

Universidade Federal de Pernambuco – Graduação
em Ciências da Computação

Undergraduate Project Proposal

Developing an Intermediate Representation
for the Analysis of Binary Code

Student: Julio Auto de Medeiros
Supervisor: Prof. André Santos

Recife, April 27, 2007

I. Context
For many years now, a considerable amount of effort has been put into
making the automated analysis of software a powerful and practical
tool in the workbench of professionals and researchers that deal with
software. In this time, many formal approaches to software verification
have been created and further research still goes on in an attempt to
make these techniques capable to answer the most relevant questions
in program analysis, some which are: Does this software have bugs?
How can these bugs be triggered? How critical are they?
 Furthermore, a branch of this research field (and a quite recent
one) is of special importance: the analysis of binary code. Being
capable of analyzing binary code enhances the possibility to answer all
those intriguing questions without the need of the source code. All that
is needed is the software in its most natural form: the bits and bytes
that are ready to be fed into a program loader. It’s in this brave and
honored quest that this work is inserted.
 The final implementation of this work’s results shall be done
upon the framework provided by the ERESI project. ERESI (ELF
Reverse Engineering Software Interface) is an open-source project
that has been developed for the past 6 years and that aims to help its
users to gather relevant information from compiled programs using
various means, such as disassembling or debugging/live analysis. One
of the ultimate goals of ERESI is to be able to perform automated
static analysis that can efficiently spot security breaches in binary
software.
 From its current state, an immediate step that the ERESI project
has to take towards the development of its static analysis features is
the conception and implementation of a low-level intermediate
representation (LIR). This will result from a joint effort between this
work’s author and a third party, where the author’s role (and,
therefore, the main objective of this work) is the formalization of the
operational semantics of a subset of the Intel IA-32 architecture
instruction set and the writing of code that translates this machine
code to the LIR with semantics information.
 The ERESI framework runs on a variety of UNIX systems,
working with the ELF executable format and having most of its
features implemented mainly for Intel x86 and SPARC architectures.
As such, any code resulting from this work shall target Linux over Intel
x86 platform.

II. Objectives
As previously stated, the main objective of this work is to make the
LIR of the project capable of expressing the semantics of programs
compiled for this specific architecture. Therefore, an implementation of
code that can analyze the instructions and translate them to the LIR
with semantics information naturally follows. It may also be desirable
to describe the operational semantics of this kind of machine code
using a formal notation such as SOS (Structured Operational
Semantics). Therefore, some effort may also be put on this task.
 The author will also be closely following the design of the IR
itself, so the final report is expected to contain a study of the
techniques and technologies involved with the conception of this IR,
e.g. existing IRs from which this one derives and analysis structures
that can be represented with our IR, as well as the reasons behind
such design choices, i.e. how it can make the analysis and, ultimately,
the verification process more powerful.
 It’s important to state that this work is, above all, very research-
oriented. As such, reading and investigating play a part even bigger
than writing and debugging proof-of-concept code. In this sense, it can
be said that a big, although less ‘tangible’, objective of this work is to
gain solid knowledge and compile information about state-of-art topics
in program analysis.
 As a brief overview of the technical aspects of the IR, the early
conception points out that the design will make use of the SSA (Static
Single Assignment) and SSI (Static Single Information) forms,
introducing the concept of data-flow analysis into the project, which
until now is only capable of performing very basic control-flow
analyses. It’s also targeted the construction of PSTs (Program
Structure Trees) of SESE (Single Entry-Single Exit) regions and VSDGs
(Value State Dependence Graphs), as means to enhance the potential
of further analysis. A small bibliography at the end of this document
can reference deeper information on this.

III. Project Schedule
May Jun Jul Aug Se

p

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

Gathering
bibliographic
references

Researching
references

Studying
Intel IA-32
Operational
Semantics

Writing
Implementati
on

Writing Final
Report

Work
Presentation

IV. Bibliography
 Vanegue J., Garnier T., Auto J., Roy S. & Lesniak R., “Next-

Generation Debuggers for Reverse Engineering”, 2007
 Plotkin G. D., “A Structural Approach to Operational Semantics”,

1981
 Cytron R., Ferrante J., Rosen B., Wegman M. & Zadeck F.,

“Efficiently Computing Static Single Assignment Form and The
Control Dependence Graph”, 1991

 Ananian C., “The Static Single Information Form”, 1999
 Johnson R., Pearson D. & Pingali K., “The Program Structure Tree:

Computing Control Regions in Linear Time”, 1994
 Johnson N. & Mycroft A., “Combined Code Motion and Register

Allocation using the Value State Dependence Graph”, 2003

V. Signatures

Julio Auto de Medeiros

Student

Prof. André Santos

Supervisor

	I. Context
	II. Objectives
	III. Project Schedule
	IV. Bibliography
	V. Signatures

