

Universidade Federal de Pernambuco
Graduação em Ciências da Computação

Undergraduate Project

Developing an Intermediate Representation
for the Analysis of Binary Code

Student: Julio Auto de Medeiros
Supervisor: Prof. André Santos

Recife, August 21, 2007

2

Signatures

This work is the result of the efforts of the student Julio Auto de Medeiros, under
the supervision of Prof. André Santos, under the title of “Developing an
Intermediate Representation for the Analysis of Binary Code” and conducted at
the Center of Informatics of the Federal University of Pernambuco (CIn-UFPE).
The people listed below acknowledge the contents of this document and the
results of this Undergraduate Project.

Julio Auto de Medeiros

André Luís de Medeiros Santos

3

Acknowledgments
This work could not be accomplished without the participation of many other
people. Although their involvement with this may vary on different levels of
(in)direction, I fail to recognize a clear classification of their importance and,
therefore, list them in no particular order. I would like to thank:

 God, Jesus Christ and all the others that influence my religious
convictions, for they constitute such a big part of the person I am
today;

 My family (Humberto, Evelina, Felipe and Humberta), for giving me a
healthy and happy environment that I could grow up in and call ‘home’,
and for being an eternal treasure to be proud of;

 Regina, for being absolutely everything she is, and for letting me spend
some time enjoying the pleasure of her company;

 My supervisor, André Santos, for having created many learning
experiences during the many classes of his I have attended throughout
my undergraduate course and for accepting me and my work to go
under his supervision;

 My dear friend, Julien Vanegue, for being available practically
whenever I feel like having the long technical chats that have honestly
influenced every line in this work;

 All of my friends (that have stayed or gone), for letting me laugh, cry,
think, learn and try to be a better person every time I meet them. And,
of course, for grabbing a beer with me every now and then;

 And finally, but not lastly, to all of those that I forgot to mention here. I
am deeply sorry if you deserved a more proper acknowledgment, but I
honestly hope to be forgiven.

4

Resumo
O campo de Análise de Programas é vasto e complexo. Apesar de ele ter muitas
décadas de estudos e avanços, alguns dos maiores e mais alvejados problemas
ainda se encontram em aberto. Em particular, uma rápida busca na literatura
sobre a intersecção entre as disciplinas de análise estática de programas
binários e detecção automática de bugs mostra que existe uma grande
oportunidade para cientistas dispostos a se engajar nesse excitante campo de
pesquisa.
 Esse trabalho tenta fazer um estudo sobre o estado-da-arte dos assuntos
que tangem as questões relacionadas à análise estática de programas, análise
de binários e detecção automática de bugs. Uma vez propriamente
contextualizado, esse documento apresentará o framework ERESI, um projeto
open-source sobre o qual toda a implementação deste trabalho foi baseada. Por
fim, o leitor encontrará um relatório detalhado do trabalho feito para transformar
código de máquina Intel IA-32 na LIR (Low-level Intermediate Representation) do
ERESI, um passo importante para estender as funcionalidades de análise do
framework em questão.

5

Abstract
The field of Program Analysis is vast and complex. Even though it has many
decades of study and advances now, some of the biggest and most pursued
problems remain open for resolution. In particular, a quick search through the
literature on the intersection between the disciplines of static analysis of binary
programs and automated bug-finding reveals that there is a big window of
opportunity open to scientists willing to engage in this exciting research field.
 This work attempts to perform a survey on the state-of-the-art of the
subjects touching the questions on static program analysis, binary analysis and
automated bug-finding. Once properly contextualized, this document will
introduce the ERESI framework, an open-source project on top of which all of
this work’s implementation is based. Finally, the reader will find a detailed report
of the work done to transform Intel IA-32 machine code into the ERESI LIR (Low-
level Intermediate Representation), an important step to extend the analysis
features of the framework in question.

6

Table of Contents
Index of Tables ...8
Index of Figures ..9
1. Introduction ..10

1.1. Context and Objectives...10
2. Program Analysis...12

2.1. Intermediate Representations...12
2.2. Flow Graphs ...13
2.3. Control-Flow Information ..14
2.4. The Program Structure Tree...16
2.5. Data-Flow Information ..18
2.6. SSA and SSI...19
2.7. Program Semantics ..22

2.7.1. Axiomatic Semantics ...23
2.7.2. Denotational Semantics...23
2.7.3. Operational Semantics ..23

3. The ERESI Project...25
3.1. ERESI Internals Overview ..25
3.2. The ERESI Language...28
3.3. Libasm..28

3.3.1. Multi-Architectural Support ..29
3.3.2. Semantic Annotation of Instructions and Operands29
3.3.3. Vectors of Handlers ...31

4. Contributions of this Work..32
4.1. Transforming IA-32 Machine Code into ERESI LIR..............................32

4.1.1. The Instruction Set ..32
4.1.2. Semantically Annotating the Instructions.......................................33
4.1.3. Writing the Transformation Back-End..33

4.2. Future Work..37
5. Conclusions ...38
References ...39
Appendix A. Intel 8086/8088 Instruction Set ...41
Appendix B. Configuration of Common ERESI Types ..43
Appendix C. Script of LIR Definitions ..44
Appendix D. Binary-to-LIR ERESI Code ...46

7

Index of Tables
Table 1. ERESI commands used in the program transformation code28
Table 2. Semantic attributes used for instructions in libasm30
Table 3. Semantic attributes used for operands in libasm30
Table 4. ERESI LIR Constructs ..35
Table 5. Restricted Intel 8086/8088 instruction set ...42

8

Index of Figures
Figure 1. Undirected graph with six vertices and seven edges13
Figure 2. Call Graph for Code 1..15
Figure 3. Control-Flow Graph for Code 1..16
Figure 4. CFG with SESE regions highlighted ..17
Figure 5. PST generated from Figure 4 ..18
Figure 6. Data-Flow Graph for Code 1..19
Figure 7. SSA representation of Code 2 ...20
Figure 8. Code 2 in its SSI representation ..22
Figure 9. Layered representation of the architecture of the ERESI Project.........27

9

1. Introduction
For many years now, a considerable amount of effort has been put into making
the automated analysis of software a powerful and practical tool in the
workbench of professionals and researchers that deal with software. During this
time, many formal approaches to software verification have been created and
further research still goes on in an attempt to make these techniques capable to
answer the most relevant questions in program analysis, some of which are:
Does this software have bugs? How can these bugs be triggered? How critical
are they?
 Furthermore, a branch of this research field (and a quite recent one) is of
special importance: the analysis of binary code. Being capable of analyzing
binary code enhances the possibility to answer all those intriguing questions
without the need of the source code. All that is needed is the software in its most
natural form: the bits and bytes that are ready to be fed into a program loader.
 The reasons behind the concerns of the software industry and academic
researching around the mitigation of bugs vary in perspectives. The market
undeniably suffers with the existence of bugs by having to make considerable
investments in processes and tools that aid in bug mitigation during the
development cycle. To this date, no process or tool does the job perfectly and,
after the software release and deployment, remaining bugs may cause the
company to lose customers and/or invest more money in fixes and patching
initiatives. Furthermore, depending on how vital third-party software is to a given
businesses, bugs in this third-party software may bring losses to the organization
making use of it.
 From a security standpoint, the situation is no better. Surveys reveal that,
during the year of 2006, over 7,000 security vulnerabilities were publicly
disclosed [ISS07]. Experts of the field make even more alarming evaluations of
the scenario, taking guesses that, during the same year, the number of
undisclosed vulnerabilities could cross the mark of 130,000 [Oll07], giving a
grand total of almost 140 thousand security breaches, most of them caused by
bugs in software products.

1.1. Context and Objectives

Many of the problems regarding program analysis remain unsolved, although the
subject receives a fair amount of attention and research contributions from the
scientific community. Furthermore, in contrast with the exciting achievements in
source-code analysis and the release of academic and commercial software
tools that can perform rather effective and useful analysis of source (e.g. finding
occurrences of a given class of software bugs), the literary references to binary
analysis techniques are considerably less expressive and more scarce. That is,
at least in part, because of the added complexity of binary analysis in comparison
to its source-code counterpart. For example, binary analyzers have to deal with
extra issues such as the absence of types, provided no debugging information is
available.

10

 This work intends to contribute to the advances in binary analysis by
participating in the development of the ERESI project. ERESI (ELF Reverse
Engineering Software Interface) is a framework dedicated to the analysis and
instrumentation of binary programs. It is compatible with multiple architectures
and runs on a variety of UNIX-based operating systems, by working on ELF
(Executable and Linking Format) objects. The framework is formed by a set of
seven libraries and three applications that run on top of them, providing
innovative features for analysis, instrumentation, tracing and even debugging of
binaries, among other possibilities [VGA+07].
 The remainder of this text includes, in order: a study of the state-of-the-art
in program analysis, a presentation of the ERESI framework and its components
most closely related to this work and, finally, a report of the work done while
dealing with the transformation of Intel IA-32 machine code into the ERESI LIR
(Low-level Intermediate Representation). Brief words of conclusion can be found
at the end of this document, just above the bibliographic references and
appendices.

11

2. Program Analysis
This section discusses some of the many techniques and approaches that may
be taken by program analyzers. For the sake of comprehensiveness, this set of
subjects was restricted only to those that matter the most to this work as a whole.
 It is important to notice, as well, that the term ‘program analysis’ here
refers to the ways of making a computational system reason automatically (or at
least with little human assistance) about the behavior of a program and draw
conclusions that are somehow useful. Conceptually, this process can be divided
into two distinct steps: one to gather substantial information about the program in
question, i.e. the analysis itself; and another to extract the actual conclusive data,
i.e. the verification. The results of the verification step are said to be useful
typically in the sense that, otherwise, they would be harder to analyze, i.e. by
manually inspecting the code.
 Program analyzers commonly fall into one of these two categories: static
analyzers or dynamic analyzers. Then again, this text refers to ‘program analysis’
to describe the techniques used by static analyzers, unless when explicitly noted.
The main difference between these two branches is that the dynamic analyzers
need to really execute (or otherwise emulate the execution of) the program in
order to perform their analyses, analyzing as the program goes. On the other
hand, static analyzers need not to execute the program, and work just by
transforming and reasoning about a given representation of the program in
question, such as its source-code. Static analysis is used, for example, in many
of the modern compilers due to its importance to optimization and error-checking.
Because of that, program analysis is frequently related to compiler research and
literature. Due to this proximity between the compiler and analysis disciplines,
this text may freely employ the term ‘program analyzer’ to refer to a compiler or
compiler suite as far as it concerns its program analysis functionalities.
 In the following sub-sections we shall discuss some topics of major
interest to program analysis. There are certainly many resources and techniques
that program analyzers can make use of and it is not the purpose of this
document to cover all of them, neither in breadth nor in depth. Instead, this
section aims to contain comprehensive explanation about the subjects that are
most relevant to modern program analyzers. The reader is expected to find more
extensive information in the references.

2.1. Intermediate Representations

It is safe to say that the IR (Intermediate Representation) is the central piece to
every modern program analyzer. In simple terms, the IR is merely an alternative
representation to the one of the input program at the analyzer front-end, which
can accept many forms of representation such as multiple programming
languages or machine code for various computer architectures.
 Besides multiplexing the possibly many input representations of a program
analyzer into a unified form, the IR typically has many more important features.

12

As the program analyzer executes its phases, the IR is decorated with
information that is critical to the process of verification or to more elaborated
analysis routines. It is also often required that the IR must not contain information
that is present in the input representation but irrelevant to the posterior phases of
the analyzer. It can be said, then, that in some sense the IR is the result of the
analysis itself.
 In practice, an IR may add complexity to the representation of the program
by incorporating information about data-flow, control-flow, types of operands and
so forth. On the other hand, to keep things simple, the IR may choose to
represent the program by using a set of operations with cardinality less than that
of the original representation.

2.2. Flow Graphs

Graphs are data structures that are able to express undirected or directed
relations between many-to-many entities of some sort. In graph terminology, an
object pertaining to a graph is called a node, or vertex. A link between a pair of
vertices is called an edge. Graphs are often represented under graphical forms
similar to the one below:

6

3

4

2

5

1

Figure 1. Undirected graph with six vertices and seven edges

 In program analysis, graphs are especially useful to represent two types of
relations: control-flow links, and data-flow dependencies. This kind of information
is largely used by optimization and analysis techniques and often a program
analyzer chooses to embed them into its IR.
 Flow graphs are directed graphs that have a start node and an end node,
thus inducing the notion of flow. In graphical representations, the start node is
typically the topmost node, while the end node is the bottom-most one.
 Some properties of flow graphs are important to program analysis, such
as reachability. Reachability is a property that states whether there is a path
between two nodes (preserving the direction of the edges, i.e. the flow of the

13

graph). If there is a path from, say node X, to node Y we say that node Y is
reachable from node X. Node Y is unreachable from node X otherwise.
 Dominance is another property of flow graphs. We say that node X
dominates node Y if every path from the start to node Y must pass through node
X. Conversely, we say that node Y postdominates node X if all paths from node
X to the end must go through node Y. The same concepts can be applied to
edges in an analogous manner.

2.3. Control-Flow Information

Modern software does not work purely linearly, i.e. it frequently requires that the
control of execution is transferred on demand to another operation it wishes no
matter where the target operation lies in the memory address space. Therefore,
the modern computers provide operations that the programmer can use to
perform these transfers of control.
 Changes in the control-flow are conceptually present in every conditional
block, loop or procedure call and the compiler typically makes large use of them.
Control-flow analysis may indicate, for example, that a part of the program is
unreachable (i.e. it will never be executed) and that its code can be removed for
the sake of size optimizations.
 About the division of a program in parts, as far as it concerns control-flow
it can be performed by splitting the program into either of tow kinds of unit:
subroutines or basic blocks. Subroutines are the usual procedures, functions or
methods that are present on the majority of the modern programming languages.
Consider the following program in C code:

1 int subtract (int a, int b) {
2 int c = a - b;
3 return c;
4 }
5
6 int main () {
7 int a, b, c;
8 a = 2;
9 b = a;
10 c = subtract(a, b);
11
12 if (c == 0)
13 return 0;
14 else
15 return -1;
16
17 return -2;
18 }

Code 1. A simple C program

14

 The control-flow graph that represents the links between subroutines is
called a call graph. Figure 2 shows the call graph generated from Code 1.

Figure 2. Call Graph for Code 1

 Basic blocks, on the other hand, are units of a finer level of granularity.
They are blocks of code that can be executed from the start to the end without
transferring control in between. As control-flow graphs link its vertices by terms of
control transfers, the last operation is usually a control-flow statement and the
first operation, the target of another control-flow statement. The obvious
exceptions to this rule are the block containing the starting point of the program
(or that are otherwise invoked by an ‘invisible’ party, such as the operating
system program loader) and the blocks either halt execution or that do not
transfer control to other blocks other than by executing return statements.
 The flow graphs generated from control-flow information of basic blocks
are simply called control-flow graphs (CFGs, for short) or block-level CFGs. In
Figure 3, b_main_1 refers to the block of code containing the lines 7 to 10 of
Code 1. The block b_main_2 corresponds to the test performed by line 12 and
b_main_3 to the code in line 17, just after the if-then-else statement. The other
blocks are hopefully intuitive enough.
 It is important to notice that the block b_main_3 in fact could never be
reached and, therefore, could be optimized away. It becomes clear, then, that the
choices made during the generation of the control-flow information and,
consequently, of the CFG influence on the quality and overall usability of the data
for analysis purposes. In this specific case, the control-flow analyzer could easily
opt not to insert out-edges into blocks ending with a return statement, such as
b_main_if and b_main_else, thus generating a CFG with accurate information
about the reachability of b_main_3. Many other algorithmic choices could be
made, e.g. creating an edge out of b_subtract and into b_main_2, which could
alter the quality of the result of the analysis, be it in complexity, soundness or any
other criterion that ultimately affects the excellence of the analyzer.

15

b_main_1

b_subtract b_main_2

b_main_if b_main_else

b_main_3

Figure 3. Control-Flow Graph for Code 1

2.4. The Program Structure Tree

The program structure tree [JPP94], or PST, is another representation of the
control-flow graph of a program. Its nodes, however, are not basic blocks or
subroutines. Instead, they represent Single Entry Single Exit (SESE) regions.
Intuitively, SESE regions are segments of a given graph that are entered via only
one edge and exited by only one different edge. More formally, SESE regions are
bounded by a pair of edges (X,Y) such that X dominates Y, Y postdominates X,
and every cycle in the graph containing X also contains Y and vice versa. Figure
4 highlights the SESE regions of the CFG from Figure 3.

16

Figure 4. CFG with SESE regions highlighted

 A PST is, then, the representation of the SESE regions of a CFG based
on their nesting relationships. That is, in a PST a node Y is a child of node X if
the SESE region represented by node Y is contained in the SESE region
represented by node X. Figure 5 depicts the PST for the SESE regions
highlighted in Figure 4.
 PSTs can be used in divide-and-conquer analysis strategies where the
complexity of the algorithm is high and the cost of combining the partial results is
low. Suppose we have an algorithm of quadratic complexity in proportion to N,
where N is the number of units it can operate upon (e.g. basic blocks,
operations…) in the target program. Now imagine we have a PST with k SESE
regions of about the same size, kN (i.e. the same number of units), and we can
run the algorithm unmodified over the SESE regions. If the cost of combining the
results of the algorithm for each SESE region is irrelevant, the algorithm will run,
for each SESE region, in ()()2kNO time and take an overall ()kNO 2 time, thus
speeding up the performance for the whole analysis. Furthermore, if the
algorithm can enjoy from properties of sparsity of the program, i.e. if it can be

17

applied only to a subset of the SESE regions in the PST, this result can clearly
be improved even more.

Figure 5. PST generated from Figure 4

2.5. Data-Flow Information

Data-flow analysis investigates how the data contained in memory cells (or
registers, or variables for all that matters) is used and modified across the
program’s operations. In data-flow terminology, we say that a variable is used
when it is referenced by an operation, and defined when its data is modified. The
flow of definitions and uses of a variable through its lifetime is often called the
def-use chain.
 One of the most interesting properties revealed by data-flow analysis is
the data dependencies existent between sequentially ordered operations. One
notable application that can make use of this information is instruction ordering.
These data dependencies can be visualized in the form of data-flow graphs
(DFGs), seldom called data-flow diagrams. Figure 6 shows the DFG for Code 1.
It is important to notice that it was chosen to represent the result of the
comparison operation ‘==’ as if it was stored in an implicit temporary variable,
here denoted by ‘$’. Also, the ‘subtract’ function was decomposed into a simple
subtraction operation.

18

=

=

==

Figure 6. Data-Flow Graph for Code 1

2.6. SSA and SSI

Amongst the intermediate representations oriented towards data-flow analysis,
possibly the most famous is the Static Single Assignment (SSA) form [CFR+91].
The main characteristic of the SSA form is that, for every redefinition of a virtual
register, i.e. a variable, in the original program, a new variable is created
(normally the new variable is named with an incremental number subscripted to
the original variable name) in the SSA representation. Therefore, the transformed
program will end up with multiple newly-created variables for each (re)definition
of the original variable, and each of these new variables is assigned to exactly
once.
 When computing the SSA form of a program, an interesting question
arises: what to do when control-flow reaches a join point and the merging control-
flow branches have different ‘versions’ of a given variable (i.e. the variable has
been independently modified by one or more of the different branches)? Which
version of the variable should the CFG nodes subsequent to the join point use?
To solve this issue, SSA introduces the φ -function. Semantically, the φ -function
is a special form of assignment that ‘decides’ which version of the variable to
use, representing the possible values this variable could assume in runtime.

19

Figure 7 illustrates the use of the SSA form and φ -functions given the simple
excerpt of C-style code named Code 2.

1 int a = 3;
2 int test = 1;
3
4 if (test == 0)
5 a = a + 1;
6 else
7 a = a + 2;
8
9 int b = a;

Code 2. Simple piece of C-style code

2 1 1a a← + 3 1 2a a← +

()
41

324 ,
ab

aaa
←
←φ

?0

1
3

1

1

1

=

←
←

test

test
a

Figure 7. SSA representation of Code 2

 Traditional methods of computing the placement of φ -functions [CFR+91]
are based on finding the dominance frontier of each node in the CFG. For a
variable in question (suppose it is the only variable in the program), a node Y is

20

said to be in the dominance frontier of a node X if, given the nodes in the path
, Y is the first node not dominated by X and X is the last node to have

defined the given variable. These traditional methods of transforming a program
into the SSA form have

YX →

()2NO complexity (where N is the number of nodes in
the CFG). However, experiments with the optimization techniques offered by the
PST features afore mentioned [JPP94] successfully increase the performance of
this task.
 Out of the many existing SSA variants, one of the most interesting to this
work is the Static Single Information (SSI) form [Ana97]. SSI uses the same
scheme of virtual register renaming as SSA to guarantee that, in its
representation, the program text contains only one assignment of any given
variable. However, in addition to the rule of renaming virtual registers due to
multiple assignments and to the use of the φ -function to manage multiple
reaching definitions at merge points, SSI introduces the σ -function. Being placed
at control-flow split points, instead of merge points, σ -functions behave
essentially as a counterpart to the φ -function. A σ -function should be used
whenever one or more branches of the control-flow split use a given variable.
Semantically speaking, the σ -function takes one source operand, namely the
virtual register used in the following branches, and assigns its value to N
destination operands, where N is the number of branches starting at the split
point. The successor branches then can make use of its respective exclusive
newly-created virtual register. Figure 8 depicts the SSI form of program Code 2.
 SSI allows for efficient predicated and backward data-flow analyses and is
similar to SSA in terms of size and time of computation [Sin05]. Therefore, SSI
proves itself to be a good choice, among the modern IRs, for the purpose of
static data-flow analysis.

21

4 2 1a a← + 5 3 2a a← +

()6 4 5

1 6

,a a a
b a

ϕ←

←

()

1

1

1

2 3 1

3
1

0?
,

a
test

test
a a aσ

←
←

=

←

Figure 8. Code 2 in its SSI representation

2.7. Program Semantics

Programming language designers often find themselves facing the difficult task of
describing the dynamic semantics of languages, i.e. what the commands of a
given programming language effectively do. These semantic descriptions can be
useful for a variety of purposes, including serving as reference for programmers
or compiler writers. Furthermore, as the semantics of a language can be used to
clarify the semantics of a program, one can be interested in studying these
semantics in order to take advantage when designing program analyzers.
 In contrast to the problem of describing language syntaxes, which is now
fairly well-satisfied given the power of the current resources such as the
(Extended) Backus-Naur Form ((E)BNF), no formal notation for describing
semantics of programming languages is universally accepted and formalizing
language semantics is still considered a hard job, with few practical and useful
examples applied to complex modern languages. In this section we shall
overview some of the methods for describing dynamic semantics of programs.

22

2.7.1. Axiomatic Semantics
Axiomatic semantics was first introduced by Hoare [Hoa69], after the work of
Floyd [Flo67], and is closely related to Hoare’s Logics. The idea behind axiomatic
semantics is that program statements are enclosed by assertions of
preconditions and postconditions. The preconditions establish constraints on the
machine state before the execution of the given statement, while the
postconditions obviously constrain the state of the machine after the execution of
the statement.
 Specification of axiomatic semantics for a given statement/program is
done using the notation P{Q}R, where P is the precondition, Q is the program
and R is the postcondition. This notation means that if P evaluates to true before
Q executes, then R will evaluate to true after the execution, provided Q
completes.
 More than describing semantics, axiomatic semantics are an intuitively
natural tool for proving correctness of programs. The type of correctness
verifications that axiomatic semantics allow for is called partial correctness, i.e.
correctness in the finite cases. Referring to the notation above, nothing can be
proved if Q never finishes.
 When doing correctness proofs, there must be an axiom (i.e. a condition
which must be true) or an inference rule for each program statement. Inference
rules will propagate the values of conditions across compound statements. From
that point on, a theorem proving software must verify, taking the provided axioms
into consideration, the conditions and inference rules associated with the
program in order to find inconsistencies.

2.7.2. Denotational Semantics
The formalization of denotational semantics became popular in the 1970s
[Sto77], following the work of Dana Scott and Christopher Strachey, and relies
basically on constructing mathematical objects and creating functions that can
map instances of an entity of a language (or program) into these mathematical
objects. When expressing the semantics of programming languages with
denotational semantics, there has to be a mapping to a mathematical object for
each language construct.
 The semantics is said to be denotational because these mathematical
objects denote the meaning of their corresponding syntactic entities. In this case,
the most important fact is that there are rigorous and efficient ways of
manipulating mathematical objects, while the same does not hold true for
programming language constructs.

2.7.3. Operational Semantics
With operational semantics, the meaning of the program is described in terms of
the behavior of the machine it executes on, which can be real or simulated. Due
to the fact that many programming languages can be executed on a variety of
machine models, it is often used an abstract machine that conserves only a
subset of the properties of real-world computers, such as the organization of
memory cells, the existence of a stack in memory, and so forth.

23

 The first significant employment of the operational semantics formalism
was made by a group of scientists at the IBM research lab in Vienna [LW69].
They used operational semantics to describe the semantics of the PL/I language.
The methodology they developed was named the Vienna Definition Language
(VDL) and included the notation and the abstract machine used. Due to its high
complexity, however, this description was of little practical use and VDL, not
having made many adopters, was soon obsolete.
 After IBM’s VDL and to this day, one of the most notable contributions to
the description of operational semantics was the introduction of Structural
Operational Semantics (SOS), by Gordon Plotkin [Plo81]. SOS proposes the
description of operational semantics by means of transition rules in a notation
commonly used in logics. An example of how a rule would look in SOS is the
following:

()
()()

,
, , †{ }

e

s

rhs v
mk Assn lhs rhs lhs v

σ
σ σ
⎯⎯→

− ⎯⎯→

 Where , :e Expr Value⎯⎯→ ×Σ→ :s Stmt⎯⎯→ ×Σ→ Σ , and denotes an
abstraction for memory stores, e.g. the collection of mappings . This
notation establishes deduction rules. The predicate in the conclusion (that is, the
one below the horizontal line) holds if the premises (the statements above the
horizontal line) are valid. The particular rule in the example above describes the
operation of an assignment (mk-Assn) statement. Here, rhs means the
expression in the right-hand side of the assignment, and lhs means the identifier
in the left-hand side. The lower sigma is an instance of the capital sigma, i.e. a
representation of the memory space of the program in question. The cross sign
introduces the changes, enclosed in the curly brackets, to happen in the memory
space.

Σ
Id Value→

 The notation used in SOS maintains an acceptable level of complexity as
it addresses issues such as the description of complex commands and
constructs like functions and classes, as well as dealing with questions such as
type-checking and error-checking. SOS revived the interest in operational
semantics and its viability as way of describing the meaning of languages and
programs.

24

3. The ERESI Project
The ERESI Reverse Engineering Software Interface is a unified multi-
architecture binary analysis framework enhanced for UNIX operating systems
based on the Executable & Linking Format (ELF) such as Linux, *BSD, Solaris,
Cisco IOS, IRIX and BeOS. It can be qualified as hybrid, in the sense that it
includes both static and dynamic runtime capabilities. ERESI has an evolving
language conceived with reverse engineering in mind since its early designs,
making it programmable and adaptable to the precise needs of its users.
 The current ERESI package includes three applications that interface with
the user via command-line, which then invokes the framework’s language
interpreter. These applications offer a variety of functionalities, categorized into
one of the following: debugging, binary file instrumentation or procedure tracing.
At the time of writing, two new applications are under development. One of them,
already at an advanced stage, shall provide features for kernel debugging. The
other, of special interest to this work, is intended to offer the most advanced
binary analysis primitives of the project.

3.1. ERESI Internals Overview

Supporting the ERESI applications, seven original libraries spread across the
lower layers of the framework’s architecture. Figure 9 depicts these layers and
their respective components. A brief description of each of them (in top-down
order, compared to the architectural model) shall follow.
 It is important to notice that the components are designed to feature the
largest degree of disassociation among them as possible. Given this modularity,
the framework can be tailored to the user’s needs by removing unused
components or plugging custom components on top of existing libraries. In fact,
the lowest-level components, such as libasm, can be linked against other
applications completely independently of the rest of the framework.
 Applications:

• The ELF shell (elfsh), an interactive and scriptable component
dedicated to instrumentation of ELF binary files.

• The embedded ELF debugger (e2dbg), an interactive and
scriptable high-performance user-land debugger that works
without standard debug API (namely without ptrace).

• The embedded ELF tracer (etrace), an interactive and scriptable
user-land procedure tracer that works at full frequency of
execution without generating traps.

Applications at earlier development stages:
• The kernel shell (kernsh), an interactive and scriptable user-land

shell created to inspect and modify kernel structures by defining
them as types of the ERESI language.

• Evarista, a static binary analyzer written almost entirely in
ERESI language and devoted to automatic bug-finding. This

25

component will be in charge of making the needed program
transformations, analyses and verifications in order to extract
meaningful information from raw binary programs.

Libraries:
• Libe2dbg, library that contains the majority of the code that

implements the functionalities of the embedded ELF debugger
(e2dbg), being linked to the debuggee process at load-time.

• Librevm, the Reverse Engineering Vector Machine, which
contains the meta-language interpreter and the standard ERESI
library.

• Libmjollnir, the flow analyzer and code fingerprinting library.
• Libelfsh, the binary manipulation library on which ELFsh, E2dbg,

and Etrace are based.
• Libasm, the disassembly engine that gives semantic attributes

to instructions and operands.
• Libedfmt, the ERESI Debug Format library, which can convert

debug information in the dwarf or stabs formats into the ERESI
debug format by automatically generating new ERESI types.

• Libaspect, library responsible for the type system and the
aspect-weaving features (reflection). It defines complex data
types, making them available to be manipulated ad-hoc by
ERESI programs.

 It is important to elucidate better the modus operandi of the ‘embedded’
applications, e2dbg and etrace. In a nutshell, they work by injecting themselves
into the target binary file, so that when it is executed, the application embedded
within them, i.e. one of the two ERESI-based applications afore mentioned, will
take control of the process. This is made possible by complex injection and
relocation techniques provided by libelfsh, and also present in the form of
commands of the ELF shell. Not only this speeds up the overall performance of
the application, because it is running directly from inside the address space of
the process, but it also enables the possibility of even using applications of this
kind in scenarios that forbid the use of similar tools that rely on a standard
debugging API (namely, ptrace).

26

Figure 9. Layered representation of the architecture of the ERESI Project

27

3.2. The ERESI Language

The ERESI language, which may as well be simply called ERESI, is one of the
most innovative features of the framework. It is a domain-specific meta-language
dedicated to reverse engineering and analysis of binary programs and is aimed
at providing its users with a way of quickly and easily developing applications
such as analyzers or decompilers. It is said to be a meta-language because it
manipulates programs written in another language, namely the machine code
language.
 Although the ERESI language is a very interesting concept that could be
detailed and discussed for many pages, this discussion will be restricted to a
brief explanation of the meta-language commands that will be necessary to
understand the program transformations explained in later sections of this
document. Table 1 summarizes these commands.

Command name Command description
type Declares new complex types
define Defines constants and identifier aliases
load Loads a binary to be manipulated
reflect Builds the list of blocks of the loaded binary
set Assigns a value to a variable
transform Transforms the program according to the user’s

specification
Table 1. ERESI commands used in the program transformation code

 Given the transformation code in the appendices of this document, which
can be used as reference of examples of the use of the commands in Table 1, a
formal description of these commands’ syntax is unnecessary and beyond the
scope of this work. It should be noted, however, that the body of a transform
construct is formed by a set of case statements, which compose the actual
specification of the transformation. Besides performing the transformation, the
case statements also support the execution of an optional statement, which may
denote side-effects, such as changes in the data-flow information of the program
in question (ERESI also features commands for data-flow analysis, which are not
covered here). A transform block is ended by an endtrans statement, which
executes a final command (e.g. list iteration) before executing the transform
command again, in a cyclic fashion.
 Variables in ERESI are preceded by the dollar sign ($), similarly to many
other languages. Furthermore, ERESI makes available a special variable,
namely $_, which stores the return of the last command executed. This variable
is especially useful to access the return of commands that do not take a
destination parameter, e.g. the unary commands.

3.3. Libasm

Libasm is the disassembling library of the ERESI project. Besides performing the
basic disassembly, libasm features some low-level analysis-related aspects and

28

many other characteristics that turn this library into a very special disassembling
library, sine qua non to a variety of features of the ERESI framework.
 Due to its undeniable importance, allied to the fact that this is the
component at which most of this work’s efforts were targeted, it becomes
essential that the features of libasm are better detailed.

3.3.1. Multi-Architectural Support
Libasm currently supports two machine models: SPARC v9 and Intel IA-32.
Although these architectures are certainly two of the most widely used on
modern personal computers, at the time of writing there are also ongoing efforts
to make it support MIPS machines. Following this trend of extending ERESI
features to embedded systems, future work holds the possibility of porting libasm
to support ARM processors too.
 The current SPARC v9 support is capable of disassembling any of the
instructions in the architecture’s instruction set and representing them as
structures internal to the library. As the SPARC architecture is almost totally
backwards compatible with its previous versions, the v9 support includes the
capability of correctly disassembling nearly all of the constructs of v8 and v7
machine code.
 Although the IA-32 port does not support the disassembling of some
instructions (in particular, some of the instructions belonging to the newest SSE
and MMX extensions), the support is extensive enough so that libasm can
effectively disassemble a wide range of binaries present in many flavors of UNIX
variants, such as the applications contained in the /bin and /usr/bin directories of
default installations of the supported operating systems. Having that said, the IA-
32 port of libasm is constantly evolving and more instructions become supported
upon demand.

3.3.2. Semantic Annotation of Instructions and Operands
Libasm holds an internal representation of the disassembled instructions and
operands. This representation, besides containing all the syntactic information
needed to output an instruction correctly, carries semantic annotations
(attributes), gathered at disassemble-time, about instructions and operands.
These semantic attributes are summarized on Tables 2 and 3 for instructions and
operands, respectively.

Attribute Description
IMPBRANCH Branching instruction which always branch (jump)
CONDBRANCH Conditional branching instruction
CALLPROC Sub Procedure calling instruction
RETPROC Return instruction
ARITH Arithmetic (or logic) instruction
LOAD Instruction that reads from memory
STORE Instruction that writes in memory
ARCH Architecture dependent instruction

29

WRITEFLAG Flag-modifier instruction
READFLAG Flag-reader instruction
INT Interrupt/call-gate instruction
ASSIGN Assignment instruction
COMPARISON Instruction that performs comparison or test
CONTROL Instruction modifies control registers
NOP Instruction that does nothing
IO Instruction accesses I/O locations (e.g. ports)
TOUCHSP Instruction modifies stack pointer
BITTEST Instruction investigates values of bits in the operands
BITSET Instruction modifies values of bits in the operands
INCDEC Instruction does an increment or decrement
PROLOG Instruction is part of a function prolog
EPILOG Instruction is part of a function epilog
STOP Instruction stops the program

Table 2. Semantic attributes used for instructions in libasm

Attribute Description
REG Register operand
IMM Immediate value
MEM Memory Access

Table 3. Semantic attributes used for operands in libasm

 These semantic attributes allows code from upper layers of ERESI
(including programs written in ERESI code) to refer to instructions collectively, in
terms of their semantics annotations, instead of individually. As will be seen later
in this document, this simplifies significantly the task of writing a back-end for
program transformation of a specific machine code into the LIR used in the
project. Similarly, many other applications performing instrumentation or analysis
may benefit from this feature.
 It is very important to notice that the semantic attributes listed here are not
mutually-exclusive, i.e. libasm can annotate an instruction with more than one
attribute. This obviously extend the possible classes of instructions to those
beyond the simple attributes provided. While the meaning of most of these
combinations should be fairly intuitive to the reader, some of the less intuitive
ones should be highlighted in order to clarify the process of classifying
instructions:

• READFLAG + BITTEST – This combination is used to annotate
instructions that perform some kind of conditional test (that is,
test the value of a flag) and is not a conditional branching
instruction. This behavior should not be confused with
COMPARISON, which describes instructions that explicitly
perform some kind of test and set the necessary flags.
Conditional moves, for example, are READFLAG + BITTEST.

30

• IO + LOAD/STORE – Specifies reads/writes from/to I/O
locations, such as ports.

• INT + RETPROC – Returns from interrupts or traps.
• TOUCHSP + LOAD/STORE – Stack pops/pushes.

 It should also be stressed that the same semantic attributes are available
to all ports of libasm. This unified system allows for the development of code that
analyzes programs directly on top of their disassembled representation (i.e. not
on top of any IR) in an architecture-independent manner. This is, for instance,
how some of the current code in libmjollnir works.
 Finally, we end our discussion of the semantic attributes by adding that
instructions annotated with READFLAG and/or WRITEFLAG have their
representation enriched with information about which flags (specific to each
machine model) are possibly read or modified.

3.3.3. Vectors of Handlers
In its source code organization, libasm splits the code that disassembles
instructions or operands into different functions, one function for each instruction
(known as opcode handlers or instruction handlers) and one function for each
operand ‘type’1 (known as operand handlers). The function pointers to these
instruction and operand handlers are then stored into vectors.
 Vectors are multi-dimensional data structures provided by libaspect. Every
dimension of a vector corresponds to a parameter to which the data contained in
the vector is associated. A compositional association of values to these
parameters serves as an index into the vector, and is used for storing and
recovering data from the vector. For example, a vector containing instruction
handlers could recover a specific handler if provided an identifier to a machine
model/architecture and the opcode value of the instruction desired.
 One of the most interesting characteristics of vectors is that they have
their structure and contents accessible from ERESI language. This feature,
inspired from the concept of reflection of aspect-oriented systems, ultimately
means that function pointers to instruction and operand handlers can be retrieved
and modified by the ERESI user, who can in turn easily write simple instruction
and operand tracers by updating these records.

1 Operand ‘types’ are not real types, as in type theory. Instead, they are syntactic attributes,
which specify the format/encoding of operands and are machine-dependent. These ‘types’, not to
be confused with the operand semantic attributes, will not be further discussed here.

31

4. Contributions of this Work
The author of this work has contributed to the ERESI project in many ways
before the writing of this document. Attacking bugs and building new features
everywhere, the contributions have ranged from the lowest-level and most
central pieces of code of the disassembling library to the construction of control-
flow graphs and their graphical representation to the end user.
 For the purpose of this undergraduate project, however, it was chosen to
detail the development process that led to the goal set specifically for this work
and done during the literary research and conception of the present document:
the transformation of Intel IA-32 machine code into the ERESI low-level
intermediate representation (LIR).

4.1. Transforming IA-32 Machine Code into ERESI LIR

IA-32 is the name of the computer architecture created and maintained by the
Intel ® Corporation. This architecture gave birth to many families of processors
since the inception of the first chips, 8086/8088, in 1978. Across these decades
of development, IA-32 processors became increasingly popular and today these
chips undoubtedly represent a big fraction of the processors powering modern
computers (particularly successful in the market of desktops and workstations).
 Due to its popularity, supporting IA-32 code in the analyses to be
performed by ERESI is an obvious good way to clarify their practical relevance.
Therefore, it seemed equally natural that this goal should be kept in mind since
the earliest developments of the analysis features and, consequently, it was
decided that this work should focus on executing the first step of the binary
analysis process: transforming raw IA-32 machine code into the LIR used in the
ERESI framework.
 Beyond reporting the work done, the following sections may serve as
guidance for other developers and users willing to write back-ends for machine
code transformation into ERESI LIR for other computer architectures or, to some
extent, even writing other kinds of program transformations on top of ERESI.

4.1.1. The Instruction Set
The scope of this work restricts itself to transform the instructions contained in
the instruction set of the original 8086/8088 processors. The only instructions not
covered in this project are the ESC instruction (a gate to the instructions provided
by the Floating-Point Unit) and the prefix instructions, LOCK and REP/REPxx.
The full listing of the remaining instructions, i.e. the instructions that this work
covers, can be found in the appendices.
 In contrast to the afore mentioned exceptions, this work probably adds
support to many other instructions that do not belong to the original set. In
particular, there was a beneficial and intentional disregard around the exact
operand formats supported in the basic instruction set. That is, regardless of
whether a instruction such as MOV, for example, in the 8086/8088 specification,

32

only existed in its form where it accepts two registers as input (just an
hypothetical case, not necessarily true), the transformation back-end was written
in a way such that it can handle other forms of the MOV instructions, such as the
one that receives a register and a memory operand, or a register and an
immediate operand and so on. It was added to the back-end every instruction
form supported by the opcode and operand handlers code in libasm at the time
of development. As these different forms of a same instruction, in the machine
code, are represented by different opcodes, they can technically be considered
different instructions in themselves. In this way, it can be said that the
transformation back-end handles some instructions that are not part of the
original 8086/8088 instruction set.

4.1.2. Semantically Annotating the Instructions
After narrowing down the instruction set, the immediate step was to annotate
each instruction with the semantic attributes listed on Table 2, by modifying the
code contained in the opcode/instruction handlers. Similarly, the operand
handlers must contain the code to accurately categorize the operands involved.
This task shall make use the operand attributes from Table 3. The knowledge
required to execute this step came essentially from two sources: 1) the
instruction set reference [Int2A05, Int2B05] or similar literature and 2) from
previous knowledge on assembly programming, reverse engineering and related
subjects.
 The reference manuals are the basic resource to instruction classification.
It is very important that the reference used, no matter what it should be, is as
accurate and complete as possible. As far as the IA-32 architecture goes, the
official manuals proved themselves a reliable resource. They contain both a
textual description and a primitive description of ‘operational semantics’, which
are actually listings of pseudo-code describing the microcode behavior. Due to
the notable complexity of the IA-32 architecture (when compared to modern
RISC machines), though, the reference manuals are a large piece of literature
split into multiple volumes, which makes the seeking for topics a bit harder.
 There are some things that the manuals do not make explicit, however,
and it may take a little bit of previous expertise not to let it go unnoticed. This is
the case, for example, of the use of the PROLOG and EPILOG semantic
attributes. To identify the correct cases where instructions are performing
functions prologs and epilogs, one must know in advance some assembly
programming or, most importantly, how compilers typically write function prologs
and epilogs. Although this may look like a somewhat imprecise methodology, a
careful evaluation and implementation of this step may reduce the number of
false-positives and false-negatives to very low rates, when analyzing compiler-
generated code.

4.1.3. Writing the Transformation Back-End
Once the instructions are accordingly annotated, we can proceed by transforming
them into the LIR constructs. The importance of having the annotations lies on
the fact that, armed with them, we can address the instructions by their semantic

33

attributes, instead of referencing them individually. This of course reduces
significantly the amount of cases explicitly defined in the source code.
 The code of the transformation was written in ERESI and can be found in
the appendices. Additional (though necessary for the code execution) definitions,
such as the LIR constructs and the internal types of libasm, can also be found in
the appendices. The transformation code should be run by the Evarista analyzer,
still under construction.
 The targets of the transformation are the LIR constructs, which represent
common operations such as assignments and arithmetic operations in a generic
manner. Table 4 lists the LIR constructs.

LIR Construct Description
Ins Generic Instruction

IndBranchR::Ins Indirect branch (register operand)
IndBranchM::Ins Indirect branch (memory operand)
Branch::Ins Direct branch
Call::Ins Procedure call
IndCallR::Ins Indirect procedure call (register operand)
IndCallM::Ins Indirect procedure call (memory operand)
Return::Ins Return from procedure
TernopR3::Ins Ternary operation (arithmetic or logic)
TernopM3::Ins Ternary operation (arithmetic or logic)
TernopRI::Ins Ternary operation (arithmetic or logic)
TernopMI::Ins Ternary operation (arithmetic or logic)
TernopMR::Ins Ternary operation (arithmetic or logic)
TernopRM::Ins Ternary operation (arithmetic or logic)
TernopRMI::Ins Ternary operation (arithmetic or logic)
AssignRI::Ins Assignment operation
AssignMI::Ins Assignment operation
AssignRM::Ins Assignment operation
AssignMR::Ins Assignment operation
AssignMM::Ins Assignment operation
AssignRR::Ins Assignment operation
IoRR::Ins I/O access operation
IoIR::Ins I/O access operation
IoRI::Ins I/O access operation
BitSet::Ins Operation that sets a bit in the operand
CmpRI::Ins Comparison or test operation
CmpRR::Ins Comparison or test operation
CmpRM::Ins Comparison or test operation
CmpMR::Ins Comparison or test operation
CmpMI::Ins Comparison or test operation

34

XchgRR::Ins Value exchange operation
XchgMR::Ins Value exchange operation
Prolog::Ins Function prolog
Interrupt::Ins Interrupt or trap
IReturn::Ins Return from interrupt or trap
Epilog::Ins Function epilog
Stop::Ins Stop execution
Nop::Ins No operation
FlagR::Ins Flag-reading operation
FlagW::Ins Flag-writing operation

Table 4. ERESI LIR Constructs

 The R/M/I suffixes on some constructs, such as Ternop and Assign,
denote the types of the destination and source operands they receive. Ins is a
generic construct, from which all other constructs inherit. It contains an ‘addr’
attribute, which specifies the address of the instruction corresponding to the
operation in question, and the ‘uflags’ attribute, which records information about
any relevant reading or writing of flags performed by the instruction. The LIR
definition in the appendices displays all of the operands (and their type) that each
construct takes.
 At first the LIR was not ready to support the transformation from IA-32
code, so it was necessary to add many new constructs to the LIR definition. The
majority of these new constructs was created to represent the great diversity of
combinations of operand types that IA-32 features. Although the addition of these
constructs make the LIR look more complex, this added complexity ultimately
turns into an aid for the simplicity of the data-flow analysis code, since the types
of the operands can be known in advance from the name of the construct,
instead of testing for overloaded constructs or another complex mean of making
the LIR definition smaller.
 Finally, when the LIR is all ready to represent the machine code, the
transformation code can in fact be written. The heart of the transformation code
is the transform command, which takes one source instruction and applies the
first matching transformation found in the case statements. The following is an
example of the use of the transform command (taken from the real IA-32-to-LIR
transformation code):

35

transform $instr into
...
IN (reg, reg)
case instr_t(type:io-rm, op1(type:reg)) ->

IoRR(addr:$curaddr,
dst(id:$instr.op2.baser),
src(id:$instr.op1.baser), uflags:0)

...
endtrans

Code 3. Example of transformation code in ERESI

 In the excerpt of code above it can be seen that the left-side of the arrow
is the specification of the source of the transformation, while its right-side
represents the instantiation of a construct in the LIR. It is important to notice that,
when specifying the transformation, the most specialized cases must be placed
on top, since the program will execute the first matching transformation. That is, if
a case specifying “the first assignment operation” is placed before one specifying
“the first assignment operation between registers”, the transformation specified
by the second case will never be triggered, since the transform command
searches for the first matching specification sequentially, in top-down order.
 In the transformation code, the transform command is placed in the body
of a loop, which executes the transformation for each instruction in the program.
As previously stated, one of the most interesting characteristics of the
transformation code is its ability of specifying a transformation for many source
instructions in one single case. The following case is an example of this aspect:

Jxx, LOOP, LOOPE, LOOPNE (imm)
Jxx = JA, JAE, JB, JBE, JE, JECXZ, JG, JGE,
JL, JLE, JNE, JNO, JNP, JNS, JO, JP, JS

case instr_t(type:cb) -> Branch(addr:$curaddr,

dst(val:$instr.op1.imm), uflags:0)

Code 4. Many-to-One transformation in ERESI

 In this case we can clearly see how the transformation code benefits from
the semantic annotations made earlier. By referring to a group of instructions
simply by their semantic attributes (in this case, the CONDBRANCH one), a
transformation can be performed on a many-to-one basis. The complete code of
the IA-32 transformation back-end, found in the appendices of this document,
relies on this ability to specify many of the transformation cases.

36

4.2. Future Work

The analysis features of the ERESI project are rapidly evolving and still on
unstable stage of development. As such, this work is by no means perfect and at
definitive state. Consequently, the most obvious chances of future work are
improvements on this particular piece of work itself.
 A very natural improvement of this project is the extension of its range of
source instructions to cover instructions added to the IA-32 instruction set upon
release of processor chips successor to the 8086/8088. This is an immediate
task that should start soon after this work.
 Additionally, the LIR may go through many revisions in the future. It is
important that the ERESI project has a LIR that satisfies the current and future
needs of the program analysis features and, being the LIR a recent concept
within the project, it is probable that it may have many possibilities of
improvement. Similarly, the choices of the semantic annotations implemented
inside libasm are extremely important for the soundness of the transformation, so
they may be reviewed in the future as well.
 Finally, but not lastly, this work can be further extended by writing back-
ends for other machine architectures. As the development of the MIPS porting of
libasm advances, the opportunity of writing a transformation back-end for this
architecture becomes more and more desirable. And, of course, the development
of the Evarista analyzer should not stop there. The near future holds
opportunities for developing and transforming the code into higher-level IRs,
implementing more advanced analyses, writing effective verification algorithms,
etc. This work is definitely just the tip of the iceberg.

37

5. Conclusions
This work has attempted to shed some light into the still obscure field of binary
analysis. The report included a brief discussion on the importance of this work as
well as a fairly broad introduction to some of the most relevant topic on program
analysis. Subjects such as intermediate representations, control-flow and data-
flow analyses, and program semantics were discussed.
 We have introduced the ERESI project, telling a little of its history,
architecture, each of its components and its own domain-specific language.
Special focus was given to the libasm component, the disassembling library of
ERESI, as it represented an especially important component for the purposes of
this work. We have detailed how libasm organizes its code in reflective vectors,
support multiple architectures and, most importantly, how it gives semantic
annotations to disassembled instructions and their operands.
 This document also reported the development process of the primary goal
of this project: transforming Intel® IA-32 machine code in the LIR used by the
ERESI framework and ultimately consumed by the Evarista analyzer. We have
dealt with the choosing of the source instruction set and the semantic
annotations of the instructions in question, highlighting the most important steps
and precautions in executing these tasks. Naturally, we have also covered the
actual transformation of the machine code into LIR, describing the format of the
LIR used in the project and how to write the transformation code in ERESI
language. At this point, it was appropriate to stress the link between this task and
other subjects discussed in this report. Particularly, we reinforced how the
transformation code benefits from libasm’s feature of semantic annotations.
 Finally, it is expected that, more than an undergraduate project, this report
and the work associated with it represent real advances for the ERESI project
and for the field of binary analysis in general. It has been a great opportunity for
learning and hopefully it will also be a pioneering contribution to the pursuit of an
objective that, although of obvious relevance, so few have adventured on:
extracting meaningful and pertinent information from programs in their binary
form.

38

References
[Ana97] C. Scott Ananian. The Static Single Information Form. Ph.D.

Thesis, Massachusetts Institue of Technology, September 1999.

[BJ66] Corrado BÖhm and Guiseppe Jacopini. Flow Diagrams, Turing

Machines and Languages with Only Two Formation Rules.
Communications of the ACM 9(5):366-371, May 1966.

[CFR+91] R. Cytron , J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.

Zadeck. Efficiently computing static single assignment form and
the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451-490, October
1991.

[Flo67] Robert W. Floyd. Assigning Meanings to Programs. Proceedings

of Symposium in Applied Mathematics, 19:19-32, 1967.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming.

Communications of the ACM 12(10):576-580, October 1969.

[Int2A05] Intel® Corporation. IA-32 Intel® Architecture Software

Developer’s Manual, Volume 2A: Instruction Set Reference, A-M.
Intel® Corporation, June 2005.

[Int2B05] Intel® Corporation. IA-32 Intel® Architecture Software

Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z.
Intel® Corporation, June 2005.

[ISS07] IBM® ISS X-Force. IBM® Internet Security Systems X-Force

2006 Trend Statistics. Whitepaper, January 2007.

[Jon03] Cliff B. Jones. Operational Semantics: Concepts and their

Expression. Information Processing Letters 88(1-2):27-32,
October 2003.

[JPP94] R. Johson, D. Pearson, and K. Pingali. The Program Structure

Tree: Computing Control Regions in Linear Time. In Proceedings
of the SIGPLAN '94 Conference on Programming Language
Design and Implementation, pages 171-185, Orlando, U.S., June
1994.

[LW69] P. Lucas and K. Walk. On The Formal Description of PL/I, volume

6 of Annual Review in Automatic Programming Part 3. Pergamon
Press, 1969.

39

[Luc81] P. Lucas. Formal Semantics of Programming Languages: VDL.

IBM Journal of Research and Development 25(5):549-561,
September 1981.

[MLB72] M. Marcotty, H. Ledgard, and G. V. Bochman. A Sampler of

Formal Definitions. ACM Computing Surveys 8(2):191-276, June
1976.

[Oll07] Gunter Ollman. Counting Vulnerabilities.

http://blogs.iss.net/archive/CountingVulns.html

[Plo81] Gordon Plotkin. A Structural Approach to Operational Semantics.

Technical Report, Aarhus University, 1981.

[Plo04] Gordon Plotkin. The Origins of Structural Operational Semantics.

Journal of Logic and Algebraic Programming 60-61:3-15, July-
December 2004.

[Seb02] Robert W. Sebesta. Concepts of Programming Languages, 5th

Edition. Peason Education, 2002.

[Sin05] Jeremy Singer. Static Program Analysis based on Virtual Register

Renaming. Ph.D. Thesis, University of Cambridge, March 2005.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey

Approach to Programming Language Semantics. MIT Press,
1977.

[VGA+07] J. Vanegue, T. Garnier, J. Auto, S. Roy, and R. Lesniak. Next-

Generation Debuggers for Reverse Engineering. Black Hat
Europe, Amsterdam, Netherlands, March 2007.

40

Appendix A. Intel 8086/8088 Instruction Set

Instruction Description
AAA ASCII adjust AL after addition
AAD ASCII adjust AX before division
AAM ASCII adjust AX after multiplication
AAS ASCII adjust AL after subtraction
ADC Add with carry
ADD Add
AND Logical AND
CALL Call procedure
CBW Convert byte to word
CLC Clear carry flag
CLD Clear direction flag
CLI Clear interrupt flag
CMC Complement carry flag
CMP Compare operands
CMPSB Compare bytes in memory
CMPSW Compare words
CWD Convert word to doubleword
DAA Decimal adjust AL after addition
DAS Decimal adjust AL after subtraction
DEC Decrement by 1
DIV Unsigned divide
HLT Enter halt state
IDIV Signed divide
IMUL Signed multiply
IN Input from port
INC Increment by 1
INT Call to interrupt
INTO Call to interrupt if overflow
IRET Return from interrupt
Jxx Jump if condition
JMP Jump
LAHF Load flags into AH register
LDS Load pointer using DS
LEA Load Effective Address
LES Load ES with pointer
LODSB Load byte
LODSW Load word
LOOP/LOOPxx Loop control
MOV Move
MOVSB Move byte from string to string
MOVSW Move word from string to string

41

MUL Unsigned multiply
NEG Two's complement negation
NOP No operation
NOT Negate the operand, logical NOT
OR Logical OR
OUT Output to port
POP Pop data from stack
POPF Pop data into flags register
PUSH Push data onto stack
PUSHF Push flags onto stack
RCL Rotate left (with carry)
RCR Rotate right (with carry)
RET Return from procedure
RETN Return from near procedure
RETF Return from far procedure
ROL Rotate left
ROR Rotate right
SAHF Store AH into flags
SAL Shift Arithmetically left (multiply)
SAR Shift Arithmetically right (signed divide)
SBB Subtraction with borrow
SCASB Compare byte string
SCASW Compare word string
SHL Shift left (multiply)
SHR Shift right (unsigned divide)
STC Set carry flag
STD Set direction flag
STI Set interrupt flag
STOSB Store byte in string
STOSW Store word in string
SUB Subtraction
TEST Logical compare (AND)
WAIT Wait until not busy
XCHG Exchange data
XLAT Table look-up translation
XOR Exclusive OR

Table 5. Restricted Intel 8086/8088 instruction set

42

Appendix B. Configuration of Common ERESI Types
This file can be appended to your ~/.eresirc

type operand_t = len:int ptr:*byte type:int name:string size:int

content:int regset:int prefix:int imm:int
baser:int indexr:int sbaser:string sindex:string
address_space:int scale:int

type instr_t = proc%4 instr:int type:int prefix:int spdiff:int
wflags:int rflags:int ptr_prefix:*byte
ptr_instr:*byte annul:int prediction:int nb_op:int
op1:operand_t op2:operand_t op3:operand_t len:int

type listent_t = key:string data:long next:*listent_t
type list_t = head:*listent_t elmnbr:int type:int linearity:byte
type hash_t = ent:*listent_t size:int elmnbr:int type:int

linearity:byte
type container_t = id:int data:long type:int nbrinlinks:int

nbroutlinks:int inlinks:*list_t outlinks:*list_t
type registry_t = registry:*hash_t
type mjrblock_t = vaddr:long size:int symoff:int
type mjrfunc_t = vaddr:long size:int name:byte[64] first:*mjrblock_t

md5:byte[34]

43

Appendix C. Script of LIR Definitions
#!evarista/evarista32
#lir-definition.esh

Attributes for ASM instructions
define b ASM_TYPE_IMPBRANCH
define cb ASM_TYPE_CONDBRANCH
define c ASM_TYPE_CALLPROC
define i ASM_TYPE_INT
define r ASM_TYPE_RETPROC
define p ASM_TYPE_PROLOG
define cmp ASM_TYPE_COMPARISON
define bs ASM_TYPE_BITSET
define bt ASM_TYPE_BITTEST
define a ASM_TYPE_ASSIGN
define wm ASM_TYPE_STORE
define rm ASM_TYPE_LOAD
define e ASM_TYPE_EPILOG
define s ASM_TYPE_STOP
define n ASM_TYPE_NOP
define ar ASM_TYPE_ARITH
define wf ASM_TYPE_WRITEFLAG
define rf ASM_TYPE_READFLAG
define id ASM_TYPE_INCDEC
define io ASM_TYPE_IO
define sp ASM_TYPE_TOUCHSP

define ar-wf ar wf
define ar-id-wf ar id wf
define cmp-wf cmp wf
define io-rm io rm
define io-wm io wm
define i-rf-bt i rf bt
define i-r i r
define a-rm-wm a rm wm
define sp-rm sp rm
define sp-rm-wf sp rm wf
define sp-wm-rf sp wm rf
define wm-rm wm rm
define a-rm a rm

Attributes for ASM operands
define reg ASM_OPTYPE_REG
define imm ASM_OPTYPE_IMM
define mem ASM_OPTYPE_MEM

Types of LIR operands
type Reg = id:int
type Immed = val:long
type Mem = base:Reg index:Reg scale:Immed off:Immed
name:string

Types of LIR instructions

44

type Ins = uflags:Immed addr:Immed

type IndBranchR::Ins = dst:Reg
type IndBranchM::Ins = dst:Mem
type Branch::Ins = dst:Immed
type Call::Ins = dst:Immed
type IndCallR::Ins = dst:Reg
type IndCallM::Ins = dst:Mem
type Return::Ins = dst:Immed
type TernopR3::Ins = dst:Reg rsrc1:Reg rsrc2:Reg
type TernopM3::Ins = dst:Mem msrc1:Mem msrc2:Mem
type TernopRI::Ins = dst:Reg rsrc:Reg isrc:Immed
type TernopMI::Ins = dst:Mem msrc:Mem isrc:Immed
type TernopMR::Ins = dst:Mem msrc:Mem rsrc:Reg
type TernopRM::Ins = dst:Reg rsrc:Reg msrc:Mem
type TernopRMI::Ins = dst:Reg rsrc:Reg msrc:Mem isrc:Imm
type AssignRI::Ins = dst:Reg src:Immed
type AssignMI::Ins = dst:Mem src:Immed
type AssignRM::Ins = dst:Reg src:Mem
type AssignMR::Ins = dst:Mem src:Reg
type AssignMM::Ins = dst:Mem src:Mem
type AssignRR::Ins = dst:Reg src:Reg
type IoRR::Ins = dst:Reg src:Reg
type IoIR::Ins = dst:Immed src:Reg
type IoRI::Ins = dst:Reg src:Immed
type BitSet::Ins = src:Immed dst:Reg
type CmpRI::Ins = fst:Immed snd:Reg
type CmpRR::Ins = fst:Reg snd:Reg
type CmpRM::Ins = fst:Mem snd:Reg
type CmpMR::Ins = fst:Reg snd:Mem
type CmpMI::Ins = fst:Immed snd:Mem
type XchgRR::Ins = fst:Reg snd:Reg
type XchgMR::Ins = fst:Mem snd:Reg
type Prolog::Ins = framesz:Immed
type Interrupt::Ins = dst:Immed
type IReturn::Ins
type Epilog::Ins
type Stop::Ins
type Nop::Ins
type FlagR::Ins
type FlagW::Ins

45

Appendix D. Binary-to-LIR ERESI Code
#!evarista/evarista32
#intel-backend.esh

IA-32 registers
define EAX 0
define ECX 1
define EDX 2
define EBX 3
define ESP 4
define EBP 5
define ESI 6
define EDI 7
define EFLAGS -1

IA-32 exceptional instruction
define NEG ASM_NEG

IA-32 prolog instruction
define SUB ASM_SUB

IA-32 epilog instruction
define MOV ASM_MOV

This create on-demand the block instruction list in the eresi runtime
reflect $1

set $curblock $_
set $curaddr $curblock.vaddr

Just debug printing
#inspect $curblock
#profile enable warn

Start the transformation
foreach $instr in $hash[instrlists:$curaddr]

print Transforming instruction: $instr

transform $instr into

INC, DEC (reg)
case instr_t(type:ar-id-wf, nb_op:1, op1(type:reg)) ->

TernopRI(addr:$curaddr, dst(id:$instr.op1.baser),
rsrc(id:$instr.op1.baser), isrc(val:1), uflags:$instr.wflags)

INC, DEC (mem)
case instr_t(type:ar-id-wf, nb_op:1, op1(type:mem)) ->

TernopMI(addr:$curaddr, dst(id:$instr.op1.baser),
msrc(name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm)), isrc(val:1), uflags:$instr.wflags)

AAA, AAD, AAM, AAS, DAD, DAS

46

case instr_t(type:ar-wf, nb_op:0) -> TernopR3(addr:$curaddr,
dst(id:EAX), rsrc1(id:EAX), rsrc2(id:EAX), uflags:$instr.wflags)

ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (reg,

reg)
case instr_t(type:ar-wf, nb_op:2, op1(type:reg), op2(type:reg)) ->

TernopR3(addr:$curaddr, dst(id:$instr.op2.baser),
rsrc1(id:$instr.op2.baser), rsrc2(id:$instr.op1.baser),
uflags:$instr.wflags)

ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (reg,

imm)
case instr_t(type:ar-wf, nb_op:2, op1(type:imm), op2(type:reg)) ->

TernopRI(addr:$curaddr, dst(id:$instr.op2.baser),
rsrc(id:$instr.op2.baser), isrc(val:$instr.op1.imm),
uflags:$instr.wflags)

ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (reg,

mem)
case instr_t(type:ar-wf, nb_op:2, op1(type:mem), op2(type:reg)) ->

TernopRM(addr:$curaddr, dst(id:$instr.op2.baser),
rsrc(id:$instr.op2.baser), msrc(name:$instr.op1.name
base(id:$instr.op1.baser), index(id:$instr.op1.indexr),
scale(val:$instr.op1.scale), off(val:$instr.op1.imm)),
uflags:$instr.wflags)

ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (mem,

imm)
case instr_t(type:ar-wf, nb_op:2, op1(type:imm), op2(type:mem)) ->

TernopMI(addr:$curaddr, dst(name:$instr.op2.name
base(id:$instr.op2.baser), index(id:$instr.op2.indexr),
scale(val:$instr.op2.scale), off(val:$instr.op2.imm)),
msrc(name:$instr.op2.name base(id:$instr.op2.baser),
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale),
off(val:$instr.op2.imm)), isrc(val:$instr.op1.imm),
uflags:$instr.wflags)

ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (mem,

reg)
case instr_t(type:ar-wf, nb_op:2, op1(type:reg), op2(type:mem)) ->

TernopMR(addr:$curaddr, dst(name:$instr.op2.name
base(id:$instr.op2.baser), index(id:$instr.op2.indexr),
scale(val:$instr.op2.scale), off(val:$instr.op2.imm)),
msrc(name:$instr.op2.name base(id:$instr.op2.baser),
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale),
off(val:$instr.op2.imm)), rsrc(id:$instr.op1.baser),
uflags:$instr.wflags)

IMUL (reg, reg, imm)
case instr_t(type:ar-wf, nb_op:3, op1(type:imm), op2(type:reg),

op3(type:reg)) -> TernopRI(addr:$curaddr, dst(id:$instr.op3.baser),
rsrc(id:$instr.op2.baser), isrc(val:$instr.op1.imm),
uflags:$instr.wflags)

IMUL (reg, mem, imm)
case instr_t(type:ar-wf, nb_op:3, op1(type:imm), op2(type:mem),

op3(type:reg)) -> TernopRMI(addr:$curaddr,

47

dst(id:$instr.op3.baser), msrc(name:$instr.op2.name
base(id:$instr.op2.baser), index(id:$instr.op2.indexr),
scale(val:$instr.op2.scale), off(val:$instr.op2.imm)),
isrc(val:$instr.op1.imm), uflags:$instr.wflags)

NEG (reg)
case instr_t(instr:NEG, op1(type:reg)) -> TernopR3(addr:$curaddr,

dst(id:$instr.op1.baser), rsrc1(id:$instr.op1.baser),
rsrc2(id:$instr.op1.baser), uflags:$instr.wflags)

NEG (mem)
case instr_t(instr:NEG, op1(type:mem)) -> TernopM3(addr:$curaddr,

dst((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), msrc1((name:$instr.op1.name
base(id:$instr.op1.baser), index(id:$instr.op1.indexr),
scale(val:$instr.op1.scale), off(val:$instr.op1.imm))),
msrc2((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), uflags:$instr.wflags)

MUL, IMUL (reg)
case instr_t(type:ar-wf, nb_op:1, op1(type:reg)) ->

TernopR3(addr:$curaddr, dst(id:EAX), rsrc1(id:$instr.op1.baser),
rsrc2(id:EAX), uflags:$instr.wflags)

MUL, IMUL (mem)
case instr_t(type:ar-wf, nb_op:1, op1(type:mem)) ->

TernopR3(addr:$curaddr, dst(id:EAX), rsrc1((name:$instr.op1.name
base(id:$instr.op1.baser), index(id:$instr.op1.indexr),
scale(val:$instr.op1.scale), off(val:$instr.op1.imm))),
rsrc2(id:EAX), uflags:$instr.wflags)

CWD, CBW
case instr_t(type:ar, nb_op:0) -> TernopR3(addr:$curaddr, dst(id:EAX),

rsrc1(id:EAX), rsrc2(id:EAX), uflags:0)

LEA (reg, mem)
case instr_t(type:ar, nb_op:2) -> TernopRM(addr:$curaddr,

dst(id:$instr.op1.baser), rsrc(id:$instr.op1.baser),
msrc((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), uflags:0)

NOT, DIV, IDIV (reg)
case instr_t(type:ar, nb_op:1, op1(type:reg)) ->

TernopR3(addr:$curaddr, dst(id:EAX), rsrc1(id:EAX),
rsrc2(id:$instr.op1.baser), uflags:0)

NOT, DIV, IDIV (mem)
case instr_t(type:ar, nb_op:1, op1(type:mem)) ->

TernopRM(addr:$curaddr, dst(id:EAX), rsrc(id:EAX),
msrc((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), uflags:0)

CALL (reg)

48

case instr_t(type:c, op1(type:reg)) -> IndCallR(addr:$curaddr,
dst(id:$instr.op1.baser), uflags:0)

CALL (mem)
case instr_t(type:c, op1(type:mem)) -> IndCallM(addr:$curaddr,

dst((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), uflags:0)

CALL (imm)
case instr_t(type:c, op1(type:imm)) -> Call(addr:$curaddr,

dst(val:$instr.op1.imm), uflags:0)

CMP, TEST (reg, imm)
case instr_t(type:cmp-wr, op1(type:imm), op2(type:reg)) ->

CmpRI(addr:$curaddr, snd(id:$instr.op2.baser),
fst(val:$instr.op1.imm), uflags:$instr.wflags)

CMP, TEST, CMPSB, CMPSD, SCASB, SCASD (reg, reg)
case instr_t(type:cmp-wr, op1(type:reg), op2(type:reg)) ->

CmpRR(addr:$curaddr, snd(id:$instr.op2.baser),
fst(id:$instr.op1.baser), uflags:$instr.wflags)

CMP (reg, mem)
case instr_t(type:cmp-wr, op1(type:mem), op2(type:reg)) ->

CmpRM(addr:$curaddr, snd(id:$instr.op2.baser),
fst((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), uflags:$instr.wflags)

CMP, TEST (mem, reg)
case instr_t(type:cmp-wr, op1(type:reg), op2(type:mem)) ->

CmpMR(addr:$curaddr, snd((name:$instr.op2.name
base(id:$instr.op2.baser), index(id:$instr.op2.indexr),
scale(val:$instr.op2.scale), off(val:$instr.op2.imm))),
fst(id:$instr.op1.baser), uflags:$instr.wflags)

TEST (mem, imm)
case instr_t(type:cmp-wr, op1(type:imm), op2(type:mem)) ->

CmpMI(addr:$curaddr, snd((name:$instr.op2.name
base(id:$instr.op2.baser), index(id:$instr.op2.indexr),
scale(val:$instr.op2.scale), off(val:$instr.op2.imm))),
fst(val:$instr.op1.imm), uflags:$instr.wflags)

HLT
case instr_t(type:s) -> Stop(addr:$curaddr, uflags:0)

IN (reg, reg)
case instr_t(type:io-rm, op1(type:reg)) -> IoRR(addr:$curaddr,

dst(id:$instr.op2.baser), src(id:$instr.op1.baser), uflags:0)

IN (reg, imm)
case instr_t(type:io-rm, op1(type:imm)) -> IoRI(addr:$curaddr,

dst(id:$instr.op2.baser), src(val:$instr.op1.imm), uflags:0)

INTO

49

case instr_t(type:i-rf-bt) -> Interrupt(addr:$curaddr, dst(val:4),
uflags:0)

IRET
case instr_t(type:i-r) -> IReturn(addr:$curaddr, uflags:0)

INT3
case inst_t(type:i, nb_op:0) -> Interrupt(addr:$curaddr, dst(val:3),

uflags:0)

INT (imm)
case instr_t(type:i) -> Interrupt(addr:$curaddr,

dst(val:$instr.op1.imm), uflags:0)

Jxx, LOOP, LOOPE, LOOPNE (imm)
Jxx = JA, JAE, JB, JBE, JE, JECXZ, JG, JGE, JL, JLE, JNE, JNO, JNP,

JNS, JO, JP, JS
case instr_t(type:cb) -> Branch(addr:$curaddr, dst(val:$instr.op1.imm),

uflags:0)

JMP (imm)
case instr_t(type:b, op1(type:imm)) -> Branch(addr:$curaddr,

dst(val:$instr.op1.imm), uflags:0)

JMP (reg)
case instr_t(type:b, op1(type:reg)) -> IndBranchR(addr:$curaddr,

dst(id:$instr.op1.baser), uflags:0)

JMP (mem)
case instr_t(type:b, op1(type:mem)) -> IndBranchM(addr:$curaddr,

dst((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), uflags:0)

MOVSB, MOVSD (mem, mem)
case instr_t(type:a-rm-wm) -> AssignMM(addr:$curaddr,

dst((name:$instr.op2.name base(id:$instr.op2.baser),
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale),
off(val:$instr.op2.imm))), src((name:$instr.op1.name
base(id:$instr.op1.baser), index(id:$instr.op1.indexr),
scale(val:$instr.op1.scale), off(val:$instr.op1.imm))), uflags:0)

NOP, WAIT/FWAIT
case instr_t(type:n) -> Nop(addr:$curaddr, uflags:0)

OUT (reg, reg)
case instr_t(type:io-wm, op2(type:reg)) -> IoRR(addr:$curaddr,

dst(id:$instr.op2.baser), src(id:$instr.op1.baser), uflags:0)

OUT (imm, reg)
case instr_t(type:io-wm, op2(type:imm)) -> IoIR(addr:$curaddr,

dst(val:$instr.op2.imm), src(id:$instr.op1.baser), uflags:0)

POP (reg)
case instr_t(type:sp-rm, op1(type:reg)) -> AssignRM(addr:$curaddr,

dst(id:$instr.op1.baser), src(base(id:ESP)), uflags:0)

50

POP (mem)
case instr_t(type:sp-rm, op1(type:mem)) -> AssignMM(addr:$curaddr,

dst((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), src(base(id:ESP)), uflags:0)

PUSH (reg)
case instr_t(type:sp-wm, op1(type:reg)) -> AssignMR(addr:$curaddr,

dst(base(id:ESP)), src(id:$instr.op1.baser), uflags:0)

PUSH (imm)
case instr_t(type:sp-wm, op1(type:imm)) -> AssignMI(addr:$curaddr,

dst(base(id:ESP)), src(val:$instr.op1.imm), uflags:0)

POPF
case instr_t(type:sp-rm-wf) -> AssignRM(addr:$curaddr, dst(id:EFLAGS),

src(base(id:ESP)), uflags:$instr.wflags)

PUSHF
case instr_t(type:sp-wm-rf) -> AssignMR(addr:$curaddr,

dst(base(id:ESP)), src(id:EFLAGS), uflags:$instr.rflags)

RET, RETF
case instr_t(type:r) -> Return(addr:$curaddr, dst(val:0), uflags:0)

XCHG (reg, reg)
case instr_t(type:wm-rm, op2(type:reg)) -> XchgRR(addr:$curaddr,

fst(id:$instr.op2.baser), snd(id:$instr.op1.baser), uflags:0)

XCHG (mem, reg)
case instr_t(type:wm-rm, op2(type:mem)) -> XchgMR(addr:$curaddr,

fst((name:$instr.op2.name base(id:$instr.op2.baser),
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale),
off(val:$instr.op2.imm))), snd(id:$instr.op1.baser), uflags:0)

XLATB
case instr_t(type:a-rm) -> AssignRM(addr:$curaddr, dst(id:EAX),

src(base(id:EBX), index(id:EAX)), uflags:0)

STOSB, STOSD (mem, reg)
case instr_t(type:wm) -> AssignMR(addr:$curaddr,

dst((name:$instr.op2.name base(id:$instr.op2.baser),
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale),
off(val:$instr.op2.imm))), src(id:$instr.op1.baser), uflags:0)

MOV (reg, imm)
case instr_t(type:a, op1(type:imm), op2(type:reg)) ->

AssignRI(addr:$curaddr, dst(id:$instr.op2.baser),
src(val:$instr.op1.imm), uflags:0)

MOV (reg, mem)
case instr_t(type:a, op1(type:mem), op2(type:reg)) ->

AssignRM(addr:$curaddr, dst(id:$instr.op2.baser),
src((name:$instr.op1.name base(id:$instr.op1.baser),
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale),
off(val:$instr.op1.imm))), uflags:0)

51

MOV (reg, reg)
case instr_t(type:a, op1(type:reg), op2(type:reg)) ->

AssignRR(addr:$curaddr, dst(id:$instr.op2.baser),
src(id:$instr.op1.baser), uflags:0)

MOV (mem, reg)
case instr_t(type:a, op1(type:reg), op2(type:mem)) ->

AssignMR(addr:$curaddr, dst((name:$instr.op2.name
base(id:$instr.op2.baser), index(id:$instr.op2.indexr),
scale(val:$instr.op2.scale), off(val:$instr.op2.imm))),
src(id:$instr.op1.baser), uflags:0)

MOV (mem, imm)
case instr_t(type:a, op1(type:imm), op2(type:mem)) ->

AssignMI(addr:$curaddr, dst((name:$instr.op2.name
base(id:$instr.op2.baser), index(id:$instr.op2.indexr),
scale(val:$instr.op2.scale), off(val:$instr.op2.imm))),
src(val:$instr.op1.imm), uflags:0)

LDS, LES (reg, imm)
case instr_t(type:rm, op1(type:imm)) -> AssignRI(addr:$curaddr,

dst(id:$instr.op2.baser), src(val:$instr.op1.imm), uflags:0)

LODSB, LODSD (reg, mem)
case instr_t(type:rm) -> AssignRM(addr:$curaddr,

dst(id:$instr.op2.baser), src((name:$instr.op1.name
base(id:$instr.op1.baser), index(id:$instr.op1.indexr),
scale(val:$instr.op1.scale), off(val:$instr.op1.imm))), uflags:0)

LAHF
case instr_t(type:rf) -> FlagR(addr:$curaddr, uflags:$instr.rflags)

CLC, CLD, CLI, CMC, SAHF, STC, STD, STI
case instr_t(type:wf) -> FlagW(addr:$curaddr, uflags:$instr.rflags)

Prolog - SUB (ESP, imm)
case instr_t(instr:SUB, op2(baser:ESP), op1(type:imm)) ->

Prolog(addr:$curaddr, framesz(val:$instr.op1.imm), uflags:0)

Epilog - MOV (ESP, EBP)
case instr_t(instr:MOV, op2(baser:ESP), op1(baser:EBP)) ->

Epilog(addr:$curaddr, uflags:0)

Defaultcase
default print Unsupported instruction at address $curaddr

endtrans

add $curaddr $instr.len

endfor

52

	 Signatures
	 Acknowledgments
	 Resumo
	 Abstract
	 Index of Tables
	 Index of Figures
	1. Introduction
	1.1. Context and Objectives

	2. Program Analysis
	2.1. Intermediate Representations
	2.2. Flow Graphs
	2.3. Control-Flow Information
	2.4. The Program Structure Tree
	2.5. Data-Flow Information
	2.6. SSA and SSI
	2.7. Program Semantics
	2.7.1. Axiomatic Semantics
	2.7.2. Denotational Semantics
	2.7.3. Operational Semantics

	3. The ERESI Project
	3.1. ERESI Internals Overview
	3.2. The ERESI Language
	3.3. Libasm
	3.3.1. Multi-Architectural Support
	3.3.2. Semantic Annotation of Instructions and Operands
	3.3.3. Vectors of Handlers

	4. Contributions of this Work
	4.1. Transforming IA-32 Machine Code into ERESI LIR
	4.1.1. The Instruction Set
	4.1.2. Semantically Annotating the Instructions
	4.1.3. Writing the Transformation Back-End

	4.2. Future Work

	5. Conclusions
	 References
	 Appendix A. Intel 8086/8088 Instruction Set
	 Appendix B. Configuration of Common ERESI Types
	 Appendix C. Script of LIR Definitions
	 Appendix D. Binary-to-LIR ERESI Code

