
Deployment of Mobile Systems using Clustering Techniques

Federal University of Pernambuco
Department of Computer Science
Computer Engineer Graduation

University of Leipzig
Department of Computer Science

Chair of Applied Telematics / e-Business
Prof. Dr. Volker Gruhn

Undergraduate Project

Deployment of Mobile Systems using Clustering
Techniques

Author: Luiz Fernando Clapis Pacheco Chaves
Course of Study: Computer Engineer

Advisor: Dipl.-Inform. Clemens Schäfer

Chair of Applied Telematics/e-Business
Department of Computer Science, University of Leipzig

Co-advisor: Djamel Fawzi Hadj Sadok
 Department of Computer Science, University of Pernambuco

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

2 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Acknowledgement

I would like to thank my advisor Clemens Schäfer for accepting me and this work
to go under his supervision and for the time and patience disposed. Thanks for
making this experience possible and supporting it. More over I would like to
express my gratitude to Djamel Sadok for the help and support provided, specially
for his promptness.

I would like to thank all the professors that made the last years so remarkable and
provided so many learning experiences. Such moments are certainly part of my
education and will be eternally remembered.

I would also like to thank my friend Cesar Pinto, who I consider a pillar in my life
and with whom I had the opportunity and honor to share so many happy
experiences in the last 14 years. Thanks for always being there and forgiving my
frequently negligent behavior. For being at hand in my hardest and loneliest
moments, I am very grateful.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Abstract

The development of mobile systems has been growing dramatically in the last
years. However such systems offer relatively narrow band to exchange data,
constraining the development of more interactive and functional systems, as well
as compromising its service quality.

This work intends to propose a method to determine the distribution of
components among devices when deploying a mobile system, taking into
consideration the amount of data exchanged between components. In this
manner, demand for network resources can be reduced and quality of services
improved. Our method makes use of techniques developed in software
modularization, more precisely software clustering.

4 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Table of Contents

Acknowledgement .. 3

Abstract ... 4

Table of Contents ... 5

List of Figures ... 6

1 Introduction ... 7

2 Clustering Techniques .. 9
2.1 Representation ... 10
2.2 Similarity .. 11
2.3 Clustering Algorithms ... 12

2.3.1 Hierarchical algorithms ... 12
2.3.2 Clustering Algorithms based on Graph Theory 14

3 Software Modularization ... 16
3.1 Modularity .. 16
3.2 Software Clustering .. 18
3.3 Design Structure Matrixes .. 21
3.4 Other Works ... 23

4 Building the Bridge ... 25
4.1 Data Coupling .. 25
4.2 Representation ... 29
4.3 Clustering Components .. 32

4.3.1 Single Link and Complete Link .. 32
4.3.2 Spectral Graph Partitioning ... 34

4.4 Study Case .. 35
4.4.1 Hierarchical Algorithms ... 38
4.4.2 Spectral Graph Partitioning ... 41

5. Conclusion ... 43

References .. 44

Appendix I – Software Modularization Approaches .. 49

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

List of Figures

Figure 1 - Entities in the 2-dimensional space of features 10
Figure 2 – The Euclidian Distance metric ... 11
Figure 3 – Dendrogram and nested clustering .. 13
Figure 4 – Single Link vs. Complete Link ... 13
Figure 5 – Calculating the Modularization Quality of a MDG 20
Figure 6 – Design Structure Matrix ... 22
Figure 7 – Cyclic Dependencies in DSM .. 22
Figure 8 – Patterns Identification in DSM ... 23
Figure 9 – Package Dependency Graphs ... 24
Figure 10 – CRSS Distribution .. 24
Figure 11 – Hierarchical structure of an ideal system ... 25
Figure 12 – Modular structure of an ideal system ... 26
Figure 13 – Example Class Diagram .. 27
Figure 14 – Common UML Sequence Diagram .. 27
Figure 15 – Rich UML Sequence Diagrams ... 29
Figure 16 – Sectioning the Dendogram .. 33
Figure 17 – Single Link and Complete Link Dendogram and Partition 34
Figure 18 – Spectral Graph Partition .. 35
Figure 19 – Class Diagram ... 35
Figure 20 – Richer Sequence Diagram for Use Case „Eval“ 36
Figure 21 – Richer Sequence Diagram for Use Case „Save“ 36
Figure 22 – Single Link Dendogram ... 38
Figure 23 – Single Link Partition ... 39
Figure 24 – Complete Link Dendogram .. 39
Figure 25 – Complete Link Partition ... 40
Figure 26 – Spectral Graph Partition .. 42

6 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

1 Introduction

As computational systems pervade the society, more sophisticated, efficient and
versatile solutions, demand that such systems collaborate and interact with one
another. The current step in the information revolution that the world is going
through cannot be described in a better word than connectivity. A huge information
network is being established which is becoming an essential part or our infra-
structure as electricity is today.

In this context, the development of mobile systems has been growing dramatically.
These systems stand for the state of the art in connectivity, making it possible to
be always connected into this great information network without the need to plug in
cables. However with the growing complexity of interactions demanding greater
amounts of data to be exchanged (e.g. youtube), communication channels
become increasingly overwhelmed and such interactions are severally
compromised. This happens not only in the core of this connectivity network,
namely the internet, but in a more dramatic way in its terminations, more precisely
mobile system’s users.

Mobile systems usually offer relatively narrow bands to exchange data and
because of that many mobile applications have their functionalities constrained or
even become unfeasible due to network resource limitations. This issue has
largely influenced the quality of mobile services and therefore demands new
design efforts in order to compensate for and avoid associated problems.

In view of this problem, the development of solutions both in order to increase
communication channels capacity and to reduce the amount of data exchanged
across the network become important. Possible approaches include the
reallocation of bands in the spectrum, development of more efficient modulation
techniques, high-level compression codes for data, among others. Our proposal
takes place in the software development process.

Under the Object Oriented paradigm, software is composed of objects interacting
with one another through the exchange of messages. In the software development
cycle these objects are initially designed as classes which have their role not so
well-defined and as software evolves acquiring maturity, these become more
stable with well-defined papers and functionalities. These elements will constitute
the components of the system, which will provide specific services.

Once these components were implemented and tested, we reach the deployment
phase. One of the decisions that must be made at this moment is how to distribute
these components among the specified devices. Of course this question doesn’t
concern systems that are supposed to run on a single computing node. But in the
context of mobile systems, where we have two or more devices, this question
deserves special attention. Usually there is a specification that restricts placement
of some components. It might be due to a specific functionality that must be
provided in a certain device, because of some component that must be
unconditionally deployed with another or even due to some restriction of language
implementation or processor architecture. Besides these restrictions many
components are deployed solely based on the software engineer’s feelings.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Of course this engineer has a mental model which is very useful to evaluate
deployment options for small scale systems. Although, as software system’s
become larger and more complex - as they naturally do - this activity becomes not
so trivial and the number of component that could have been distributed on
different computing nodes becomes of great significance.

This work intends to propose a method to determine the distribution of
components among devices when deploying a mobile system, taking into
consideration the relationship between components. The Unified Modeling
Language (UML) provides specific diagrams that describe the interaction of
classes – sequence diagrams. Therefore, such diagrams shall be our start point.
More specifically, we intend to consider the exchange of messages and the
amount of data carried by them in order to determine component’s locality in
deployment configuration. In this manner, demand for network resources can be
reduced and quality of services improved.

In order to define our method, we have made an extensive research in the
software modularization literature, searching for existing approaches from which
we could take advantage. Software modularization is concerned with determining
high-level groups formed by system’s components in order to achieve modularity.
This research, as we will see, led us to use clustering techniques to achieve our
objectives.

In chapter 2 we briefly introduce clustering, detailing the techniques that we have
chosen to use among the large spectrum of possibilities. In chapter 3 we present
the research we have made in the software modularization literature and our
classification of it. Chapter four contains indeed our proposed method, as well as a
study case demonstrating its application. Finally, the conclusions can be found in
chapter five.

8 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

2 Clustering Techniques

Our research in software modularization, as we will see in chapter 3, led us to an
interesting field that presented itself very appropriated to our objectives. This is
field is called software clustering, and it constitutes of applying clustering
techniques in software. Thus, we dedicate this chapter to introduce, in a simplified
way, clustering and some of its techniques. Also in this chapter we select the
algorithms that will use as part of our method.

Clustering is a collection of data analysis techniques that groups entities into
clusters in order to discover similarity and differences among them. It reveals the
underlying data structure and allows the derivation of useful conclusions about the
entities. Clustering is a very useful technique when handling large amount of data
due to its ability of summarizing the properties of the entities within a cluster and
indentifying the main characteristics that differentiate such groups [Webb02].

Our every day mental activity of classifying objects, persons, events and other
entities into groups can be considered a clustering activity. It allows us to handle
the huge amount of information that we receive during the day, which couldn’t be
all processed piece by piece. So when a person sees an entity laying on the grass,
which has an innumerable number of characteristics (e.g. number of legs, size)
and he classifies it as a dog, it’s because the representation of his classification
group ‘DOG’ has similar characteristics to the entity laying on the grass. This entity
has features that are common to every dog and so the person doesn’t need to
process all its characteristics to classify it – e.g. he can tell it is a dog even though
he has never heard it barking. [TK03].

Clustering is used in a wide range of applications and can be found under different
names according to the field of study, such as unsupervised learning in pattern
recognition, numerical taxonomy in biology and ecology, typology in social
sciences or partition in graph theory. Therefore there are several terminologies
and classifications – sometimes conflicting - for the components that constitute
clustering. We shall use the term entity for the elements that will be grouped, and
the term cluster for such groups that contain the similar entities. We present here
in this chapter a rough overview of clustering and its components.

There are three main issues or steps that demand our attention when applying
clustering techniques:

• Representation: this issue will answer the question: what are the entities to
be clustered? Here we define which features will describe the entity.

• Similarity: quantifies how similar two entities are according to their features.
The term dissimilarity is also often used to indicate how different such
entities are.

• Algorithms: the step taken to group the entities.
Handling these issues with the purpose of revealing natural groupings in the data
depends on specific domain knowledge. It is necessary to understand the
addressed problem in order to determine the most suitable representation,
similarity measure and clustering algorithm. Classifying a group of persons by their

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

preferred sports or by the country they were born will result in different clusters
with different meanings.

In the further sections of this chapter we survey each of these issues.

2.1 Representation

The representation issue is responsible for building an abstraction of the real world
in which the entities to be clustered are described according to some scheme
[ALL99]. This step is of the utmost importance, since it determines almost all
information available during the clustering process.

Each entity is described by certain number of selected features. There might be a
‘selection feature’ pre-process phase to determine which features are relevant, but
there is no guideline for that. Usually specialists in the application domain provide
such information. For example, in taxonomy, entities are organisms, like animals
and plants, and are described using features like “color of the flower”, “size of the
seed”, “laying eggs”, etc. Each entity will then be represented as a vector in the d -
dimensional space of features – each dimension is associated with a feature.

Figure 1 - Entities in the 2-dimensional space of features

These features can be classified into qualitative and quantitative [JMF99]. The
quantitative features are numerical values which can be subdivided into
continuous (e.g. weight), discrete (e.g. number of leaves) or interval values (e.g.
duration of an event). The qualitative features can in turn be subdivided into
nominal (e.g. color) or ordinal, when their ordination is meaningful (e.g. sound
intensity, “loud” or “quiet”).

In software clustering literature, entities may be files, routines, classes, processes
and chunks of code. The features are usually references to user defined types,
references to global variables, routines called, files included or macros used.
Some other features, called non-formal, like reference to words in identifiers or
reference to words in comments, proved also having interesting advantages
[BMC96].

10 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

2.2 Similarity
Similarity is a term often used in clustering that refers to how closely related two
entities are. Since clustering algorithms group entities that are similar in order to
reveal a natural structure in the data, measures to determine this proximity must
be specified. As an example, we can take the most popular metric for quantitative
continuous features, the Euclidian distance:

The Euclidian distance is in fact a dissimilarity metric, which has the opposite
meaning of similarity and is more often used. It is a very simple metric that has an
intuitive appeal because it can be easily visualized in a two or three dimensional
space (figure 2).

Figure 2 – The Euclidian Distance metric

There are innumerable measures available in the literature. These measures are
based on the type of features used and must be carefully chosen since they have
a profound impact on the resulting clusters. Besides that, domain knowledge has
also crucial importance in this issue. Certain measures can handle specific data
properties that are related to the problem under discussion. In the words of
Theodorius and Koutrombas [TK03], “Each of them gives a different interpretation
to the term similar”.
Once we have our entities described and a similarity measure specified it is
possible to define a matrix that contains the calculated distance between all
entities. This is very useful for a certain class of algorithms, and will have particular
importance in our process. Such matrix, called Similarity Matrix, is a simple
symmetric matrix where the value of the ith row and jth column is the similarity
distance between the ith and jth entities. It is worth saying that such matrix is
symmetric because d(xi,xj) is always equal to d(xj,xi).

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

2.3 Clustering Algorithms

The last main issue is to determine the clustering algorithm that will be used to
group the entities. There are several algorithms available in the literature and also
several different classifications for them. We will survey briefly the most important
categories and investigate the two algorithms that we chose use in this work.

The first category of clustering algorithms is called sequential algorithms. These
algorithms usually assign entities to clusters in one pass and obtain a single
partition of the data. The entities are presented a few times to the algorithm and
the resulting clusters have great dependency from the presentation order.
However they are the less computationally expensive and thus present results
faster. Well-known algorithms in this category are the Basic Sequential Clustering
Algorithms, the Modified Basic Sequential Algorithm, the Max-min and the Two-
threshold sequential scheme.

Hierarchical clustering algorithms constitute another category of clustering
algorithms. Such algorithms produce not only a single partition but a hierarchical
structure of partitions. This nested grouping of entities is particularly interesting for
some application domains, where such structures are aimed or already exist (e.g.
taxonomy). Because software systems should also present a hierarchical
structure, we have decided to make use of such algorithms. We will take a closer
look at them in section 2.3.1.

The last main category embraces the algorithms based on function optimization. In
such algorithms an initial partition of the entities and a function that measures how
optimal is the actual solution are provided. Then small changes are made to the
partition with the intention of obtaining higher values for the given function. Such
approach, based on differential calculus concepts, converges always to a local
optimum. The Bunch tool that will be presented in the section 3.2 belongs to this
category. A shortcoming of such algorithms is the high computational cost.

Beyond these three main categories there are several others clustering algorithms
like the ones based on morphological transformations, stochastic relaxation
methods and competitive learning algorithms. A very interesting class of
algorithms among these is composed from clustering algorithm based on graph
theory. In such algorithms, nodes represent entities and edges represent relations,
making their application to software straightforward, once UML class diagrams are
represented through boxes (classes) and lines (relationship, e.g. association,
composition). Furthermore such algorithms have a very solid mathematical
background which we can profit from. Thus, we decided to make use of an
interesting algorithm from this class, which we will examine in section 2.3.2

2.3.1 Hierarchical algorithms
As said before, hierarchical clustering algorithms produce several nested
partitions. These algorithms can be subdivided into agglomerative algorithms and
divisive algorithms. The later ones consider an initial cluster containing all the N
entities. Each step of the algorithm splits a cluster into two. After N–1 steps we
have N clusters containing a single entity. The agglomerative algorithms work on
the opposite direction. It starts from individual entities gathering them into small
clusters which are in turn gathered into larger clusters up to one final cluster

12 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

containing everything [AL99]. Because divisive algorithms must consider all
possible divisions of the clusters, what is computationally a very expensive task,
they are not used so often.
The resulting nested partitions are commonly represented through a tree diagram
or dendrogram (figure 3). The hierarchical algorithms have also the advantage of
being able to easily provide a single partition when necessary, just by sectioning
the dendrogram at a given level.

Figure 3 – Dendrogram and nested clustering

The main representatives of the agglomerative algorithms are the Single Link and
the Complete Link algorithms. The difference between them arrives when joining
two clusters into one and both clusters had previously different similarity values in
relation to a third cluster. This situation can be better visualized through the
following figure:

Figure 4 – Single Link vs. Complete Link

Clusters C1 and C2 were joined in one new cluster C4. C1 and C3 have similarity
d1 while C2 and C3 have similarity d2. The question is: how do we determine the
similarity between C3 and C4? The single link algorithm preserves the maximum
value and doing so produces elongated clusters – what is called chaining effect.
On the other hand, the complete link algorithm chooses the minimum value,
resulting in more compact clusters. There are also several variants of these two
algorithms proposing intermediate solutions.
Because the algorithms in this class need constantly to know the similarity
between the entities, they work over a similarity matrix, which has all values
previously calculated. This also reduces the execution time of the algorithm,
presenting results faster.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

2.3.2 Clustering Algorithms based on Graph Theory
In order to make use of clustering algorithms based on graph theory, data must be
represented as a graph. Entities will be represented by vertices and relations by
edges. The similarities between the entities correspond to the weight of the edges.
Generally, the clustering algorithms in this category will try to find in this graph
sub-graphs to compose the clusters. Graph theory provides the basic algorithms to
find sub-graphs with special properties (e.g. spanning trees, maximal complete
sub-graphs) that will be themselves candidates to form these clusters or will be the
input for the clustering algorithms to find them [Wig97].
Spectral graph partitioning is a special technique that instead of working on a
graph makes use of the properties of its algebraic representation (e.g. Adjacency
matrix, Laplacian matrix). The eigenvector associated with the second smallest
eigenvalue of the Laplacian matrix is called Fiedler vector, in homage to Fiedler
[Fie75] who investigated its relation to graph’s properties. It has been proved that
clustering the vertices of a graph in two sub-graphs according to the positive and
negatives entries of such vector will lead to a partition which minimizes the total
weight of the edge cut between the two sub-graphs [CTS06].
To demonstrate such technique let us consider the weighted graph below:

The Laplacian matrix of a graph G is defined as L = D – A, where A is the
Adjacency matrix of G and D is the degree matrix D = [dij] defined as:

The Laplacian matrix of our graph is shown below:

Calculating eigenvectors is an extremely computationally expensive task and is
the major shortcoming of this technique. We will make use of Scilab [Scilab08],
which is an open source platform for numerical computation, in order to calculate
the Fiedler vector:

The vertices corresponding to the negative values of this vector (1, 3 and 4) will
compose a cluster while the ones corresponding to the positive values (2 and 5)
will form another. This partition is ensured by spectral graph partitioning to be the

14 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

optimum clustering. Besides that, it’s possible to obtain a hierarchical partitioning
such as the ones produced in the previous section executing the same procedure
to each resulting cluster.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

3 Software Modularization

In this chapter we present the results of the research we have made in the
software modularization literature. We have looked for previous works from which
we could take advantage in order to achieving our goals.

Great part of the works in Software Modularization consists of defining modularity
or proposing principles that would lead software designers to it. Such works don’t
bring much contribution for us. We are interested in the techniques that were
developed to achieve modularity based on numerical approaches. Such
techniques have value for us because our objective is mainly focused on the
amount of data exchanged between components and not on the quality of the
design. The majority of works that satisfy this condition is situated in a subfield
called software clustering and that is the reason why we have chosen to use
clustering as part of our proposal.

We have made a classification of the works in software modularization which is
summed up in the table presented in Appendix I. Here we provide an overview
from some of these works, investigating deeper the most relevant ones. In section
3.1 we talk about modularity as the fundamental concept in software
modularization and relate some works that propose principles to achieve it. In
section 3.2 we examine the works on software clustering. Section 3.3 presents the
Design Structure Matrix, a very simple and powerful representation of software
design structure which has been used intensively in the latest modularization
works and will be used in this work. In the last section we present other works in
software modularization.

3.1 Modularity

During software development process, the project will grow in size and complexity
and it is almost certain that software requirements will change. New engineers will
have to be allocated and even after release, the software must be maintained and
of course evolve, adding new functionalities and changing existing ones – what is
quite often not done by the original designers and developers. Because of this
great mutability, some kind of high level organization for the software becomes
imperative.

Since the earliest days of software development, larger organizational units have
been extensively studied in several software disciplines (e.g. software
modularization, software comprehension, package design) and have received
several different names. “Booch uses the term ‘class category’ to describe such a
granule, Bertrand Meyer refers to ‘clusters’, Peter Road talks about ‘subject areas’,
and Sally Shlaer and Steve Mellor talk about ‘Domains’. ” [Mar96]. They have also
been called more recently subsystems, groups, modules or packages [MT07a].

Determining how these modules should be constructed in order to achieve
modularity is the greatest issue addressed by software modularization. Modularity
is perhaps the most widely accepted quality objective for design [ABA04], since it
reflects the most desired quality attributes of software:

16 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

• Understandability: In view of the size and complexity of nowadays systems,
understandability is the most desired quality attribute. A high level structure
aimed by modularization provides an easy map to understand the system.
Moreover the great flow of new engineers that will have to catch up with the
project during its life cycle, makes understandability an even more dramatic
issue.

• Reusability: is the degree to which a software module or other work product
can be used in more than one computer program or software system. When
designing an electronic system, electronic engineers use components
whose interfaces and functionality are well defined and formally described.
Software Engineer aims a similar relation with software modules, so that the
development of a system can be improved, spending less time re-writing
modules and avoiding making mistakes that have been already corrected.

• Testability: is the ease at which software can be made to demonstrate faults
through testing. Well-defined modules can be easier automatically
exercised by another piece of code and the results compared with the
expected output.

• Maintainability: refers to the ease of finding and correcting errors as well as
adding up code to correct unforeseen problems or new functionalities
requested after the software has been released. It is the longest and most
expensive phase in the software cycle. If changes can be done in one
module instead of changing the whole system or a new functionality can be
provided by simply adding a new module is great improvement in software
maintainability.

Several principles that would lead to modularity have been proposed in the
software modularization literature (e.g. [Mar96], [MT07a]). These principles
brought - and still bring - enormous contribution to software engineering and some
of them have until today great importance. For example, Parnas proposed as
criteria to decompose systems into modules the information hiding principle
[Par72], expressed nowadays in concepts such as encapsulation and
polymorphism. However because modularity is a subjective concept and has no
single, precise, definition accepted in almost 50 years [MT07b], such principles are
still under discussion.

Even though, two well-known concepts are widely used in the literature to
characterize modularity: coupling and cohesion. Booch’s definition of modularity is
perhaps the best expression of this use. According to Booch, modularity is “the
property of a system that has been decomposed into a set of cohesive and loosely
coupled modules” [Boo94]. That means that the elements within a module must
have a strong relationship with one another and a weak relationship with elements
from other modules. This definition was used in several works to support
numerical methods which we are interested on. Therefore it is of great importance
to us.

In the next sections we will survey the works in software modularization, taking a
closer look at the most relevant to the purposes of this work.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

3.2 Software Clustering

The initial works on software modularization can be found in the reverse
engineering literature, under the name of software re-modularization. The main
reason is that code was usually the only available specification of the system
[DMM99]. Until today most of the projects are not properly documented or even
documented. So during maintenance, software professionals spent at least half of
their time reading and analyzing software in order to understand it [DLP05].
Software re-modularization proposes to recover the high-level structure of a
system through analysis of code. This process would automatically reveal the
modular structure of the system, providing developers with a road map to
understand it.

The use of clustering techniques in software gave birth to a domain called
software clustering. The works that established the fundaments of such domain
were also the earliest ones in software re-modularization. Among these, there are
three that with no doubt deserve to be mentioned. Wiggerts [Wig97] presented an
overview of clustering analysis, providing theoretical background for applying it in
systems re-modularization. Concepts like similarity between entities, including its
measures, and categories of clustering algorithms were introduced aiming
modularization of “chunks of code or procedural chunks”. Anquetil and Lethbridge
[AL99] gives continuation to his work with perhaps one of the most cited works in
software clustering literature. They take the background and clustering techniques
provided by Wiggerts, and test them to compare their efficiency. Among several
extension of Wiggerts’ work, they give special importance to the description issue
proposing formal features (e.g. global variables referred to by the entity) and also
informal features (e.g. references to words in comments describing the entity,
name of the files), which proved having also great value. Further investigation in
the same direction is done by Davey and Burd [DB00], clustering pieces of code
as proposed by Wiggerts. These three works consolidate the conceptual use of
clustering techniques in software modularization.

In this context Arch and Rigi are two tools that also have special importance. Arch
[Sch91] provides clustering algorithms that group related procedures into modules
using a heuristic design similarity measure based on Parnas’ information hiding
principle. It also indentifies individual procedures that apparently violate this
principle. The second tool Rigi [MOTU92] considers that software structure is the
collection of artifacts used by software engineers when forming mental models.
These artifacts would include software components such as procedures, modules,
interfaces, dependencies among components and attributes such as component
type and interconnection strength [MNT94]. Rigi helps software engineers to
identify these artifacts and aggregate them to form more abstract system
representations.

However these works and most of the earlier works are situated at a too low
granularity level. That means that the entities to be clustered are usually pieces of
code, functions, procedures or variables. With the increasing size of systems it
became necessary to go upward in the hierarchy looking for solutions at a higher
granularity level. A remarkable work at in such context is presented through the
Bunch tool [MM06]. Bunch is a software clustering tool that has accomplished
great results and brought enormous contribution to software clustering. Due to its
importance, we shall take a closer look at it.

18 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Bunch proposes an automatic technique that creates a hierarchical view of the
system organization based solely on the components and relationships that exist
in the source code. The first step of Bunch’s procedure consists of analyzing
source code and constructing a MDG – Module Dependency Graph – that will
represent the system. A MDG is a directed graph where each node represents a
source file and the directed edges represent source-level dependencies (e.g.
procedural invocations, variable access). There are several tools that
automatically accomplish this task such as CIA [Che95] for C, Acacia [CGK97] for
C and C++ and Chava [KCK99] for Java. The second step is to determine the best
partition to the graph. That is, the best decomposition of the set of all nodes into
mutually disjoint clusters. Bunch treats this problem as an optimization problem
and for that defines a measure called Modularization Quality. MQ (Modularization
Quality) determines the “quality” of an MDG partition quantitatively as the trade-off
between inter-connectivity (i.e. dependencies between the modules of two distinct
subsystems) and intra-connectivity (i.e. dependencies between the modules of the
same subsystem). Initially MQ was defined as:

Ai stands for the intra-connectivity of a cluster i with Ni components and ui intra-
edges dependencies (relationships to and from modules within the same cluster).
This would correspond in Booch’s definition of modularity to coupling between
modules. Ei,j denotes the inter-connectivity between clusters i and j, each
consisting of Ni and Nj components respectively, with εij inter-dependencies
(relationships between the modules of both clusters) [DMM99]. In Booch’s
definition: cohesion within a module. The values of MQ vary between -1, where
there is no internal cohesion and 1, where external coupling is null. In the figure
bellow we have an example of its calculation.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Figure 5 – Calculating the Modularization Quality of a MDG

The problem of such definition is that it doesn’t take into account the
interconnection strength of the relationships that exit between the modules in the
software system. This flaw was overcome in the last works of Bunch with an
evolution of the MQ measure in a way that it can be applied to weighted directed
graphs:

The new Modularity Quality measure is calculated summing the Cluster Factor
(CF) for each cluster of the partitioned MDG. The CF is defined as a normalized
ratio between the total weight of the edges within the cluster and half of the total
weight of the edges that exit or enter the cluster [MM06].

Bunch adopted three algorithms to explore partitions that maximize the value of
the MQ. The first one leads to the optimal solution since it calculates the MQ for all
the possible partitions of the MDG. The obvious shortcoming of this approach is
the computational cost, since the number of possible partitions grows
exponentially with respect to the number of nodes. For example, a 5-node module
dependency graph would have 52 partitions, while a 15-node module dependency
graph would have 1,382,958,545 distinct partitions. The second algorithm uses a
search strategy based on traditional hill-climbing optimization techniques. Such
technique defines a random initial partition as the actual partition. Then, small
perturbations are provoked aiming to achieve a better MQ value. When such
partition is found, it becomes the actual partition. This algorithm repeats this
procedure to the actual partition until no further better partition is found. The small
perturbation constitutes of neighboring partitions, which are, exactly the actual
partition except for one node that was moved from one cluster to another. This

20 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

approach profits a lot from the modularization quality definition in terms of
computational cost, since the Cluster Factor must be calculated only for the two
modified clusters. The last approach of Bunch is the use of Genetic Algorithms.
Such algorithms are well-known for its ability of solving problems that involve large
search spaces.

The good results presented by Bunch can be attributed to the function optimization
approach adopted and the Modularization Quality measure defined. It would be
interesting as further work to adapt Bunch in such a way we could apply it to our
method in order to compare the results with the algorithms selected in this work.

The idea of using Genetic Algorithms to automatically cluster software systems
presented great value and several other works emerged proposing improvements.
Evo [SBBP05] and DAGC [PB05] implemented genetic algorithms supported by
domain knowledge - more suitable encodings to map the clusters into a sequence
of genes, genetic operators and fitness functions taking into consideration aspects
like cluster size and cyclic dependencies.

All the works inspected so far, as said before, are situated in the context of
software re-modularization, what is also commonly referenced as a bottom-up
approach since the start point is the source code. In addition to this we found
some works commonly referenced as a top-down approach. Even though the
name might suggest that design artifacts, instead of implementation artifacts,
would be taken as start point, such works try in fact to minimize the distance
between them. Murphy [MNS01] developed a technique called “Software Reflexion
Model” which captures and exploits the differences between design artifacts and
source code in order to maintain design conformance. Another recent work with
the same objective is presented by Huynh and Cai [HC07].They use the two
different tools to extract the same type of representation from a modeled design
and source code respectively. In order to make the two representations coherent
with one another, some mapping must be done. A genetic algorithm takes then
one representation as the optimal goal and searches for the best clustering in the
other representation that maximizes the level of isomorphism between the two.
The great advantage of this work though, hides in the power of the used
representations – Design Structure Matrices.

3.3 Design Structure Matrixes

Design Structure Matrix, also referred as Dependency Structure Matrix or DSM, is
a very simple and powerful way of representation, invented for optimizing product
development processes. When developing a product a collection of tasks is
defined and performed. Most of these tasks present dependencies to other tasks,
either because some physical artifact flows from task to task or because some
task requires information provided by another task. In order to improve
management of these tasks and consecutively the efficiency of the process, DSM
provides a structure to represent such dependencies and algorithms to organize
them.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Figure 6 – Design Structure Matrix

The matrix is a simple adjacency matrix with tasks labeling the horizontal and
vertical axes. If the ith task depends on the jth task, there will be a mark in the ith
column and jth row. For example we can see, examining the third column in the
figure above, that task C depends on tasks A and B. Moreover, a numerical value
can be used instead of a mark to represent the strength of the dependency.

Software design structure is commonly represented though box-and-line diagrams
(e.g. UML class diagram). However, such representation is not very suitable when
handling large scale systems. Even though DSM is not a modularization
technique, recent works in this field have been using it intensively to represent
design structure of systems (with modules playing the role of tasks) due to the
advantages brought by its properties:

• Cyclic dependencies: An important characteristic of DSMs is that the cyclic
dependencies of the system can be easily exposed. If a DSM has no cyclic
dependencies, columns and rows can be automatically permuted through
algorithms, so that the matrix becomes lower triangular – that means, it has
no entries above the diagonal. In software a lower triangular matrix would
represent a layered system.

Figure 7 – Cyclic Dependencies in DSM
For the tasks presented in figure 6 we can see above an attempt to
organize the matrix in a lower triangular form. However this is not possible
and the cyclic dependency responsible for it is automatically exposed
(figure 7). In order to eliminate such dependency, tasks can be aggregated
creating so a hierarchy, as depicted in the figure above.

• Scalability: Through DSMs, complex systems can be much better visualized
than box-and-line diagrams. Moreover, the possibility of creating a
hierarchy meets perfectly software engineering needs.

• Pattern identification: The preponderance of dependencies bellow the
diagonal exposes the layer patter of the system even when it is bad
implemented.

22 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Figure 8 – Patterns Identification in DSM
Other patterns become also exposed. The DSM above, for example, exposes a
change propagator (module 9, ‘Project’) - a module that depends on a large
number of modules and in turn has many modules depending on it. Modules that
depend on no other module (e.g. module 10, ‘services’) or modules that no other
module depend-on are also easily identified through empty columns and empty
rows respectively.

3.4 Other Works

As said before, modularization is subjective concept with no precise definition. The
reason for that is that software systems are abstract models, and much of the
relevant information about it is not related in the traditional software artifacts.
Beyond data structures, bindings, procedure calls, interfaces, number of coded
lines and any other usual numerical description of the system, software has
semantic information which cannot be captured from most of the current
programming paradigms. To cope with such challenges, new programming
paradigms are emerging to enhance traditional programming languages and
modeling techniques with additional modularity mechanisms and abstractions.
Great examples of this are Aspect-Oriented Programming (AOP) and Feature-
Oriented Programming (FOP) [Acom07].
Much of the work developed in this direction consists of empirical studies with
supporting assessment techniques to improve understanding of the benefits and
drawbacks of new software techniques and comparison with traditional paradigms
[Acom07]. Therefore they don’t bring many contributions to us and we shall not
enter this field. Moreover it is not our intention here to propose solutions to the
modularization issue, but to take advantage of the gathered experience and
developed techniques in software modularization so that we can use them for our
objectives.
The last category of works in software modularization intends to characterize the
software granules at a given level of abstraction through the properties of the
directed graph formed by them (e.g. PDG or Package Dependency Graph). Such
works do not propose design principles to determine how these granules should
be formed, but methods to evaluate if a given design is good according to defined
metrics.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Meldon and Tempero [MT07a] present an interesting work within this category.
They define a metric called Class Reachability Set Size (CRSS) which counts, for
a given class, the number of classes in the system’s source code that it transitively
depends-on. Then the distribution of CRSS values of a PDG representing a
system can be depicted in a histogram.

Figure 9 – Package Dependency Graphs
In Figure 9 we can see the PDGs that represent the dependencies among
packages of three different systems. If we assume that each package has the
same number of classes and that every class in a package depends on every
other class in the same package then we get distributions like these:

Figure 10 – CRSS Distribution
The histogram express how many classes (axis x) depend on a number y of other
classes. Thus design could be evaluated analyzing these distributions – bars
concentrated on the left side of the histogram reveals a good design. As we can
see, system (a) has the worst distribution since all classes depend on every other
class of the system. On the other hand, system (c) has the best distribution among
the three since most classes of the system depend on few other ones.
Such approaches can also be very useful for us since they are numerical
approaches and such metrics could be used in our clustering techniques.
Unfortunately we had no time to attempt solutions in this direction, but it we leave
it as suggestion for further works.

24 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

4 Building the Bridge

Our proposal aims to develop a method to determine component’s location when
deploying a mobile system. This method must consider the amount of information
exchanged between components, in order to make data exchange between
devices, and consecutively through network, as low as possible.

Considering the amount of data exchanged between components demands a
precise analyze of their relationship. Because of that, our method has as start
point UML artifacts (e.g. class diagrams, sequence diagrams) which provide such
kind of information. However these artifacts do not contain information enough to
build a bridge between design and deployment. We will find the bricks to handle
this question in the section 4.1.

Once this bridge is established, we shall have the precise kind of information we
need to apply the clustering techniques, we have chosen. In section 4.2 we deal
with the issues of representation and similarity in clustering. As one can already
imagine, similarity must be closely associated with the amount of information
exchanged between components. In section 4.3 we describe the application of the
different algorithms we have selected in chapter and examine the results throw a
study case in section 4.4

4.1 Data Coupling
As we have said, in the software modularization literature coupling and cohesion
are widely taken as measures that translate modularity. Although if we take into
account that large systems consist of subsystems, which in turn consists of other
subsystems, creating so a layer hierarchy, we can have an interesting insight into
these concepts. Let us take a look at the hierarchical system below:

Figure 11 – Hierarchical structure of an ideal system

According to Lakos [Lak96] this binary tree is an ideal software system design.
Each layer of this system represents an abstraction level. As we go upward in this
system, the coupling between the components of the same abstraction level
decreases [YR07a]. This can be observed through the arrows’ thickness in the
modular structure depicted below:

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Figure 12 – Modular structure of an ideal system

Both coupling and cohesion relate to the relationship strength between modules,
but at different abstraction levels or granularity levels. Therefore, in contemporary
systems, which need several abstraction layers due to its size and complexity, it is
more suitable to use only the term coupling associated with an abstraction level,
instead of trying to determine if the interaction degree of two components should
be considered coupling or cohesion.

Because there are several different types of interaction between components,
many types of coupling can be identified. In the object-oriented paradigm, coupling
can be categorized in four types [YR07b]:

• Parameter Coupling: Two classes have parameter coupling if one class
invokes method of the another class via parameter passing;

• External Coupling: Two classes have external coupling if they access the
same external medium including external files;

• Inheritance Coupling: Two classes have inheritance coupling if one class is
a descendant of the other class;

• Common Coupling: Two classes have common coupling if they access the
same global variable;

The interactions brought by an external medium do not interest us, but only the
direct interaction between components. Common coupling should be deprecated
in object-oriented software since it allows one class to access attributes of another
class, rather than through message passing [YR07]. Inheritance coupling is a
strong type of coupling that is easily exposed in UML class diagrams like the one
in figure 13. However, it has no part in data exchange, and hence null value to this
work.

26 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Figure 13 – Example Class Diagram

Since we are only interested in the amount of data exchanged between the
components, the only interesting coupling type is the parameter coupling. Even
though it is considered a weak type of coupling, parameter coupling plays the main
part in our work. Inheritance coupling, for example, has a much more important
role in software modularization, since it is directly related to reuse.

In order to analyze parameter coupling, we need to investigate the messages
exchanged between components at method level. UML provides sequence
diagrams that expose exactly such information. For example, the system
presented in figure 13, could have the following sequence diagram describing a
particular use case:

Figure 14 – Common UML Sequence Diagram

However this sequence diagram does not provide accurate information about
these interactions. In order to understand that, let us analyze the following source-
code, which is a possible implementation for this sequence diagram:

class C {
 void run () {
 A.foo(obj1); //obj1 has size 2
 A.bar(obj2);

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

 A.bar(obj2); //obj2 has size 5
 }
}

class A {

 Object foo (Object obj) { //..
 D.bah(obj3); //obj3 has size 3
 D.bah(obj3);
 return obj4; //obj4 has size 4
 }

 void bar(Object obj){
 //...
 }
}

class D {
 Object bah (Object obj) {
 return obj5; //obj5 has size 1
 }
}

This code reveals three kinds of information that hide behind each call presented
in the sequence diagram:

• Parameter size of a call: In class C at the ‘run()’ method definition we can
see two calls to the same method ‘bar()’ of class A, but with different
parameters size. If the parameter has size 5 or 500, is a very important
information, considering that this data load must go through a narrow-
banded network;

• Frequency of calls: Also the fact that ‘bar()’ is called 2 times, and not 20 or
1, must be considered when measuring the exchange of data;

• Return size of a call: Most methods return some information to the calling
object. This data might also have to be transported through the network;

Because the data exchanged in a method invocation is not only attributable to
parameters, we think it is a more suitable to use the term data coupling instead of
parameter coupling.
Even though we are able to identify such information, it is not possible to
determine it precisely because we cannot predict code interactions. Perhaps some
evaluation at run time could bring more precise values, but that is beyond the
scope of this work. We will assume in this work that such information is provided to
us.
Hence, we can build a richer UML sequence diagram to expose such information.
For the parameter size and return size we will just write it down at the calling and
returning arrow respectively. And to expose the frequency of calls we shall write
before the name of the method the number of times it is called followed by an ‘x’
character. Thus, we would have for the following sequence diagram for the
provided example:

28 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Figure 15 – Rich UML Sequence Diagrams

4.2 Representation
Once we are going to use clustering techniques, we need to handle the three
issues we have spoken about in chapter 2: representation, similarity and
algorithm. In this section we shall handle the first two and in the next section we
deal with the clustering algorithms.
The normal clustering approach would be to determine the features that will
describe the entities – in our case, classes – and specify a similarity measure
between these classes. For our objective though, we wish that two classes
exchanging great amount of data have great proximity so that they can end in the
same cluster after we apply our algorithms. Thus our similarity measure will
directly relate to data coupling. Because such coupling information can be
extracted from our richer sequence diagrams, there is no need to describe the
classes through features. Instead we propose a sequence of steps to extract a
numerical representation for data coupling and to obtain the similarity matrix that
will be the input for our algorithms.
Since we have to make an analysis of the system at level method and we are
dealing with systems of great complexity and size, we need a more efficient way to
work with this information than box-and-line representations, which become almost
impossible under these circumstances. DSMs fit like a glove in our problem. We
will profit from DSMs’ ability to visualize complex systems with the extra advantage
of working in a matrix and thus making the extraction of a similarity matrix
straightforward, as we will see. The basic DSM structure for our example is shown
below:

1 2 3 4

Component C run() 1 • 0 0 0 • recursive calls

Component A foo() 2 0 • X 0 X calls inside component

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

bar() 3 0 X • 0 0 calls between components

Component D bah() 4 0 0 0 •

As we can see, classes are already named as components. Classes and
components correspond to the same abstract element at different development
phases. In design such elements are called classes and provide functionalities
through its methods. In the development phase they are called components and
provide services. The differences between them are very subtle and are mostly
related to reuse. Classes belongs to development phases before deployment and
therefore are more subjected to changes, while components are mature and have
well defined role, being less dependent from the rest of the system. Besides that,
components are usually formed by more than one class. But as we have seen
DSM can easily create a hierarchy, as so it isn’t a problem join classes into
components. For the sake of simplicity we shall consider that each class will
become a component. Other differences between them will have no relevance to
this work. Let us now go through the proposed steps:

1. The first step is to construct the PSM - Parameter Size Matrix. This DSM is
filled with the values corresponding to the size of the parameters.

PSM 1 2 3 4

Component C run() 1 0 0 0 0

Component A foo() 2 2 0 0 0

bar() 3 5 0 0 0

Component D bah() 4 0 3 0 0

2. The second step in to construct the RSM – Return Size Matrix. This DSM is

filled with the values corresponding to the size of the returns.

RSM 1 2 3 4

Component C run() 1 0 4 0 0

Component A foo() 2 0 0 0 1

bar() 3 0 0 0 0

Component D bah() 4 0 0 0 0

3. Construct the CFM – Call Frequency Matrix. This DSM is filled with the

values corresponding to the resulting interaction of the frequency of calls.
Unlike in the first two steps, we cannot simply fill the matrix with the values
disposed in the sequence diagram, because if the implementation of ‘run()’
calls ‘foo()’ two times and the implementation of ‘foo()’ calls ‘bah()’ two
times, ‘bah()’ is called a total of 4 times. Thus, we initially fill the matrix with
the values disposed in the sequence diagram. From our example, we
obtain:

30 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

CFM 1 2 3 4

Component C run() 1 0 0 0 0

Component A foo() 2 1 0 0 0

bar() 3 2 0 0 0

Component D bah() 4 0 2 0 0

Then we apply the following algorithm to obtain the final Call Frequency
Matrix:

1. Take as start point the empty lines of the matrix. These lines reveal the methods
that aren’t called by any other method.
2. For every empty line check the non‐zero elements at the respective column.
3. For each valued element ai,j multiply the column i by a.
4. Apply step 3 and 4 for each column i.

CFM 1 2 3 4

Component C run() 1 0 0 0 0

Component A foo() 2 1 0 0 0

bar() 3 2 0 0 0

Component D bah() 4 0 1x2 0 0

4. Finally we calculate the DSM that represents the data coupling exposed by

the sequence diagram:

where is the Hadamard multiplication of the matrix A and B. For our
example we obtain:

DSM 1 2 3 4

Component C run() 1 0 4 0 0

Component A foo() 2 2 0 0 0

bar() 3 12 0 0 0

Component D bah() 4 0 6 0 0

Each use case of the system has a sequence diagram to which the steps above
must be applied. Thus, each resulting DSM translates the data coupling that the
respective use case is responsible for. Summing all these DSMs will result in the
final DSM representing the system’s design in terms of data coupling. An
interesting possibility here is to apply weights to this sum, if it’s known that some
use case is more frequently executed than other and consecutively plays a more
important role in structuring system’s data coupling.
Well, since the final DSM is a matrix that represents our system in terms of our
data coupling and we want to use data coupling as our similarity measure, we
could simply say that our final DSM is exactly our similarity matrix. The only

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

problem is that our DSM contains information about the direction that data flows
and the similarity matrix is symmetric, containing no such information. Summing
the amount of data flowing in both directions, we can easily obtain our similarity
matrix. This is done by folding the final DSM:

Finnaly, for our example we obtain:

4.3 Clustering Components
We apply now the clustering algorithms we have detailed in sections 2.3.1 and
2.3.2 using the similarity matrix obtained in the previous section as input. Since the
values of such matrix are directly related to the amount of data exchanged
between our components we expect our clustering algorithms to aggregate these
components in a way that the similarity between the resulting clusters is as low as
possible. Each resulting cluster will represent a device in a mobile system.
Therefore, minimizing the similarity between the resulting clusters means reducing
the amount of data exchanged between devices.
The first class of algorithm selected was the agglomerative hierarchical clustering
algorithms class. From this class we will apply the Single Link and the Complete
Link, which are the most popular in this class. We have chosen to use these
algorithms because they produce hierarchical structures, like well designed
systems present. Beyond that, these algorithms work over a similarity matrix,
where all values are previously calculated and such approach is very suitable to
the circumstances that we defined our similarity measure. The data coupling
information is retrieved from the provided sequence diagrams and that cannot be
done while the algorithm is running, it must be done previously. Moreover this
algorithm has low computational costs being able to handle great amount of data –
systems with great size – in a relative short time.
The other algorithm selected is based on graph theory, more precisely on Spectral
Graph partitioning. It takes as input a weighted graph and cut some of its edges to
produce two new sub-graphs. We have chosen this algorithm because it
mathematically ensures an optimal partition of the graph. However we are
conscious of its computational cost and the limitation of applying it to large scale
systems. Moreover, such technique does not demand that we work calculations on
the graph itself, but instead over the Laplacian matrix representing it. In section
4.3.2 we show its application in our method and we will see that this fact will turn
into an advantage for us and was also one of the reasons we decided to use it.

4.3.1 Single Link and Complete Link

Applying the two hierarchical algorithms is pretty direct once we have the Similarity
Matrix. From now on, each line (or column) from the matrix will stand for a cluster.
Therefore in the first interaction every component of our system forms a cluster.
The algorithm will search for the highest value in the matrix and gather the
corresponding clusters into one. That means, two lines (and respective columns)

32 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

will be removed and a new one corresponding to the just formed cluster will be
added to the matrix. This process will repeat until the matrix has only one element
– the final cluster containing all components.

The difference between Single Link and Complete Link, as explained in chapter 2,
appears when joining two clusters. The similarities between the new cluster and
the remaining clusters must be determined and how that is done differentiates
these algorithms. These values are calculated from the removed lines and will
correspond to the new line added to the matrix. Suppose we have removed the
lines s1 and s2. The new line s3 to be added to the similarity matrix will be
calculated so:

• Single Link: s3 will be formed by the highest values from s1 and s2.

• Complete Link: s3 will be formed by the lowest values from s1 and s2.

Each time two clusters are joined, track is kept in a dendrogram which will serve
as representation for the nested partitions. The algorithm will in practice start
joining the most communicating components. So in the bottom of the dendrogram
we are able to identify the most communicating cores, while in the top we have a
high level view of the communicating structure of the system.

Figure 16 – Sectioning the Dendogram

Sectioning the dendrogram at a given level will result in a single final partition. A
question that arrived often in the software clustering literature referred exactly to
this problem. How to find the appropriate height at which to cut the dendrogram?
This is a difficult problem itself and may there be more than one place to do it
[AL99]. Most of the time this question is not answered and the advantages of
having a hierarchical structure to analyze are exalted. We propose to measure
each level of the dendrogram using the Modularization Quality (MQ), described in
section 3.2, and cut the dendrogram where the MQ achieves highest values. This
approach will lead us to the partition which has the lowest communicating clusters
containing highly communicating components.

Since the example we have been using through this chapter is too small we obtain
the same results applying the two algorithms (figure 17). The partition obtained
determines that components A and C should be deployed in the same device
while component D in another device. If we take a look again at similarity matrix
calculated for this system, is pretty easy to assure that this is the most interesting
solution. We will present a bigger example in the section 4.4 and we will be able
to compare the differences and identify problems.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Figure 17 – Single Link and Complete Link Dendogram and Partition

4.3.2 Spectral Graph Partitioning
When applying Spectral Graph Partitioning to software, as said in section 3.3.2,
the first step is to represent the system as a weighted graph. In the Unified
Modeling Language the general structure of a system is already represented
through boxes - denoting classes - and lines connecting these boxes - expressing
relations like associations and compositions. Therefore, in relation to this first step
there is not much to be done. The second step would be to extract the
correspondent Laplacian Matrix of such graph. This is very comfortable for us
because the previously obtained SM is exactly the adjacency matrix used to make
such calculation. In section 2.3.2 we have seen that the Laplacian Matrix is
defined as L = D – A, where the Degree Matrix D = [dij] is defined as:

Therefore the Laplacian Matrix obtained from the SM of our example is:

Calculating now the Fiedler vector of this matrix, we are able to determine the final
partition of the system. The components corresponding to the negative values of
this vector will form a cluster while the positive values will form another. This
technique guarantees that the total weight of the cut edges is the lowest possible.
Since the edges of such graph denote the amount of data exchanged between
components, we can be sure of having achieved the best possible partition for our
objectives. The shortcoming of this approach, as known, is the computational cost
of calculating the Fiedler vector. This is not a problem for small systems, but it can
become unfeasible for large scale systems.

34 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Figure 18 – Spectral Graph Partition
In the figure above we have the calculated Fiedler vector and the partition
determined by its values. The resulting partition, as expected, is the same as the
one obtained with the hierarchical algorithms.
In the following section we apply these two classes from algorithms to a system
containing more classes. It is obviously not the scale of systems we are aiming but
it is enough to make our proposal clearer and easier to analyze.

4.4 Study Case
In this section we apply the method we have proposed in this work to a system
with nine classes. This is still a very small system comparing to the real mobile
systems that our method intends to handle, but it will give us the opportunity to
analyze the proposed method and take our conclusions about it. Below is depicted
the system’s general structure:

A

eval()
foo()

C

save()

I

get()

H

set()

B

saveH()
evaluate() F

chage()

G

bah()
mee()

E

process()

D

record()
evalProc()

Figure 19 – Class Diagram
For this system we will consider two use cases. The first use case is called “Eval”
and the second one “Save”. We shall provide for each use case richer sequence
diagrams, which contains more specific information about the interaction between
components that we have presented before.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

 : A : B : D : G : E : I : F

1x evaluate(size=3)
2x evalProc(size=1)

2x process(size=5)

2x bah(size=7)

(size=10)(size=3)

(size=22)

3x get(size=1)

(size=2)(size=4)

5x chage(size=3)

(size=2)

Figure 20 – Richer Sequence Diagram for Use Case „Eval“

 : C : B : D : F : H : G

1x saveH(size=10)
2x record(size=2)

1x chage(size=4)

3x mee(size=2) 1x set(size=1)

(size=3)

(size=3)

(size=4)(size=5)
(size=2)

Figure 21 – Richer Sequence Diagram for Use Case „Save“
As proposed, we calculate now the DSM representing the system in term of data
coupling for each given sequence diagram.

36 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

DSM ‐ Eval 1 2 3 4 5 6 7 8 9 10 11 12 13

A eval() 1 0 0 0 22 0 0 0 0 0 0 0 0 0

foo() 2 0 0 0 0 0 0 0 0 0 0 0 0 0

B saveH() 3 0 0 0 0 0 0 0 0 0 0 0 0 0

evaluate() 4 3 0 0 0 0 0 6 0 0 0 0 0 0

C save() 5 0 0 0 0 0 0 0 0 0 0 0 0 0

D record() 6 0 0 0 0 0 0 0 0 0 0 0 0 0

evalProc() 7 0 0 0 2 0 0 0 40 0 16 0 0 0

E process() 8 0 0 0 0 0 0 20 0 40 0 0 0 0

F change() 9 0 0 0 0 0 0 0 60 0 0 0 0 0

G bah() 10 0 0 0 0 0 0 28 0 0 0 0 0 24

mee() 11 0 0 0 0 0 0 0 0 0 0 0 0 0

H set() 12 0 0 0 0 0 0 0 0 0 0 0 0 0

I get() 13 0 0 0 0 0 0 0 0 0 12 0 0 0

DSM ‐ Save 1 2 3 4 5 6 7 8 9 10 11 12 13

A eval() 1 0 0 0 0 0 0 0 0 0 0 0 0 0

foo() 2 0 0 0 0 0 0 0 0 0 0 0 0 0

B saveH() 3 0 0 0 0 10 10 0 0 0 0 0 0 0

evaluate() 4 0 0 0 0 0 0 0 0 0 0 0 0 0

C save() 5 0 0 2 0 0 0 0 0 0 0 0 0 0

D record() 6 0 0 4 0 0 0 0 0 6 0 24 0 0

evalProc() 7 0 0 0 0 0 0 0 0 0 0 0 0 0

E process() 8 0 0 0 0 0 0 0 0 0 0 0 0 0

F change() 9 0 0 0 0 0 8 0 0 0 0 0 0 0

G bah() 10 0 0 0 0 0 0 0 0 0 0 0 0 0

mee() 11 0 0 0 0 0 12 0 0 0 0 0 18 0

H set() 12 0 0 0 0 0 0 0 0 0 0 6 0 0

I get() 13 0 0 0 0 0 0 0 0 0 0 0 0 0

To achieve the following Similarity Matrix we considered that both use cases have
the same participation in the system. That is, they are equally requested by
external actors. Thus, we sum both DSMs obtained without weights and get:

 A B C D E F G H I
 0 25 0 0 0 0 0 0 0 A
 25 0 12 26 0 0 0 0 0 B
 0 12 0 0 0 0 0 0 0 C
 0 26 0 0 60 14 80 0 0 D

SM = 0 0 0 60 0 100 0 0 0 E
 0 0 0 14 100 0 0 0 0 F
 0 0 0 80 0 0 0 24 36 G
 0 0 0 0 0 0 24 0 0 H
 0 0 0 0 0 0 36 0 0 I

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

This matrix translates the communication aspect of our system and is the start
point for both algorithm categories we proposed to use. Just a quick look at it is
enough to say that the system presents dense communication in the system’s
middle modules D, E, F and G. We expect from our algorithms at least that these
modules are kept together in the final partitions.

4.4.1 Hierarchical Algorithms

We first applied the Single Link algorithm to the Similarity matrix just obtained. The
resulting dendrogram, with Modularity Quality calculated for each partition can be
seen in the figure below:

Figure 22 – Single Link Dendogram

The results determine the following partition:

38 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

 A

 B

 C

 I

 D

 E

 F

 G

 H

Figure 23 – Single Link Partition

The application of the Complete Link will results in the following dendrogram, also
with Modularization Quality calculated for each partition:

Figure 24 – Complete Link Dendogram

The highest value in the dendrogram suggests the following partition:

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

 A

 B

 C

 I

 D

 G

 H

 E

 F

Figure 25 – Complete Link Partition

The first thing to be noticed is that the resulting number of clusters, as said before,
is not under our control. The Single Link resulted in three clusters, while the
Complete Link resulted in four. Of course, when deploying a system the number of
devices is fixed and so we must execute some pos-process in order to achieve the
same number of clusters as devices available. This can be better done by a
specialist analyzing the similarity of the system. For example, if the components of
this system must be distributed among three devices, we can say, just looking at
the similarity matrix of the current configuration (matrix bellow), that the cluster
containing components E and F should be merged with the cluster containing
components D,I,G and H, since they are the strongest communicating clusters.

 A
B C EF

D
G
H
I

 0 12 0 26 AB
 12 0 0 0 C

SM* = 0 0 0 74 EF
 26 0 74 0 DGHI

This will bring us to the same result as Single Link did - leading us to another
important observation. Complete Link achieved higher Modularization Quality
values than Single Link. The reason for that can be found in Complete Link’s
property of forming more compact clusters than Single Link. That means,
Complete Link finds dense clusters in data, reflecting readily the relation of
elements within clusters, while Single Link doesn’t consider much the cohesion of
resulting groups. If we remember that Bunch’s Modularization Quality takes into
consideration the trade-off between intra-connectivity and inter-connectivity, it is
expected that Complete Link achieves higher values than Single Link.

40 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Since the relations between clusters have much more influence in the Single
Link’s results as they do in Complete Link, we could say that Single Link is the
most appropriate choice for our objectives. However taking into consideration that
some pos-process must be done to make the number of clusters match the
number of devices and also that other aspects of the deployment specification
must be fulfilled, we think it’s more interesting to identify the most dense
communicating clusters and dispose such information the specialist.

4.4.2 Spectral Graph Partitioning

The spectral Graph Partitioning, as said before, is supposed to give us the optimal
partition of the system according to our objectives. Unfortunately, it has a high
computational cost and for certain system scales it becomes unfeasible to apply it.

Taking as start point the similarity matrix obtained previously from the system, we
calculate its Laplacian Matrix:

 25 ‐25 0 0 0 0 0 0 0
 ‐25 63 ‐12 ‐26 0 0 0 0 0
 0 ‐12 12 0 0 0 0 0 0
 0 ‐26 0 180 ‐60 ‐14 ‐80 0 0

LM = 0 0 0 ‐60 160 ‐100 0 0 0
 0 0 0 ‐14 ‐100 114 0 0 0
 0 0 0 ‐80 0 0 140 ‐24 ‐36
 0 0 0 0 0 0 ‐24 24 0
 0 0 0 0 0 0 ‐36 0 36

From this Laplacian Matrix we calculate its Fiedler vector:

As said before, the values‘ signs of the Fiedler vector indicate which components
should be placed together. In the following figure we can see the disposal of the
components:

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

 I

 D

 E

 F

 G

 H

 A

 B

 C

Figure 26 – Spectral Graph Partition

Although we thought this method would result in the optimal partition, we can
observe in this example that such method has a special condition. We can be sure
that the edge that will be cut has the lowest weight in the system. However, cutting
the edge must result in two sub-graphs. If we take a look at the similarity matrix
again we will see that the lowest edge is the one that connects components C and
B. Back in figure 19 though, we can see that cutting this edge will not result in two
sub-graphs but instead in a graph without one component. Because one
component doesn’t form a sub-graph, this edge is not a candidate to be cut.
Therefore, this method just considers the possibility of deploying one component
alone in a device when there is no other choice (example in section 4.3.2).
Another point to be remembered is the number of devices. As we said, we can re-
apply the same method to the resulting clusters until the number of clusters is
equal to the number of devices.

42 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

5. Conclusion

This work has proposed a method to determine the distribution of software
system’s components among computing nodes in a mobile context. In order to
determine this partitioning, this method considers the data load exchanged
between such components. In the context of mobile systems, this can be of great
use since data is transmitted over narrow-banded channels. Therefore, we can
maximize quality of service minimizing the amount of data transmitted over these
channels.

We have taken as start point UML sequence diagrams, since they expose the
relationship among components. However, during investigation of the different
relationship between components, we have seen that such diagrams do not
contain information enough to our objective. Thus, we have defined richer
sequence diagrams from which we could have a more precise estimation of the
amount of data flowing through the system.

We also have made a research in the software modularization literature so that we
could take advantage of numerical methods developed to achieve modularity. In
special we have found a subfield called software clustering, which consists of
applying clustering techniques to software. The works we found in software
clustering came to show great suitability to our intentions and we have decided to
make use of clustering techniques.

Our method includes several transformations in order that the systems can be
represented in terms of data load exchange. Such transformations were
considerably convenient for the algorithms we have chosen and made
visualization much easier. Clustering has proved, as expected, very adequate to
this problem, but due to the vast extension of clustering techniques, further work
must be done to find the most appropriate technique.

We expect this work to help in the evolution of tools and processes directed to
development of mobile systems. The evolution of such systems, and consequently
of the greater scenario in which these are embraced, is severely compromised by
communication channels and proposal like this represent major steps to overcome
such problems.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

References

[Par72] PARNAS, D. L.: On the Criteria to Be Used in Decomposing Systems
into Modules. In: Communications of the ACM, Vol.15, Nr.12, pages
1053-1058, 1972.

[Fie75] Fiedler, M.: A property of eigenvectors of non-negative symmetric
matrices and its applications to graph theory. In: Czechoslovak
Mathematical Journal, 25(100), pages 619-633. 1975.

[HB85] Hutschens, David H.; Basili, Victor R.: System Structure Analysis:
Clustering with Data Bindings. In: IEEE Transactions on Software
Engineering, vol. SE-11, Nr. 8, 1985.

[Sch91] SCHWANKE, Robert W.: An Intelligent Tool for Re-engineering
Software Modularity. In: Proceedings of the 13th International
Conference on Software Engineering, pages 83-92, 1991.

[MOTU92] Müller, H.; Orgun, M.; Tilley, S.; Uhl, J.: Discovering and
reconstructing subsystem structures through reverse engineering.
In: Technical Report DCS-201-IR, Department of Computer
Science, University of Victoria, 1992.

[Boo94] Booch, G.: Object-Oriented Analysis and Design. Redwood City,
CA.: Benjamin/Cumming.

[MWT94] MÜLLER, Hausi A.; WONG, Kenny; Tilley, Scott R.: Understanding
Software Systems Using Reverse Engineering Technology. In:
Colloquium on Object Orientation in Databases and Software
Engineering; The 62nd Congress of L'Association Canadienne
Francaise pour L'Avancement des Sciences (ACFAS). 1994.

[Che95] Chen, Y.: Reverse Engineering. In: Practical Reusable Unix
Software, chapter 6, pp.177-208, 1995.

[BMC96] Burd, E.; Munro, M.;Wezeman, C.: Extracting Reusable Modules
from Legacy Code: Considering the Issues of Module Granularity.
In: Working Conference on Reverse Engineering, pages 189-196,
1996.

 [Lak96] Lakos, J.: Large-scale C++ software design. Addison Wesley
Longman Publishing Co. Inc., Redwood City, CA, USA. 1996.

[Mar96] Martin, R. C.: Granularity. In: C++ Report 8(10), pages 57-62, 1996.

[CGK97] Chen, Y.; Gansner, E.; Koutsofios, E.: A C++ Data Model Suporting
Reachability Analysis and Dead Code Detection. In: Proc. Sixth

44 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

European Software Eng. Conf. And Fifth ACM SIGSOFT Sysmp.
Foundations of Software Eng., 1997.

[Wig97] WIGGERTS, T. A.: Using Clustering Algorithms in Legacy Systems
Remodularization. In: Proceedings of the 4th Working Conference
on Reverse Engineering (WCRE’07). 1997.

 [MMRCG98] MANCORIDIS, S.; MITCHELL, B. S.; Rorres, C.; Chen, Y.; Gansner, E.
R.: Using Automatic Clustering to Produce High-Level System
Organizations of Source Code. In: Proceedings 6th Intl. Workshop
on Program Comprehension, 1998.

[AL99] Anquetil, N.; Lethbridge, T. C.: Experiments with Clustering as a
Software Remodularization Method. In: Proceedings of the Sixth
Working Conference on Reverse Engineering, page 235, 1999.

[DMM99] Doval, D.; Mancoridis, S.; Mitchell, B. S.: Automatic Clustering of
Software Systems using a Genetic Algorithm. In: Proceedings of the
Software Technology and Engineering Practice, page 73, 1999.

[JMF99] Jain, A.K.; Murty, M. N.; Flynn, P.J.: Data Clustering: A Review. In:
ACM Computing Surveys, Vol. 31, Nr. 3, 1999.

[KCK99] Korn, J; Chen, Y; Koutsofios,E.: Chava: Reverse Engineering and
Tracking of Java Applets. In: Proc. Working Conf. Reverse
Eng.,1999.

[MMCG99] MANCORIDIS, S.; MITCHELL, C.; Chen, Y.; Gansner, E. R.: Bunch: A
Clustering Tool for the Recovery and Maintenance of Software
System Structures. In: Proceedings of the IEEE International
Conference on Software Maintenance, page 50, 1999.

[DB00] Davey, J.; Burd, E.: Evaluating the Suitability of Data Clustering for
Software Remodularization. In: Proceedings of the Seventh
Working Conference on Reverse Engineering (WCRE’00). 2000.

[MNS01] Murphy, G. C.; Notkin, D.; Sullivan, K. J.: Software Reflexion
Models: Bridging the Gap between Design and Implementation. In:
IEEE Transactions on Software Engineering. Vol. 27, Nr. 4. 2001.

[SGCH01] Sullivan, K. J.; Griswold, W. G.; Cai, Y.; Hallen, B.: The Structure
and Value of Modularity in Software Design. In: ACM SIGSOFT
Software Engineering Notes. Vol. 26, Issue 5. 2001.

[Hau02] Hautus, E.: Improving Java Software Through Package Structure
Analysis. In: The 6th IASTED International Conference Software
Engineering and Applications. 2002.

[Webb02] Clustering Chapter In: Webb, A. R.: Statistical Pattern Recognition,
Second Edition. John Wiley & Sons, 2002, pages 361-406. ISBN 0-
470-84513-9.

Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

[TK03] Theodoridis, S.; Koutroumbas, K.: Pattern Recognition, Second
Edition. Elsevier, 2003. ISBN 0-12-685875-6.

[ABA04] Al-Otaiby, T. N.; Bond, W. P.; AlSherif, M.: Software Modularization
using Requirements Attributes. In: Proceedings of the 42nd annual
Southeast regional conference (ACMSE 42). 2004.

[AAB05] Al-Otaiby, T. N.; AlSherif, M.; Bond, W. P.: Toward Software
Requirements Modularization using hierarchical clustering
techniques. In: Proceedings of the 43rd annual southeast regional
conference (ACMSE 43). 2005.

[CS05] Cai, Y.; Sullivan, K. J.: Simon: Modeling and Analysis of Design
Space Structures. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated software engineering
(ASE’05). 2005.

[DLP05] Ducasse, S.; Lanza, M.; Ponisio, L.: Butterflies: A visual approach
to characterize Packages. In: 11th IEEE International Metrics
Symposium (METRICS 2005). 2005.

[PB05] Parsa, S.; Bushehrian, O.: The Design and Implementation of a
Framework for Automatic Modularization of Software Systems. In:
The journal of Supercomputing, Vol. 32, Nr. 1. 2005.

[SBBP05] Seng, O.; Bauer, M.; Biehl, M.; Pache, G.: Search-based
Improvement of Subsystem Decompositions. In: Proceedings of the
2005 conference on Genetic and Evolutionary computation
(GECCO’05). 2005.

[SJSJ05] Sangal, N.; Jordan, E.; Sinha, V.; Jackson, D.: Using Dependency
Models to Manage Complex Software Architecture. In: Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages and applications. 2005.

[CTS06] Chatzigeorgiou, A.; Tsantalis, N.; Stephanides, G.: Application of
Graph Theory to OO Software Engineering. In: Proceedings the
2006 international workshop on Workshop on interdisciplinary
software engineering research (WISER’06). 2006.

[MM06] Mitchell, B. S.; Mancoridis, S.: On the Automatic Modularization of
Software Systems Using the Bunch Tool. In: IEEE Transactions on
Software Engineering, Vol. 32, Nr. 3. 2006.

[Wan06] Wang, H.: Nearest Neighbor by Neighborhood Counting. In: IEEE
Transaction on Pattern Analysis and Machine Intelligence, Vol. 28,
Nr. 6, pages 942-953, 2006.

 [ACoM07] Garcia, A.; Greenwood, P.; Heineman, G.; Walker, R.; Cai, Y.;
Yang, H. Y.; Baniassad, E.; Lopes, C. V.; Schwanninger, C.; Zhao,
J.: Assessment of Contemporary Modularization Techniques –

46 Luiz Fernando Clapis Pacheco Chaves

Deployment of Mobile Systems using Clustering Techniques

Luiz Fernando Clapis Pacheco Chaves

AcoM’07: Workshop report. In: ACM SIGSOFT Software
Engineering Notes, page 31, volume 32, number 5. 2007.

[HC07] Huynh, S.; Cai, Y.: An Evolutionary Approach to Software
Modularity Analysis. In: First International Workshop on
Assessment of Contemporary Modularization Techniques
(ACoM’07). 2007.

[MT07a] Melton, H; Tempero, E.: The CRSS Metric for Package Design
Quality. In: Proceedings of the thirtieth Australasian Conference on
Computer Science, pages 201-210, 2007.

[MT07b] Melton, H.; Tempero, E.: Towards assessing modularity. In: IEEE
First International Workshop on assessment of Contemporary
Modularization Techniques, 2007

[YR07a] Yu, LG; Ramaswamy, S.: Verifying Design Modularity, Hierarchy,
and Interaction Locality Using Data Clustering Techniques. In:
Proceedings of the 45th annual southeast regional conference
(ACMSE). 2007.

[YR07b] Yu, LG; Ramaswamy, S.: Component Dependency in Object-
Oriented Software. In: Journal of Computer Science and
Technology, 20(3), pages 379-386, 2007.

[Scilab08] INRIA. Scilab: The open source plataform for numerical
computation. www.scilab.org (10.06.08).

Deployment of Mobile Systems using Clustering Techniques

Luiz Fernando Clapis Pacheco Chaves 49

Appendix I – Software Modularization Approaches

Approach Granularity Description Works

Modularity Principles Proposition of principles to
achieve modularity [Par72] [Mar96][MT07b]

Software Clustering

Bottom-Up

Code Software re-modularization [AL99] [DB00] [Wig97]
[Sch91] [MNT94] [HB85]

Classes Module Dependency Graph [MMRCG98] [DMM99]
[MMCG99] [MM06] [SBBP05] [PB05]

Top-down Design/Implementation
Conformance [MNS01] [HC07]

Package Properties Analysis Packages Evaluation based on metrics [MT07a] [Hau02]
[DLP05] [SJSJ05]

New programming paradigms Aspect-Oriented Programming /
Feature-Oriented Programming [Acom07]*

* In this workshop report can be found references to the most recent works following this approach.

	Acknowledgement
	Abstract
	1 Introduction
	2 Clustering Techniques
	2.1 Representation
	2.2 Similarity
	2.3 Clustering Algorithms
	2.3.1 Hierarchical algorithms
	2.3.2 Clustering Algorithms based on Graph Theory

	3 Software Modularization
	3.1 Modularity
	3.2 Software Clustering
	3.3 Design Structure Matrixes
	3.4 Other Works

	4 Building the Bridge
	4.1 Data Coupling
	4.2 Representation
	4.3 Clustering Components
	4.3.1 Single Link and Complete Link
	4.3.2 Spectral Graph Partitioning

	4.4 Study Case
	4.4.1 Hierarchical Algorithms
	4.4.2 Spectral Graph Partitioning

	5. Conclusion
	References
	Appendix I – Software Modularization Approaches

