which is unacceptable to

a system that must handle a 1Gbit/s incoming rate.

To reduce such overhead a new Hash Table was built from scratch, also

resolving collision by chaining, but having a double linked list instead single linked

one. Additionally, there is no more verification of whether the element which is going

to be inserted exists in the table. Therefore, with this new structure the time

complexity of O(1) (constant) is now guaranteed, for the removal and insertion tasks,

since insertion and removal will only consist of moving pointers operations.

In order to only evaluate and compare the performance of both Hash

Tables, the classification module was removed from TAM and then two versions, one

using the old Hash Table and the other using the new one, were evaluated with the

highest incoming rate, i.e. 900Mbit/s, in order to perform a stress test. The packet

loss rate was evaluated, when there are only operations of capture and flow

aggregation in TAM. The best Hash Table would be the one that has less packet

loss. The results are presented in Figure 5.2.

As seen in Figure 5.2, the loss rate of the New Hash Table is slightly

smaller than the losses of the old one, reaching around 8% with the new Hash Table,

and 10% with the old one. However, this difference is more representative when the

results present the number of packets received and lost, by each version.

Figure 5.2 – Hash Tables' Packet Losses

As seen on Table 5.2, the new Hash Table drops much lesser packets

than the old one, having over 7.5 million packets of difference.
Table 5.2 – Received/Dropped Packets by each version

Hash Table Received Packets Dropped Packets

New 395336588 33704370

Old 397342393 41273020

These gains in the packet capture rate were obtained due to the time

reduction suffered in the Hash Table operations, mainly because of the Cleanup

Module. This critical module has suffered a reduction in its execution time of more

than 70%. Now, none of the functions is responsible for more than 1.8% of all TAM’s

execution time. These results are shown in Table 5.3.
Table 5.3 – Code Profiling result, New Hash Table

Function Duration per call (milliseconds) % total time spent in TAM

Insertion 0.00010 0.3

Removal 0.00012 0.4

Cleanup Module 506 1.8

5.2.2 Optimized TAM Architecture

In this section, the results obtained with the New Architecture are going to

be compared and some comments will be made about some performance gains

obtained. It is worth telling that all the following results, in the next sections, were

achieved with the classification module activated.

45

This version has changed the packet capture mechanism, from libpcap to

PF_RING (described on section 3). Now, with the shared circular buffer between

kernel and user space, unnecessary packet copies are avoided, increasing the

packet throughput. Additionally, the user applications can access the packet directly

from the buffer, avoiding expensive system calls (which are performed in the classical

packet capture model with sockets). Therefore, with these new features provided by

PF_RING, the packet reception speed was improved.

Also, the New Architecture is using the new deployed Hash Table, which

has shown better performance, when compared with the old one at section 5.2.1.

With this new Hash Table, a considerable processing time gain was obtained, since

that, now, the insertion and removal tasks operate in constant time (O(1)).

Figure 5.3 shows that the New Architecture absolutely outperforms the

original one in a incoming rate of 100Mbit/s, having only few peaks at the beginning

of the analysis. Since that, at the application startup almost every packet that arrives

represents a new flow, therefore it tries to classify almost every packet, leading to

such loss peaks. However, when those flows are becoming classified by the

application and the rate of new flows starts to reduce, it does not lose packets

anymore. However its final loss rate is of 0.54%, what is almost imperceptible.

‘
Figure 5.3 – Packet Loss, New Architecture 100Mbit/s

46

When the packet incoming rate is increased, the new version starts to lose

a considerable amount of packets, but it stills losing much less than the Original

TAM. Nevertheless, at the comparison made between the two versions, at Figure

5.4, is noted that the New Architecture dramatically improves the packet capture rate

up to 500Mbit/s. Even though, with incoming rates greater than 500Mbit/s, the gain is

not too considerable, reducing from 93% to 86.48%, 94.71% to 90%, 94.90% to

91.60%, 96.29% to 92.09% and from 96.57% to 93.03, representing respectively

500, 600, 700, 800 and 900Mbit/s.

Figure 5.4 – Packet Loss, Original TAM vs. New Architecture

All those performance gains are attributed to the optimizations that were

made in different levels of TAM: the Hash Table, packet capture and synchronization

optimizations.

One of the key optimizations was the modification of the capture and

analysis module. Therefore, the new multicore architecture, distributing the capture

and analysis work among several threads has mitigated this problem. But only this

would not suffice, since all worker threads would have to be synchronized, in order to

not modify the same flow at the same time, since there can be different threads

dealing with the same flow. Therefore LBM was built, eliminating such problem, since

it will guarantee that there will exist a N:1 relation between flows and threads. Thus,

the worker threads will effectively work in parallel. Additionally, the single cleanup

module can guarantee that, even when it starts its operations, there will be, at least,

N-1 threads working.

Also, it is worth telling that some gains in the packet capture rate were

obtained due to the optimizations performed within the Hash Table, eliminating the

additional operations that were performed with the insertion and removal tasks

(section 5.2.1).

As a final evaluation, the hash function, used to distribute the load

between threads, was tested in order to prove that it equally distributes packets

between threads. If this function did not make an equal load balance, there would be
47

an overloaded thread, causing high losses of packets. To evaluate this possibility,

some tests were performed in order to guarantee that the LBM almost equally

distribute packets among the worker threads. The results of such tests are presented

at Figure 5.5.

Figure 5.5 – Packet Distribution among Threads

5.2.3 Packet Counting Evaluation

Additionally, as said on previous sections, the New Architecture will be

evaluated with the packet counting technique, inspecting only the first 7 packets of a

given flow, analyzing its behavior. Therefore the New Architecture was modified, in

order to inspect only the first 7 packets of a given flow. The evaluation results are

presented at Figure 5.6.

Figure 5.6 – Packet Loss, Original TAM vs. New Architecture (first 7 packets)

48

The results show that the packet loss rate can be dramatically reduced

when the RegEx matching is performed in, at most, the first 7 packets of a given flow,

having only 38.58% as the highest packet loss rate, against 96.57% of the version

that analyzes all packets, until classify the flow. Even not analyzing all packets of a

flow, the classification completeness does not suffer decreases. Instead, the graph

shown at Figure 5.7 shows that this approach was able to classify much more flows

then the version that analyzes all packets.

Figure 5.7 – Classification Completeness, first 7 packets analysis – 700Mbit/s (Flows)

As depicted at Figure 5.7, the version that analyzes all packets from a

given flow, was not able to classify only around 30% of all flows, while the other

version, analyzing only the first 7 packets, is not able to classify around 23%. This

difference is not too significant, but it is composed of flows with huge traffic volume

(shown at this section on the volume analysis). Another point that must be noticed is

the number of Non Payload flows, which is around 54% on the version that analyzes

all packets, against 16% on the other version. The high number of Unknown flows

occurs because the version that analyzes all packets has a high packet loss rate,

reaching 94.9% at 700Mbit/s, so there is a high probability that those lost packets

could contain payload the signature of an application recognized by TAM, leading to

high number of Unknown flows. The same behavior is applied to the Non Payload

flows, since the lost packets can be the ones that were carrying payload, leading to a

high number of Non Payload flows. Therefore, since the traffic that is replayed to

both versions are the same, these Non Payload flows are misclassified.

49

On the other hand, the version that analyzes only the first 7 packets of a

given flow has a lower number of Unknown and Non Payload flows, since it captures

more packets. So there is a higher probability for this version to catch the flow’s

packets that have payload and some recognized signature. Additionally, those gains

obtained, in the classification completeness, are more significant than it appears to

be, since only 1% represents more than 130000 flows. The Table 5.4 shows that,

due to less packet loss, the number of flows and byte volume captured by the New

Architecture, analyzing only the first 7 packets, is incredibly higher than the flows and

byte volume captured by the Original TAM.
Table 5.4 – Analyzed traffic statistics (700 Mbit/s)

Version Number of Flows Captured Volume Captured (GB)

Analyzing all packets 3222939 6.56

Analyzing first 7 packets 13149126 136.86

This difference in classification gets even higher when the classified

volume is considered, instead of flows, as seen in Figure 5.8. The New Architecture,

analyzing only the first 7 packets, is able to classify almost 77% of all analyzed traffic

volume, against 25% on the Original TAM.

Figure 5.8 – Classification Completeness first 7 packets analysis – 700Mbit/s (Bytes)

The volume of unclassified traffic volume is incredibly high in the Original

TAM, reaching 70.34% against 22.69%, in the New Architecture analyzing only the

first 7 packets of a flow. Also, the volume of Non Payload traffic represents 4.47%, in
50

the Original TAM version, against 0.65%, in the new version. These results are

caused because of elephant flows (with huge byte volume) that could not be

classified due to several packet losses in Original TAM (94.90% in 700Mbit/s) and

now can be classified with the New Architecture. Additionally these elephant flows

are basically composed by huge data transfers (P2P, WEB and Streaming Flows),

which have their protocol signature present in few packets, most at the beginning of

the flow, probably lost by the Original TAM.

5.2.4 Payload Truncating Evaluation

Now the results obtained with the New Architecture analyzing only the first

750 payload bytes are going to be shown at Figure 5.9.

Figure 5.9 – Packet Loss, Original TAM vs. New Architecture (750 bytes of payload)

As shown in Figure 5.9, the packet loss rate had a considerable reduction

when the payload truncating technique was applied, but not too noticeable as the

results shown with the packet counting technique, presented at Figure 5.6. It

happens because with the payload truncating technique it is still losing a great

amount of packets when the incoming rate gets over 300Mbit/s. However, it starts

losing no packets at the 100Mbit/s and 200Mbit/s rates, against 56.94% and 79.11%,

respectively, at the Original TAM. Additionally the packet losses at the highest rate

(900Mbit/s) have suffered a considerable reduction, from 96.57% to 84.72%.

51

In addition, a new evaluation was proposed, in order to reduce even more

the packet loss rate. Such evaluation consisted on mixing the two techniques,

namely payload truncating and packet counting. The results of this mixing are very

impressive, shown in Figure 5.10.

Figure 5.10 – Packet Loss, Original TAM vs. New Architecture (7 packets + 750 bytes)

This experiment was useful to show how the bottleneck identification is

important in real time systems, which was the RegEx matching process. Therefore,

optimizing its execution could lead to an incredibly decrease in packet loss rate,

having 0.17% as the highest rate in 900Mbit/s.

Figure 5.11 – Classification Completeness, 750 bytes analysis – 700Mbit/s (Flows)

Additionally, these experiments had the same behavior of the other

performed at the previous section, regarding the impact on classification. As seen of

Figure 5.11. The number of unclassified flows, when inspecting only the first 750

bytes of payload is around 27.58%, whereas the original TAM analyzing full payload

is around 29%. But, the number of Non Payload flows in the original TAM is around

52

54%, against 37% when analyzing the first 750 Bytes of payload. The justification for

such behavior is the same that occurred with the packet counting evaluation: Greater

number of packets captured. Figure 5.12 shows the classification completeness,

regarding the byte volume, between the Original TAM and the New Architecture

inspecting only the first 750 bytes of payload. As expected the classified volume has

increased and the unclassified byte volume has decreased.

Figure 5.12 – Classification Completeness, 750 bytes analysis – 700Mbit/s (Bytes)

Figure 5.13 – Classification Completeness, 7 Packets and 750 bytes analysis – 700Mbit/s (Flows)

53

Finally, Figure 5.13 and Figure 5.14 show the classification completeness,

regarding volume amount and number of flows that were classified on the

comparison made between the Original TAM and the New Architecture inspecting

only the first 7 packets and 750 bytes of payload. The New Architecture was able to

classify more than 60% of all flows and almost 80% of all byte volume.

Figure 5.14 – Classification Completeness, 7 Packets and 750 bytes analysis – 700Mbit/s (Bytes)

5.2.5 Evaluation with Rewritten Patterns

It has been seen that the main bottleneck of TAM is the RegEx matching

operation. So, in order to obtain some performance gains, some patterns, that were

using unnecessary greedy quantifiers like * and +, were rewritten. Such modification

on those patterns have reduced its generated automata size and consequently

reduced its searching time.

For instance, TAM has the following pattern to recognize the HTTP

protocol, described at Figure 5.15.

Figure 5.15 – HTTP RegEx

 This pattern has a greedy quantifier at its end, which denotes zero or

more repetitions of any characters in the range specified inside the brackets (3rd

54

Block). However, this quantifier is completely unnecessary, since that a payload, to

successfully match this RegEx, only needs to have the first two blocks of the

expression, making no difference whether there are more characters or not after

these blocks. This indifference is caused by the quantifier *, denoting zero or more

repetitions. Thus, removing the final block of this expression can lead to a

considerable gain in the matching speed, since the greedy quantifier will not be

present spending unnecessary time, looking for more characters. Additionally, if the

state machine has reach the 2nd block of the expression, the RegEx has already

performed a successfully match. Therefore, the resulting expression, after the

rewriting operation is depicted at Figure 5.16.

Figure 5.16 – Rewritten HTTP RegEx

Other RegExes have suffered subtle modifications like the one performed

on the HTTP RegEx. For instance, TAM has got the following signature to classify the

IRC chat application, depicted at Figure 5.17.

Figure 5.17 – IRC RegEx

This RegEx has several greedy quantifiers, which can be removed without

loss of correctness in classification. Therefore, the quantifiers present at the 2nd, 4th,

6th and 8th can be removed of the RegEx, by the same justification given with the

HTTP RegEx. After that, TAM has a new RegEx for IRC identification depicted at

Figure 5.18

Figure 5.18 – IRC RegEx Rewritten

The presented RegExes at this section were not the only expressions that

were rewritten, there were other rewritten RegExes following the same idea of HTTP

and IRC. These subtle modifications in the RegExes used by TAM have lead to

55

considerable performance and, consequently, packet capture rate gains, which are

present on the graph at Figure 5.19.

As seen on the graph presented at Figure 5.19, the packet loss rate was

reduced from 56.94% to 0.0%, in 100Mbit/s, and from 96.57% to 90.32%, in

900Mbit/s. Also, as expected, the classification completeness has increased, due to

more packets captured, as shown in Figure 5.20.

Figure 5.19 – Packet Loss, Original TAM vs. New Architecture (Rewritten Patterns)

Figure 5.20 – Classification Completeness, Rewritten Patterns – 700Mbit/s (Flows)

The number of unclassified flows has reduced from 29.48% to 28.40%,

whereas the number of Non Payload flows has reduced from 53.67% to 40.84% and

the number of Classified has almost double from 16.85% to 30.77%, which represent

56

a considerable gain. As said on previous sections, this slight reduction in the number

of unclassified flows, from the Original TAM to the New Architecture, is very

important, since they represent flows with huge volume of traffic. Therefore, Figure

5.21 proves it. Since, the classified volume has increased from 23.27% to 51.78%.

Figure 5.21 – Classification Completeness, Rewritten Patterns – 700Mbit/s (Bytes)

5.2.6 All Techniques Together

Now, in order to obtain the highest packet capture rate, the techniques

mentioned on this thesis were combined with the New Architecture, leading to an

incredible improvement in both packet capture rate and classification completeness.

The results obtained in the packet loss metric analysis are shown at Figure 5.22.

Figure 5.22 – Packet Loss, Original TAM vs. New Architecture (all techniques)

57

Also, the New Architecture mixed with the other techniques has started to

lose packets only at 800Mbit/s. Thus reducing from 96.57%, with the Original TAM

performing at 900Mbit/s, to 0.15%, with the New Architecture and the techniques

mixed together.

Figure 5.23 – Classification Completeness, Mixed Techniques – 700Mbit/s (Flows)

Additionally, the classification completeness reached the greater number

of classified flows, when compared with the previous results. The Figure 5.23 shows

the achieved results. The number of unclassified flows has reduced from 29.48%,

with Original TAM, to 23.02%, with the New Architecture and mixed techniques and

the number of classified flows has changed from only 17% to 61.51%. Also, the

number of Non Payload flows has suffered greater reduction, from 53.67% to

15.47%.

When analyzing the classification completeness, regarding the byte

volume that was classified, the obtained results are even better, as seen in Figure

5.24. The Unknown traffic volume, have reduced from 73.15% to 21.45% and the

Non Payload traffic volume from 3.58% to 0.63%, thus representing a considerable

gain. Hence, the New Architecture mixed with all presented techniques has bumped

the number of classified volume, from 23% to almost 80%, a gain of 250%.

58

Figure 5.24 – Classification Completeness, Mixed Techniques – 700Mbit/s (Bytes)

59

60

6 DISCUSSION

In the previous sections, some optimizations were discussed,

implemented and evaluated. One of the key points was to confirm that problem

solving always start with a carefully architecture and design planning, combined with

correct choice of the used data structure. Those points were reflected on the

combination of the Multi-threaded approach and LBM, in architecture and design,

and the Hash Table optimization, in data structure choice. Additionally, without those

preliminary optimizations, none of the presented gains would be possible to achieve,

since they were the core of the new system.

However, the presented optimizations, namely packet counting and

payload truncating, have to be used with care. The payload truncating technique, for

instance, can change the traffic profile of the analyzed network, since other

signatures could perform a successful match, instead of the correct one that would

match at the truncated payload’s block. Hence, choosing a low level of truncating can

lead to optimization gains, with no considerable changes in classification.

Additionally, if the packet counting is performed with a small number of packet’s

threshold, a great amount of traffic can migrate to the Unknown Class, since some

applications’ protocol do not put their signatures in the first packets of a flow.

61

7 CONCLUDING REMARKS

This thesis has shown how DPI system developers can take advantage of

subtle modifications that lead to considerable performance gains. Now, DPI systems

that were not able to deal with high packet incoming rate (e.g. 1Gbps) can handle

such load of traffic with increase in the classification completeness. Additionally, such

modifications empower DPI systems, in order to provide ISPs with a wider view of

what is passing through their network, aggregating a great amount of traffic

information.

Those mentioned performance gains are summarized in the steps made in

each optimization phase, thus resulting in a gain of almost 100%, reducing from

96.57% of packet losses, in the Original TAM, to 0.15%, in the New Architecture with

all optimizations together. Additionally, this thesis has shown how DPI systems can

take a great advantage when analyzing the first packets of a given flow, and

truncated payload, with considerable gain in classification completeness.

Finally, there are some future works that are worth performing, in order to

obtain even better results.

In section 5.2.5 the results have shown that RegEx rewriting is a valuable

technique that can lead to considerable performance, without huge effort. However,

only few RegExes were rewritten, those that presented the most critical problems, in

set of about 40 RegExes. Hence, inspecting the other RegExes, searching for

problematic signatures, and rewriting them can lead to interesting results.

Additionally, there are other RegEx libraries that can be evaluated and compared

with the one used in TAM, such libraries are for instance: libpcre [16] (used in Snort)

and Boost Xpressive [4].

Also, those used thresholds in the Packet Counting and Packet Truncated

techniques, namely 7 packets and 750 bytes, could be evaluated in order to find if

they can be reduced, without decrease in classification completeness.

Last, but not least, if the task performed by LBM could be performed in

hardware level some gains could be obtained. For instance, a commodity Intel

Network Card (Intel PRO/1000 PT) distributes the packet load between different

processors, guaranteeing that different processors will not receive packets belonging

to the same flow. Thus, with the interruption rate for incoming packets divided among

62

processors, each worker thread could be “pinned” to only work in a given core,

increasing the cache hit rate when dealing with packets from their set of flows.

63

REFERENCES

[1] Aho, A. V. and Corasick, M. J., “Efficient string matching: an aid to bibliographic
search,” Communications of the ACM 18, 6 (Jun. 1975), 333-340.

[2] Benvenuti, Christian, “Understanding Linux Network Internals”, U.S.A.: O’Reilly,
December 2005.

[3] Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., and Salamatian, K. 2006.
“Traffic classification on the fly,” SIGCOMM Comput. Commun. Rev. 36, 2 (Apr.
2006), 23-26.

[4] Boost Xpressive. http://www.boost.org/doc/libs/1_37_0/doc/html/xpressive.html,
visited in November 19, 2008.

[5] Deri, L., “Improving Passive Packet Capture: Beyond Device Polling,”
Proceedings of SANE 2004, 2004.

[6] Deri, L., “nCap: wire-speed packet capture and transmission,” Proceedings of
the End-to-End Monitoring Techniques and Services. Workshop, p.47-55, May
15-April 30, 2005.

[7] Fernandes, S., Westholm, T., Antonello, R., Lacerda, T., Santos, A. and Sadok,
D., “Performance Optimization for Deep Packet Inspection Systems,” UFPE
Technical Report, September 2008.

[8] Goyal, N., Ormont, J., Smith, R., Sankaralingam, K. and Estan, C., “Signature
Matching in Network Processing using SIMD/GPU Architectures,” Technical
Report TR1628, Department of Computer Sciences, The University of
Wisconsin-Madison, January 2008.

[9] IPP2P Project - “A NetFilter extension to identify P2P filesharing traffic.”
http://www.ipp2p.org, visited in November 15, 2008.

[10] J. Levandoski, E. Sommer, and M. Strait, “Application Layer Packet Classifier
for Linux.” http://l7-filter.sourceforge.net/, visited in November 14, 2008.

[11] Karagiannis, T., Broido, A., Brownlee, N., claffy, kc, and Faloutsos, M., “Is P2P
dying or just hiding?,” IEEE Globecom 2004 - Global Internet and Next
Generation Networks, 2004.

[12] Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., and Turner, J. 2006.
“Algorithms to accelerate multiple regular expressions matching for deep packet
inspection,” Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols For Computer Communications
(Pisa, Italy, September 11 - 15, 2006). SIGCOMM '06. ACM, New York, NY,
339-350.

http://portal.acm.org/citation.cfm?id=1253236&dl=GUIDE&coll=GUIDE&CFID=11652712&CFTOKEN=21680534
http://portal.acm.org/citation.cfm?id=1253236&dl=GUIDE&coll=GUIDE&CFID=11652712&CFTOKEN=21680534
http://portal.acm.org/citation.cfm?id=1253236&dl=GUIDE&coll=GUIDE&CFID=11652712&CFTOKEN=21680534
http://www.ipp2p.org/
http://l7-filter.sourceforge.net/

64

[13] Mogul, J. C. and Ramakrishnan, K. K. 1997. “Eliminating receive livelock in an
interrupt-driven kernel,” ACM Transactions on Computer Systems. August
1997, 217-252.

[14] Oreste Villa, Daniele Paolo Scarpazza and Fabrizio Petrini, “Accelerating Real-
Time String Searching with Multicore Processors,” Computer, vol. 41, no. 4, pp.
42-50, Apr., 2008.

[15] P. Wood, libpcap-mmap, Los Alamos National Labs, http://public.lanl.gov/cpw/,
visited in November 15, 2008.

[16] PCRE - Perl Compatible Regular Expressions. http://www.pcre.org/, visited in
November 19, 2008.

[17] Perl Regular Expressions. http://perldoc.perl.org/perlre.html, visited in
November 20, 2008.

[18] Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai and Tsern-Huei Lee, "Using String
Matching for Deep Packet Inspection," Computer, vol. 41, no. 4, pp. 23-28, Apr.,
2008.

[19] POSIX Regular Expressions.
http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html,
visited in November 20, 2008.

[20] Procera Networks. http://www.proceranetworks.com/, visited in November 15,
2008.

[21] Schneider, F., Wallerich, J. and Feldmann, A., “Packet Capture in 10-Gigabit
Ethernet Environments Using Contemporary Commodity Hardware,” Proc.
Passive and Active Measurement Conference, 2007.

[22] Schneider, Fabian, “Performance evaluation of packet capturing systems for
high-speed networks,” Master Thesis, 2005, Technical University of Munich.

[23] Sen, S., Spatscheck, O. and Wang, D. 2004. “Accurate, scalable in-network
identification of p2p traffic using application signatures,” Proceedings of the 13th
international Conference on World Wide Web (New York, NY, USA, May 17 -
20, 2004). WWW '04. ACM, New York, NY, 512-521.

[24] Snort – The Open Source Network Intrusion Detection System.
http://www.snort.org, visited in November 15, 2008.

[25] Vern Paxson, “Bro: A system for detecting networks intruders in real time,”
Computer Networks 31, 23-24 (Dec. 1999), 2435-2463.

[26] Yu, F., Chen, Z., Diao, Y., Lakshman, T. V. and Katz, R. H., “Fast and memory-
efficient regular expression matching for deep packet inspection,” Proceedings
of the 2006 ACM/IEEE Symposium on Architecture for Networking and
Communications Systems. ANCS '06. ACM, New York, NY, 93-102, 2006.

	1 Introduction
	2 Background
	2.1 Regular Expressions
	2.2 Deep Packet Inspection
	2.2.1 TAM (Traffic Analyzer Module)

	2.3 Packet Capture Mechanism
	2.3.1 Packet Reception
	2.3.2 Sockets

	3 Related Work
	4 Project Description
	4.1 Proposed Architecture
	4.1.1 Multicore Architecture
	4.1.2 Load Balance Module (LBM)
	4.1.3 Unique Cleanup Module
	4.1.4 Additional Optimizations

	4.2 Methodology

	5 Evaluation and Results
	5.1 Original TAM
	5.2 New Architecture Results
	5.2.1 Hash Table Optimization
	5.2.2 Optimized TAM Architecture
	5.2.3 Packet Counting Evaluation
	5.2.4 Payload Truncating Evaluation
	5.2.5 Evaluation with Rewritten Patterns
	5.2.6 All Techniques Together

	6 Discussion
	7 Concluding Remarks
	References

