
UN I V E R S I D A D E FE D E R A L D E PE R N A M B U C O

GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

CENTRO DE INFORMÁTICA

2 0 0 6 . 2

AUTOMATIC ENGLISH REQUIREMENTS GENERATION
FROM CSP MODELS

TRABALHO DE GRADUAÇÃO

Aluna – Glaucia Boudoux Peres (gbp@cin.ufpe.br)

Orientador – Alexandre Cabral Mota (acm@cin.ufpe.br)

Recife, 03 de Abril de 2007

UN I V E R S I D A D E FE D E R A L D E PE R N A M B U C O

GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

CENTRO DE INFORMÁTICA

2 0 0 6 . 2

AUTOMATIC ENGLISH REQUIREMENTS GENERATION
FROM CSP MODELS

Monografia apresentada ao Centro de

Informática da Universidade Federal de

Pernambuco, como requisito parcial para

obtenção do Grau de Bacharel em

Ciência da Computação.

Aluna – Glaucia Boudoux Peres (gbp@cin.ufpe.br)

Orientador – Alexandre Cabral Mota (acm@cin.ufpe.br)

Assinaturas

Este Trabalho de Graduação é resultado dos esforços da aluna Glaucia Boudoux Peres,

sob a orientação do professor Alexandre Cabral Mota, sob o título de “Automatic English

Requirements Generation from CSP Models”. Todos abaixo estão de acordo com o conteúdo deste

documento e os resultados deste Trabalho de Graduação.

Glaucia Boudoux Peres

Alexandre Cabral Mota

To my parents

Acknowledgments

I want to thank everyone that, somehow, has been part of my life. This work is a result of

dedication and support from those to whom I give my sincere thanks:

• First I want to thank God for being always by my side.

• I am vastly grateful to my parents, Gaspar and Conceição, to whom I dedicate this

work. They have taught me how to live with responsibility and honesty. They are my

safe port and it is because of them that I make an effort everyday to be a better

person.

• I do thank my sister, “Mana”, and my brothers, Valmir and “Budu”, for the

encouragement, comprehension, friendship, and attention they have always given

to me.

• I especially thank Marcos for every moment we spend together, for all the

wonderful talks we have about life and learning, for being always ready to help me,

and for giving me so many advices.

• I also thank all my friends for being always there for me, for all the entertainments

we have together, and for understanding my moments of absence.

• It would be unfair not thanking to some friends in particular, who have shared with

me almost every moments of my academic life. I really want to thank “Thiaguinho”

for the company and the nice talks about our fears and indecisions on the way to

the University, and also for pushing me to do this work. I would not forget to thank

“Gigil” for always treating me with affection, and for showing me friendship and

comprehension. And I also want to thank “Guedes” for his great sense of humor.

He always got to transform any tiresome work into a great laughter.

• And I thank my supervisor, Alexandre, for having trusted me throughout this work.

Resumo

Na maioria dos sistemas de software, requisitos estão sempre sendo modificados. Uma

razão comum para isso é que a verdadeira natureza do problema, o qual o software está tentando

resolver, somente emerge quando o projeto começa a ser desenvolvido. Normalmente, com uma

mudança nos requisitos, o projeto do sistema e a implementação mudam também. Mediante isto, o

resultado é que todo o sistema deve ser testado novamente. Como os casos de teste e a

implementação tendem a representar a atualidade do projeto, é natural que a informações contidas

neles sejam utilizadas para atualizar os documentos de requisitos.

Atualmente, existe uma forte tendência para adotar modelos formais a fim de representar

os requisitos e os seus documentos associados. Modelar estes documentos com especificações

formais e escrevê-los com uma linguagem natural controlada, para que se evite a introdução de

ambigüidade e sentenças não-uniformes, é uma estratégia efetiva para garantir que nenhuma

incerteza a respeito dos seus conteúdos esteja presente.

O objetivo principal do nosso trabalho é apresentar uma ferramenta que ajude na

manutenção de documentos de requisitos, atualizados através de especificações formais em CSP

correspondentes aos casos de teste.

Palavras-chave: CSP, Geração Automática de Casos de Uso e Linguagem Natural Controlada

Abstract

 Requirements of most software systems are constantly being modified. A common reason

for this is that the real nature of the problem the software is trying to solve only arises when the

project begins to be developed. As requirements change, the system project and the

implementation also must be changed. The whole system has to be tested again. It is natural that

requirement documents become updated from test cases and implementation information, as test

cases and implementation tend to represent the most recently changes made in the project.

Nowadays, the use of formal models is increasing in industry, particularly to represent

requirements and their related documents. Modeling these documents with formal specifications

and writing them in a controlled natural language, so that the introduction of ambiguous and non-

uniform sentences is prevented, is an effective strategy to guarantee that their contents be

consistent.

The main approach of our work is to present a tool that helps in the maintenance of

requirements documents updated through formal specifications in CSP notation.

Keywords: Controlled Natural Language, CSP and Automatic Use Case Generation

Contents

1. INTRODUCTION ... 10
1.1. OBJECTIVES AND CONTEXT ... 12
1.2. DOCUMENT ORGANIZATION .. 13

2. CSP OVERVIEW... 14
2.1. BASIC CONCEPTS... 14
2.2. OPERATORS ... 15

2.2.1. Prefix... 15
2.2.2. Recursion .. 15
2.2.3. Sequential Composition .. 16
2.2.4. Choice ... 16
2.2.5. Parallel Composition .. 17

3. CONTROLLED NATURAL LANGUAGE.. 18
3.1. LEXICON.. 18

3.1.1. Verb... 18
3.1.2. Term.. 19
3.1.3. Modifier .. 20

3.2. ONTOLOGY .. 22
3.3. CASE FRAME ... 23
3.4. CASE FRAME RESTRICTION ... 25
3.5. CSP ALPHABET ... 26

3.5.1. Ontology class to CSP datatype.. 27
3.5.2. Case frame to channel .. 28

4. CSP 2 CNL TOOL .. 29
4.1. ARCHITECTURE.. 29
4.2. OVERVIEW... 32

4.1.1. User view use case generation.. 35
4.1.2. Component view use case generation ... 39
4.1.3. Word 2003 document generation .. 43

4.3. SOME CONSIDERATIONS... 43
5. CASE STUDY.. 45

5.1. EXPERIMENTS.. 45
5.1.1. First experiment .. 45
5.1.2. Second experiment .. 46

5.2. OBTAINED RESULTS... 46
6. CONCLUSION... 47

6.1. FUTURE WORKS ... 48
6.1.1. CSP models standardization ... 48
6.1.2. Automatic requirements update by test cases ... 48
6.1.3. Modify CSP file format ... 49

BIBLIOGRAPHY ... 50
APPENDIX ... 52

List of Figures

FIGURE 1.1 RESEARCH PROJECT INITIATIVES OVERVIEW .. 12
FIGURE 3.1 VERB DEFINITION ... 18
FIGURE 3.2 VERB DEFINITION EXAMPLES .. 19
FIGURE 3.3 TERM DEFINITION .. 19
FIGURE 3.4 TERM DEFINITION EXAMPLES ... 20
FIGURE 3.5 MODIFIER DEFINITION.. 20
FIGURE 3.6 MODIFIER DEFINITION EXAMPLES... 21
FIGURE 3.7 ONTOLOGY DEFINITION EXAMPLE .. 22
FIGURE 3.8 CASE FRAME DEFINITION .. 23
FIGURE 3.9 CASE FRAME DEFINITION EXAMPLE ... 24
FIGURE 3.10 CNL SENTENCES EXAMPLES ... 24
FIGURE 3.11 CASE FRAME RESTRICTION DEFINITION ... 25
FIGURE 3.12 CASE FRAME DEFINITION SETITEM ... 25
FIGURE 3.13 CASE FRAME RESTRICTION DEFINITION SETITEM .. 26
FIGURE 3.14 ONTOLOGY CLASSES ... 27
FIGURE 3.15 CSP DATATYPES DEFINITION.. 27
FIGURE 3.16 CHANNEL DEFINITION EXAMPLE IN XML.. 28
FIGURE 3.17 CSP CHANNEL DEFINITION .. 28
FIGURE 4.1 COMPONENT VIEW GENERATION CLASS DIAGRAM .. 30
FIGURE 4.2 USER VIEW GENERATION CLASS DIAGRAM .. 31
FIGURE 4.3 CSP 2 CNL TOOL MAIN SCREEN.. 33
FIGURE 4.4 CSP 2 CNL TOOL SCENARIO ... 34
FIGURE 4.5 CHOOSING A CSP FILE... 35
FIGURE 4.6 USER VIEW CSP MODEL EXAMPLE ... 36
FIGURE 4.7 USER VIEW USE CASE GENERATED .. 38
FIGURE 4.8 END OF USER VIEW USE CASE GENERATION .. 39
FIGURE 4.9 COMPONENT VIEW CSP MODEL EXAMPLE.. 40
FIGURE 4.10 COMPONENT VIEW USE CASE MAIN FLOW.. 42
FIGURE 4.11 END OF COMPONENT VIEW USE CASE GENERATION... 43

1. Introduction

Requirements, for the majority of software systems, are constantly being modified. One of

the reasons for this is that the systems are usually developed to deal with problems so complex,

with so many related entities, that there is no definitive specification for the problem. The real nature

of the problem only arises when a software solution begins to be developed. As the problem may

not be entirely defined, the requirements of the system remain necessarily incomplete.

Another non-obvious reason for the frequent changes in requirements, but not less

important, is the fact that most clients know the problem they want to solve, but not the technical

solution for it. It results in requirements modifications due to not knowing – or not accepting – the

solution chosen. The search for a final solution, which agrees with how the client views the problem

and how he deals with it, brings changes.

Besides, after the final users become familiar with the new developed system new

requirements can arise.

According to [Som03], changes in requirements happen because:

• The ones who pay for the system may impose requirements for its development

because of organizational or budgetary reasons. These requirements may conflict

with the requirements of the final users. This could happen due to the fact that,

most of the time, who pays for the development, implantation and maintenance of

the system is not one of its final users.

• A new hardware may have to be implemented and may be necessary to do an

interface of the system with other systems. Besides, the priorities of the

organization, where the system is being used, may modify, consequently bringing

changes to the necessary system’s support. New legislations and regulations also

may be created and they have to be implemented by the system. The reason for all

of this is that the company and the technical system environment may change, and

it has to be reflected in the way the system behaves.

• Large systems usually have a varied community of users. This means that, different

points of view of the system come with different users, in other words, different

people see different solutions. Those points of view bring about different

requirements and priorities that may be conflicting or contradictories. The final

requirements of the system are obtained from the conciliation of the different users’

points of view. It is evident that the balance of the support given to the different

users need to be changed sometimes.

Throughout the software life cycle, requirements documents and their related documents,

such as test artifacts, always need to be updated (maintained). The maintenance of these

10

documents is important because if an error occurs in one of them, the project can have a lot of re-

working efforts (costs). Such costs may be even greater if an error is discovered during later phases

of the development when the system is already in operation.

The cost to make a modification in a system, resulting from a requirement problem, is much

greater than a modification during the design or code phases [Som03]. Tracking changes properly

can save time and money, by identifying and fixing potential problems early in the development

cycle [HT99]. A change in the requirements usually means that the system project and the

implementation also have to be modified, and that the system has to be tested again.

Consequently, the test artifacts also have to be updated with the new changes.

Nowadays, the use of formal models, which are an abstract way to specify computer

systems to represent requirements and their related documents, is increasing in industry.

Requirements need to be specially treated in order to produce high quality documents. These

documents are the input to the formal specification activity and uncertainties should be avoided.

Investing in good requirements specification methodologies is an effective way to reduce cost.

Once a project has precise documents, it is possible to create a formal specification in order

to validate the system properties. The manual creation of formal models specification may not cover

all requirements or may contain inconsistencies regarding them. Thus, the necessity of

automatically generate requirements documents’ formal models seems to be an efficient task to be

accomplished. In order to automate the construction of formal models, the requirements documents

should be simple, direct, unambiguous and uniform. For it happens, simple languages are used to

describe them. These languages are called Controlled Natural Languages (CNL) [SLH03]. They

contain a smaller and restricted grammar than the natural languages. Thus, they prevent the writer

from introducing ambiguous and non-uniform sentences.

The work presented here is in agreement with the reality of software requirements

maintenance, making it possible to keep their related documents continuously updated. The main

approach of our work is not to hit the right requirements in the first moment, but to be ready to react

when they change.

The main contributions of our work are as follows:

• A tool to translate CSP models, written in accordance to CSP$_M$ (Machine-

readable CSP), into requirements documents written in CNL;

• A modification in the format of the CSP files proposed by [Cab06], which are our

tool input files, so that it is possible to successfully transform them into

requirements documents. This modification is necessary to recover some original

documents specification information, which is lost after the requirements

transformation into CSP models by [Cab06].

11

1.1. Objectives and Context

This work has been developed in the context of the CIn/BTC research project, which is

sponsored by Motorola Inc. [Inc07] in cooperation with CIn/UFPE [CIUFPE07]. This cooperation

started in 2003 and, initially, aimed at the creation of human resource specialists in the area of

Software Testing. The CIn/BTC is divided in three areas, formal education and hands-on training,

operation, and research. This work is related to two of the research team projects.

Figure 1.1, shows the research project initiatives that aim to improve the software

development process through automation.

One of the researcher’s projects [Sou06] was to develop a tool that automatically translate

Test Cases, written in an English CNL with a fixed grammar [Lei06], into formal model specifications

and their way back to Test Cases written in the same CNL.

Another researcher’s project [Cab06] was to develop a tool that automatically translate Use

Cases, written in the same English CNL as the previous project, into formal models specifications,

making it possible to transform Use Cases into Test Cases, both written in the same CNL, and to

maintain their documents constantly and automatically updated.

Figure 1.1 Research project initiatives overview

12

As the context of these projects is the research cooperation between CIn/UFPE and

Motorola, related to mobile applications testing, the CNL used by them and the formal specification

adopted reflects this domain. Because mobile applications may contain complex features, which

include concurrent behavior and message exchanging, the formal specification chosen is the

process algebra CSP [Ros97].

From our previous brief explanation about the projects [Sou06] and [Cab06], the translation

from Test Cases to Use Cases was not yet implemented by a tool: the translation from the formal

model to the use cases they represent written in CNL, emphasized in Figure 1.1.

In this context, the main goal of our project presented here is to develop a tool that

automatically translates a use case document represented in the CSP process algebra into its

corresponding use case document written in the same English CNL used by [Sou06] and [Cab06].

Such a tool must provide the translation of use cases documents, represented in the CSP notation,

into their corresponding Microsoft Word 2003 [LLM04] documents, written in the English CNL.

1.2. Document Organization

Chapter 2 presents an overview of the CSP language, describing its basic concepts.

Chapter 3 introduces the English Controlled Natural Language with a fixed grammar used

to represent the use cases steps.

Chapter 4 presents our main contribution: a tool to translate use case documents

represented in the CSP notation into corresponding documents written in English CNL.

Chapter 5 discusses the results obtained after experiments using the proposed tool.

And finally, Chapter 6 summarizes our contributions, contrasts the proposed solution with

related work, and suggests topics for further research.

13

2. CSP Overview

CSP (Communicating Sequential Processes) may be defined as a formal language for

describing patterns of interaction in concurrent systems [Ros97]. CSP allows the description of

systems in terms of component processes that operate independently, and interact with each other

through message-passing communication.

The language of CSP was designed for describing systems of interacting components, and

it is supported by an underlying theory for reasoning about them [Sch99]. The conceptual

framework taken by CSP is to consider components, or processes, as independent self-contained

entities with particular interfaces through which they interact with their environment. This viewpoint

is compositional, in the sense that if two processes are combined to form a larger system, that

system is again a self-contained entity with a particular interface: a larger process.

The relationships between different processes, and the way each process communicates

with its environment, are described using various process algebraic operators. Using this algebraic

approach, quite complex process descriptions can be easily constructed from a few primitive

elements.

In our approach, the CSP process algebra was the formalism adopted to express

concurrence and parallelism between the components in an effective way.

The next sections will present basic elements of CSP.

2.1. Basic Concepts

Processes are the basic entities that capture a behavior. Each process can be defined by

equations and, in general, a set of process is used to get modularity. Beyond denoting modules of a

system, the name of a process can denote the state of a process.

The behavior of a CSP process is described in terms of events, which are immediate

operations, like OPEN or CLOSE that may transmit information. A primitive process can be

understood as a representation of a basic behavior. There are two primitive processes: STOP and

SKIP. STOP is the process that doesn't communicate anything and it is used to describe the break

of a system, as well as a deadlock situation. SKIP is the process that indicates that the execution

was contained with success.

Since a process interacts with other processes only through its interface, the important

information in the description of a process concerns its behavior on that interface.

The interface of a process is described as a set of events. An event describes a particular

kind of atomic indivisible action that can be performed or suffered by the process. In describing a

process, the first issue to be decided must be the set of events which the process can perform. This

14

http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Pattern
http://en.wikipedia.org/wiki/Interaction
http://en.wikipedia.org/wiki/Concurrent_systems
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Process_calculi

set provides the framework for the description of the process. Each event must be identified by

unique name. One event may occur many times in the process behavior. Along with events,

datatype are defined to structure the data transmitted between events. The set of datatypes and

events, defined during the formal model specification of a specific domain application, is called an

alphabet.

A channel has the same behavior of an event, but communicates a value. It can be an input

or output channel. When an event is defined it is possible to determine if it will communicate some

information or if it will only represent a specification phenomenon.

Processes communicate with each other through synchronization in their events. These

communications could or not carry data, which means that a process can pass to or receive

information from other processes. The communication in CSP means: Interaction, Observation and

Synchronization. Interaction, because two or more processes interact through the communication;

Observation, as we can only observe the behavior of the processes through its communication; and

Synchronization, when two processes, that are executing in parallel, synchronize their executions

through the communication.

2.2. Operators

There many CSP operators and we present in this section some of them. All the CSP

operators can be found in [Hoa85] and in [Ros97].

2.2.1. Prefix

The prefix is the simpler operation involving a process. It defines a process engagement on

an event and then the process behavior is like the suffixed process.

Let x be an event and P a process, the (x P) represents the process that waits

indefinitely by x, and then behaves like the process P. This operator can be used to model recursive

processes.

2.2.2. Recursion

Recursion in CSP is the ability of a process to enter a loop behavior. The operator (),

presented in the previous subsection, can be used to model recursive processes. The behavior of

the processes (P = x P) is the indefinite repetition of the event x.

15

2.2.3. Sequential Composition

Processes execute when they are invoked, and it is possible that they continue to execute

indefinitely, retaining control over execution throughout. It is also possible that control may pass to a

second process, either because the first process reaches a particular point in its execution where it

is ready to pass control, or because the second process demands it. The mechanism for

transferring control from a terminated process to another process is sequential composition.

The sequential composition operator used is (;). The process (P = A ; B) initially behaves

like A, and the like B when A is terminated successfully.

2.2.4. Choice

By means of prefixing and recursion it is possible to describe objects with a single possible

stream of behavior. However, many objects allow their behavior to be influenced by interaction with

the environment within which they are placed. If x and y are distinct events (x P | y Q)

describes an object which initially engages in either of the events x or y. After the first event has

occurred, the subsequent behavior of the object is described by P if the first event was x, or by Q if

the first event was y. Since x and y are different events, the choice between P and Q is determined

by the first event that actually occurs.

There are also the operators for External Choice and Internal Choice. The operator (�)

belongs to External Choice. In this case, the environment controls the choice between the options

of behavior. The process (a P � b Q) tries to communicate the initial events a and b. If the

environment accepts to communicate a, the process starts to behave like P. On the other hand, if

the environment accepts to communicate b, the process starts to behave like Q. Due to the fact that

the environment is the one who controls the choice between the behaviors, the operator (�) is

also known as deterministic choice.

The operator (Π) belongs to Internal Choice. This operator is similar to the previous

operator but denotes a process that behaves like either of the processes in a nondeterministic way

without the knowledge of the external environment. The process (x P Π x Q) means that if x is

an event from both P and Q, the choice between them is non-deterministically defined. The process

behaves like P or Q, arbitrarily.

16

2.2.5. Parallel Composition

When two processes are put in concurrent execution, in general, the desire is that one

interacts with other. The interactions can be viewed as events that require the simultaneous

participation of both processes. Let P and Q be processes with the same alphabet, P || Q

represents a process in which P and Q must be synchronized in all events. So an event x only

occur when both processes are ready to accept it.

The process P [|X|] Q synchronizes P and Q in the event of the set X. P and Q can interact

independently with the environment through the events outside the set X.

The process P ||| Q allows P and Q to execute concurrently without synchronization

between them. Each event, offered to interleave of two processes, occur only in one of them. If both

are ready to accept that event, the choice between the processes is non-deterministic.

17

3. Controlled Natural Language

This chapter introduces the Controlled Natural Language (CNL), which can be seen as a

processable version of English and is used to write use case steps making it possible to accomplish

validations and transformations.

The CNL grammar is basically a subset of the English grammar. Its sentences construction

contains domain specific verbs, terms, and modifiers. The phrases construction is centered on the

verb. Domain terms and modifiers are combined in order to take thematic roles around the verb

[Fil76]. This strategy is detailed in [Lei06] where it has been used to translate test cases sentences

into CSP constructions. The following sections describe the knowledge bases used to store these

vocables involved in the definition of the CNL. In our approach, these knowledge bases are used

by our tool (specified in Chapter 4) in order to achieve the translation from CSP constructions to use

cases CNL sentences.

3.1. Lexicon

The Lexicon stores vocables that may appear in CNL sentences. Each vocable may be a

verb, a term, or a modifier. Each one of these vocables will be described in the following

subsections.

3.1.1. Verb

A verb is used to define an action accomplished by the user, to give a description of the

system state and the system response, or to specify a message. Actions are described as

imperative commands, such as a statement to the user or component to accomplish some

operation. In the case of the user view, the verb usually acts as a command in the user action

column sentences, which are operations that the user executes in order to obtain a system

response.

Figure 3.1 Verb definition

18

Figure 3.1 is the XML [RM01] structure used to define CNL verbs. The verb definition

contains possible verb forms, such as present or past tense. The name tag contains the verb in the

infinitive form. The infinitive form is used in present tense sentence constructions. The third-person

tag defines the singular third person forma as it may vary. The gerund tag contains the gerund form

of the verb (-ing). The past tag defines the past tense form of the verb and the participle tag its

participle form. Figure 3.2 contains some examples of verb definitions.

Figure 3.2 Verb definition examples

3.1.2. Term

A term is considered an element, or entity, from the application domain. It may be just a

noun or a noun combined with adjectives or other nouns. It is seen as an application domain object

that is manipulated somehow by user or by components throughout the use case execution. The

Figure 3.3 is the XML [RM01] structure used to define CNL terms.

Figure 3.3 Term definition

19

The name tag is the term’s name itself. It contains the singular form of the term. The plural

tag contains the plural form of the term. The class tag defines the Ontology class it belongs to,

which determines how the term is related to other terms. Finally, the model tag contains the CSP

code representation of the term. This representation is used to define CSP datatype values. Figure

3.4 contains some examples of term definitions.

Figure 3.4 Term definition examples

As can be seen in Figure 3.4, the term conversation history, for instance, has the plural

defined as conversation histories and belongs to the list class of the Ontology. Consequently

conversation history is treated as a list by the verbs that refer to this class. Finally, its CSP code is

defined as CONVERSATION_HISTORY.

3.1.3. Modifier

A modifier can be anything that qualifies a term, such as an adjective or an adverb. It may

be even a noun, once nouns can detail terms characteristics. Figure 3.5 is the XML [RM01]

structure used to define modifiers.

Figure 3.5 Modifier definition

20

Over again, the name tag specifies the name of the modifier. The position tag defines

whether the modifier goes before or after the term. The precedence tag specifies the priority order

among the modifiers. The number tag is used to determine whether the modifier agrees with a

singular or a plural term. Then, the article tag defines whether the modifier can be preceded by a

definite or an undefined article. Finally, the model tag contains the CSP code representation of the

modifier, so it is used to define CSP datatype values.

Figure 3.6 Modifier definition examples

Figure 3.6 illustrates three modifier definitions. The with <int/> <term/> modifier is used

along with an integer and a term. To better understand this modifier, consider as an example the

sentence Create a message with 3 images. The number 3 is the integer that goes after with and

images is the other term required by the modifier construction.

21

3.2. Ontology

As mentioned before, each application domain has specific elements and entities. They are

called terms and are grouped into classes according to their characteristics. These classes can also

be related by inheritance. An Ontology defines the grammatical classes and their hierarchies.

Figure 3.7 Ontology definition example

Figure 3.7 illustrates a small fragment of the Ontology that defines the Object, Value, State

Value, Field Value, Location Value, and Color Value classes. The State Value, Field Value,

Location Value, and Color Value classes inherit the Value class, and the Value class inherits the

Object class. In Figure 3.4, the term conversation history is a list due to the fact that it belongs to

the list class of the Ontology. This class aims to restrict the way terms are combined with verbs to

avoid inconsistent sentences in the use cases.

22

3.3. Case Frame

The case frame defines the relation between verbs and terms, more specifically it defines

how ontology classes are combined with verb complement definitions. Each case frame determines

how a verb can be used to instantiate a sentence. The case grammar formalism [Fil76] is used in

order to define how verbs are associated with terms, which can be detailed by modifiers. Each term

takes a certain thematic role around the verb; it can be an agent or theme of the sentence, for

instance. Each case frame can also be associated to more than one verb, all of them assuming the

same meaning (synonymous).

Figure 3.8 is the XML [RM01] structure used to define case frames.

Figure 3.8 Case frame definition

Each frame tag contains a case frame definition. The description tag gives a brief

explanation about how the case frames can se used, possibly including examples. The name tag

identifies the case frame. The verblist tag contains a set of verb tags that refer to the verbs related

to this case frame. The verbs from this list should have the same semantic meaning. Consequently,

they own the same arguments defined in the roles tags. Each role tag determines a possible verb

argument and its type. It has the mandatory attribute, which determines whether the argument is

obligatory or not.

23

The following are the possible role types for role tag:

• agent: a term that executes the verb action.

• theme: a term that suffers the verb action.

• from-value: a term that determines the theme past value.

• to-value: a term that determines the theme future value.

• from-loc: a term that determines the theme past location.

• to-loc: a term that determines the theme future location.

• at-loc: a term that determines the theme current location.

• instrument: a term that determines the way the agent executes the verb action.

An example of a case frame definition is shown in Figure 3.9. The Select Item identifies the

case frame defined by the select and the choose verbs. The agent and the theme are mandatory,

thus they need to be specified when these verbs are used. The from-loc is optional. As a result, it is

not necessary to specify this argument.

Figure 3.9 Case frame definition example

To illustrate how verbs are associated with their arguments, some examples of CNL

sentences are shown in Figure 3.10.

Open the URL link with browser. Open <theme> <instrument>
Exit from the message menu. Exit <from-loc>

Return to saved messages folder. Return <to-loc>
Phone is in message inbox screen. <theme> is <at-loc>

Figure 3.10 CNL sentences examples

24

3.4. Case Frame Restriction

The case frame restriction defines the relation between verb’s arguments and Ontology

classes. Each verb’s argument belongs to an Ontology class in order to restrict the way phrases are

written. This minimizes the possibility of writing semantically wrong sentences.

Figure 3.11 shows the XML [RM01] structure used to define case frame restrictions.

Figure 3.11 Case frame restriction definition

The frame tag defines a case frame restriction and its identification is captured by the name

tag. It contains the restrictions tag that holds all possible restrictions. Each restriction tag contains

an attribute name for identifies and a list of class tags. Each class tag defines the Ontology class

associated with the verb’s argument role.

The following Figures contain the case frame definition SetItem for the verbs set and check

(Figure 3.12), and its respective case frame restriction (Figure 3.13).

Figure 3.12 Case frame definition SetItem

25

As can be noticed, the case frame SetItem contains the roles: agent, theme and to-value.

So, for those three roles, there are four defined restrictions.

Figure 3.13 Case frame restriction definition SetItem

The first three roles restrict the theme and the to-value arguments, and the fourth restricts

only the theme argument, once the to-value argument is not mandatory. Each restriction has a

name, which is used to define a CSP datatype. To conclude the restriction definition, it is necessary

to associate every role to an ontology class. This association restricts verb arguments, for instance

the DTSET_FIELDVALUE_FIELD restriction defines that the theme is a term from the Ontology

class field and the to-value argument belongs to the field_value class.

3.5. CSP Alphabet

In order to define use cases in natural language (CNL), it is necessary to specify CSP

definitions, which are able to recognize and manipulate a CSP event. As mentioned in Section 2.1,

CSP events are abstracts events that mean real actions, taken by the users or the system.

The result of mapping all structures, which are necessary for processing CSP structures to

natural language, is a CSP file named CSPHeader. This file contains all definitions (datatypes,

tuples and channels) used for interpreting CSP events as natural sentences in CNL.

In this section, is described how the CSPHeader file is generated.

26

3.5.1. Ontology class to CSP datatype

For each Ontology class, there is an associated specific CSP datatype. As can be seen in

Figures 3.14 and 3.15, Ontology classes are mapped to CSP datatypes. The datatype elements

refer to subclasses of a bigger class. It thus become clear that the same hierarchy level established

on Ontology can be defined in the CSP datatypes.

Figure 3.14 Ontology classes

Figure 3.15 CSP datatypes definition

 The datatype Value, considering Figure 3.15, is a CSP datatype that can have a

StateValue, or a FieldValue.

27

3.5.2. Case frame to channel

The thematic roles of case frames are represented as parameters of CSP channels. For

each role and its set of restrictions, which are defined by case frame restriction, defined datatypes

are used as parameters to the channels. Thus, the CSP channel that defines the case frame

showed in Figure 3.12 can receive three parameters, which specify the thematic roles agent, theme

and to-value. The CSP channels receive tuples in two arguments. First argument is the thematic

role and the second one is a set of modifiers ({} in CSP).

The following figures show how a CSP channel is defined. The CSP channel Set was

defined based on the case frame illustrated in Figure 3.12 and it can receive two kinds of

parameters for one or two tuples either.

Figure 3.16 Channel definition example in XML

Figure 3.17 CSP channel definition

Using the definition in XML, the CSP channel is generated. The datatype DTSet is

automatically created following the restrictions on case frame. Notice that the names of restriction

are the same used on the channel definition.

28

4. CSP 2 CNL Tool

This chapter describes the automation strategy used to translate CSP models from both

user and component view use cases into their corresponding use cases document, written in

English CNL.

Section 4.1 discusses some architecture issues related to the tool design. In Section 4.2,

we introduce an overview of the tool which translates CSP into CNL.

4.1. Architecture

The CSP 2 CNL tool was implemented using Java language [Gra97] and Eclipse platform

[CR04]. The purpose of using Java is to guarantee executions in multiple platforms. The Eclipse

platform is an open and freeware platform that is useful to give support to build IDEs (Integrated

Development Environments) that can be used to create a great variety of applications, such as

web-sites, Java, C or C++ programs, applications to Embedded Systems, and many others.

The Java language and the Eclipse platform were chosen because they were the

programming language and the development platform used by the tool implemented by [Cab06].

In order to better visualize the class diagram, it was divided into two class diagrams: one

representing the relation between the classes involved in the user view use cases generation, and

another diagram to represent the relation between the classes involved in the component view use

cases generation. Component and user view uses cases are explained in Section 4.2. Figures 4.1

and 4.2 shows the class diagrams created.

29

Figure 4.1 Component view generation class diagram

30

Figure 4.2 User view generation class diagram

31

The CNLGeneratorGUI class is where the implementation of our tool graphic’s interface

takes place. It has an instance of the CNLGenerator class which processes the translation from

CSP to CNL and generates the Word 2003 documents files. In order to effectively translate

component and user view files the CNLGenerator verifies if the input file is an instance of a

CSPUserViewFile or of a CSPComponentViewFile, and delegates the transformation for one of

them.

Once the input file’s instance is checked, its related class (CSPComponentViewFile or

CSPUserViewFile) starts the transformation. In parallel, it does the file’s parsing while creating the

use cases (CSPComponentViewUseCase or CSPUserViewUseCase), flows (CSPComponentView-

UseCaseFlow or CSPUserViewUseCaseFlow) and steps (CSPComponentViewUseCaseStep or

CSPUserViewUseCaseStep) objects. During the file’s parsing, the CSP sentences are kept in

CSPSentence objects, where they are translated to CNL sentences and have the right restrictions

applied to their verb’s arguments and modifiers, which are represented by a list of

CSPSentenceItem.

As the use cases, flows and steps objects are filled with the information that came from the

input CSP file, and the steps sentences are already translated to CNL, they are ready to be written

in Word 2003 documents. The CNLGenerator receives these objects and apply their attributes to

the corresponding (component view or user view) template document, which are written using

Velocity, as it is explained in Section 4.2.3.

4.2. Overview

The CSP 2 CNL tool, illustrated in Figure 4.3 translates both user and component views use

cases documents written in the CSP notation into their corresponding Microsoft Word 2003 [LLM04]

documents, written in English.

32

Figure 4.3 CSP 2 CNL tool main screen

The main difference between a user view use case and a component view use case is that

the first one is generated from requirements documents and the second one is generated from

architecture documents. The user view use cases clearly describe the system behavior when one

single user executes it, by specifying the user operations and expected system responses. In the

other hand, a component view use case specifies the system behavior based on the user

interaction with the system components. In this view, the system is decomposed into components

that concurrently process the user requests and communicate among themselves.

For each user view use case, it can be defined a related component view use case and

user view steps are decomposed into component messages exchange. In the component view, it is

defined the component that is invoking an action and the one that is providing the service. It is a

message exchange process composed by a sender, a receiver and a message. The user from the

user view use case is viewed here as a component, and can either send or receive messages to

and from components, respectively. A component can also send a message to itself. These

particularities enable the definition of concurrent scenarios, which is a non-functional requirement.

Thus, components can share resources and exchange messages.

Both user and component views use cases are translated to their formal model

specifications in CSP by the Use Model Generator tool proposed in [Cab06]. The use cases are first

written according to CNL grammar, which is defined by knowledge bases, before the translation to

33

their corresponding CSP models. The method that makes it possible to translate each CNL

sentence from the use cases templates into CSP events is defined in [Cab06].

Figure 4.4 CSP 2 CNL tool scenario

Once the CSP models are created, they become the input to the CSP 2 CNL tool, as can be

seen in Figure 4.4. Due to the fact that either the user view or the component view use cases

represents different views of the system requirements, they also have distinct CNL template

documents representations. The Use Model Generator tool receives each template document and

generates different CSP model structures descriptions with particularities that have to be treated

separately in order to generate their corresponding CNL constructions.

The CSP 2 CNL tool gives a different treatment to both user view and component view CSP

models generated by the Use Model Generator in order to transform them into their correspondents

CNL use case Word 2003 documents templates.

The following subsections summarize the functionalities the CSP 2 CNL tool performs.

34

4.1.1. User view use case generation

In order to generate the user view use case document, written in CNL, it is necessary that

the user of the CSP 2 CNL tool chooses an user view CSP file, as it is illustrated in Figure 4.5.

Figure 4.5 Choosing a csp file

After the file selection and the Generate button is pressed, the tool automatically starts to

execute the transformation. Figure 4.6 shows an example of a user view CSP file.

35

Figure 4.6 User view CSP model example

The tool reads the file in order to identify whether it’s a user or component view

representation. It is done by checking via a regular expression if the term Comp is presented inside

the file. A more detailed explanation about the use of the term Comp is presented in Section 4.2.2. If

the term is not found, then the current CSP file is an instance of a user view file.

Next, the tool executes the file parser, keeping in Java objects the information about its use

case(s). A major object is created to keep the feature information and the use case(s). Each use

case is treated as an object that keeps the use case id, name, and flows. The use case flows are

also represented as an object that stores the information regarding to the flows in order to make it

36

possible to organize all the steps, found in the CSP file, into main and alternatives flows. Each flow

has its From Step and To Step attributes, and its set of sequential steps.

Then, for each step of the flows, three possible CNL sentences types are generated: one

for the User Action, another, if any, representing the System State, and another for the System

Response. Using the action sentence Select all contacts in step UC_01_3M as an example

of sentence in Figure 4.6, the CNL generation is done as follows:

• The sentence’s verb (Select) is found by the channel select.

• The restriction DTSEL_LISTITEM is applied to the verb’s argument

(CONTACT_ITEM, {ALL}). The verb’s argument is also translated to CNL. In this

case, CONTACT_ITEM becomes contact in CNL. The modifier ALL is also

translated to the CNL term all. The xml specification of the modifier in the CNL

Lexicon base defines how the modifier will be appended to the sentence. In this

case, the definition of the modifier ALL says that it comes before the term it

modifies and makes the term go to its plural form. At this point, the CSP sentence is

already translated to its corresponding CNL sentence: Select all contacts.

As the use cases, flows and steps were already organized in objects, which represents the

links between feature and use cases, use case and flows, and flows and steps, finally the tool is apt

to structure the Word 2003 document, summarized in Section 4.2.3. The next figure, illustrates the

use case main flow generated by the component csp file showed in Figure 4.6.

37

Figure 4.7 User view use case generated

When the transformation from CSP to CNL terminates, the CSP 2 CNL user is informed as

can be seen in Figure 4.8. The user view use case document is now written in the English CNL.

38

Figure 4.8 End of user view use case generation

4.1.2. Component view use case generation

As it was mentioned before, the treatment given to component view CSP models, so that it

is possible to translate them into use cases CNL documents, is quite different from the one given to

user view CSP models. It happens because the component CSP model structure itself is different

from the one adopted in the user CSP. This difference is well described in Chapter 4 of [Cab06].

Figure 4.9 shows an example of a component CSP. One of the differences that can be

noticed is that the channels now have their names suffixed by Comp, making the user and

component view CSP alphabets different.

Each component process is defined as a sequence of messages communicated with other

component. Figure 4.9 is illustrating only the USER_P process, which groups all the messages

exchanged into the USER and the other components for the presented use case. The remaining

processes, that groups the messages related to other use case components, is structured in the

same way that the USER_P.

For every component use case steps there are now two CSP events. Each CSP event

shows the sender and receiver components involved in its message exchange. In Figure 4.9, the

message Read incoming message has the CSP notation in the USER_UC_02 process as

readComp.USER.MESSAGE_APP.DTREA_SENDABLEITEM.(INCOMING_MESSAGE, { }).

Between the channel name (readComp) and the restriction name (DTREA_SENDABLEITEM) comes

the sender (USER) and receiver (MESSAGE_APP) components.

39

Figure 4.9 Component view CSP model example

In order to transform the component CSP into its corresponding Word 2003 document

template, the component CSP file needs to be selected in the CSP 2 CNL main screen in the same

way as the user view csp file, as it was showed in Figure 4.5. After the file selection and the

Generate button is pressed, the tool automatically starts the transformation.

The tool reads the file in order to identify whether it’s a user or component view

representation. It is done by simply looking for the term Comp using a regular expression. The

expression differentiates the term Comp, which comes appended to CSP channel names, from

other similar terms. If the term is found, then the current CSP file is an instance of a component

view file.

Next, the tool executes the file parser, keeping in Java objects the information about its use

case(s). A major object is created to keep the feature information and the use case(s). Each use

40

case is an object that keeps the use case id, name, and flows. The use case flows are also

represented as an object that stores the information regarding to the flows in order to make it

possible to organize all the steps, found in the CSP file, into main and exceptions flows. Each flow

has its From Flow and To Flow attributes, and its set of sequential steps.

Then, for each step of the flows, two possible CNL sentences are generated: one for the

Message exchanged by the components, and another, if any, for the representation of the System

State. Using the message Read incoming message in Figure 4.9 as an example, the CNL

generation is done as follows:

• The sentence’s verb (Read) is found by the channel readComp.

• The sender (User) and receiver (Message App) components are extracted from

the CSP sentence by the terms USER and MESSAGE_APP.

• The restriction DTREA_SENDABLEITEM is applied to the verb’s argument

(INCOMING_MESSAGE, { }). The verb’s argument is also translated to CNL. In

this case, INCOMING_MESSAGE becomes incoming message in CNL. If there

were modifiers to the verb’s arguments, they would also be translated to CNL and

appended to the sentence regarding their definition in the CNL Lexicon base. At

this point, the CSP sentence is already translated to its corresponding CNL

sentence: Read incoming message.

As the use cases, flows and steps were already organized in objects, which represents the

links between feature and use cases, use case and flows, and flows and steps, finally the tool is apt

to structure the Word 2003 document, summarized in Section 4.2.3. Figure 4.10 illustrates the use

case main flow generated by the component csp file showed in Figure 4.9.

41

Figure 4.10 Component view use case main flow

When the transformation from CSP to CNL terminates, the CSP 2 CNL user is informed as

can be seen in Figure 4.11. The component view use case document is now written in the English

CNL.

42

Figure 4.11 End of component view use case generation

4.1.3. Word 2003 document generation

In order to write user and component view use cases into Word documents, the tool utilizes

the both use cases templates defined in Chapter 3 of [Cab06].

Our generation strategy was to get the XML Word representation for both templates and

work with them. This representation is called WordprocessingML [MC03], also known as WordML,

which is the XML file format for Microsoft Word 2003 documents. These documents are used to

create templates with Velocity [Vel07], a tool to generate text that aggregates Java object

information with the files described in WordML. Then, Velocity specific demarcations are added to

the WordML files. These demarcations will be properly replaced with their related Java objects

information.

With the use cases, flows and steps organized in Java objects, as it was explained in

Sections 4.2.1 and 4.2.2, it was easy to compose the Word document.

4.3. Some considerations

In order to make it possible the presented tool successfully translates CSP models use

cases files into Word 2003 use cases documents, some changes were made in the CSP files

generated by [Cab06], which, in fact, have become our input files to the examples posted here and

to the experiments in Chapter 5. These modifications were taken as follows:

User view CSP files:

• The only field added to the user view CSP files was -- Feature: XXXX, where

XXXX means the feature id. This field was added before the use cases

specifications in order to retrieve the feature ids.

43

Component view CSP files:

• In order to retrieve the feature ids, the field -- Feature: XXXX, where XXXX

actually means the feature id, was also added before the use cases specifications.

• Line -- UC_XX - useCaseName is introduced, where UC_XX is the use case id

and useCaseName is the place where the use case name appears. This line is the

first line of every new use case of every CSP file. This allows us to find the use

cases id and name.

• Before each step sentence written in CNL, the field -- Step: UC_XX_YY was

added, so that the step id, related to the step where the sentence came from in the

original use case document, could be retrieved.

• The tag _Start was added to every reference of an exception flow’s first step in

order to make it possible to find the beginning of each flow. Whenever a step is

some flow’s first step, its reference in the CSP file appears as UC_XX_YY_Start.

The previous modifications were necessary to avoid losing the original use cases

specifications information after their transformation into CSP models by the tool developed in

[Cab06]. Without considering the previous modifications, it would be impossible to create use cases

documents with the same information presented in the original documents.

44

5. Case Study

This chapter summarizes the results of some experiments that were made in the Motorola’s

context. These experiments aim to evaluate the effectiveness of the automation strategy achieved

by the tool presented in the previous chapter. Their mainly goal is to show examples of usage of the

tool related to its input and output points of view. Hence, two experiments have been accomplished,

involving real Motorola’s requirements documents.

Section 5.1 explains how the experiments have been executed and Section 5.2 lists the

main points of their results in a brief and comprehensive manner.

5.1. Experiments

The experiments made included requirements documents that contain both user and

component view uses cases. For each experiment it was defined different use cases. However, all

use cases were essentially the same size, including a main execution flow and at least one

alternative or exception flow.

For the first experiment, two requirements documents were chosen. Each one contained

only one use case from a different view of the system.

The second experiment was composed of two different requirements documents, including

two use cases each.

5.1.1. First experiment

For the first experiment execution, there were chosen two simple requirements documents,

one containing a user view use case, and another containing a component view use case. There

were chosen simple documents structures so that it could be possible to verify if our proposed tool

is, in fact, translating the use cases steps sentences from CSP to CNL and organizing the

documents as they are organized in the templates defined by [Cab06]. The original Motorola’s

documents selected, written in these templates, can be seen in Appendix A, Sections A.1 and A.3.

At the beginning of the experiment, the Use Model Generator tool developed by [Cab06]

was used in order to generate the CSP files, containing the use cases formal models. Fragments of

these files are illustrated in Chapter 4, Figures 4.6 and 4.9.

Once the use cases formal models were created, they became our CSP 2 CNL inputs. After

executing our tool, it successfully translated the CSP files into Word 2003 documents files written in

English CNL, as can be seen, in their complete version, in Appendix A, Sections A.2 and A.3.

45

5.1.2. Second experiment

For the second experiment execution, there were chosen two requirements documents, one

containing two user view use cases, and another containing two component view use cases.

There were chosen more elaborated requirements documents with two use cases each in

order to verify if our proposed tool is not only translating the use cases steps sentences from CSP

to CNL and organizing the documents following the defined templates, but also to verify that it is

also treating documents with more than one use case and organizing them, keeping their steps and

flows links as they appear in the original Motorola’s documents. These documents can be seen in

Appendix B, Section B.1 and B.3.

At the beginning of the experiment, in the same way as the first experiment did, the Use

Model Generator tool developed by [Cab06] was used in order to generate the CSP files, containing

the use cases formal models. Figures 4.6 and 4.9, in Chapter 4, show fragments of the CSP files

used.

Once the use cases formal models were created, again they became our CSP 2 CNL

inputs. After executing our tool, it has successfully translated the CSP files into Word 2003

documents files written in English CNL, as can be seen in Appendix B, Sections B.2 and B.3.

5.2. Obtained results

The two experiments have had satisfactory results as can be verified by the comparison

between Motorola’s documents and the ones generated by CSP 2 CNL tool, that are showed in

Appendix at the end of this work.

Although the documents generated by our tool have some mismatched format structures,

for instance different font types in some words, and some different arranging of the spaces between

flows, in general they are very similar to the templates used by Motorola’s documents.

The main automation strategy was achieved as the documents generated by our tool show

the uses cases, with the right connections between their flows and steps, in accordance to the

original documents.

46

6. Conclusion

When comparing the development of software systems to other projects types, as

engineering projects for instance, it is a fact that they present different challenges to be achieved.

Software systems may suffer frequent changes in their specifications throughout their life cycle as

their development projects are prone to change. Original requirements almost always change after

activities of design or implementation have started. No matter what the reasons are, whether

external, internal, technical or learning, requirements change. That is a factor of life. Besides,

software projects have the capacity to allow changes that engineering projects do not have.

Renaming an artifact, throwing away a project prototype, or even deleting some parts of what is not

important anymore for the project are characteristics not presented in the physic reality of Civil

Engineering projects, for instance. Throwing away prototypes is complicated, even to elaborate

them is a tough work to be accomplished by engineers. It is true that they build houses for a longer

time than we develop software, so it is reasonable that Engineering has stronger established

concepts than we do.

Even though the idea that something has to change, most of time, brings apprehension,

changing requirements need to stop to be seen as a threat and start to be seen as an opportunity. If

the requirements of a software system do not change, this means that they are fixed and known.

The truth is that anyone can implement them, even their competitors. In other words, the

requirements stop being “utility” to become “commodity”, they are not anymore what makes a

difference between a software and another. Keeping well informed with the evolution of

requirements is critical as requirements represent the rationale behind development and the

milestones against which project success is measured.

As requirements are the agreement between clients and developers, writing their

documents in a controlled natural language has demonstrated that their resulting artifacts are non-

ambiguous and better understood by the ones involved with the software system development.

Besides, the requirements changes management becomes less painful, as they are clearly written.

However, dealing with changes in requirements means that a set of related documents has

also to be changed. And that is a pain in the neck. It takes time, and usually, it wastes more time

than expected.

As software developers, our work is to create mechanisms that make it possible to

automate tasks to our clients. It is more than natural that we bring to our environment automations

that help us to develop software with more quality and speed. Working with the requirements

changes in an automated way it is nothing else than to use the philosophy that we use with our

clients. It seems to be a great catch to automate the requirements maintenance so that their

47

documents would be frequently updated as soon as new changes arise. The use of formal models

has become a hand on the wheel to specify requirements and to enable automation.

Our work presented an approach to automate the translation form formal models

specifications, written in CSP notation, to requirements documents, written in an English controlled

natural language. The CSP 2 CNL tool implemented makes it possible to keep in track with

requirements changes as they happen during the entire software life cycle. It has demonstrated to

be effective dealing with CSP models files so that they could be transformed into use cases Word

2003 documents written in English.

6.1. Future works

This section contains some suggested improvements to make the use of our proposed

approach more practical.

6.1.1. CSP models standardization

The automation strategy presented in this work and implemented by the tool CSP 2 CNL is

the link that was missing between the tools developed by [Cab06] and [Sou06] so they could work

together. These last two tools constitutes a part of a major project inserted in Motorola's context,

where there were proposed some strategies to automate the process of keeping requirements

documents updated by their related test cases.

Thus, in order to make these three tools work together, it is necessary that the CSP models

files generated by [Cab06] and the ones generated by [Sou06] are created following the same

format. Currently, as these projects were developed separately, the CSP models created by them

are structured in different formats.

As the input CSP models files of our tool use the format adopted and created by [Cab06], a

suggested future work is to get the CSP files generated by [Sou06] and modify their format so that it

become the same format as our tool input files.

6.1.2. Automatic requirements update by test cases

Another suggestion for a future work is to make it possible that our CSP 2 CNL tool works

attached to the tools developed by [Cab06] and [Sou06], so that the transformation from CSP to

CNL could be executed automatically, without users interaction.

As soon as a CSP model is generated by the tool in [Sou06], which translates test cases

into their corresponding CSP models, the CSP 2 CNL tool should transform it to its corresponding

48

use case written in English CNL. Thus, the use cases documents could be always updated at the

moment new changes are assigned to their corresponding test cases.

6.1.3. Modify CSP file format

As the Use Model Generator tool developed by [Cab06] generates CSP files, which formats

were adopted as our tool input files formats, and some important information about the use cases

they belong to is lost after the transformation to CSP models, it is necessary the addition of some

fields into these files. This necessity is explained in Chapter 4, Section 4.3.

Thus, another suggestion for a future work is to modify the CSP files generated by [Cab06]

so that they present the missing information.

49

Bibliography

[Cab06] G. F. L. Cabral, (2006) Geração de Especificação Formal de Sistemas a partir de

Documento de Requisitos. Master’s Thesis, Universidade Federal de Pernambuco (UFPE).

[CIUFPE07] Centro de Informática da Universidade Federal de Pernambuco (CIn/UFPE).

http://www.cin.ufpe.br, 2007.

[CR04] E. Clayberg and D. Rubel, (2004) Eclipse: Building Commercial-Quality Plug-Ins.

[Fil76] C.J. Fillmore, (1976) Frame semantics and the nature of language. In Annals of the

New York Academy of Sciences: Conference on the Origin and Development of Language and

Speech.

[Gra97] M. Grand, (1997) Java Language Reference. O’Reilly, 2nd edition.

[Hoa85] C. A. R. Hoare, (2004) Communicating Sequential Processes.

[HT99] A. Hunt and D. Thomas, (1999) The Pragmatic Programmer: From Journeyman to

Master. Addison Wesley.

[Inc07] Motorola Inc http://www.motorola.com.br, 2007.

[Lei06] D. A. Leitão, (2006) Nlforspec: Uma ferramenta para geração de especificações

formais a partir de casos de teste em linguagem natural. Master’s thesis, Universidade Federal de

Pernambuco (UFPE).

[LLM04] S. S. Laurent, E. Lenz and M. McRae, (2004) Office 2003 XML: Integrating Office

with the rest of the world. O’Reilly & Associates, Inc., Sebastopol, CA, USA.

[MC03] Microsoft Corporation, (2003) Overview of WordprocessingML.

[RM01] E. T. Ray and C. R. Maden, (2001) Learning XML.

[Ros97] A. W. Roscoe, (1997) The Theory and Practice of Concurrency.

50

[Sch99] S. Schneider, (1999) Concurrent and Real-time Systems: The CSP Approach.

[SLH03] R. Schwitter, A. Ljungberg, and D. Hood, (2003) ECOLE - a look-ahead editor for a

controlled language, in: Controlled translation. In Joint Conference combining the 8th International

Workshop of the European Association for Machine Translation and the 4th Controlled Language

Application Workshop, Proceedings of EAMT-CLAW03, May 15-17, Dublin City University, Ireland.

[Som03] I. Sommerville, (2003) Engenharia de Software. Addison Wesley, 6th edition.

[Sou06] C. F. Sousa, (2006) Modelling and Integrating Formal models: from Test Cases and

Requirements Models. Master’s Thesis, Universidade Federal de Pernambuco (UFPE).

[Vel07] The Apache Velocity Project http://velocity.apache.org/, 2007.

51

Appendix

Here, we present the documents involved in the experiments made in the case study

presented in Chapter 5. The documents are exposed in their integral format, without none

modifications, keeping the arranging of spaces as they are in the original documents.

For better visualization, the original Motorola’s documents are emphasized in blue, and the

documents generated by our tool are emphasized in green.

52

Appendix A - First experiment’s documents

A.1. Motorola’s user view document

53

A.2. User view document generated by CSP 2 CNL tool

Feature 11166

Use Cases

UC_01 - IM Main Functionalities

Related requirement(s)

Requirements Codes
TRS_14293

Description

This use case starts a conversation with a contact in the contact list.

Main Flow

From Step: START
To Step: END

Step Id User Action System State System Response
UC_01_1M Start IM

application.
 IM application is

displayed.
UC_01_2M Log in IM Server. User is logged in.
UC_01_3M Select all

contacts. Start
conversation.

 Conversation screen
is displayed. IM
editor is empty.

Alternative Flows

From Step: UC_01_1M
To Step: END

Step Id User Action System State System Response

54

A.3. Motorola’s component view document

55

56

A.4. Component view document generated by CSP 2 CNL tool

Feature – 12898

UC_02 - Incoming message is moved to the Important Messages
folder

Main Flow

From Flow: START
To Flow: END

Step Sender Message System State Receiver
UC_02_1M User Read incoming

message.
 Message App

UC_02_2M Message App Open incoming
message.

 Message
Viewer

UC_02_3M User Open csm menu
list.

 Message App

UC_02_4M Message App Display csm menu
list.

Important
Messages feature
is on.

Menu
Controller

UC_02_5M Menu
Controller

Move to Important
Messages option is
displayed.

 User

UC_02_6M User Select Move to
Important
Messages option.

 Message App

UC_02_7M User Select Move to
Important
Messages option.

 Message App

UC_02_8M Menu
Controller

Save message to
Important
Messsages folder.

Message storage
is not full.

Message
Storage App

UC_02_9M Message
Storage App

Message moved to
Important Message
folder is displayed.

 User

UC_02_10M User Wait for at most 2
seconds.

 User

UC_02_11M Message App Next inbox
message is
highlighted.

 List App

UC_02_12M List App Avaiable message
is selected.

 User

Exception Flows

From Flow: UC_02_7M
To Flow: END

Step Sender Message System State Receiver
UC_02_1E Menu Save message to Message storage is Message

57

Controller Important Messsages
folder.

full. Storage App

UC_02_2E Message
Storage App

Memory required
message is
displayed.

 Display App

UC_02_3E User Confirm memory
information dialog.

 Message App

UC_02_4E Message App Message content is
displayed.

 User

58

Appendix B - Second experiment’s documents

B.1. Motorola’s user view document

59

60

61

B.2. User view document generated by CSP 2 CNL tool

Feature 11166

Use Cases

UC_01 – IM Main Functionalities

Related requirement(s)

Requirements Codes
TRS 14293

Description

This use case starts a conversation with a contact in the contact list.

Main Flow

From Step: START
To Step: END

Step Id User Action System State System Response
UC_01_1M Start IM

application.
 IM application is

displayed.
UC_01_2M Log in IM Server. User is logged in.
UC_01_3M Select all

contacts. Start
conversation.

 Conversation screen
is displayed. IM
editor is empty.

Alternative Flows

From Step: UC_01_1M
To Step: END

Step Id User Action System State System Response
UC_01_1A Go to Saved

Conversations
folder.

 Saved Conversations
folder is displayed.

UC_02 – IM message that contains a phone number
structured data

62

Related requirement(s)

Requirements Codes

Description

This use case starts with a conversation in which there is an IM message
with at least an embedded phone number.

Main Flow

From Step: UC_01_3M
To Step: END

Step Id User Action System State System Response
UC_02_1M Send IM message.

IM message
contains at least
1 embedded phone
number.

 Phone is in
Conversation Screen.

UC_02_2M Press Options
softkey.

IM editor is not
empty. Video Calling
is available.

Send Message To
option is displayed.
Video Call option is
displayed.

UC_02_3M Select Send
Message To
option.

 Multiple List Picker
screen is displayed.

UC_02_4M Select at least 1
phone number.

Unified Messaging
Composer is flexed
on.

Unified Messaging
Composer is
displayed.

UC_02_5M Send message. Message is sent.

Alternative Flows

From Step: UC_02_1M
To Step: UC_02_5M

Step Id User Action System State System Response
UC_02_1A Highlight phone

number in IM
message.

IM editor is empty. Phone number is
highlighted.

UC_02_2A Press Center
Select key.

 Send Message option
is displayed.

UC_02_3A Select Send
Message option.

Unified Messaging
Composer is flexed
on.

Unified Messaging
Composer is
displayed.

63

From Step: UC_02_2M
To Step: END

Step Id User Action System State System Response
UC_02_4A Select Video Call

option.
 Multiple List Picker

screen is displayed.
UC_02_5A Select phone

number.
 Video Calling screen

is displayed.

From Step: UC_02_3M
To Step: END

Step Id User Action System State System Response
UC_02_6A Select at least 1

phone number.
Unified Messaging
Composer is flexed
off.

Phone is in Message
Type screen.

64

B.3. Motorola’s component view document

65

66

67

68

B.4. Document generated by CSP 2 CNL tool

Feature – 12898

UC_02 - Incoming message is opened and moved to the
Important Messages folder

Main Flow

From Flow: START
To Flow: END

Step Sender Message System State Receiver
UC_02_1M User Read incoming

message.
 Message App

UC_02_2M Message App Open incoming
message.

 Message
Viewer

UC_02_3M User Open menu. Message App
UC_02_4M Message App Display menu. Menu

Controller
UC_02_5M Menu

Controller
Move to Important
Messages option is
displayed.

 User

UC_02_6M User Select the Move to
Important Messages
option.

 Message App

UC_02_7M Message App Select the Move to
Important Messages
option.

 Menu
Controller

UC_02_8M Menu
Controller

Save message to
Important Messages
folder.

Message
storage is not
full

Message
Storage App

UC_02_9M Message
Storage App

Message moved to
Important Message
folder is displayed.

 User

UC_02_10M User Wait for at most 2
seconds.

 User

UC_02_11M Message App Next inbox message
is highlighted.

 List App

UC_02_12M List App Available message is
selected.

 User

Exception Flows

From Flow: UC_02_4M
To Flow: END

Step Sender Message System
State Receiver

UC_02_1E Message
App Display menu.

Important
Message
flex is off.

Menu
Controller

69

UC_02_2E Menu
Controller

Move to Important Messages
option is not displayed. User

From Flow: UC_02_8M
To Flow: END

Step Sender Message System
State Receiver

UC_02_3E Menu
Controller

Save selected message to
Important Messages folder.

Message
storage is
full.

Message
Storage

App
UC_02_4E Message

Storage
App

Display Memory full message. Display App

UC_02_5E Message
App Display Clean up dialog. Display App

UC_02_6E Display
App Clean up request is displayed. User

UC_02_7E User Perform clean up. Message
App

UC_02_8E Message
App Display messages for detetion. List App

UC_02_9E List App Message list is displayed for
deletion. User

UC_02_10E User Select all messages. Delete
messages. Message

App
UC_02_11E Message

App Delete messages.
Message
Storage

App
UC_02_12E Message

App Display Message moved message. Display App

UC_02_13E Display
App

Message moved to Important
Message folder is displayed. User

UC_02_14E Message
App Return to inbox folder. Navigation

App
UC_02_15E Navigation

App System returns to inbox folder. User

UC_04 – Clean up and Important Messages folder

Main Flow

From Step: START
To Step: END

Step Sender Message System State Receiver

UC_04_1M User Go to Message
Center.

 Navigation App

UC_04_2M
Navigation

App
Display Message
Center screen.

Important
Message flex
is on.

Message App

70

UC_04_3M Message App Important messages
folder is displayed.

 User

UC_04_4M User Open menu Message App

UC_04_5M Message App Display menu Menu
Controller

UC_04_6M Menu
Controller

Clean up Messages
option is displayed.

 User

UC_04_7M User Select Clean up
Messages option.

 Message App

UC_04_8M

Message App Scroll to Clean up
Messages option.
Select option.

Important
Message
folder contains
at least 1
message.

Menu
Controller

UC_04_9M Menu
Controller

Important Messages
item is displayed.

 User

UC_04_10M User Select Important
Messages item.

 Message App

UC_04_11M
Message App Scroll to Important

Messages item.
Select item.

 Menu
Controller

UC_04_12M Menu
Controller

Message types list is
displayed.

 User

UC_04_13M User Select message
type.

 Message App

UC_04_14M
Message App Scroll to message

type. Select
message type.

 Menu
Controller

UC_04_15M
Menu

Controller
Display Clean up
Important Messages
dialog.

 Dialog App

UC_04_16M
Dialog App Clean up Important

Messages dialog is
displayed.

 User

UC_04_17M User Confirm clean up
operation.

 Message App

UC_04_18M Message App Confirm operation Menu
Controller

UC_04_19M Menu
Controller

Confirm operation Dialog App

UC_04_20M Dialog App Transient notice is
displayed.

 User

UC_04_21M Dialog App Display Messages
Deleted message

 Display App

UC_04_22M
Display App Messages Deleted

transient is
displayed.

 User

UC_04_23M Message App Return to Message
Center

 Navigation App

UC_04_24M Navigation
App

Message Center
folder is displayed

 User

Exception Flows

71

From Step: UC_04_8M
To Step: END

Step Sender Message System
State Receiver

UC_04_25E Message
App

Scroll to Clean up Messages
option. Select option.

Important
Message
folder
contains at
least 1
message.

Menu
Controller

UC_04_26E Menu
Controller

Important Messages item is not
displayed.

Important
Message
folder is
empty.

User

From Step: UC_04_17M
To Step: END

Step Sender Message System
State Receiver

UC_04_27E User Cancel clean up operation. Message
App

UC_04_28E Message
App

Open Clean up messages screen
is displayed. Navigation

App

UC_04_29E Navigation
App Clean up screen is displayed. User

72

	Automatic English Requirements Generation from CSP Models
	
Assinaturas
	
Acknowledgments
	
Resumo
	
Abstract
	
Contents
	
List of Figures
	
Introduction
	
Objectives and Context
	
Document Organization

	
CSP Overview
	
Basic Concepts
	
Operators
	
Prefix
	
Recursion
	
Sequential Composition
	
Choice
	
Parallel Composition

	
Controlled Natural Language
	
Lexicon
	
Verb
	
Term
	
Modifier

	
Ontology
	
Case Frame
	
Case Frame Restriction
	
CSP Alphabet
	
Ontology class to CSP datatype
	
Case frame to channel

	
CSP 2 CNL Tool
	
Architecture
	
Overview
	
User view use case generation
	
Component view use case generation
	
Word 2003 document generation

	
Some considerations

	
Case Study
	
Experiments
	
First experiment
	
Second experiment

	
Obtained results

	
Conclusion
	
Future works
	
CSP models standardization
	
Automatic requirements update by test cases
	
Modify CSP file format

	
Bibliography
	
Appendix

