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Resumo 
O campo de Análise de Programas é vasto e complexo. Apesar de ele ter muitas 
décadas de estudos e avanços, alguns dos maiores e mais alvejados problemas 
ainda se encontram em aberto. Em particular, uma rápida busca na literatura 
sobre a intersecção entre as disciplinas de análise estática de programas 
binários e detecção automática de bugs mostra que existe uma grande 
oportunidade para cientistas dispostos a se engajar nesse excitante campo de 
pesquisa. 
 Esse trabalho tenta fazer um estudo sobre o estado-da-arte dos assuntos 
que tangem as questões relacionadas à análise estática de programas, análise 
de binários e detecção automática de bugs. Uma vez propriamente 
contextualizado, esse documento apresentará o framework ERESI, um projeto 
open-source sobre o qual toda a implementação deste trabalho foi baseada. Por 
fim, o leitor encontrará um relatório detalhado do trabalho feito para transformar 
código de máquina Intel IA-32 na LIR (Low-level Intermediate Representation) do 
ERESI, um passo importante para estender as funcionalidades de análise do 
framework em questão. 
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Abstract 
The field of Program Analysis is vast and complex. Even though it has many 
decades of study and advances now, some of the biggest and most pursued 
problems remain open for resolution. In particular, a quick search through the 
literature on the intersection between the disciplines of static analysis of binary 
programs and automated bug-finding reveals that there is a big window of 
opportunity open to scientists willing to engage in this exciting research field. 
 This work attempts to perform a survey on the state-of-the-art of the 
subjects touching the questions on static program analysis, binary analysis and 
automated bug-finding. Once properly contextualized, this document will 
introduce the ERESI framework, an open-source project on top of which all of 
this work’s implementation is based. Finally, the reader will find a detailed report 
of the work done to transform Intel IA-32 machine code into the ERESI LIR (Low-
level Intermediate Representation), an important step to extend the analysis 
features of the framework in question. 
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1. Introduction 
For many years now, a considerable amount of effort has been put into making 
the automated analysis of software a powerful and practical tool in the 
workbench of professionals and researchers that deal with software. During this 
time, many formal approaches to software verification have been created and 
further research still goes on in an attempt to make these techniques capable to 
answer the most relevant questions in program analysis, some of which are: 
Does this software have bugs? How can these bugs be triggered? How critical 
are they? 
 Furthermore, a branch of this research field (and a quite recent one) is of 
special importance: the analysis of binary code. Being capable of analyzing 
binary code enhances the possibility to answer all those intriguing questions 
without the need of the source code. All that is needed is the software in its most 
natural form: the bits and bytes that are ready to be fed into a program loader. 
 The reasons behind the concerns of the software industry and academic 
researching around the mitigation of bugs vary in perspectives. The market 
undeniably suffers with the existence of bugs by having to make considerable 
investments in processes and tools that aid in bug mitigation during the 
development cycle. To this date, no process or tool does the job perfectly and, 
after the software release and deployment, remaining bugs may cause the 
company to lose customers and/or invest more money in fixes and patching 
initiatives. Furthermore, depending on how vital third-party software is to a given 
businesses, bugs in this third-party software may bring losses to the organization 
making use of it. 
 From a security standpoint, the situation is no better. Surveys reveal that, 
during the year of 2006, over 7,000 security vulnerabilities were publicly 
disclosed [ISS07]. Experts of the field make even more alarming evaluations of 
the scenario, taking guesses that, during the same year, the number of 
undisclosed vulnerabilities could cross the mark of 130,000 [Oll07], giving a 
grand total of almost 140 thousand security breaches, most of them caused by 
bugs in software products. 

1.1. Context and Objectives 

Many of the problems regarding program analysis remain unsolved, although the 
subject receives a fair amount of attention and research contributions from the 
scientific community. Furthermore, in contrast with the exciting achievements in 
source-code analysis and the release of academic and commercial software 
tools that can perform rather effective and useful analysis of source (e.g. finding 
occurrences of a given class of software bugs), the literary references to binary 
analysis techniques are considerably less expressive and more scarce. That is, 
at least in part, because of the added complexity of binary analysis in comparison 
to its source-code counterpart. For example, binary analyzers have to deal with 
extra issues such as the absence of types, provided no debugging information is 
available. 

10 
 



 This work intends to contribute to the advances in binary analysis by 
participating in the development of the ERESI project. ERESI (ELF Reverse 
Engineering Software Interface) is a framework dedicated to the analysis and 
instrumentation of binary programs. It is compatible with multiple architectures 
and runs on a variety of UNIX-based operating systems, by working on ELF 
(Executable and Linking Format) objects. The framework is formed by a set of 
seven libraries and three applications that run on top of them, providing 
innovative features for analysis, instrumentation, tracing and even debugging of 
binaries, among other possibilities [VGA+07]. 
 The remainder of this text includes, in order: a study of the state-of-the-art 
in program analysis, a presentation of the ERESI framework and its components 
most closely related to this work and, finally, a report of the work done while 
dealing with the transformation of Intel IA-32 machine code into the ERESI LIR 
(Low-level Intermediate Representation). Brief words of conclusion can be found 
at the end of this document, just above the bibliographic references and 
appendices. 
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2. Program Analysis 
This section discusses some of the many techniques and approaches that may 
be taken by program analyzers. For the sake of comprehensiveness, this set of 
subjects was restricted only to those that matter the most to this work as a whole. 
 It is important to notice, as well, that the term ‘program analysis’ here 
refers to the ways of making a computational system reason automatically (or at 
least with little human assistance) about the behavior of a program and draw 
conclusions that are somehow useful. Conceptually, this process can be divided 
into two distinct steps: one to gather substantial information about the program in 
question, i.e. the analysis itself; and another to extract the actual conclusive data, 
i.e. the verification. The results of the verification step are said to be useful 
typically in the sense that, otherwise, they would be harder to analyze, i.e. by 
manually inspecting the code. 
 Program analyzers commonly fall into one of these two categories: static 
analyzers or dynamic analyzers. Then again, this text refers to ‘program analysis’ 
to describe the techniques used by static analyzers, unless when explicitly noted. 
The main difference between these two branches is that the dynamic analyzers 
need to really execute (or otherwise emulate the execution of) the program in 
order to perform their analyses, analyzing as the program goes. On the other 
hand, static analyzers need not to execute the program, and work just by 
transforming and reasoning about a given representation of the program in 
question, such as its source-code. Static analysis is used, for example, in many 
of the modern compilers due to its importance to optimization and error-checking. 
Because of that, program analysis is frequently related to compiler research and 
literature. Due to this proximity between the compiler and analysis disciplines, 
this text may freely employ the term ‘program analyzer’ to refer to a compiler or 
compiler suite as far as it concerns its program analysis functionalities. 
 In the following sub-sections we shall discuss some topics of major 
interest to program analysis. There are certainly many resources and techniques 
that program analyzers can make use of and it is not the purpose of this 
document to cover all of them, neither in breadth nor in depth. Instead, this 
section aims to contain comprehensive explanation about the subjects that are 
most relevant to modern program analyzers. The reader is expected to find more 
extensive information in the references. 

2.1. Intermediate Representations 

It is safe to say that the IR (Intermediate Representation) is the central piece to 
every modern program analyzer. In simple terms, the IR is merely an alternative 
representation to the one of the input program at the analyzer front-end, which 
can accept many forms of representation such as multiple programming 
languages or machine code for various computer architectures. 
 Besides multiplexing the possibly many input representations of a program 
analyzer into a unified form, the IR typically has many more important features. 
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As the program analyzer executes its phases, the IR is decorated with 
information that is critical to the process of verification or to more elaborated 
analysis routines. It is also often required that the IR must not contain information 
that is present in the input representation but irrelevant to the posterior phases of 
the analyzer. It can be said, then, that in some sense the IR is the result of the 
analysis itself. 
 In practice, an IR may add complexity to the representation of the program 
by incorporating information about data-flow, control-flow, types of operands and 
so forth. On the other hand, to keep things simple, the IR may choose to 
represent the program by using a set of operations with cardinality less than that 
of the original representation. 

2.2. Flow Graphs 

Graphs are data structures that are able to express undirected or directed 
relations between many-to-many entities of some sort. In graph terminology, an 
object pertaining to a graph is called a node, or vertex. A link between a pair of 
vertices is called an edge. Graphs are often represented under graphical forms 
similar to the one below: 
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Figure 1. Undirected graph with six vertices and seven edges 

 In program analysis, graphs are especially useful to represent two types of 
relations: control-flow links, and data-flow dependencies. This kind of information 
is largely used by optimization and analysis techniques and often a program 
analyzer chooses to embed them into its IR. 
 Flow graphs are directed graphs that have a start node and an end node, 
thus inducing the notion of flow. In graphical representations, the start node is 
typically the topmost node, while the end node is the bottom-most one. 
 Some properties of flow graphs are important to program analysis, such 
as reachability. Reachability is a property that states whether there is a path 
between two nodes (preserving the direction of the edges, i.e. the flow of the 
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graph). If there is a path from, say node X, to node Y we say that node Y is 
reachable from node X. Node Y is unreachable from node X otherwise. 
 Dominance is another property of flow graphs. We say that node X 
dominates node Y if every path from the start to node Y must pass through node 
X. Conversely, we say that node Y postdominates node X if all paths from node 
X to the end must go through node Y. The same concepts can be applied to 
edges in an analogous manner. 

2.3. Control-Flow Information 

Modern software does not work purely linearly, i.e. it frequently requires that the 
control of execution is transferred on demand to another operation it wishes no 
matter where the target operation lies in the memory address space. Therefore, 
the modern computers provide operations that the programmer can use to 
perform these transfers of control. 
 Changes in the control-flow are conceptually present in every conditional 
block, loop or procedure call and the compiler typically makes large use of them. 
Control-flow analysis may indicate, for example, that a part of the program is 
unreachable (i.e. it will never be executed) and that its code can be removed for 
the sake of size optimizations. 
 About the division of a program in parts, as far as it concerns control-flow 
it can be performed by splitting the program into either of tow kinds of unit: 
subroutines or basic blocks. Subroutines are the usual procedures, functions or 
methods that are present on the majority of the modern programming languages. 
Consider the following program in C code: 

 

1 int subtract (int a, int b) { 
2   int c = a - b; 
3   return c; 
4 } 
5 
6 int main () { 
7   int a, b, c; 
8   a = 2; 
9   b = a; 
10   c = subtract(a, b); 
11 
12   if (c == 0) 
13     return 0; 
14   else 
15     return -1; 
16 
17   return -2; 
18 } 

Code 1. A simple C program 
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 The control-flow graph that represents the links between subroutines is 
called a call graph. Figure 2 shows the call graph generated from Code 1. 

 
Figure 2. Call Graph for Code 1 

 Basic blocks, on the other hand, are units of a finer level of granularity. 
They are blocks of code that can be executed from the start to the end without 
transferring control in between. As control-flow graphs link its vertices by terms of 
control transfers, the last operation is usually a control-flow statement and the 
first operation, the target of another control-flow statement. The obvious 
exceptions to this rule are the block containing the starting point of the program 
(or that are otherwise invoked by an ‘invisible’ party, such as the operating 
system program loader) and the blocks either halt execution or that do not 
transfer control to other blocks other than by executing return statements. 
 The flow graphs generated from control-flow information of basic blocks 
are simply called control-flow graphs (CFGs, for short) or block-level CFGs. In 
Figure 3, b_main_1 refers to the block of code containing the lines 7 to 10 of 
Code 1. The block b_main_2 corresponds to the test performed by line 12 and 
b_main_3 to the code in line 17, just after the if-then-else statement. The other 
blocks are hopefully intuitive enough. 
 It is important to notice that the block b_main_3 in fact could never be 
reached and, therefore, could be optimized away. It becomes clear, then, that the 
choices made during the generation of the control-flow information and, 
consequently, of the CFG influence on the quality and overall usability of the data 
for analysis purposes. In this specific case, the control-flow analyzer could easily 
opt not to insert out-edges into blocks ending with a return statement, such as 
b_main_if and b_main_else, thus generating a CFG with accurate information 
about the reachability of b_main_3. Many other algorithmic choices could be 
made, e.g. creating an edge out of b_subtract and into b_main_2, which could 
alter the quality of the result of the analysis, be it in complexity, soundness or any 
other criterion that ultimately affects the excellence of the analyzer. 
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b_main_1

b_subtract b_main_2

b_main_if b_main_else

b_main_3

 
Figure 3. Control-Flow Graph for Code 1 

2.4. The Program Structure Tree 

The program structure tree [JPP94], or PST, is another representation of the 
control-flow graph of a program. Its nodes, however, are not basic blocks or 
subroutines. Instead, they represent Single Entry Single Exit (SESE) regions. 
Intuitively, SESE regions are segments of a given graph that are entered via only 
one edge and exited by only one different edge. More formally, SESE regions are 
bounded by a pair of edges (X,Y) such that X dominates Y, Y postdominates X, 
and every cycle in the graph containing X also contains Y and vice versa. Figure 
4 highlights the SESE regions of the CFG from Figure 3. 
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Figure 4. CFG with SESE regions highlighted 

 A PST is, then, the representation of the SESE regions of a CFG based 
on their nesting relationships. That is, in a PST a node Y is a child of node X if 
the SESE region represented by node Y is contained in the SESE region 
represented by node X. Figure 5 depicts the PST for the SESE regions 
highlighted in Figure 4. 
 PSTs can be used in divide-and-conquer analysis strategies where the 
complexity of the algorithm is high and the cost of combining the partial results is 
low. Suppose we have an algorithm of quadratic complexity in proportion to N, 
where N is the number of units it can operate upon (e.g. basic blocks, 
operations…) in the target program. Now imagine we have a PST with k SESE 
regions of about the same size, kN (i.e. the same number of units), and we can 
run the algorithm unmodified over the SESE regions. If the cost of combining the 
results of the algorithm for each SESE region is irrelevant, the algorithm will run, 
for each SESE region, in ( )( )2kNO  time and take an overall ( )kNO 2  time, thus 
speeding up the performance for the whole analysis. Furthermore, if the 
algorithm can enjoy from properties of sparsity of the program, i.e. if it can be 
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applied only to a subset of the SESE regions in the PST, this result can clearly 
be improved even more. 

 
Figure 5. PST generated from Figure 4 

2.5. Data-Flow Information 

Data-flow analysis investigates how the data contained in memory cells (or 
registers, or variables for all that matters) is used and modified across the 
program’s operations. In data-flow terminology, we say that a variable is used 
when it is referenced by an operation, and defined when its data is modified. The 
flow of definitions and uses of a variable through its lifetime is often called the 
def-use chain. 
 One of the most interesting properties revealed by data-flow analysis is 
the data dependencies existent between sequentially ordered operations. One 
notable application that can make use of this information is instruction ordering. 
These data dependencies can be visualized in the form of data-flow graphs 
(DFGs), seldom called data-flow diagrams. Figure 6 shows the DFG for Code 1. 
It is important to notice that it was chosen to represent the result of the 
comparison operation ‘==’ as if it was stored in an implicit temporary variable, 
here denoted by ‘$’. Also, the ‘subtract’ function was decomposed into a simple 
subtraction operation. 
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Figure 6. Data-Flow Graph for Code 1 

2.6. SSA and SSI 

Amongst the intermediate representations oriented towards data-flow analysis, 
possibly the most famous is the Static Single Assignment (SSA) form [CFR+91]. 
The main characteristic of the SSA form is that, for every redefinition of a virtual 
register, i.e. a variable, in the original program, a new variable is created 
(normally the new variable is named with an incremental number subscripted to 
the original variable name) in the SSA representation. Therefore, the transformed 
program will end up with multiple newly-created variables for each (re)definition 
of the original variable, and each of these new variables is assigned to exactly 
once. 
 When computing the SSA form of a program, an interesting question 
arises: what to do when control-flow reaches a join point and the merging control-
flow branches have different ‘versions’ of a given variable (i.e. the variable has 
been independently modified by one or more of the different branches)? Which 
version of the variable should the CFG nodes subsequent to the join point use? 
To solve this issue, SSA introduces the φ -function. Semantically, the φ -function 
is a special form of assignment that ‘decides’ which version of the variable to 
use, representing the possible values this variable could assume in runtime. 
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Figure 7 illustrates the use of the SSA form and φ -functions given the simple 
excerpt of C-style code named Code 2. 

 

1 int a = 3; 
2 int test = 1; 
3  
4 if (test == 0) 
5   a = a + 1; 
6 else 
7   a = a + 2; 
8    
9 int b = a; 

Code 2. Simple piece of C-style code 

2 1 1a a← +  3 1 2a a← +  

( )
41

324 ,
ab

aaa
←
←φ

 

?0

1
3

1

1

1

=

←
←

test

test
a

 

 
Figure 7. SSA representation of Code 2 

 Traditional methods of computing the placement of φ -functions [CFR+91] 
are based on finding the dominance frontier of each node in the CFG. For a 
variable in question (suppose it is the only variable in the program), a node Y is 
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said to be in the dominance frontier of a node X if, given the nodes in the path 
, Y is the first node not dominated by X and X is the last node to have 

defined the given variable. These traditional methods of transforming a program 
into the SSA form have 

YX →

( )2NO  complexity (where N is the number of nodes in 
the CFG). However, experiments with the optimization techniques offered by the 
PST features afore mentioned [JPP94] successfully increase the performance of 
this task. 
 Out of the many existing SSA variants, one of the most interesting to this 
work is the Static Single Information (SSI) form [Ana97]. SSI uses the same 
scheme of virtual register renaming as SSA to guarantee that, in its 
representation, the program text contains only one assignment of any given 
variable. However, in addition to the rule of renaming virtual registers due to 
multiple assignments and to the use of the φ -function to manage multiple 
reaching definitions at merge points, SSI introduces the σ -function. Being placed 
at control-flow split points, instead of merge points, σ -functions behave 
essentially as a counterpart to the φ -function. A σ -function should be used 
whenever one or more branches of the control-flow split use a given variable. 
Semantically speaking, the σ -function takes one source operand, namely the 
virtual register used in the following branches, and assigns its value to N 
destination operands, where N is the number of branches starting at the split 
point. The successor branches then can make use of its respective exclusive 
newly-created virtual register. Figure 8 depicts the SSI form of program Code 2. 
 SSI allows for efficient predicated and backward data-flow analyses and is 
similar to SSA in terms of size and time of computation [Sin05]. Therefore, SSI 
proves itself to be a good choice, among the modern IRs, for the purpose of 
static data-flow analysis. 
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Figure 8. Code 2 in its SSI representation 

2.7. Program Semantics 

Programming language designers often find themselves facing the difficult task of 
describing the dynamic semantics of languages, i.e. what the commands of a 
given programming language effectively do. These semantic descriptions can be 
useful for a variety of purposes, including serving as reference for programmers 
or compiler writers. Furthermore, as the semantics of a language can be used to 
clarify the semantics of a program, one can be interested in studying these 
semantics in order to take advantage when designing program analyzers. 
 In contrast to the problem of describing language syntaxes, which is now 
fairly well-satisfied given the power of the current resources such as the 
(Extended) Backus-Naur Form ((E)BNF), no formal notation for describing 
semantics of programming languages is universally accepted and formalizing 
language semantics is still considered a hard job, with few practical and useful 
examples applied to complex modern languages. In this section we shall 
overview some of the methods for describing dynamic semantics of programs. 
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2.7.1. Axiomatic Semantics 
Axiomatic semantics was first introduced by Hoare [Hoa69], after the work of 
Floyd [Flo67], and is closely related to Hoare’s Logics. The idea behind axiomatic 
semantics is that program statements are enclosed by assertions of 
preconditions and postconditions. The preconditions establish constraints on the 
machine state before the execution of the given statement, while the 
postconditions obviously constrain the state of the machine after the execution of 
the statement. 
 Specification of axiomatic semantics for a given statement/program is 
done using the notation P{Q}R, where P is the precondition, Q is the program 
and R is the postcondition. This notation means that if P evaluates to true before 
Q executes, then R will evaluate to true after the execution, provided Q 
completes. 
 More than describing semantics, axiomatic semantics are an intuitively 
natural tool for proving correctness of programs. The type of correctness 
verifications that axiomatic semantics allow for is called partial correctness, i.e. 
correctness in the finite cases. Referring to the notation above, nothing can be 
proved if Q never finishes. 
 When doing correctness proofs, there must be an axiom (i.e. a condition 
which must be true) or an inference rule for each program statement. Inference 
rules will propagate the values of conditions across compound statements. From 
that point on, a theorem proving software must verify, taking the provided axioms 
into consideration, the conditions and inference rules associated with the 
program in order to find inconsistencies.  

2.7.2. Denotational Semantics 
The formalization of denotational semantics became popular in the 1970s 
[Sto77], following the work of Dana Scott and Christopher Strachey, and relies 
basically on constructing mathematical objects and creating functions that can 
map instances of an entity of a language (or program) into these mathematical 
objects. When expressing the semantics of programming languages with 
denotational semantics, there has to be a mapping to a mathematical object for 
each language construct. 
 The semantics is said to be denotational because these mathematical 
objects denote the meaning of their corresponding syntactic entities. In this case, 
the most important fact is that there are rigorous and efficient ways of 
manipulating mathematical objects, while the same does not hold true for 
programming language constructs. 

2.7.3. Operational Semantics 
With operational semantics, the meaning of the program is described in terms of 
the behavior of the machine it executes on, which can be real or simulated. Due 
to the fact that many programming languages can be executed on a variety of 
machine models, it is often used an abstract machine that conserves only a 
subset of the properties of real-world computers, such as the organization of 
memory cells, the existence of a stack in memory, and so forth. 
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 The first significant employment of the operational semantics formalism 
was made by a group of scientists at the IBM research lab in Vienna [LW69]. 
They used operational semantics to describe the semantics of the PL/I language. 
The methodology they developed was named the Vienna Definition Language 
(VDL) and included the notation and the abstract machine used. Due to its high 
complexity, however, this description was of little practical use and VDL, not 
having made many adopters, was soon obsolete. 
 After IBM’s VDL and to this day, one of the most notable contributions to 
the description of operational semantics was the introduction of Structural 
Operational Semantics (SOS), by Gordon Plotkin [Plo81]. SOS proposes the 
description of operational semantics by means of transition rules in a notation 
commonly used in logics. An example of how a rule would look in SOS is the 
following: 

( )
( )( )

,
, , †{ }

e

s

rhs v
mk Assn lhs rhs lhs v

σ
σ σ
⎯⎯→

− ⎯⎯→
 

 Where , :e Expr Value⎯⎯→ ×Σ→ :s Stmt⎯⎯→ ×Σ→ Σ , and  denotes an 
abstraction for memory stores, e.g. the collection of mappings . This 
notation establishes deduction rules. The predicate in the conclusion (that is, the 
one below the horizontal line) holds if the premises (the statements above the 
horizontal line) are valid. The particular rule in the example above describes the 
operation of an assignment (mk-Assn) statement. Here, rhs means the 
expression in the right-hand side of the assignment, and lhs means the identifier 
in the left-hand side. The lower sigma is an instance of the capital sigma, i.e. a 
representation of the memory space of the program in question. The cross sign 
introduces the changes, enclosed in the curly brackets, to happen in the memory 
space. 

Σ
Id Value→

 The notation used in SOS maintains an acceptable level of complexity as 
it addresses issues such as the description of complex commands and 
constructs like functions and classes, as well as dealing with questions such as 
type-checking and error-checking. SOS revived the interest in operational 
semantics and its viability as way of describing the meaning of languages and 
programs. 
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3. The ERESI Project 
The ERESI Reverse Engineering Software Interface is a unified multi-
architecture binary analysis framework enhanced for UNIX operating systems 
based on the Executable & Linking Format (ELF) such as Linux, *BSD, Solaris, 
Cisco IOS, IRIX and BeOS. It can be qualified as hybrid, in the sense that it 
includes both static and dynamic runtime capabilities. ERESI has an evolving 
language conceived with reverse engineering in mind since its early designs, 
making it programmable and adaptable to the precise needs of its users. 
 The current ERESI package includes three applications that interface with 
the user via command-line, which then invokes the framework’s language 
interpreter. These applications offer a variety of functionalities, categorized into 
one of the following: debugging, binary file instrumentation or procedure tracing. 
At the time of writing, two new applications are under development. One of them, 
already at an advanced stage, shall provide features for kernel debugging. The 
other, of special interest to this work, is intended to offer the most advanced 
binary analysis primitives of the project. 

3.1. ERESI Internals Overview 

Supporting the ERESI applications, seven original libraries spread across the 
lower layers of the framework’s architecture. Figure 9 depicts these layers and 
their respective components. A brief description of each of them (in top-down 
order, compared to the architectural model) shall follow. 
 It is important to notice that the components are designed to feature the 
largest degree of disassociation among them as possible. Given this modularity, 
the framework can be tailored to the user’s needs by removing unused 
components or plugging custom components on top of existing libraries. In fact, 
the lowest-level components, such as libasm, can be linked against other 
applications completely independently of the rest of the framework. 
 Applications: 

• The ELF shell (elfsh), an interactive and scriptable component 
dedicated to instrumentation of ELF binary files. 

• The embedded ELF debugger (e2dbg), an interactive and 
scriptable high-performance user-land debugger that works 
without standard debug API (namely without ptrace). 

• The embedded ELF tracer (etrace), an interactive and scriptable 
user-land procedure tracer that works at full frequency of 
execution without generating traps. 

Applications at earlier development stages: 
• The kernel shell (kernsh), an interactive and scriptable user-land 

shell created to inspect and modify kernel structures by defining 
them as types of the ERESI language. 

• Evarista, a static binary analyzer written almost entirely in 
ERESI language and devoted to automatic bug-finding. This 
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component will be in charge of making the needed program 
transformations, analyses and verifications in order to extract 
meaningful information from raw binary programs. 

Libraries: 
• Libe2dbg, library that contains the majority of the code that 

implements the functionalities of the embedded ELF debugger 
(e2dbg), being linked to the debuggee process at load-time. 

• Librevm, the Reverse Engineering Vector Machine, which 
contains the meta-language interpreter and the standard ERESI 
library. 

• Libmjollnir, the flow analyzer and code fingerprinting library. 
• Libelfsh, the binary manipulation library on which ELFsh, E2dbg, 

and Etrace are based. 
• Libasm, the disassembly engine that gives semantic attributes 

to instructions and operands. 
• Libedfmt, the ERESI Debug Format library, which can convert 

debug information in the dwarf or stabs formats into the ERESI 
debug format by automatically generating new ERESI types. 

• Libaspect, library responsible for the type system and the 
aspect-weaving features (reflection). It defines complex data 
types, making them available to be manipulated ad-hoc by 
ERESI programs. 

 It is important to elucidate better the modus operandi of the ‘embedded’ 
applications, e2dbg and etrace. In a nutshell, they work by injecting themselves 
into the target binary file, so that when it is executed, the application embedded 
within them, i.e. one of the two ERESI-based applications afore mentioned, will 
take control of the process. This is made possible by complex injection and 
relocation techniques provided by libelfsh, and also present in the form of 
commands of the ELF shell. Not only this speeds up the overall performance of 
the application, because it is running directly from inside the address space of 
the process, but it also enables the possibility of even using applications of this 
kind in scenarios that forbid the use of similar tools that rely on a standard 
debugging API (namely, ptrace). 
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Figure 9. Layered representation of the architecture of the ERESI Project 
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3.2. The ERESI Language 

The ERESI language, which may as well be simply called ERESI, is one of the 
most innovative features of the framework. It is a domain-specific meta-language 
dedicated to reverse engineering and analysis of binary programs and is aimed 
at providing its users with a way of quickly and easily developing applications 
such as analyzers or decompilers. It is said to be a meta-language because it 
manipulates programs written in another language, namely the machine code 
language. 
 Although the ERESI language is a very interesting concept that could be 
detailed and discussed for many pages, this discussion will be restricted to a 
brief explanation of the meta-language commands that will be necessary to 
understand the program transformations explained in later sections of this 
document. Table 1 summarizes these commands. 
 

Command name Command description 
type Declares new complex types 
define Defines constants and identifier aliases 
load Loads a binary to be manipulated 
reflect Builds the list of blocks of the loaded binary 
set Assigns a value to a variable 
transform Transforms the program according to the user’s 

specification 
Table 1. ERESI commands used in the program transformation code 

 Given the transformation code in the appendices of this document, which 
can be used as reference of examples of the use of the commands in Table 1, a 
formal description of these commands’ syntax is unnecessary and beyond the 
scope of this work. It should be noted, however, that the body of a transform 
construct is formed by a set of case statements, which compose the actual 
specification of the transformation. Besides performing the transformation, the 
case statements also support the execution of an optional statement, which may 
denote side-effects, such as changes in the data-flow information of the program 
in question (ERESI also features commands for data-flow analysis, which are not 
covered here). A transform block is ended by an endtrans statement, which 
executes a final command (e.g. list iteration) before executing the transform 
command again, in a cyclic fashion. 
 Variables in ERESI are preceded by the dollar sign ($), similarly to many 
other languages. Furthermore, ERESI makes available a special variable, 
namely $_, which stores the return of the last command executed. This variable 
is especially useful to access the return of commands that do not take a 
destination parameter, e.g. the unary commands. 

3.3. Libasm 

Libasm is the disassembling library of the ERESI project. Besides performing the 
basic disassembly, libasm features some low-level analysis-related aspects and 
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many other characteristics that turn this library into a very special disassembling 
library, sine qua non to a variety of features of the ERESI framework. 
 Due to its undeniable importance, allied to the fact that this is the 
component at which most of this work’s efforts were targeted, it becomes 
essential that the features of libasm are better detailed. 

3.3.1. Multi-Architectural Support 
Libasm currently supports two machine models: SPARC v9 and Intel IA-32. 
Although these architectures are certainly two of the most widely used on 
modern personal computers, at the time of writing there are also ongoing efforts 
to make it support MIPS machines. Following this trend of extending ERESI 
features to embedded systems, future work holds the possibility of porting libasm 
to support ARM processors too. 
 The current SPARC v9 support is capable of disassembling any of the 
instructions in the architecture’s instruction set and representing them as 
structures internal to the library. As the SPARC architecture is almost totally 
backwards compatible with its previous versions, the v9 support includes the 
capability of correctly disassembling nearly all of the constructs of v8 and v7 
machine code. 
 Although the IA-32 port does not support the disassembling of some 
instructions (in particular, some of the instructions belonging to the newest SSE 
and MMX extensions), the support is extensive enough so that libasm can 
effectively disassemble a wide range of binaries present in many flavors of UNIX 
variants, such as the applications contained in the /bin and /usr/bin directories of 
default installations of the supported operating systems. Having that said, the IA-
32 port of libasm is constantly evolving and more instructions become supported 
upon demand. 

3.3.2. Semantic Annotation of Instructions and Operands 
Libasm holds an internal representation of the disassembled instructions and 
operands. This representation, besides containing all the syntactic information 
needed to output an instruction correctly, carries semantic annotations 
(attributes), gathered at disassemble-time, about instructions and operands. 
These semantic attributes are summarized on Tables 2 and 3 for instructions and 
operands, respectively. 
 

Attribute Description 
IMPBRANCH Branching instruction which always branch (jump) 
CONDBRANCH Conditional branching instruction 
CALLPROC Sub Procedure calling instruction 
RETPROC Return instruction 
ARITH Arithmetic (or logic) instruction 
LOAD Instruction that reads from memory 
STORE Instruction that writes in memory 
ARCH Architecture dependent instruction 
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WRITEFLAG Flag-modifier instruction 
READFLAG Flag-reader instruction 
INT Interrupt/call-gate instruction 
ASSIGN Assignment instruction 
COMPARISON Instruction that performs comparison or test 
CONTROL Instruction modifies control registers 
NOP Instruction that does nothing 
IO Instruction accesses I/O locations (e.g. ports) 
TOUCHSP Instruction modifies stack pointer 
BITTEST Instruction investigates values of bits in the operands 
BITSET Instruction modifies values of bits in the operands 
INCDEC Instruction does an increment or decrement 
PROLOG Instruction is part of a function prolog 
EPILOG Instruction is part of a function epilog 
STOP Instruction stops the program 

Table 2. Semantic attributes used for instructions in libasm 

 
 

Attribute Description 
REG Register operand 
IMM Immediate value 
MEM Memory Access 

Table 3. Semantic attributes used for operands in libasm 

 These semantic attributes allows code from upper layers of ERESI 
(including programs written in ERESI code) to refer to instructions collectively, in 
terms of their semantics annotations, instead of individually. As will be seen later 
in this document, this simplifies significantly the task of writing a back-end for 
program transformation of a specific machine code into the LIR used in the 
project. Similarly, many other applications performing instrumentation or analysis 
may benefit from this feature. 
 It is very important to notice that the semantic attributes listed here are not 
mutually-exclusive, i.e. libasm can annotate an instruction with more than one 
attribute. This obviously extend the possible classes of instructions to those 
beyond the simple attributes provided. While the meaning of most of these 
combinations should be fairly intuitive to the reader, some of the less intuitive 
ones should be highlighted in order to clarify the process of classifying 
instructions: 

• READFLAG + BITTEST – This combination is used to annotate 
instructions that perform some kind of conditional test (that is, 
test the value of a flag) and is not a conditional branching 
instruction. This behavior should not be confused with 
COMPARISON, which describes instructions that explicitly 
perform some kind of test and set the necessary flags. 
Conditional moves, for example, are READFLAG + BITTEST. 
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• IO + LOAD/STORE – Specifies reads/writes from/to I/O 
locations, such as ports. 

• INT + RETPROC – Returns from interrupts or traps. 
• TOUCHSP + LOAD/STORE – Stack pops/pushes. 

 It should also be stressed that the same semantic attributes are available 
to all ports of libasm. This unified system allows for the development of code that 
analyzes programs directly on top of their disassembled representation (i.e. not 
on top of any IR) in an architecture-independent manner. This is, for instance, 
how some of the current code in libmjollnir works. 
 Finally, we end our discussion of the semantic attributes by adding that 
instructions annotated with READFLAG and/or WRITEFLAG have their 
representation enriched with information about which flags (specific to each 
machine model) are possibly read or modified. 

3.3.3. Vectors of Handlers 
In its source code organization, libasm splits the code that disassembles 
instructions or operands into different functions, one function for each instruction 
(known as opcode handlers or instruction handlers) and one function for each 
operand ‘type’1 (known as operand handlers). The function pointers to these 
instruction and operand handlers are then stored into vectors.  
 Vectors are multi-dimensional data structures provided by libaspect. Every 
dimension of a vector corresponds to a parameter to which the data contained in 
the vector is associated. A compositional association of values to these 
parameters serves as an index into the vector, and is used for storing and 
recovering data from the vector. For example, a vector containing instruction 
handlers could recover a specific handler if provided an identifier to a machine 
model/architecture and the opcode value of the instruction desired. 
 One of the most interesting characteristics of vectors is that they have 
their structure and contents accessible from ERESI language. This feature, 
inspired from the concept of reflection of aspect-oriented systems, ultimately 
means that function pointers to instruction and operand handlers can be retrieved 
and modified by the ERESI user, who can in turn easily write simple instruction 
and operand tracers by updating these records. 

                                            
1 Operand ‘types’ are not real types, as in type theory. Instead, they are syntactic attributes, 
which specify the format/encoding of operands and are machine-dependent. These ‘types’, not to 
be confused with the operand semantic attributes, will not be further discussed here. 
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4. Contributions of this Work 
The author of this work has contributed to the ERESI project in many ways 
before the writing of this document. Attacking bugs and building new features 
everywhere, the contributions have ranged from the lowest-level and most 
central pieces of code of the disassembling library to the construction of control-
flow graphs and their graphical representation to the end user.  
 For the purpose of this undergraduate project, however, it was chosen to 
detail the development process that led to the goal set specifically for this work 
and done during the literary research and conception of the present document: 
the transformation of Intel IA-32 machine code into the ERESI low-level 
intermediate representation (LIR). 

4.1. Transforming IA-32 Machine Code into ERESI LIR 

IA-32 is the name of the computer architecture created and maintained by the 
Intel ® Corporation. This architecture gave birth to many families of processors 
since the inception of the first chips, 8086/8088, in 1978. Across these decades 
of development, IA-32 processors became increasingly popular and today these 
chips undoubtedly represent a big fraction of the processors powering modern 
computers (particularly successful in the market of desktops and workstations). 
 Due to its popularity, supporting IA-32 code in the analyses to be 
performed by ERESI is an obvious good way to clarify their practical relevance. 
Therefore, it seemed equally natural that this goal should be kept in mind since 
the earliest developments of the analysis features and, consequently, it was 
decided that this work should focus on executing the first step of the binary 
analysis process: transforming raw IA-32 machine code into the LIR used in the 
ERESI framework. 
 Beyond reporting the work done, the following sections may serve as 
guidance for other developers and users willing to write back-ends for machine 
code transformation into ERESI LIR for other computer architectures or, to some 
extent, even writing other kinds of program transformations on top of ERESI. 

4.1.1. The Instruction Set 
The scope of this work restricts itself to transform the instructions contained in 
the instruction set of the original 8086/8088 processors. The only instructions not 
covered in this project are the ESC instruction (a gate to the instructions provided 
by the Floating-Point Unit) and the prefix instructions, LOCK and REP/REPxx. 
The full listing of the remaining instructions, i.e. the instructions that this work 
covers, can be found in the appendices. 
 In contrast to the afore mentioned exceptions, this work probably adds 
support to many other instructions that do not belong to the original set. In 
particular, there was a beneficial and intentional disregard around the exact 
operand formats supported in the basic instruction set. That is, regardless of 
whether a instruction such as MOV, for example, in the 8086/8088 specification, 
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only existed in its form where it accepts two registers as input (just an 
hypothetical case, not necessarily true), the transformation back-end was written 
in a way such that it can handle other forms of the MOV instructions, such as the 
one that receives a register and a memory operand, or a register and an 
immediate operand and so on. It was added to the back-end every instruction 
form supported by the opcode and operand handlers code in libasm at the time 
of development. As these different forms of a same instruction, in the machine 
code, are represented by different opcodes, they can technically be considered 
different instructions in themselves. In this way, it can be said that the 
transformation back-end handles some instructions that are not part of the 
original 8086/8088 instruction set. 

4.1.2. Semantically Annotating the Instructions 
After narrowing down the instruction set, the immediate step was to annotate 
each instruction with the semantic attributes listed on Table 2, by modifying the 
code contained in the opcode/instruction handlers. Similarly, the operand 
handlers must contain the code to accurately categorize the operands involved. 
This task shall make use the operand attributes from Table 3. The knowledge 
required to execute this step came essentially from two sources: 1) the 
instruction set reference [Int2A05, Int2B05] or similar literature and 2) from 
previous knowledge on assembly programming, reverse engineering and related 
subjects. 
 The reference manuals are the basic resource to instruction classification. 
It is very important that the reference used, no matter what it should be, is as 
accurate and complete as possible. As far as the IA-32 architecture goes, the 
official manuals proved themselves a reliable resource. They contain both a 
textual description and a primitive description of ‘operational semantics’, which 
are actually listings of pseudo-code describing the microcode behavior. Due to 
the notable complexity of the IA-32 architecture (when compared to modern 
RISC machines), though, the reference manuals are a large piece of literature 
split into multiple volumes, which makes the seeking for topics a bit harder. 
 There are some things that the manuals do not make explicit, however, 
and it may take a little bit of previous expertise not to let it go unnoticed. This is 
the case, for example, of the use of the PROLOG and EPILOG semantic 
attributes. To identify the correct cases where instructions are performing 
functions prologs and epilogs, one must know in advance some assembly 
programming or, most importantly, how compilers typically write function prologs 
and epilogs. Although this may look like a somewhat imprecise methodology, a 
careful evaluation and implementation of this step may reduce the number of 
false-positives and false-negatives to very low rates, when analyzing compiler-
generated code. 

4.1.3. Writing the Transformation Back-End 
Once the instructions are accordingly annotated, we can proceed by transforming 
them into the LIR constructs. The importance of having the annotations lies on 
the fact that, armed with them, we can address the instructions by their semantic 
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attributes, instead of referencing them individually. This of course reduces 
significantly the amount of cases explicitly defined in the source code. 
 The code of the transformation was written in ERESI and can be found in 
the appendices. Additional (though necessary for the code execution) definitions, 
such as the LIR constructs and the internal types of libasm, can also be found in 
the appendices. The transformation code should be run by the Evarista analyzer, 
still under construction. 
 The targets of the transformation are the LIR constructs, which represent 
common operations such as assignments and arithmetic operations in a generic 
manner. Table 4 lists the LIR constructs. 
 

LIR Construct Description 
Ins             Generic Instruction 
                
IndBranchR::Ins Indirect branch (register operand) 
IndBranchM::Ins Indirect branch (memory operand) 
Branch::Ins     Direct branch 
Call::Ins       Procedure call 
IndCallR::Ins   Indirect procedure call (register operand) 
IndCallM::Ins   Indirect procedure call (memory operand) 
Return::Ins     Return from procedure 
TernopR3::Ins   Ternary operation (arithmetic or logic) 
TernopM3::Ins   Ternary operation (arithmetic or logic) 
TernopRI::Ins   Ternary operation (arithmetic or logic) 
TernopMI::Ins   Ternary operation (arithmetic or logic) 
TernopMR::Ins   Ternary operation (arithmetic or logic) 
TernopRM::Ins   Ternary operation (arithmetic or logic) 
TernopRMI::Ins  Ternary operation (arithmetic or logic) 
AssignRI::Ins   Assignment operation 
AssignMI::Ins   Assignment operation 
AssignRM::Ins   Assignment operation 
AssignMR::Ins   Assignment operation 
AssignMM::Ins   Assignment operation 
AssignRR::Ins   Assignment operation 
IoRR::Ins         I/O access operation 
IoIR::Ins       I/O access operation 
IoRI::Ins       I/O access operation 
BitSet::Ins     Operation that sets a bit in the operand 
CmpRI::Ins      Comparison or test operation 
CmpRR::Ins      Comparison or test operation 
CmpRM::Ins      Comparison or test operation 
CmpMR::Ins      Comparison or test operation 
CmpMI::Ins      Comparison or test operation 
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XchgRR::Ins     Value exchange operation 
XchgMR::Ins     Value exchange operation 
Prolog::Ins     Function prolog 
Interrupt::Ins  Interrupt or trap 
IReturn::Ins    Return from interrupt or trap 
Epilog::Ins     Function epilog 
Stop::Ins       Stop execution 
Nop::Ins        No operation 
FlagR::Ins      Flag-reading operation 
FlagW::Ins      Flag-writing operation 

Table 4. ERESI LIR Constructs 

 The R/M/I suffixes on some constructs, such as Ternop and Assign, 
denote the types of the destination and source operands they receive. Ins is a 
generic construct, from which all other constructs inherit. It contains an ‘addr’ 
attribute, which specifies the address of the instruction corresponding to the 
operation in question, and the ‘uflags’ attribute, which records information about 
any relevant reading or writing of flags performed by the instruction. The LIR 
definition in the appendices displays all of the operands (and their type) that each 
construct takes. 
 At first the LIR was not ready to support the transformation from IA-32 
code, so it was necessary to add many new constructs to the LIR definition. The 
majority of these new constructs was created to represent the great diversity of 
combinations of operand types that IA-32 features. Although the addition of these 
constructs make the LIR look more complex, this added complexity ultimately 
turns into an aid for the simplicity of the data-flow analysis code, since the types 
of the operands can be known in advance from the name of the construct, 
instead of testing for overloaded constructs or another complex mean of making 
the LIR definition smaller. 
 Finally, when the LIR is all ready to represent the machine code, the 
transformation code can in fact be written. The heart of the transformation code 
is the transform command, which takes one source instruction and applies the 
first matching transformation found in the case statements. The following is an 
example of the use of the transform command (taken from the real IA-32-to-LIR 
transformation code): 
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transform $instr into 
... 
# IN (reg, reg) 
case instr_t(type:io-rm, op1(type:reg)) -> 

IoRR(addr:$curaddr, 
dst(id:$instr.op2.baser), 
src(id:$instr.op1.baser), uflags:0) 

... 
endtrans 

Code 3. Example of transformation code in ERESI 

 In the excerpt of code above it can be seen that the left-side of the arrow 
is the specification of the source of the transformation, while its right-side 
represents the instantiation of a construct in the LIR. It is important to notice that, 
when specifying the transformation, the most specialized cases must be placed 
on top, since the program will execute the first matching transformation. That is, if 
a case specifying “the first assignment operation” is placed before one specifying 
“the first assignment operation between registers”, the transformation specified 
by the second case will never be triggered, since the transform command 
searches for the first matching specification sequentially, in top-down order. 
 In the transformation code, the transform command is placed in the body 
of a loop, which executes the transformation for each instruction in the program. 
As previously stated, one of the most interesting characteristics of the 
transformation code is its ability of specifying a transformation for many source 
instructions in one single case. The following case is an example of this aspect: 

 

# Jxx, LOOP, LOOPE, LOOPNE (imm) 
# Jxx = JA, JAE, JB, JBE, JE, JECXZ, JG, JGE, 
# JL, JLE, JNE, JNO, JNP, JNS, JO, JP, JS 
 
case instr_t(type:cb) -> Branch(addr:$curaddr, 

dst(val:$instr.op1.imm), uflags:0) 

Code 4. Many-to-One transformation in ERESI 

 In this case we can clearly see how the transformation code benefits from 
the semantic annotations made earlier. By referring to a group of instructions 
simply by their semantic attributes (in this case, the CONDBRANCH one), a 
transformation can be performed on a many-to-one basis. The complete code of 
the IA-32 transformation back-end, found in the appendices of this document, 
relies on this ability to specify many of the transformation cases. 
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4.2. Future Work 

The analysis features of the ERESI project are rapidly evolving and still on 
unstable stage of development. As such, this work is by no means perfect and at 
definitive state. Consequently, the most obvious chances of future work are 
improvements on this particular piece of work itself. 
 A very natural improvement of this project is the extension of its range of 
source instructions to cover instructions added to the IA-32 instruction set upon 
release of processor chips successor to the 8086/8088. This is an immediate 
task that should start soon after this work. 
 Additionally, the LIR may go through many revisions in the future. It is 
important that the ERESI project has a LIR that satisfies the current and future 
needs of the program analysis features and, being the LIR a recent concept 
within the project, it is probable that it may have many possibilities of 
improvement. Similarly, the choices of the semantic annotations implemented 
inside libasm are extremely important for the soundness of the transformation, so 
they may be reviewed in the future as well. 
 Finally, but not lastly, this work can be further extended by writing back-
ends for other machine architectures. As the development of the MIPS porting of 
libasm advances, the opportunity of writing a transformation back-end for this 
architecture becomes more and more desirable. And, of course, the development 
of the Evarista analyzer should not stop there. The near future holds 
opportunities for developing and transforming the code into higher-level IRs, 
implementing more advanced analyses, writing effective verification algorithms, 
etc. This work is definitely just the tip of the iceberg. 
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5. Conclusions 
This work has attempted to shed some light into the still obscure field of binary 
analysis. The report included a brief discussion on the importance of this work as 
well as a fairly broad introduction to some of the most relevant topic on program 
analysis. Subjects such as intermediate representations, control-flow and data-
flow analyses, and program semantics were discussed. 
 We have introduced the ERESI project, telling a little of its history, 
architecture, each of its components and its own domain-specific language. 
Special focus was given to the libasm component, the disassembling library of 
ERESI, as it represented an especially important component for the purposes of 
this work. We have detailed how libasm organizes its code in reflective vectors, 
support multiple architectures and, most importantly, how it gives semantic 
annotations to disassembled instructions and their operands. 
 This document also reported the development process of the primary goal 
of this project: transforming Intel® IA-32 machine code in the LIR used by the 
ERESI framework and ultimately consumed by the Evarista analyzer. We have 
dealt with the choosing of the source instruction set and the semantic 
annotations of the instructions in question, highlighting the most important steps 
and precautions in executing these tasks. Naturally, we have also covered the 
actual transformation of the machine code into LIR, describing the format of the 
LIR used in the project and how to write the transformation code in ERESI 
language. At this point, it was appropriate to stress the link between this task and 
other subjects discussed in this report. Particularly, we reinforced how the 
transformation code benefits from libasm’s feature of semantic annotations. 
 Finally, it is expected that, more than an undergraduate project, this report 
and the work associated with it represent real advances for the ERESI project 
and for the field of binary analysis in general. It has been a great opportunity for 
learning and hopefully it will also be a pioneering contribution to the pursuit of an 
objective that, although of obvious relevance, so few have adventured on: 
extracting meaningful and pertinent information from programs in their binary 
form. 
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Appendix A. Intel 8086/8088 Instruction Set 

Instruction Description 
AAA ASCII adjust AL after addition 
AAD ASCII adjust AX before division 
AAM ASCII adjust AX after multiplication 
AAS ASCII adjust AL after subtraction 
ADC Add with carry 
ADD Add 
AND Logical AND 
CALL Call procedure 
CBW Convert byte to word 
CLC Clear carry flag 
CLD Clear direction flag 
CLI Clear interrupt flag 
CMC Complement carry flag 
CMP Compare operands 
CMPSB Compare bytes in memory 
CMPSW Compare words 
CWD Convert word to doubleword 
DAA Decimal adjust AL after addition 
DAS Decimal adjust AL after subtraction 
DEC Decrement by 1 
DIV Unsigned divide 
HLT Enter halt state 
IDIV Signed divide 
IMUL Signed multiply 
IN Input from port 
INC Increment by 1 
INT Call to interrupt 
INTO Call to interrupt if overflow 
IRET Return from interrupt 
Jxx Jump if condition 
JMP Jump 
LAHF Load flags into AH register 
LDS Load pointer using DS 
LEA Load Effective Address 
LES Load ES with pointer 
LODSB Load byte 
LODSW Load word 
LOOP/LOOPxx Loop control 
MOV Move 
MOVSB Move byte from string to string 
MOVSW Move word from string to string 
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MUL Unsigned multiply 
NEG Two's complement negation 
NOP No operation 
NOT Negate the operand, logical NOT 
OR Logical OR 
OUT Output to port 
POP Pop data from stack 
POPF Pop data into flags register 
PUSH Push data onto stack 
PUSHF Push flags onto stack 
RCL Rotate left (with carry) 
RCR Rotate right (with carry) 
RET Return from procedure 
RETN Return from near procedure 
RETF Return from far procedure 
ROL Rotate left 
ROR Rotate right 
SAHF Store AH into flags 
SAL Shift Arithmetically left (multiply) 
SAR Shift Arithmetically right (signed divide) 
SBB Subtraction with borrow 
SCASB Compare byte string 
SCASW Compare word string 
SHL Shift left (multiply) 
SHR Shift right (unsigned divide) 
STC Set carry flag 
STD Set direction flag 
STI Set interrupt flag 
STOSB Store byte in string 
STOSW Store word in string 
SUB Subtraction 
TEST Logical compare (AND) 
WAIT Wait until not busy 
XCHG Exchange data 
XLAT Table look-up translation 
XOR Exclusive OR 

Table 5. Restricted Intel 8086/8088 instruction set 
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Appendix B. Configuration of Common ERESI Types 
# This file can be appended to your ~/.eresirc 
 
type operand_t    = len:int ptr:*byte type:int name:string size:int 

content:int regset:int prefix:int imm:int 
baser:int indexr:int sbaser:string sindex:string 
address_space:int scale:int 

type instr_t      = proc%4 instr:int type:int prefix:int spdiff:int 
wflags:int rflags:int ptr_prefix:*byte 
ptr_instr:*byte annul:int prediction:int nb_op:int 
op1:operand_t op2:operand_t op3:operand_t len:int  

type listent_t    = key:string data:long next:*listent_t 
type list_t       = head:*listent_t elmnbr:int type:int linearity:byte 
type hash_t       = ent:*listent_t size:int elmnbr:int type:int 

linearity:byte 
type container_t  = id:int data:long type:int nbrinlinks:int 

nbroutlinks:int inlinks:*list_t outlinks:*list_t  
type registry_t   = registry:*hash_t 
type mjrblock_t   = vaddr:long size:int symoff:int 
type mjrfunc_t    = vaddr:long size:int name:byte[64] first:*mjrblock_t 

md5:byte[34] 
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Appendix C. Script of LIR Definitions 
#!evarista/evarista32 
#lir-definition.esh 
 
# Attributes for ASM instructions 
define b   ASM_TYPE_IMPBRANCH 
define cb  ASM_TYPE_CONDBRANCH 
define c   ASM_TYPE_CALLPROC 
define i   ASM_TYPE_INT 
define r   ASM_TYPE_RETPROC 
define p   ASM_TYPE_PROLOG 
define cmp ASM_TYPE_COMPARISON 
define bs  ASM_TYPE_BITSET 
define bt  ASM_TYPE_BITTEST 
define a   ASM_TYPE_ASSIGN 
define wm  ASM_TYPE_STORE 
define rm  ASM_TYPE_LOAD 
define e   ASM_TYPE_EPILOG 
define s   ASM_TYPE_STOP 
define n   ASM_TYPE_NOP 
define ar  ASM_TYPE_ARITH 
define wf  ASM_TYPE_WRITEFLAG 
define rf  ASM_TYPE_READFLAG 
define id  ASM_TYPE_INCDEC 
define io  ASM_TYPE_IO 
define sp  ASM_TYPE_TOUCHSP 
 
define ar-wf    ar  wf 
define ar-id-wf ar  id wf 
define cmp-wf   cmp wf 
define io-rm    io  rm 
define io-wm    io  wm 
define i-rf-bt  i   rf bt 
define i-r      i   r 
define a-rm-wm  a   rm wm 
define sp-rm    sp  rm 
define sp-rm-wf sp  rm wf 
define sp-wm-rf sp  wm rf 
define wm-rm    wm  rm 
define a-rm     a   rm 
 
 
# Attributes for ASM operands 
define reg ASM_OPTYPE_REG 
define imm ASM_OPTYPE_IMM 
define mem ASM_OPTYPE_MEM 
 
# Types of LIR operands 
type Reg            = id:int 
type Immed          = val:long 
type Mem            = base:Reg index:Reg scale:Immed off:Immed 
name:string 
 
# Types of LIR instructions 
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type Ins            = uflags:Immed addr:Immed 
 
type IndBranchR::Ins = dst:Reg 
type IndBranchM::Ins = dst:Mem 
type Branch::Ins     = dst:Immed 
type Call::Ins       = dst:Immed 
type IndCallR::Ins   = dst:Reg 
type IndCallM::Ins   = dst:Mem 
type Return::Ins     = dst:Immed 
type TernopR3::Ins   = dst:Reg rsrc1:Reg rsrc2:Reg 
type TernopM3::Ins   = dst:Mem msrc1:Mem msrc2:Mem 
type TernopRI::Ins   = dst:Reg rsrc:Reg isrc:Immed 
type TernopMI::Ins   = dst:Mem msrc:Mem isrc:Immed 
type TernopMR::Ins   = dst:Mem msrc:Mem rsrc:Reg 
type TernopRM::Ins   = dst:Reg rsrc:Reg msrc:Mem 
type TernopRMI::Ins  = dst:Reg rsrc:Reg msrc:Mem isrc:Imm 
type AssignRI::Ins   = dst:Reg src:Immed 
type AssignMI::Ins   = dst:Mem src:Immed 
type AssignRM::Ins   = dst:Reg src:Mem 
type AssignMR::Ins   = dst:Mem src:Reg 
type AssignMM::Ins   = dst:Mem src:Mem 
type AssignRR::Ins   = dst:Reg src:Reg 
type IoRR::Ins         = dst:Reg src:Reg 
type IoIR::Ins       = dst:Immed src:Reg 
type IoRI::Ins       = dst:Reg src:Immed 
type BitSet::Ins     = src:Immed dst:Reg 
type CmpRI::Ins      = fst:Immed snd:Reg 
type CmpRR::Ins      = fst:Reg snd:Reg 
type CmpRM::Ins      = fst:Mem snd:Reg 
type CmpMR::Ins      = fst:Reg snd:Mem 
type CmpMI::Ins      = fst:Immed snd:Mem 
type XchgRR::Ins     = fst:Reg snd:Reg 
type XchgMR::Ins     = fst:Mem snd:Reg 
type Prolog::Ins     = framesz:Immed 
type Interrupt::Ins  = dst:Immed 
type IReturn::Ins 
type Epilog::Ins 
type Stop::Ins 
type Nop::Ins 
type FlagR::Ins 
type FlagW::Ins 
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Appendix D. Binary-to-LIR ERESI Code 
#!evarista/evarista32 
#intel-backend.esh 
 
# IA-32 registers 
define EAX 0 
define ECX 1 
define EDX 2 
define EBX 3 
define ESP 4 
define EBP 5 
define ESI 6 
define EDI 7 
define EFLAGS -1 
 
# IA-32 exceptional instruction 
define NEG ASM_NEG 
 
# IA-32 prolog instruction 
define SUB ASM_SUB 
 
# IA-32 epilog instruction 
define MOV ASM_MOV 
 
# This create on-demand the block instruction list in the eresi runtime 
reflect $1 
 
set $curblock $_ 
set $curaddr $curblock.vaddr 
 
# Just debug printing 
#inspect $curblock 
#profile enable warn 
 
# Start the transformation 
foreach $instr in $hash[instrlists:$curaddr] 
 
print Transforming instruction: $instr 
 
transform $instr into 
 
# INC, DEC (reg) 
case instr_t(type:ar-id-wf, nb_op:1, op1(type:reg)) -> 

TernopRI(addr:$curaddr, dst(id:$instr.op1.baser), 
rsrc(id:$instr.op1.baser), isrc(val:1), uflags:$instr.wflags) 

 
# INC, DEC (mem) 
case instr_t(type:ar-id-wf, nb_op:1, op1(type:mem)) -> 

TernopMI(addr:$curaddr, dst(id:$instr.op1.baser), 
msrc(name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm)), isrc(val:1), uflags:$instr.wflags) 

 
# AAA, AAD, AAM, AAS, DAD, DAS 
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case instr_t(type:ar-wf, nb_op:0) -> TernopR3(addr:$curaddr, 
dst(id:EAX), rsrc1(id:EAX), rsrc2(id:EAX), uflags:$instr.wflags) 

 
# ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (reg, 

reg) 
case instr_t(type:ar-wf, nb_op:2, op1(type:reg), op2(type:reg)) -> 

TernopR3(addr:$curaddr, dst(id:$instr.op2.baser), 
rsrc1(id:$instr.op2.baser), rsrc2(id:$instr.op1.baser), 
uflags:$instr.wflags) 

 
# ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (reg, 

imm) 
case instr_t(type:ar-wf, nb_op:2, op1(type:imm), op2(type:reg)) -> 

TernopRI(addr:$curaddr, dst(id:$instr.op2.baser), 
rsrc(id:$instr.op2.baser), isrc(val:$instr.op1.imm), 
uflags:$instr.wflags) 

 
# ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (reg, 

mem) 
case instr_t(type:ar-wf, nb_op:2, op1(type:mem), op2(type:reg)) -> 

TernopRM(addr:$curaddr, dst(id:$instr.op2.baser), 
rsrc(id:$instr.op2.baser), msrc(name:$instr.op1.name 
base(id:$instr.op1.baser), index(id:$instr.op1.indexr), 
scale(val:$instr.op1.scale), off(val:$instr.op1.imm)), 
uflags:$instr.wflags) 

 
# ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (mem, 

imm) 
case instr_t(type:ar-wf, nb_op:2, op1(type:imm), op2(type:mem)) -> 

TernopMI(addr:$curaddr, dst(name:$instr.op2.name 
base(id:$instr.op2.baser), index(id:$instr.op2.indexr), 
scale(val:$instr.op2.scale), off(val:$instr.op2.imm)), 
msrc(name:$instr.op2.name base(id:$instr.op2.baser), 
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale), 
off(val:$instr.op2.imm)), isrc(val:$instr.op1.imm), 
uflags:$instr.wflags) 

 
# ADC, ADD, AND, OR, RCR, ROL ROR, SAR, SBB, SHL, SHR, SUB, XOR (mem, 

reg) 
case instr_t(type:ar-wf, nb_op:2, op1(type:reg), op2(type:mem)) -> 

TernopMR(addr:$curaddr, dst(name:$instr.op2.name 
base(id:$instr.op2.baser), index(id:$instr.op2.indexr), 
scale(val:$instr.op2.scale), off(val:$instr.op2.imm)), 
msrc(name:$instr.op2.name base(id:$instr.op2.baser), 
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale), 
off(val:$instr.op2.imm)), rsrc(id:$instr.op1.baser), 
uflags:$instr.wflags) 

 
# IMUL (reg, reg, imm) 
case instr_t(type:ar-wf, nb_op:3, op1(type:imm), op2(type:reg), 

op3(type:reg)) -> TernopRI(addr:$curaddr, dst(id:$instr.op3.baser), 
rsrc(id:$instr.op2.baser), isrc(val:$instr.op1.imm), 
uflags:$instr.wflags) 

 
# IMUL (reg, mem, imm) 
case instr_t(type:ar-wf, nb_op:3, op1(type:imm), op2(type:mem), 

op3(type:reg)) -> TernopRMI(addr:$curaddr, 
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dst(id:$instr.op3.baser), msrc(name:$instr.op2.name 
base(id:$instr.op2.baser), index(id:$instr.op2.indexr), 
scale(val:$instr.op2.scale), off(val:$instr.op2.imm)), 
isrc(val:$instr.op1.imm), uflags:$instr.wflags) 

 
# NEG (reg) 
case instr_t(instr:NEG, op1(type:reg)) -> TernopR3(addr:$curaddr, 

dst(id:$instr.op1.baser), rsrc1(id:$instr.op1.baser), 
rsrc2(id:$instr.op1.baser), uflags:$instr.wflags) 

 
# NEG (mem) 
case instr_t(instr:NEG, op1(type:mem)) -> TernopM3(addr:$curaddr, 

dst((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), msrc1((name:$instr.op1.name 
base(id:$instr.op1.baser), index(id:$instr.op1.indexr), 
scale(val:$instr.op1.scale), off(val:$instr.op1.imm))), 
msrc2((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), uflags:$instr.wflags) 

 
# MUL, IMUL (reg) 
case instr_t(type:ar-wf, nb_op:1, op1(type:reg)) -> 

TernopR3(addr:$curaddr, dst(id:EAX), rsrc1(id:$instr.op1.baser), 
rsrc2(id:EAX), uflags:$instr.wflags) 

 
# MUL, IMUL (mem) 
case instr_t(type:ar-wf, nb_op:1, op1(type:mem)) -> 

TernopR3(addr:$curaddr, dst(id:EAX), rsrc1((name:$instr.op1.name 
base(id:$instr.op1.baser), index(id:$instr.op1.indexr), 
scale(val:$instr.op1.scale), off(val:$instr.op1.imm))), 
rsrc2(id:EAX), uflags:$instr.wflags) 

 
# CWD, CBW 
case instr_t(type:ar, nb_op:0) -> TernopR3(addr:$curaddr, dst(id:EAX), 

rsrc1(id:EAX), rsrc2(id:EAX), uflags:0) 
 
# LEA (reg, mem) 
case instr_t(type:ar, nb_op:2) -> TernopRM(addr:$curaddr, 

dst(id:$instr.op1.baser), rsrc(id:$instr.op1.baser), 
msrc((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), uflags:0) 

 
# NOT, DIV, IDIV (reg) 
case instr_t(type:ar, nb_op:1, op1(type:reg)) -> 

TernopR3(addr:$curaddr, dst(id:EAX), rsrc1(id:EAX), 
rsrc2(id:$instr.op1.baser), uflags:0) 

 
# NOT, DIV, IDIV (mem) 
case instr_t(type:ar, nb_op:1, op1(type:mem)) -> 

TernopRM(addr:$curaddr, dst(id:EAX), rsrc(id:EAX), 
msrc((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), uflags:0) 

 
# CALL (reg) 
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case instr_t(type:c, op1(type:reg)) -> IndCallR(addr:$curaddr, 
dst(id:$instr.op1.baser), uflags:0) 

 
# CALL (mem) 
case instr_t(type:c, op1(type:mem)) -> IndCallM(addr:$curaddr, 

dst((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), uflags:0) 

 
# CALL (imm) 
case instr_t(type:c, op1(type:imm)) -> Call(addr:$curaddr, 

dst(val:$instr.op1.imm), uflags:0) 
 
# CMP, TEST (reg, imm) 
case instr_t(type:cmp-wr, op1(type:imm), op2(type:reg)) -> 

CmpRI(addr:$curaddr, snd(id:$instr.op2.baser), 
fst(val:$instr.op1.imm), uflags:$instr.wflags) 

 
# CMP, TEST, CMPSB, CMPSD, SCASB, SCASD (reg, reg) 
case instr_t(type:cmp-wr, op1(type:reg), op2(type:reg)) -> 

CmpRR(addr:$curaddr, snd(id:$instr.op2.baser), 
fst(id:$instr.op1.baser), uflags:$instr.wflags) 

 
# CMP (reg, mem) 
case instr_t(type:cmp-wr, op1(type:mem), op2(type:reg)) -> 

CmpRM(addr:$curaddr, snd(id:$instr.op2.baser), 
fst((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), uflags:$instr.wflags) 

 
# CMP, TEST (mem, reg) 
case instr_t(type:cmp-wr, op1(type:reg), op2(type:mem)) -> 

CmpMR(addr:$curaddr, snd((name:$instr.op2.name 
base(id:$instr.op2.baser), index(id:$instr.op2.indexr), 
scale(val:$instr.op2.scale), off(val:$instr.op2.imm))), 
fst(id:$instr.op1.baser), uflags:$instr.wflags) 

 
# TEST (mem, imm) 
case instr_t(type:cmp-wr, op1(type:imm), op2(type:mem)) -> 

CmpMI(addr:$curaddr, snd((name:$instr.op2.name 
base(id:$instr.op2.baser), index(id:$instr.op2.indexr), 
scale(val:$instr.op2.scale), off(val:$instr.op2.imm))), 
fst(val:$instr.op1.imm), uflags:$instr.wflags) 

 
# HLT 
case instr_t(type:s) -> Stop(addr:$curaddr, uflags:0) 
 
# IN (reg, reg) 
case instr_t(type:io-rm, op1(type:reg)) -> IoRR(addr:$curaddr, 

dst(id:$instr.op2.baser), src(id:$instr.op1.baser), uflags:0) 
 
# IN (reg, imm) 
case instr_t(type:io-rm, op1(type:imm)) -> IoRI(addr:$curaddr, 

dst(id:$instr.op2.baser), src(val:$instr.op1.imm), uflags:0) 
 
# INTO 

49 
 



case instr_t(type:i-rf-bt) -> Interrupt(addr:$curaddr, dst(val:4), 
uflags:0) 

 
# IRET 
case instr_t(type:i-r) -> IReturn(addr:$curaddr, uflags:0) 
 
# INT3 
case inst_t(type:i, nb_op:0) -> Interrupt(addr:$curaddr, dst(val:3), 

uflags:0) 
 
# INT (imm) 
case instr_t(type:i) -> Interrupt(addr:$curaddr, 

dst(val:$instr.op1.imm), uflags:0) 
 
# Jxx, LOOP, LOOPE, LOOPNE (imm) 
# Jxx = JA, JAE, JB, JBE, JE, JECXZ, JG, JGE, JL, JLE, JNE, JNO, JNP, 

JNS, JO, JP, JS 
case instr_t(type:cb) -> Branch(addr:$curaddr, dst(val:$instr.op1.imm), 

uflags:0) 
 
# JMP (imm) 
case instr_t(type:b, op1(type:imm)) -> Branch(addr:$curaddr, 

dst(val:$instr.op1.imm), uflags:0) 
 
# JMP (reg) 
case instr_t(type:b, op1(type:reg)) -> IndBranchR(addr:$curaddr, 

dst(id:$instr.op1.baser), uflags:0) 
 
# JMP (mem) 
case instr_t(type:b, op1(type:mem)) -> IndBranchM(addr:$curaddr, 

dst((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), uflags:0) 

 
# MOVSB, MOVSD (mem, mem) 
case instr_t(type:a-rm-wm) -> AssignMM(addr:$curaddr, 

dst((name:$instr.op2.name base(id:$instr.op2.baser), 
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale), 
off(val:$instr.op2.imm))), src((name:$instr.op1.name 
base(id:$instr.op1.baser), index(id:$instr.op1.indexr), 
scale(val:$instr.op1.scale), off(val:$instr.op1.imm))), uflags:0) 

 
# NOP, WAIT/FWAIT 
case instr_t(type:n) -> Nop(addr:$curaddr, uflags:0) 
 
# OUT (reg, reg) 
case instr_t(type:io-wm, op2(type:reg)) -> IoRR(addr:$curaddr, 

dst(id:$instr.op2.baser), src(id:$instr.op1.baser), uflags:0) 
 
# OUT (imm, reg) 
case instr_t(type:io-wm, op2(type:imm)) -> IoIR(addr:$curaddr, 

dst(val:$instr.op2.imm), src(id:$instr.op1.baser), uflags:0) 
 
# POP (reg) 
case instr_t(type:sp-rm, op1(type:reg)) -> AssignRM(addr:$curaddr, 

dst(id:$instr.op1.baser), src(base(id:ESP)), uflags:0) 
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# POP (mem) 
case instr_t(type:sp-rm, op1(type:mem)) -> AssignMM(addr:$curaddr, 

dst((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), src(base(id:ESP)), uflags:0) 

 
# PUSH (reg) 
case instr_t(type:sp-wm, op1(type:reg)) -> AssignMR(addr:$curaddr, 

dst(base(id:ESP)), src(id:$instr.op1.baser), uflags:0) 
 
# PUSH (imm) 
case instr_t(type:sp-wm, op1(type:imm)) -> AssignMI(addr:$curaddr, 

dst(base(id:ESP)), src(val:$instr.op1.imm), uflags:0) 
 
# POPF 
case instr_t(type:sp-rm-wf) -> AssignRM(addr:$curaddr, dst(id:EFLAGS), 

src(base(id:ESP)), uflags:$instr.wflags) 
 
# PUSHF 
case instr_t(type:sp-wm-rf) -> AssignMR(addr:$curaddr, 

dst(base(id:ESP)), src(id:EFLAGS), uflags:$instr.rflags) 
 
# RET, RETF 
case instr_t(type:r) -> Return(addr:$curaddr, dst(val:0), uflags:0) 
 
# XCHG (reg, reg) 
case instr_t(type:wm-rm, op2(type:reg)) -> XchgRR(addr:$curaddr, 

fst(id:$instr.op2.baser), snd(id:$instr.op1.baser), uflags:0) 
 
# XCHG (mem, reg) 
case instr_t(type:wm-rm, op2(type:mem)) -> XchgMR(addr:$curaddr, 

fst((name:$instr.op2.name base(id:$instr.op2.baser), 
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale), 
off(val:$instr.op2.imm))), snd(id:$instr.op1.baser), uflags:0) 

 
# XLATB 
case instr_t(type:a-rm) -> AssignRM(addr:$curaddr, dst(id:EAX), 

src(base(id:EBX), index(id:EAX)), uflags:0) 
 
# STOSB, STOSD (mem, reg) 
case instr_t(type:wm) -> AssignMR(addr:$curaddr, 

dst((name:$instr.op2.name base(id:$instr.op2.baser), 
index(id:$instr.op2.indexr), scale(val:$instr.op2.scale), 
off(val:$instr.op2.imm))), src(id:$instr.op1.baser), uflags:0) 

 
# MOV (reg, imm) 
case instr_t(type:a, op1(type:imm), op2(type:reg)) -> 

AssignRI(addr:$curaddr, dst(id:$instr.op2.baser), 
src(val:$instr.op1.imm), uflags:0) 

 
# MOV (reg, mem) 
case instr_t(type:a, op1(type:mem), op2(type:reg)) -> 

AssignRM(addr:$curaddr, dst(id:$instr.op2.baser), 
src((name:$instr.op1.name base(id:$instr.op1.baser), 
index(id:$instr.op1.indexr), scale(val:$instr.op1.scale), 
off(val:$instr.op1.imm))), uflags:0) 
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# MOV (reg, reg) 
case instr_t(type:a, op1(type:reg), op2(type:reg)) -> 

AssignRR(addr:$curaddr, dst(id:$instr.op2.baser), 
src(id:$instr.op1.baser), uflags:0) 

 
# MOV (mem, reg) 
case instr_t(type:a, op1(type:reg), op2(type:mem)) -> 

AssignMR(addr:$curaddr, dst((name:$instr.op2.name 
base(id:$instr.op2.baser), index(id:$instr.op2.indexr), 
scale(val:$instr.op2.scale), off(val:$instr.op2.imm))), 
src(id:$instr.op1.baser), uflags:0) 

 
# MOV (mem, imm) 
case instr_t(type:a, op1(type:imm), op2(type:mem)) -> 

AssignMI(addr:$curaddr, dst((name:$instr.op2.name 
base(id:$instr.op2.baser), index(id:$instr.op2.indexr), 
scale(val:$instr.op2.scale), off(val:$instr.op2.imm))), 
src(val:$instr.op1.imm), uflags:0) 

 
# LDS, LES (reg, imm) 
case instr_t(type:rm, op1(type:imm)) -> AssignRI(addr:$curaddr, 

dst(id:$instr.op2.baser), src(val:$instr.op1.imm), uflags:0) 
 
# LODSB, LODSD (reg, mem) 
case instr_t(type:rm) -> AssignRM(addr:$curaddr, 

dst(id:$instr.op2.baser), src((name:$instr.op1.name 
base(id:$instr.op1.baser), index(id:$instr.op1.indexr), 
scale(val:$instr.op1.scale), off(val:$instr.op1.imm))), uflags:0) 

 
# LAHF 
case instr_t(type:rf) -> FlagR(addr:$curaddr, uflags:$instr.rflags) 
 
# CLC, CLD, CLI, CMC, SAHF, STC, STD, STI 
case instr_t(type:wf) -> FlagW(addr:$curaddr, uflags:$instr.rflags) 
 
# Prolog - SUB (ESP, imm) 
case instr_t(instr:SUB, op2(baser:ESP), op1(type:imm)) -> 

Prolog(addr:$curaddr, framesz(val:$instr.op1.imm), uflags:0) 
 
# Epilog - MOV (ESP, EBP) 
case instr_t(instr:MOV, op2(baser:ESP), op1(baser:EBP)) -> 

Epilog(addr:$curaddr, uflags:0) 
 
# Defaultcase 
default print Unsupported instruction at address $curaddr 
 
endtrans 
 
add $curaddr $instr.len 
 
endfor 
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