UNIVERSIDADE FEDERAL DE PERNAMBUCO

GRADUAGAO EM CIENCIA DA COMPUTAGAO
CENTRO DE INFORMATICA

2006.2

AUTOMATIC ENGLISH REQUIREMENTS GENERATION

FROM CSP MODELS

TRABALHO DE GRADUACAO

Aluna — Glaucia Boudoux Peres (gbp@cin.ufpe.br)

Orientador — Alexandre Cabral Mota (acm@cin.ufpe.br)

Recife, 03 de Abril de 2007

UNIVERSIDADE FEDERAL DE PERNAMBUCO

GRADUAGAO EM CIENCIA DA COMPUTAGAO
CENTRO DE INFORMATICA

2006.2

AUTOMATIC ENGLISH REQUIREMENTS GENERATION

FROM CSP MODELS

Monografia apresentada ao Centro de
Informéatica da Universidade Federal de
Pernambuco, como requisito parcial para
obtencao do Grau de Bacharel em

Ciéncia da Computacao.

Aluna — Glaucia Boudoux Peres (gbp@cin.ufpe.br)
Orientador — Alexandre Cabral Mota (acm@cin.ufpe.br)

Assinaturas

Este Trabalho de Graduacédo é resultado dos esforcos da aluna Glaucia Boudoux Peres,
sob a orientacdo do professor Alexandre Cabral Mota, sob o titulo de “Automatic English
Requirements Generation from CSP Models”. Todos abaixo estdo de acordo com o contetido deste

documento e os resultados deste Trabalho de Graduacéo.

Glaucia Boudoux Peres

Alexandre Cabral Mota

To my parents

Acknowledgments

| want to thank everyone that, somehow, has been part of my life. This work is a result of

dedication and support from those to whom | give my sincere thanks:

First | want to thank God for being always by my side.

| am vastly grateful to my parents, Gaspar and Conceigao, to whom | dedicate this
work. They have taught me how to live with responsibility and honesty. They are my
safe port and it is because of them that | make an effort everyday to be a better
person.

| do thank my sister, “Mana”, and my brothers, Valmir and “Budu”, for the
encouragement, comprehension, friendship, and attention they have always given
to me.

| especially thank Marcos for every moment we spend together, for all the
wonderful talks we have about life and learning, for being always ready to help me,
and for giving me so many advices.

| also thank all my friends for being always there for me, for all the entertainments
we have together, and for understanding my moments of absence.

It would be unfair not thanking to some friends in particular, who have shared with
me almost every moments of my academic life. | really want to thank “Thiaguinho”
for the company and the nice talks about our fears and indecisions on the way to
the University, and also for pushing me to do this work. | would not forget to thank
“Gigil” for always treating me with affection, and for showing me friendship and
comprehension. And | also want to thank “Guedes” for his great sense of humor.
He always got to transform any tiresome work into a great laughter.

And | thank my supervisor, Alexandre, for having trusted me throughout this work.

Resumo

Na maioria dos sistemas de software, requisitos estdao sempre sendo modificados. Uma
razao comum para isso € que a verdadeira natureza do problema, o qual o software esta tentando
resolver, somente emerge quando o projeto comega a ser desenvolvido. Normalmente, com uma
mudanca nos requisitos, o projeto do sistema e a implementagdo mudam também. Mediante isto, o
resultado é que todo o sistema deve ser testado novamente. Como os casos de teste e a
implementagéo tendem a representar a atualidade do projeto, é natural que a informagdes contidas
neles sejam utilizadas para atualizar os documentos de requisitos.

Atualmente, existe uma forte tendéncia para adotar modelos formais a fim de representar
os requisitos e os seus documentos associados. Modelar estes documentos com especificagdes
formais e escrevé-los com uma linguagem natural controlada, para que se evite a introdugdo de
ambiglidade e sentencas nao-uniformes, € uma estratégia efetiva para garantir que nenhuma
incerteza a respeito dos seus conteudos esteja presente.

O objetivo principal do nosso trabalho é apresentar uma ferramenta que ajude na
manutenc¢do de documentos de requisitos, atualizados através de especificagdes formais em CSP

correspondentes aos casos de teste.

Palavras-chave: CSP, Geragédo Automatica de Casos de Uso e Linguagem Natural Controlada

Abstract

Requirements of most software systems are constantly being modified. A common reason
for this is that the real nature of the problem the software is trying to solve only arises when the
project begins to be developed. As requirements change, the system project and the
implementation also must be changed. The whole system has to be tested again. It is natural that
requirement documents become updated from test cases and implementation information, as test
cases and implementation tend to represent the most recently changes made in the project.

Nowadays, the use of formal models is increasing in industry, particularly to represent
requirements and their related documents. Modeling these documents with formal specifications
and writing them in a controlled natural language, so that the introduction of ambiguous and non-
uniform sentences is prevented, is an effective strategy to guarantee that their contents be
consistent.

The main approach of our work is to present a tool that helps in the maintenance of

requirements documents updated through formal specifications in CSP notation.

Keywords: Controlled Natural Language, CSP and Automatic Use Case Generation

Contents

O LI O] 1 L@ 1 10\ 10
1.1. OBIECTIVES AND CONTEXT 1uuttttiiiieeiiiiittriiieesessiistssttsessssiissssssssesssasssssssssesssasissssssssssssisssbsssssssssissssseseses 12
1.2. DOCUMENT ORGANIZATION Luutttitiieeiiiiutretteesessiitssstessessiaissssssssesssaisssssssesssoiissssssssssssimisssseesessinrsseeen 13

2. CSP OVERVIEW. ... oottt ettt sttt st s sttt e s s st e s st e e e st e s et e s sabe s asbessabesssbeesnbesanbessnbesan 14
A I = 7 XS [0 OLa] N[02 = = 1TSSt 14
2.2, OPERATORS ©.utttttiiietiieitttbeette et s tibtbeetsesessiaa b baseeeseessa b b e baeeseessa bbb baeeseessasab b baeeseeesssabbaaaeesesssaabbbbaeesessaassntres 15

A N o) TR 15
N = (<Y1 | 1 o [15
2.2.3. Sequential COMPOSITIONccueiviieireieieese ettt re s e e s e e e e tesresaesreeneeneeneees 16
S O 1 o o7 16
2.2.5. Parallel COMPOSITIONc..oiiiiiieeieete et sttt e 17
3. CONTROLLED NATURAL LANGUARGEoo ottt ettt te st saa s 18
R0 I 5 g [T N TR 18
3 I V=T 5 o TP O PO TR TP TRORRTPTROTR 18
R0 I 1= 1 R 19
R RS T 1Y, oo [1] TR 20
I O] N (o] o 1c) 20 OO 22
BT I 07X =l = Y | =SOSR 23
3.4, CASE FRAME RESTRICTION L..iiiittttiiieiieiiitrttieesessiaisbsseessessiaissssssssssssasisssssssessssissssssssssessimsssssssssesssasissres 25
R OS] oy AN I = Y =1 = SO RRRPPIOt 26
3.5.1. Ontology Class t0 CSP datatYPE......cceviieiiiiiieii et te et st re e ra e s 27
3.5.2. Case frame t0 ChANNEei ittt st be s st e s sb b e e saee s sbeesebee e 28

4. CSP 2 CNL TOOL ittt e e ettt e e e et e e et e e eae e e st eeeaeeesteesaaeeesaeesaneeeseseeseeeseeeesenenes 29
N = Lod T 1 =T U= IR 29
R @ Y =1 =V A=Y R 32

4.1.1. USEr VIEW USE CASE GENETALIONceiieiesiesiesiestesesseesteseeteseestestessessesseesseseessesseseessessesseesessesseeseens 35
4.1.2. Component VIeW USE CASE JENETALIONc.vcuiiviieiirieicti ettt sttt sb e e sbe et sne et 39
4.1.3. Word 2003 dOCUMENT GENETALIONcveviiiirieiietiriei ettt ettt ettt et e sreneene 43
4.3, SOME CONSIDERATIONS ...utttiieettiiittttttieeessiesbetetesesssassbatesasesssasbatesasesssabbasetesesssassbtbesssesssassbrbenssesssasirrres 43

LT 07 NS I 11U 1 5) 28O 45

DL EXPERIMENTS cutttitieeiiettttttt e e e s s e sttt etteesesssab b et teesesssab b et eeeseessasbbebaeeseessasb b baeeseeesesasbbaaasasesssanbbebaeasesssassrrres 45
5.1 L. FIPSE EXPEIIMENT ...ttt ettt b e bbbttt b et e b e b sbeebesbeebenbe e bt eneen e b ee 45
5.1.2. SECONA EXPEIIMENT ...eiiveiiieie ettt sttt sttt et be b e s b et e bt e b e e e e b e seeebesbeebeebe e bt ane e e enbeee 46

D2, OBTAINED RESULTS . uuttttitiieeiiiitttttieessssistsesssesssssasssssssssesssasssssssssesssesssssssssessssisssssssssessisssssssssessissssnes 46

ST O @]\ [0 I 15 [] 47

B.1. FUTURE WORKS ...iiiiiittttiitie e s se ittt it s e e e s e st b e bt e e s e s s sab b et eeeseessa bbb b e e e s e e s s e bbb b aaeseeeessaabbabeeeeesssabbbbasesesssassbebes 48
6.1.1. CSP models Standardizationcoceiiviiiiiiiiiceee ettt st s be s s sra e srae e 48
6.1.2. Automatic requirements Update Dy tESt CASEScvviriiieiiiiie e e 48
6.1.3. MOdify CSP fille fOrMALc.ooviiiiecicecc et b et reere e s 49

BIBLIOGRAPHY .ottt ettt ettt et e e et e et e e e e et e et e et e s et e seteeseeeseseeseeesaeeeseeesteeeseeeseeeenenenes 50

APPENDIX oo s 52

List of Figures

FIGURE 1.1 RESEARCH PROJECT INITIATIVES OVERVIEWcccooiiiiiiiiciiicene e 12
FIGURE 3.1 VERB DEFINITION ..ottt e 18
FIGURE 3.2 VERB DEFINITION EXAMPLESciiiiiii e 19
FIGURE 3.3 TERM DEFINITION ..ottt s 19
FIGURE 3.4 TERM DEFINITION EXAMPLESccooiiic e 20
FIGURE 3.5 MODIFIER DEFINITION ..ot 20
FIGURE 3.6 MODIFIER DEFINITION EXAMPLES........ccoooiiic s 21
FIGURE 3.7 ONTOLOGY DEFINITION EXAMPLE ..ot 22
FIGURE 3.8 CASE FRAME DEFINITION ..o 23
FIGURE 3.9 CASE FRAME DEFINITION EXAMPLEccccoiiiii s 24
FIGURE 3.10 CNL SENTENCES EXAMPLES ..ot 24
FIGURE 3.11 CASE FRAME RESTRICTION DEFINITIONcccoiiiiiieiceeceeee s 25
FIGURE 3.12 CASE FRAME DEFINITION SETITEMcooiiiiiiiicse s 25
FIGURE 3.13 CASE FRAME RESTRICTION DEFINITION SETITEM ..o, 26
FIGURE 3.14 ONTOLOGY CLASSESo o 27
FIGURE 3.15 CSP DATATYPES DEFINITIONciiiiiiiii e 27
FIGURE 3.16 CHANNEL DEFINITION EXAMPLE IN XMLocooiiiiiiiiiiiiee e 28
FIGURE 3.17 CSP CHANNEL DEFINITIONccciiiiiiiiiiii i 28
FIGURE 4.1 COMPONENT VIEW GENERATION CLASS DIAGRAMccoviiiiiiii, 30
FIGURE 4.2 USER VIEW GENERATION CLASS DIAGRAMccociiiiiiiiiee s 31
FIGURE 4.3 CSP 2 CNL TOOL MAIN SCREEN ..ot 33
FIGURE 4.4 CSP 2 CNL TOOL SCENARIOoooiiiiicineeee e 34
FIGURE 4.5 CHOOSING A CSP FILEci it s 35
FIGURE 4.6 USER VIEW CSP MODEL EXAMPLE ... 36
FIGURE 4.7 USER VIEW USE CASE GENERATEDcciiiiiiit e 38
FIGURE 4.8 END OF USER VIEW USE CASE GENERATIONcccoiiiiiiiii e 39
FIGURE 4.9 COMPONENT VIEW CSP MODEL EXAMPLE........c..ccooiiiiiiii 40
FIGURE 4.10 COMPONENT VIEW USE CASE MAIN FLOW........ccccooiiiiiiiiii e 42

FIGURE 4.11 END OF COMPONENT VIEW USE CASE GENERATION........ccocoiiiiiiiiiiiicie 43

1. Introduction

Requirements, for the majority of software systems, are constantly being modified. One of
the reasons for this is that the systems are usually developed to deal with problems so complex,
with so many related entities, that there is no definitive specification for the problem. The real nature
of the problem only arises when a software solution begins to be developed. As the problem may
not be entirely defined, the requirements of the system remain necessarily incomplete.

Another non-obvious reason for the frequent changes in requirements, but not less
important, is the fact that most clients know the problem they want to solve, but not the technical
solution for it. It results in requirements modifications due to not knowing — or not accepting — the
solution chosen. The search for a final solution, which agrees with how the client views the problem
and how he deals with it, brings changes.

Besides, after the final users become familiar with the new developed system new
requirements can arise.

According to [Som03], changes in requirements happen because:

e The ones who pay for the system may impose requirements for its development
because of organizational or budgetary reasons. These requirements may conflict
with the requirements of the final users. This could happen due to the fact that,
most of the time, who pays for the development, implantation and maintenance of
the system is not one of its final users.

e A new hardware may have to be implemented and may be necessary to do an
interface of the system with other systems. Besides, the priorities of the
organization, where the system is being used, may modify, consequently bringing
changes to the necessary system’s support. New legislations and regulations also
may be created and they have to be implemented by the system. The reason for all
of this is that the company and the technical system environment may change, and
it has to be reflected in the way the system behaves.

e Large systems usually have a varied community of users. This means that, different
points of view of the system come with different users, in other words, different
people see different solutions. Those points of view bring about different
requirements and priorities that may be conflicting or contradictories. The final
requirements of the system are obtained from the conciliation of the different users’
points of view. It is evident that the balance of the support given to the different
users need to be changed sometimes.

Throughout the software life cycle, requirements documents and their related documents,

such as test artifacts, always need to be updated (maintained). The maintenance of these

10

documents is important because if an error occurs in one of them, the project can have a lot of re-
working efforts (costs). Such costs may be even greater if an error is discovered during later phases
of the development when the system is already in operation.

The cost to make a modification in a system, resulting from a requirement problem, is much
greater than a modification during the design or code phases [Som03]. Tracking changes properly
can save time and money, by identifying and fixing potential problems early in the development
cycle [HT99]. A change in the requirements usually means that the system project and the
implementation also have to be modified, and that the system has to be tested again.
Consequently, the test artifacts also have to be updated with the new changes.

Nowadays, the use of formal models, which are an abstract way to specify computer
systems to represent requirements and their related documents, is increasing in industry.
Requirements need to be specially treated in order to produce high quality documents. These
documents are the input to the formal specification activity and uncertainties should be avoided.
Investing in good requirements specification methodologies is an effective way to reduce cost.

Once a project has precise documents, it is possible to create a formal specification in order
to validate the system properties. The manual creation of formal models specification may not cover
all requirements or may contain inconsistencies regarding them. Thus, the necessity of
automatically generate requirements documents’ formal models seems to be an efficient task to be
accomplished. In order to automate the construction of formal models, the requirements documents
should be simple, direct, unambiguous and uniform. For it happens, simple languages are used to
describe them. These languages are called Controlled Natural Languages (CNL) [SLHO3]. They
contain a smaller and restricted grammar than the natural languages. Thus, they prevent the writer
from introducing ambiguous and non-uniform sentences.

The work presented here is in agreement with the reality of software requirements
maintenance, making it possible to keep their related documents continuously updated. The main
approach of our work is not to hit the right requirements in the first moment, but to be ready to react
when they change.

The main contributions of our work are as follows:

e A tool to translate CSP models, written in accordance to CSP$_M$ (Machine-
readable CSP), into requirements documents written in CNL;

e A modification in the format of the CSP files proposed by [Cab06], which are our
tool input files, so that it is possible to successfully transform them into
requirements documents. This modification is necessary to recover some original
documents specification information, which is lost after the requirements

transformation into CSP models by [Cab06].

11

1.1. Objectives and Context

This work has been developed in the context of the CIn/BTC research project, which is
sponsored by Motorola Inc. [Inc07] in cooperation with CIn/UFPE [CIUFPEQ7]. This cooperation
started in 2003 and, initially, aimed at the creation of human resource specialists in the area of
Software Testing. The CIn/BTC is divided in three areas, formal education and hands-on training,
operation, and research. This work is related to two of the research team projects.

Figure 1.1, shows the research project initiatives that aim to improve the software
development process through automation.

One of the researcher’s projects [Sou06] was to develop a tool that automatically translate
Test Cases, written in an English CNL with a fixed grammar [Lei06], into formal model specifications
and their way back to Test Cases written in the same CNL.

Another researcher’s project [Cab06] was to develop a tool that automatically translate Use
Cases, written in the same English CNL as the previous project, into formal models specifications,
making it possible to transform Use Cases into Test Cases, both written in the same CNL, and to
maintain their documents constantly and automatically updated.

Software Design
in UML

- 21]

Test Cases
‘| s |
Test Execution Code Coverage
Estimation Analysis

Figure 1.1 Research project initiatives overview

12

As the context of these projects is the research cooperation between CIn/UFPE and
Motorola, related to mobile applications testing, the CNL used by them and the formal specification
adopted reflects this domain. Because mobile applications may contain complex features, which
include concurrent behavior and message exchanging, the formal specification chosen is the
process algebra CSP [Ros97].

From our previous brief explanation about the projects [Sou06] and [Cab06], the translation
from Test Cases to Use Cases was not yet implemented by a tool: the translation from the formal
model to the use cases they represent written in CNL, emphasized in Figure 1.1.

In this context, the main goal of our project presented here is to develop a tool that
automatically translates a use case document represented in the CSP process algebra into its
corresponding use case document written in the same English CNL used by [Sou06] and [Cab06].
Such a tool must provide the translation of use cases documents, represented in the CSP notation,
into their corresponding Microsoft Word 2003 [LLMO04] documents, written in the English CNL.

1.2. Document Organization

Chapter 2 presents an overview of the CSP language, describing its basic concepts.

Chapter 3 introduces the English Controlled Natural Language with a fixed grammar used
to represent the use cases steps.

Chapter 4 presents our main contribution: a tool to translate use case documents
represented in the CSP notation into corresponding documents written in English CNL.

Chapter 5 discusses the results obtained after experiments using the proposed tool.

And finally, Chapter 6 summarizes our contributions, contrasts the proposed solution with

related work, and suggests topics for further research.

13

2. CSP Overview

CSP (Communicating Sequential Processes) may be defined as a formal language for
describing patterns of interaction in concurrent systems [Ros97]. CSP allows the description of
systems in terms of component processes that operate independently, and interact with each other
through message-passing communication.

The language of CSP was designed for describing systems of interacting components, and
it is supported by an underlying theory for reasoning about them [Sch99]. The conceptual
framework taken by CSP is to consider components, or processes, as independent self-contained
entities with particular interfaces through which they interact with their environment. This viewpoint
is compositional, in the sense that if two processes are combined to form a larger system, that
system is again a self-contained entity with a particular interface: a larger process.

The relationships between different processes, and the way each process communicates
with its environment, are described using various process algebraic operators. Using this algebraic
approach, quite complex process descriptions can be easily constructed from a few primitive
elements.

In our approach, the CSP process algebra was the formalism adopted to express
concurrence and parallelism between the components in an effective way.

The next sections will present basic elements of CSP.

2.1. Basic Concepts

Processes are the basic entities that capture a behavior. Each process can be defined by
equations and, in general, a set of process is used to get modularity. Beyond denoting modules of a
system, the name of a process can denote the state of a process.

The behavior of a CSP process is described in terms of events, which are immediate
operations, like OPEN or CLOSE that may transmit information. A primitive process can be
understood as a representation of a basic behavior. There are two primitive processes: STOP and
SKIP. STOP is the process that doesn't communicate anything and it is used to describe the break
of a system, as well as a deadlock situation. SKIP is the process that indicates that the execution
was contained with success.

Since a process interacts with other processes only through its interface, the important
information in the description of a process concerns its behavior on that interface.

The interface of a process is described as a set of events. An event describes a particular
kind of atomic indivisible action that can be performed or suffered by the process. In describing a

process, the first issue to be decided must be the set of events which the process can perform. This

14

http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Pattern
http://en.wikipedia.org/wiki/Interaction
http://en.wikipedia.org/wiki/Concurrent_systems
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Process_calculi

set provides the framework for the description of the process. Each event must be identified by
uniqgue name. One event may occur many times in the process behavior. Along with events,
datatype are defined to structure the data transmitted between events. The set of datatypes and
events, defined during the formal model specification of a specific domain application, is called an
alphabet.

A channel has the same behavior of an event, but communicates a value. It can be an input
or output channel. When an event is defined it is possible to determine if it will communicate some
information or if it will only represent a specification phenomenon.

Processes communicate with each other through synchronization in their events. These
communications could or not carry data, which means that a process can pass to or receive
information from other processes. The communication in CSP means: Interaction, Observation and
Synchronization. Interaction, because two or more processes interact through the communication;
Observation, as we can only observe the behavior of the processes through its communication; and
Synchronization, when two processes, that are executing in parallel, synchronize their executions

through the communication.

2.2. Operators

There many CSP operators and we present in this section some of them. All the CSP

operators can be found in [Hoa85] and in [Ros97].

2.2.1. Prefix

The prefix is the simpler operation involving a process. It defines a process engagement on
an event and then the process behavior is like the suffixed process.

Let x be an event and P a process, the (x = P) represents the process that waits
indefinitely by x, and then behaves like the process P. This operator can be used to model recursive

processes.

2.2.2. Recursion

Recursion in CSP is the ability of a process to enter a loop behavior. The operator (=),
presented in the previous subsection, can be used to model recursive processes. The behavior of

the processes (P = x = P) is the indefinite repetition of the event x.

15

2.2.3. Sequential Composition

Processes execute when they are invoked, and it is possible that they continue to execute
indefinitely, retaining control over execution throughout. It is also possible that control may pass to a
second process, either because the first process reaches a particular point in its execution where it
is ready to pass control, or because the second process demands it. The mechanism for
transferring control from a terminated process to another process is sequential composition.

The sequential composition operator used is (;). The process (P = A ; B) initially behaves

like A, and the like B when A is terminated successfully.

2.2.4. Choice

By means of prefixing and recursion it is possible to describe objects with a single possible
stream of behavior. However, many objects allow their behavior to be influenced by interaction with
the environment within which they are placed. If x and y are distinct events (x > P |y 2 Q)
describes an object which initially engages in either of the events x or y. After the first event has
occurred, the subsequent behavior of the object is described by P if the first event was x, or by Q if
the first event was y. Since x and y are different events, the choice between P and Q is determined
by the first event that actually occurs.

There are also the operators for External Choice and Internal Choice. The operator ([)
belongs to External Choice. In this case, the environment controls the choice between the options
of behavior. The process (a > P 1 b = Q) tries to communicate the initial events a and b. If the
environment accepts to communicate a, the process starts to behave like P. On the other hand, if
the environment accepts to communicate b, the process starts to behave like Q. Due to the fact that
the environment is the one who controls the choice between the behaviors, the operator ((1) is
also known as deterministic choice.

The operator (1) belongs to Internal Choice. This operator is similar to the previous
operator but denotes a process that behaves like either of the processes in a nondeterministic way
without the knowledge of the external environment. The process (x = P 1 x = Q) means that if x is
an event from both P and Q, the choice between them is non-deterministically defined. The process

behaves like P or Q, arbitrarily.

16

2.2.5. Parallel Composition

When two processes are put in concurrent execution, in general, the desire is that one
interacts with other. The interactions can be viewed as events that require the simultaneous
participation of both processes. Let P and Q be processes with the same alphabet, P || Q
represents a process in which P and Q must be synchronized in all events. So an event x only
occur when both processes are ready to accept it.

The process P [|X|] Q synchronizes P and Q in the event of the set X. P and Q can interact
independently with the environment through the events outside the set X.

The process P ||| Q allows P and Q to execute concurrently without synchronization
between them. Each event, offered to interleave of two processes, occur only in one of them. If both

are ready to accept that event, the choice between the processes is non-deterministic.

17

3. Controlled Natural Language

This chapter introduces the Controlled Natural Language (CNL), which can be seen as a
processable version of English and is used to write use case steps making it possible to accomplish
validations and transformations.

The CNL grammar is basically a subset of the English grammar. Its sentences construction
contains domain specific verbs, terms, and modifiers. The phrases construction is centered on the
verb. Domain terms and modifiers are combined in order to take thematic roles around the verb
[Fil76]. This strategy is detailed in [Lei0O6] where it has been used to translate test cases sentences
into CSP constructions. The following sections describe the knowledge bases used to store these
vocables involved in the definition of the CNL. In our approach, these knowledge bases are used
by our tool (specified in Chapter 4) in order to achieve the translation from CSP constructions to use

cases CNL sentences.

3.1. Lexicon

The Lexicon stores vocables that may appear in CNL sentences. Each vocable may be a
verb, a term, or a modifier. Each one of these vocables will be described in the following

subsections.

3.1.1. Verb

A verb is used to define an action accomplished by the user, to give a description of the
system state and the system response, or to specify a message. Actions are described as
imperative commands, such as a statement to the user or component to accomplish some
operation. In the case of the user view, the verb usually acts as a command in the user action
column sentences, which are operations that the user executes in order to obtain a system
response.

“<werhs
<hname </ name s
<third-person></third-person:-
<gerunds</ gerunds
<pasts></ pasts
<participles</participle:>
</werhs

Figure 3.1 Verb definition

18

Figure 3.1 is the XML [RMO1] structure used to define CNL verbs. The verb definition
contains possible verb forms, such as present or past tense. The name tag contains the verb in the
infinitive form. The infinitive form is used in present tense sentence constructions. The third-person
tag defines the singular third person forma as it may vary. The gerund tag contains the gerund form
of the verb (-ing). The past tag defines the past tense form of the verb and the participle tag its

participle form. Figure 3.2 contains some examples of verb definitions.

<werhi
< nare > have </ neage >
<third-person-has</third-person:
<gerund:>having</ gerund:-
<pastrhad</past>
<participlerhad</participles
</werh>
<werhi
<nameraccept</ name s
<third-personraccepta</third-person>
<gerundraccept ing</ gerund:
<pastraccepteds/pastx
<participleraccepted<s/participles
< /wrerh

Figure 3.2 Verb definition examples

3.1.2. Term

A term is considered an element, or entity, from the application domain. It may be just a
noun or a noun combined with adjectives or other nouns. It is seen as an application domain object
that is manipulated somehow by user or by components throughout the use case execution. The
Figure 3.3 is the XML [RMO01] structure used to define CNL terms.

“~Lerm:s-
<names-/ name -
<pluralx</plural:
<plazax</classs>
<mode l></model>
</ terms

Figure 3.3 Term definition

19

The name tag is the term’s name itself. It contains the singular form of the term. The plural
tag contains the plural form of the term. The class tag defines the Ontology class it belongs to,
which determines how the term is related to other terms. Finally, the model tag contains the CSP
code representation of the term. This representation is used to define CSP datatype values. Figure

3.4 contains some examples of term definitions.

“<term:-
<namerconversation history</ name:
<pluralrconversation histories</plural:>
<classrlist</class>
<mode 1> CONVERSATION HISTORY</model:>
</ Term:
“<Lerm:-
<name>voice mail</name:
<plural/ >
<plassrapplication</class:>
<model>VOICE MAIL</model:
</ Term:

Figure 3.4 Term definition examples

As can be seen in Figure 3.4, the term conversation history, for instance, has the plural
defined as conversation histories and belongs to the list class of the Ontology. Consequently
conversation history is treated as a list by the verbs that refer to this class. Finally, its CSP code is
defined as CONVERSATION_HISTORY.

3.1.3. Modifier

A modifier can be anything that qualifies a term, such as an adjective or an adverb. It may
be even a noun, once nouns can detail terms characteristics. Figure 3.5 is the XML [RMO01]

structure used to define modifiers.

<modifier>
<hname </ name >
<positionr</position:
<precedences-</ precedence-
<hnurber >/ nabher >
<articler</articlex
<model></model>

</modifier:s

Figure 3.5 Modifier definition

20

Over again, the name tag specifies the name of the modifier. The position tag defines
whether the modifier goes before or after the term. The precedence tag specifies the priority order
among the modifiers. The number tag is used to determine whether the modifier agrees with a
singular or a plural term. Then, the article tag defines whether the modifier can be preceded by a
definite or an undefined article. Finally, the model tag contains the CSP code representation of the

modifier, so it is used to define CSP datatype values.

<modifier:
<name - Some <,/ name -
<pogitionrhbefore</position:-
<precedencex-0</ precedence:-
<number>plural</ nurber -
<articlerno</articlex
<model>30ME< /mode 1>

</modifiers

<modifier:
<namerat most</ ints></ names
<pogitionrhbefore</position:-
<precedencex-0</ precedence:-
<hnumber>gingular</ nurber -
<articlerno</articlex
<model>AT MOST. Int</model>

</modifiers

<modifier:
<pnamerwith</int:></term:-</ name:
<pogditionrafter</position:
<precedencex-0</ precedence:-
<hnumber>gingular</ nurber -
<articlerno</articlex
{mndel>HITH_H_HOUH.Int.Item{Hmndel>

</modifiers

Figure 3.6 Modifier definition examples
Figure 3.6 illustrates three modifier definitions. The with <int/> <term/> modifier is used
along with an integer and a term. To better understand this modifier, consider as an example the

sentence Create a message with 3 images. The number 3 is the integer that goes after with and

images is the other term required by the modifier construction.

21

3.2. Ontology

As mentioned before, each application domain has specific elements and entities. They are
called terms and are grouped into classes according to their characteristics. These classes can also

be related by inheritance. An Ontology defines the grammatical classes and their hierarchies.

<ontologys
<zlasss
<description>Generic Class</descriptions>
<name>0hject</ namwe >
<coderobject</code>
<subclasses:>
<o lasss
<degoription>Represents a generic value</descriptions
<name>Value</ name:>-
<oodexvalue/ code:
<subclassess
“olasss
<description>Represents a state value, e. g.,
"enabled”, "ON", "high". </description>
<name>3tate Value</ name>
<code>state_value<fcode>
<subclasses />
</olasss
“zlazs>
<description~Represents a wvalue used to £ill a field,
. d., "zowe chars", "uppercase charactera™.-</deacription:
<name>Field Value</ name:>
<coderfield wvalue</code:
<subclasses />
</class>
<czlass:
<description>-Represents a location walue, e. g., "valid destination".</description>
<name>Location Value</name:>
<zoderlosation value</code:>
<zubclasses />
</olass:>
“olasss
<descriptionsRepresents a color, e. d., "blue", "different color™.</description:
<name>Color Value</name:>
<code>color_value<fcodeﬂ
<subclasses />
</class>
</subclasses>
</olass>

Figure 3.7 Ontology definition example

Figure 3.7 illustrates a small fragment of the Ontology that defines the Object, Value, State
Value, Field Value, Location Value, and Color Value classes. The State Value, Field Value,
Location Value, and Color Value classes inherit the Value class, and the Value class inherits the
Object class. In Figure 3.4, the term conversation history is a list due to the fact that it belongs to
the list class of the Ontology. This class aims to restrict the way terms are combined with verbs to

avoid inconsistent sentences in the use cases.

22

3.3. Case Frame

The case frame defines the relation between verbs and terms, more specifically it defines
how ontology classes are combined with verb complement definitions. Each case frame determines
how a verb can be used to instantiate a sentence. The case grammar formalism [Fil76] is used in
order to define how verbs are associated with terms, which can be detailed by modifiers. Each term
takes a certain thematic role around the verb; it can be an agent or theme of the sentence, for
instance. Each case frame can also be associated to more than one verb, all of them assuming the

same meaning (Ssynonymous).

Figure 3.8 is the XML [RMO1] structure used to define case frames.

<Lframe
<deacriptions</deacription:
< name </ name -
<werh-list:>
<werbs</werb:
<werb></werb>
</werb-list:>
<roles:
<role mandatory=" "ragent</rolex
<role mandatory=" ">theme</rolex
<role mandatory=" ">from-value</role:x
<role mandatory=" ":to-value</rolex
<role mandatory=" ">from-loc</rolex
<role mandatory=" "sto-loc</rolesx
<role mandatory=" "sat-loc</rolesx
<role mandatory=" "rinstrument</roles
</rolesx
</ frame>

Figure 3.8 Case frame definition

Each frame tag contains a case frame definition. The description tag gives a brief
explanation about how the case frames can se used, possibly including examples. The name tag
identifies the case frame. The verblist tag contains a set of verb tags that refer to the verbs related
to this case frame. The verbs from this list should have the same semantic meaning. Consequently,
they own the same arguments defined in the roles tags. Each role tag determines a possible verb
argument and its type. It has the mandatory attribute, which determines whether the argument is

obligatory or not.

23

The following are the possible role types for role tag:

agent: a term that executes the verb action.

theme: a term that suffers the verb action.

from-value: a term that determines the theme past value.
to-value: a term that determines the theme future value.
from-loc: a term that determines the theme past location.
to-loc: a term that determines the theme future location.
at-loc: a term that determines the theme current location.

instrument: a term that determines the way the agent executes the verb action.

An example of a case frame definition is shown in Figure 3.9. The Select Item identifies the

case frame defined by the select and the choose verbs. The agent and the theme are mandatory,

thus they need to be specified when these verbs are used. The from-loc is optional. As a result, it is

not necessary to specify this argument.

<frame:
<description>2elect an item from location.
Example: 3elect the send message option from menu.
</descriptions>
<name>SelectItems name:
<werh-list:>

<werhrzelect</verh:
<verh>choose</verh:

</werh-list>
<rolez>

<role mandatory="trus"ragent</rolex
<role mandatory="trus">theme</rolex
<role mandatory="false">from-loc</role:x

</rolesx
</ frame:

Figure 3.9 Case frame definition example

To illustrate how verbs are associated with their arguments, some examples of CNL

sentences are shown in Figure 3.10.

Open the URL link with browser. Open <theme> <instrument>
Exit from the message menu. Exit <from-loc>

Return to saved messages folder. Return <to-loc>

Phone is in message inbox screen. <theme> is <at-loc>

Figure 3.10 CNL sentences examples

24

3.4. Case Frame Restriction

The case frame restriction defines the relation between verb’s arguments and Ontology
classes. Each verb’s argument belongs to an Ontology class in order to restrict the way phrases are
written. This minimizes the possibility of writing semantically wrong sentences.

Figure 3.11 shows the XML [RMO01] structure used to define case frame restrictions.

<frame >
<HEme </ narme >
<restrictions:
<restriction name=" "
<zlass role=" "> </classs
</reatriction>
<restriction nawme=" ">
<class role=" "» </classr
</restriction>
</restrictions:>
</ frame>

Figure 3.11 Case frame restriction definition

The frame tag defines a case frame restriction and its identification is captured by the name
tag. It contains the restrictions tag that holds all possible restrictions. Each restriction tag contains
an attribute name for identifies and a list of class tags. Each class tag defines the Ontology class
associated with the verb’s argument role.

The following Figures contain the case frame definition Setltem for the verbs set and check

(Figure 3.12), and its respective case frame restriction (Figure 3.13).

<frame:-
<description=Set the waluse for an item.
Ex.: Set the Fix Dialing to on
</descriptions
<name>SetItems/ names
<werh-list:>
<werhrset</werkh:
<werbrochecks/verb>
</werh-list>
<roles:
<role mandatory="true"ragent</rolex
<role mandatory="true”>theme</rolex
<role mandatory="false">to—value</role:
</rolesx
</ frame:

Figure 3.12 Case frame definition Setltem

25

As can be noticed, the case frame Setltem contains the roles: agent, theme and to-value.

So, for those three roles, there are four defined restrictions.

<frame:
<name>SetItems/ name:>
<restrictions:
<restriction name="DT3ET FIELDVALUE FIELD":>
<zlass role="theme">field</class>
< lass rDle="tD—value"}field_value{fclass}
</restriction>
<restriction nawme="DTSET ITATEVALUE SENDARLEITEM":
<o lass rDle="theme">sendahle_item<fclass>
< lass rule="tn—value">state_value<fclass>
</restriction>
<restriction nawme="DTSET ITATEVALUE TTEM™:
<zlass role="theme”> item</class:>
< lass rDle="tD—value"}state_value{fclass}
</restriction>
<restriction name="DTIET ITEM™:-
<zlass role="theme">item</class>
</reatriction>
</restrictions:
</ frame>

Figure 3.13 Case frame restriction definition Setltem

The first three roles restrict the theme and the to-value arguments, and the fourth restricts
only the theme argument, once the to-value argument is not mandatory. Each restriction has a
name, which is used to define a CSP datatype. To conclude the restriction definition, it is necessary
to associate every role to an ontology class. This association restricts verb arguments, for instance
the DTSET_FIELDVALUE_FIELD restriction defines that the theme is a term from the Ontology

class field and the to-value argument belongs to the field_value class.

3.5. CSP Alphabet

In order to define use cases in natural language (CNL), it is necessary to specify CSP
definitions, which are able to recognize and manipulate a CSP event. As mentioned in Section 2.1,
CSP events are abstracts events that mean real actions, taken by the users or the system.

The result of mapping all structures, which are necessary for processing CSP structures to
natural language, is a CSP file named CSPHeader. This file contains all definitions (datatypes,
tuples and channels) used for interpreting CSP events as natural sentences in CNL.

In this section, is described how the CSPHeader file is generated.

26

3.5.1. Ontology class to CSP datatype

For each Ontology class, there is an associated specific CSP datatype. As can be seen in
Figures 3.14 and 3.15, Ontology classes are mapped to CSP datatypes. The datatype elements
refer to subclasses of a bigger class. It thus become clear that the same hierarchy level established

on Ontology can be defined in the CSP datatypes.

<datatype clazs="wvalus">
<label/=
<name>Value<,/ name =
</datatype>

<datatype class="state wvalus":
< lahel>3TATEVALUE</ label>
<hamerItateValue«</ name:
</datatype:

<datatype class="field wvalus":>
< lahel>FIELDVALUE</ label>
<name>FieldValue</ name>
</datatype:

Figure 3.14 Ontology classes

datatype Value =
DTS TATEWALLE. Statedalue
| DTFIELCWALUE. FieldYalue
datatype StateValue = statel | state2 | ..

datatype Fieldvalue = field1 | field2 | ..

Figure 3.15 CSP datatypes definition

The datatype Value, considering Figure 3.15, is a CSP datatype that can have a

StateValue, or a FieldValue.

27

3.5.2. Case frame to channel

The thematic roles of case frames are represented as parameters of CSP channels. For
each role and its set of restrictions, which are defined by case frame restriction, defined datatypes
are used as parameters to the channels. Thus, the CSP channel that defines the case frame
showed in Figure 3.12 can receive three parameters, which specify the thematic roles agent, theme
and to-value. The CSP channels receive tuples in two arguments. First argument is the thematic
role and the second one is a set of modifiers ({} in CSP).

The following figures show how a CSP channel is defined. The CSP channel Set was
defined based on the case frame illustrated in Figure 3.12 and it can receive two kinds of

parameters for one or two tuples either.

<channel>
<hnamerset</ name
<oasSe—grammar >-3et Items/ case—Jgr ammar -
<datatyperDT3et</datatype:

<channe]l

Figure 3.16 Channel definition example in XML

channel Set : DT=et
datatype OT=et=
OTSET_ITEM. {(Item, Set{Modifier))
| DTSET _ITEM. (ltem, SetiMadifier)).(ltern, Set{Madifier))

Figure 3.17 CSP channel definition

Using the definition in XML, the CSP channel is generated. The datatype DTSet is
automatically created following the restrictions on case frame. Notice that the names of restriction

are the same used on the channel definition.

28

4. CSP 2 CNL Tool

This chapter describes the automation strategy used to translate CSP models from both
user and component view use cases into their corresponding use cases document, written in
English CNL.

Section 4.1 discusses some architecture issues related to the tool design. In Section 4.2,

we introduce an overview of the tool which translates CSP into CNL.

4.1. Architecture

The CSP 2 CNL tool was implemented using Java language [Gra97] and Eclipse platform
[CRO4]. The purpose of using Java is to guarantee executions in multiple platforms. The Eclipse
platform is an open and freeware platform that is useful to give support to build IDEs (Integrated
Development Environments) that can be used to create a great variety of applications, such as
web-sites, Java, C or C++ programs, applications to Embedded Systems, and many others.

The Java language and the Eclipse platform were chosen because they were the
programming language and the development platform used by the tool implemented by [Cab06].

In order to better visualize the class diagram, it was divided into two class diagrams: one
representing the relation between the classes involved in the user view use cases generation, and
another diagram to represent the relation between the classes involved in the component view use
cases generation. Component and user view uses cases are explained in Section 4.2. Figures 4.1

and 4.2 shows the class diagrams created.

29

CSPComponent\Viewllse Case Step

| Frois CSpoomponantl cwdla |

Oparattrn
public CEPComponentl ewlls eCas eSterd |
public Sting gefdessages)| |
public STing geaCondiions| |
public List<Suing= godTohliemal veSersl |
public Sting geiToSiend |
public Siing gedd |
pubiic Sring goffecaiven |
public Swing gesSanden |
public Sting gefFromSieny |

CS5PSentencetern

Dt
public CEPSendencalions Shing item. LexiconBase lexiconBase |
skl Baorminal Sontonoa oo nal Santend o Lokl conBas e lesiconBase |
pasblic SHing QetSonioncoE Mpressiond LoxlconBasse ol conBasa |
public List=Swing> gefModifiarsi |
public Sing gefound |
public Sming getounTomsy LaiconBass |exiconBasa |

L)

|<<usage>>

CSPSentence

public CEPSanan ol STing csp. ML mulacw?uﬁ“mw.l:mmﬂmmo 1

public Resticion geffesiicion |

public Sing getSenfonce] LexiconBase lexiconBase |

pasblic SaIng GotS onbon ot thifts i ot ons | Mo nal Scndonce nominal Santence |

public Saing gefimpenadweSanencad LexiconBase lealconBase |

public Sxing getSenionceimpera veliithRes i ol onsd ListMominal Seniene = nomd nal Sendensas |
Fublic Sxing gefiorty |

public Sming geeChannadhamss |

public ListaCSPEantenceliems getitemsl |

CSPComponent\Viewllse CaseFlow
{ From os poomponendd ewd e

Cparatins
public CERFComponentiewliseCaseFlow |
pubiic Sing gotFromA o |
pubdic List=CEPComponentVicvliselas cSiep getSicpa) |
public Siing gefTaSiend |
Fublic Sring gefToflow |

C5F ComponentViewllse Case
{ From cs poomponenésd ewd e

Ot
public CEPComponandi cwliseCasc] |
public ListaCSPComponentlawlis cCas eflows gelflows] |
public Sting gedd] |
Fublic Sting gothame |
public CSPComponentViswliseCaserl ow getaindowy |
publle LstaCSPTomponaniiil cwlis oCas ol owe gothltiemal vefl cwsi

}
|<<usage>>

CSPComponentViewFile
o From o5 po omponentyl ewdle |

Cparatars
public CEFComponentVicwFle Fle file, LesiconBase |axiconBass |
public List=CSPComponenticwliscCases gefliseCasasi |
public Siing gefFeatachd |
public Siing gefFeatrchamar |

<ausagelr

CHLGenerator

Ot
pblic CHUGINSTIN GedEomaraton
public Suing getCHLSanienced] Siing capSantence. boolsan IsUserviewliseCase |
public Shing getCHLImperadveSendence] Saing cspSentence. boolean isUserVicwllsceCase |
public void generaiclls ervicw File file |
public void gencrateComponantyien Ale fla |
piablic beclean |sComponeniilcwills eCased FAle fle

cnl Generator

CHNLGenerator GUI

| From gui |

Adtrivda
package JTexiFiald [iexficldFile = now JTea@Fal &)
package JBUmON jbumonChoos aFile = naw JBURoN)
Package JBLmON jEUmonGEnerate = new JBLTING|
package Ale choosed = null

public CRUGNerAEUE |

ic wcdd maaing S o
public JPaned creadeana| |
piivate JAleChooser doFleChoosan |
private yoid generatels eCas eDocumend) |
fprode o wodd InddalizePanel] |

Figure 4.1 Component view generation class diagram

30

C5PSertence e

Sparatirn
public CEFIenten e Suing item. Lexdicon@ase ledicondass |

public Bominal Sendence gedominal Senfonc ey LaxiconBase lexiconBase |
public Sfing gefSonfonceExpressiond LexiconBase lexiconBase |

public List=Swings gefdodifies] |

puklic Suing getiound |
public SFing gefcunTems LexiconBase lexicon@ase |

)
[

<duzagerr

CSFSentence

public CEFSanionce Siing csp. Mmﬂlacwfdf;“bwcw.lsmmﬂmmo]
public Resiicion gefResiicion |

public Suing getSentenced LexiconBass lexiconBase |

Public Smng GerSentend ¥ hiResin o ons | Momi nal Sentand & nominal Sentence |
public SFing gefimpenadyeSonicnced LexiconBas e lexiconBasea |

public Sring getSentoncimperal welli thiics rcSonsd List=Aomi nal Sanbenecs nominal Senicnees |

fpubdic Smng gefverts |
public SHing getChannaMame |
public List=C5PSenionc cliom= goflioms) |

T

<{usagex>

CSPUserViewllseCaseStep
4 From cspusarviewdle |

Sparation
public CEPUserviewUseCas eS|

public Shing getAcions |

public Shing gedConddons) |

public Swing gefResponses] |

public List<Suing= geiToslematvesnes] |
Fublic Swing goiTodion |

public Siing gefd |

CSPUservViewlseCaseFlow
{ From cspusarsdewdle |

Oparatons
public Shing boSTing |

public CEFUserViowlisetascflow |
public List=Stings geffromSicpalisy] |

pabiic ListoCERFUsenicwls oCascSiop™ gatsupal |
public Suing geiToSip] |

CSPUserviewllseCase
{ From cspusarddendle |

putdic c-EFLumnmmccacﬂ'

public CEPUserVicwliseCasoFlow peffainFlow |

pubdic List=CEPUser] evwdls eCascflows pothliomal vefl cwsl |
pubdic Swing gedDoscrption |

public Suing gofidl |

public Sng gothlam |

psbdic List=3uings godfegilrementsy |

CEPUservViewFile
{ From cspuscrd ewdile |

Cparaton
public CEFUS arviawRlel Fla file |
public ListaCSPUserViewlseCasc> geflseCases(|
public Shing gefFcatachs |
public STing gefoatmeianms |

{duzagerr

CHNLGenerator

public CALGenarator gedGamafaton
Public S0Ing GetCRLS OGN c] SINg C5 pSaniend & bodlaan IsUseiVicwlselase |
public SFing geaChLImperad wel endonc o] Siing cspSendence, boolcan isUseryiewliseCase |

Oparationy

public wold generatclls anvow) Ale e |
public yoid generateComponantyew] Fle fla |

public boolsan |SCOMponanivicwlis eCasel Fls fle
[
nlGeneratar
CHL Generator GUI
4 Fnom gud

Attrintan
Pk age JTew iR old |t ol dRle = new JTax 8 ol d)
P e JBURON |bumonChodgefi e = new JEumon
K e JELMON |bumonGaneTate = now JBumond]
package File chocsed = null

puakdic CN.G:rmmG.I‘-LhI.m

pablic woldl ming S ng angs[o. "

public JPaned creafc®ancdy |

private JRAleChooser dofileChocsan |
privwaks vold genamasetls oCas cDocument |
e ied wodd inddalizePand| |

Figure 4.2 User view generation class diagram

The CNLGeneratorGUI class is where the implementation of our tool graphic’s interface
takes place. It has an instance of the CNLGenerator class which processes the translation from
CSP to CNL and generates the Word 2003 documents files. In order to effectively translate
component and user view files the CNLGenerator verifies if the input file is an instance of a
CSPUserViewFile or of a CSPComponentViewFile, and delegates the transformation for one of
them.

Once the input file’s instance is checked, its related class (CSPComponentViewFile or
CSPUserViewrFile) starts the transformation. In parallel, it does the file’s parsing while creating the
use cases (CSPComponentViewUseCase or CSPUserViewUseCase), flows (CSPComponentView-
UseCaseFlow or CSPUserViewUseCaseFlow) and steps (CSPComponentViewUseCaseStep or
CSPUserViewUseCaseStep) objects. During the file’s parsing, the CSP sentences are kept in
CSPSentence objects, where they are translated to CNL sentences and have the right restrictions
applied to their verb’s arguments and modifiers, which are represented by a list of
CSPSentenceltem.

As the use cases, flows and steps objects are filled with the information that came from the
input CSP file, and the steps sentences are already translated to CNL, they are ready to be written
in Word 2003 documents. The CNLGenerator receives these objects and apply their attributes to
the corresponding (component view or user view) template document, which are written using

Velocity, as it is explained in Section 4.2.3.

4.2. Overview

The CSP 2 CNL tool, illustrated in Figure 4.3 translates both user and component views use
cases documents written in the CSP notation into their corresponding Microsoft Word 2003 [LLMO04]

documents, written in English.

32

Button used to navigate through the File

Path to CSP file. aystem and to choose a CSP file.

CSP 2 CHL

C5P File: || |[Chbose]

Button used to generate
user or campaonent view
use cases from CSF files

Figure 4.3 CSP 2 CNL tool main screen

The main difference between a user view use case and a component view use case is that
the first one is generated from requirements documents and the second one is generated from
architecture documents. The user view use cases clearly describe the system behavior when one
single user executes it, by specifying the user operations and expected system responses. In the
other hand, a component view use case specifies the system behavior based on the user
interaction with the system components. In this view, the system is decomposed into components
that concurrently process the user requests and communicate among themselves.

For each user view use case, it can be defined a related component view use case and
user view steps are decomposed into component messages exchange. In the component view, it is
defined the component that is invoking an action and the one that is providing the service. It is a
message exchange process composed by a sender, a receiver and a message. The user from the
user view use case is viewed here as a component, and can either send or receive messages to
and from components, respectively. A component can also send a message to itself. These
particularities enable the definition of concurrent scenarios, which is a non-functional requirement.
Thus, components can share resources and exchange messages.

Both user and component views use cases are translated to their formal model
specifications in CSP by the Use Model Generator tool proposed in [Cab06]. The use cases are first

written according to CNL grammar, which is defined by knowledge bases, before the translation to

33

their corresponding CSP models. The method that makes it possible to translate each CNL

sentence from the use cases templates into CSP events is defined in [Cab06].

lze case
written in CHL

=l
Use Model Generator

CS5P Use case
model

)
CSP 2 CHL Tool

Figure 4.4 CSP 2 CNL tool scenario

Once the CSP models are created, they become the input to the CSP 2 CNL tool, as can be
seen in Figure 4.4. Due to the fact that either the user view or the component view use cases
represents different views of the system requirements, they also have distinct CNL template
documents representations. The Use Model Generator tool receives each template document and
generates different CSP model structures descriptions with particularities that have to be treated
separately in order to generate their corresponding CNL constructions.

The CSP 2 CNL tool gives a different treatment to both user view and component view CSP
models generated by the Use Model Generator in order to transform them into their correspondents
CNL use case Word 2003 documents templates.

The following subsections summarize the functionalities the CSP 2 CNL tool performs.

34

4.1.1. User view use case generation

In order to generate the user view use case document, written in CNL, it is necessary that

the user of the CSP 2 CNL tool chooses an user view CSP file, as it is illustrated in Figure 4.5.

£ D i |
CSP 2 CNL
5P File: || H Choose]
ES Ope
Look in: | || usecases V| mD|E|E
- | éi component,csp
J I::i userview, csp
Cocumentos
recentes
N
Deskkop
Meus
documentos
A
Mew
computador
i File name: | | [Open]
Meus locais de
rede Files of type: |CSF‘ Files v |

Figure 4.5 Choosing a csp file

After the file selection and the Generate button is pressed, the tool automatically starts to

execute the transformation. Figure 4.6 shows an example of a user view CSP file.

35

inelude "CSP_HEADER USER.csp”

channel steps, conditions, expectedResults

System = UC_01 1M ; System

—— Feature: 11166 - IM conversation Structured Data
—— [se Case: IM Main Functionalities

—— Description:

This use case starts a conversation with a contact in the contact list.

—— Fedquirements: TRZ 14293
UCc_01 1M =

—— Start IMN application.
steps ->
Start.DTSTA APPLICATION. (IM APPLICATICN, {}) ->
-— IM application is displayed.
expectedResults >
igstate.DTISS APPLICATICN ZTATEVALUE. (IM APPLICATICN, {}).(DISPLAYED WALUE, {}] -»
[Uc_01 2M [] UC_01 14)
oCc 01 2M =
-— Log in IM Serwver.
steps -
login.DTLOG APPLICATION. (IM SERVER APPLICATION, {}] -»
—-— User is logged in.
expectedResults —>
isstate.DTISS_USER_STATEVALUE. (USER, {}).(LOGGED_IN_STATE, {}) ->
UZ 01 3N
0oc_01 3M =
—-— Zelect all contacts. 3tart conversation.

steps ->
gelect.DTSEL LISTITEN. (CONTACT ITEM, {ALL})

—> 3tart.DT3TL LISTITEM. (CONVERSATICN ITEM, {}] ->

-— Conversation screen is displayed. IN editor is empty.
expectedResults -»
isstate.DTIS3_SCREEN STATEVALUE. (CCNVERSATICN SCREEM, {}).(DISPLAYED VALUE, {})

—» isstate.DTIS3_FIELD STATEVALUE. (IM EDITOR_FIELD, {}).(EMPTY_STATE, {}] ->

SEIP

Figure 4.6 User view CSP model example

The tool reads the file in order to identify whether it's a user or component view
representation. It is done by checking via a regular expression if the term Comp is presented inside
the file. A more detailed explanation about the use of the term Comp is presented in Section 4.2.2. If
the term is not found, then the current CSP file is an instance of a user view file.

Next, the tool executes the file parser, keeping in Java objects the information about its use
case(s). A major object is created to keep the feature information and the use case(s). Each use
case is treated as an object that keeps the use case id, name, and flows. The use case flows are

also represented as an object that stores the information regarding to the flows in order to make it

36

possible to organize all the steps, found in the CSP file, into main and alternatives flows. Each flow
has its From Step and To Step attributes, and its set of sequential steps.

Then, for each step of the flows, three possible CNL sentences types are generated: one
for the User Action, another, if any, representing the System State, and another for the System
Response. Using the action sentence Select all contacts in step UC_01_3M as an example

of sentence in Figure 4.6, the CNL generation is done as follows:

e The sentence’s verb (Select) is found by the channel select.

e The restricion DTSEL_LISTITEM is applied to the verb’'s argument
(CONTACT_ITEM, {ALL}). The verb’s argument is also translated to CNL. In this
case, CONTACT_ITEM becomes contact in CNL. The modifier ALL is also
translated to the CNL term all. The xml specification of the modifier in the CNL
Lexicon base defines how the modifier will be appended to the sentence. In this
case, the definition of the modifier ALL says that it comes before the term it
modifies and makes the term go to its plural form. At this point, the CSP sentence is

already translated to its corresponding CNL sentence: Select all contacts.

As the use cases, flows and steps were already organized in objects, which represents the
links between feature and use cases, use case and flows, and flows and steps, finally the tool is apt
to structure the Word 2003 document, summarized in Section 4.2.3. The next figure, illustrates the

use case main flow generated by the component csp file showed in Figure 4.6.

37

Feature 11166

Use Cases

uc 01 -

M Main Functionalities

Felated requirement (s}

Requirements Codes

TE3 14293

Description

Thiz use case starts a conversation with a contact in the contact list.

Main Flow

From Step: START

To Step: END

Step Id User Action Sy=stem State Sy=ztem Response

Uc_ 01 1M | Start IN IM Application i=
Application. dizplayed.

UZ 01 ZM | Log in IM 3erver. User iz logged in.

Uc_ 01 3M | Select all Conversation sScreen
contacts. 3tart iz displayed. IHN
conversation. editor is empty.

ABlternative Flows

From Ztep: UC 01 1M

To Step: IKIP

Step Id User Action Sy=stem State Sy=ztem Response
UC 01 14| Go to Saved SJaved Conversations

Conversations
folder.

folder i=s displayed.

Figure 4.7 User view use case generated

When the transformation from CSP to CNL terminates, the CSP 2 CNL user is informed as

can be seen in Figure 4.8. The user view use case document is now written in the English CNL.

38

Figure 4.8 End of user view use case generation

4.1.2. Component view use case generation

As it was mentioned before, the treatment given to component view CSP models, so that it
is possible to translate them into use cases CNL documents, is quite different from the one given to
user view CSP models. It happens because the component CSP model structure itself is different
from the one adopted in the user CSP. This difference is well described in Chapter 4 of [Cab06].

Figure 4.9 shows an example of a component CSP. One of the differences that can be
noticed is that the channels now have their names suffixed by Comp, making the user and
component view CSP alphabets different.

Each component process is defined as a sequence of messages communicated with other
component. Figure 4.9 is illustrating only the USER_P process, which groups all the messages
exchanged into the USER and the other components for the presented use case. The remaining
processes, that groups the messages related to other use case components, is structured in the
same way that the USER_P.

For every component use case steps there are now two CSP events. Each CSP event
shows the sender and receiver components involved in its message exchange. In Figure 4.9, the
message Read incoming message has the CSP notation in the USER_UC 02 process as
readComp .USER .MESSAGE_APP _DTREA_SENDABLEITEM. (INCOMING_MESSAGE, { .
Between the channel name (readComp) and the restriction name (DTREA_SENDABLEITEM) comes
the sender (USER) and receiver (MESSAGE_APP) components.

39

Jcenarios = (U3ER_P): 3cenarios
include "CSP_HEADER COMPCHNENT. osp™

System = USER_F ||| MESZAGE_APP_F ||| MESSAGE_VIEWER_P ||| MENU_CCHNTROLLEER F
|1l MEZZAGE STCRAGE_APP_P ||| LIZT_APP_P ||| DIZPLAY APFP_F

—— Feature: 12898

—— UseCase: UC_02 - Incoming message is mwoved to the Important Messages folder

U3IER P =
—— Soenario Case: Incoming message iz moved to the Iwportant Messages folder.
USER_UC_Dz

USER_UC_DZ =
—-- Ftep: UC_0Z_ 1M - Message: Read incoming message.
readCowp . USER. MESSAGE APP.DTREL SENDAELEITEN. [INCOMING MESIAGE,{}] -»
-- Step: UC_0OZ 3M - Message: Open menu.
opencComwp . USER. MESSAGE APP.DTOPE_MENU. [MENU, {})] -»>
—- Step: UC_02_5SM - Message: Move to Important Messages option is displayed.
isstateConp. MENU CONTROLLER. USER.DTISS MENUITEM STATEVALUE. (MOVE To IMPORTANT MEISAGES CPTICN, {})
. (DISPLAYED_WVALUE, {}] -»

-- Ftep: UC_0Z_ &M - Message: Jelect Move to Important Messages option.

gelectComp. USER. HESSAGE APP.DTSEL_MENUITEMN. (MOVE TO IMPORTANT MESSAGES _OPTICH, (}) —»
(USER_UC_02_SM [] USER_UC_02_3E)

USER_UC_0Z_SH =

-- Step: UC_0zZ 9N - Message: Message woved to Important Message folder is displaved.

isstateComp. MESSAGE ITCRAGE LPP.USER.DTISS DIALOG STATEVALUE
L (MESSAGE MOVED TO INPORTANT MESSAGES FOLDER, {}).(DISPLAYED VALUE, {}] -»

-— Step: UC_0Z_10M - Message: Wait for at most I seconds.

waitCowp. USER. USER.DTWAI_ITEN. (SECCND, {AT MOZT.Z}) ->

—-— Step: UC_0Z_12M - Message: Avallable message is selected.

isstateComp.LIST APP.USER.DTISS SENDABLEITEM STATEVALUE. (AVATLABLE MESSAGE, {})
. [SELECTED_WALUE, {}] -=>

USER_P

USER_UC_ 02 3E =
-- Step: UC_DZ 3E - Message: Confirm memory information dialog.
confirmComp. USER.MESSAGE APP.DTCCN DIALOG. (MEMORY TNFORMATION DIALOG,{}) -=

-- Step: UC_ 0z 4E - Message: Message content is displayed.
isstateComp. MESSAGE APP.USER.DTISS FIELDVALUE STATEVALUE. (MESSAGE CONTENT FIELD VALUE, {})

. (DISPLAYED VALUE, {}] ->
USER_F

Figure 4.9 Component view CSP model example

In order to transform the component CSP into its corresponding Word 2003 document
template, the component CSP file needs to be selected in the CSP 2 CNL main screen in the same
way as the user view csp file, as it was showed in Figure 4.5. After the file selection and the
Generate button is pressed, the tool automatically starts the transformation.

The tool reads the file in order to identify whether it's a user or component view
representation. It is done by simply looking for the term Comp using a regular expression. The
expression differentiates the term Comp, which comes appended to CSP channel names, from
other similar terms. If the term is found, then the current CSP file is an instance of a component
view file.

Next, the tool executes the file parser, keeping in Java objects the information about its use
case(s). A major object is created to keep the feature information and the use case(s). Each use

40

case is an object that keeps the use case id, name, and flows. The use case flows are also
represented as an object that stores the information regarding to the flows in order to make it
possible to organize all the steps, found in the CSP file, into main and exceptions flows. Each flow
has its From Flow and To Flow attributes, and its set of sequential steps.

Then, for each step of the flows, two possible CNL sentences are generated: one for the
Message exchanged by the components, and another, if any, for the representation of the System
State. Using the message Read incoming message in Figure 4.9 as an example, the CNL

generation is done as follows:

e The sentence’s verb (Read) is found by the channel readComp.

e The sender (User) and receiver (Message App) components are extracted from
the CSP sentence by the terms USER and MESSAGE_APP.

e The restriction DTREA_SENDABLEITEM is applied to the verb’'s argument
(INCOMING_MESSAGE, { }). The verb’s argument is also translated to CNL. In
this case, INCOMING_MESSAGE becomes incoming message in CNL. If there
were modifiers to the verb’s arguments, they would also be translated to CNL and
appended to the sentence regarding their definition in the CNL Lexicon base. At
this point, the CSP sentence is already translated to its corresponding CNL

sentence: Read Incoming message.

As the use cases, flows and steps were already organized in objects, which represents the
links between feature and use cases, use case and flows, and flows and steps, finally the tool is apt
to structure the Word 2003 document, summarized in Section 4.2.3. Figure 4.10 illustrates the use

case main flow generated by the component csp file showed in Figure 4.9.

41

Feature 12898

UC 02 - Tncoming message is moved to the Important Messages

folder

Main Flow

From Flow: START
To Flow: EMD
Step Sender Message System State Receiver
LIC 02 Th Usar Fead incoming Message App
message.
UC 02 2M | Message App | Open incoming Message
message. iewar
LIS 02 3 Usar Cpen menu. Message App
U 02 Ahd | Message App | Display menu. Important hdanu
Messages feature Contraoller
is an.
LIC 02 Ak fenu Move to Important User
Controller | Messages option is
displayed.
LIS 02 BM User Select Move to Message App
Irnportant
hessages option.
UC_ 02 7M User =elect Move to Message App
Important
bessages aption.
LIC 02 i henu mave message to Message storage Message
Controller [lmportant i= nat full. Storage App
Messsages folder.
LIC 02 S Message |Message movedto Lser
otorage App [lmportant Message
folder is displayed.
LIC 02 10R User Wait for at most 2 User
seconds.
LIC 02 116 | Message App [Mext inbox List App
message is
highlighted.
LIC 02 120 List App Avaiable message User
is selected.

Figure 4.10 Component view use case main flow

When the transformation from CSP to CNL terminates, the CSP 2 CNL user is informed as

can be seen in Figure 4.11. The component view use case document is now written in the English

CNL.

42

‘:\I.;) Component Yiew Use Case successfully generated,

Figure 4.11 End of component view use case generation

4.1.3. Word 2003 document generation

In order to write user and component view use cases into Word documents, the tool utilizes
the both use cases templates defined in Chapter 3 of [Cab06].

Our generation strategy was to get the XML Word representation for both templates and
work with them. This representation is called WordprocessingML [MCO03], also known as WordML,
which is the XML file format for Microsoft Word 2003 documents. These documents are used to
create templates with Velocity [Vel07], a tool to generate text that aggregates Java object
information with the files described in WordML. Then, Velocity specific demarcations are added to
the WordML files. These demarcations will be properly replaced with their related Java objects
information.

With the use cases, flows and steps organized in Java objects, as it was explained in

Sections 4.2.1 and 4.2.2, it was easy to compose the Word document.

4.3. Some considerations

In order to make it possible the presented tool successfully translates CSP models use
cases files into Word 2003 use cases documents, some changes were made in the CSP files
generated by [Cab06], which, in fact, have become our input files to the examples posted here and

to the experiments in Chapter 5. These modifications were taken as follows:

User view CSP files:
e The only field added to the user view CSP files was —— Feature: XXXX, where
XXXX means the feature id. This field was added before the use cases

specifications in order to retrieve the feature ids.

43

Component view CSP files:

e |In order to retrieve the feature ids, the field -—- Feature: XXXX, where XXXX
actually means the feature id, was also added before the use cases specifications.

e Line -- UC_XX - useCaseName is introduced, where UC_XX is the use case id
and useCaseName is the place where the use case name appears. This line is the
first line of every new use case of every CSP file. This allows us to find the use
cases id and name.

o Before each step sentence written in CNL, the field -— Step: UC_XX_YY was
added, so that the step id, related to the step where the sentence came from in the
original use case document, could be retrieved.

e The tag _Start was added to every reference of an exception flow’s first step in
order to make it possible to find the beginning of each flow. Whenever a step is

some flow’s first step, its reference in the CSP file appears as UC_XX_YY_Start.

The previous modifications were necessary to avoid losing the original use cases
specifications information after their transformation into CSP models by the tool developed in
[Cab06]. Without considering the previous modifications, it would be impossible to create use cases

documents with the same information presented in the original documents.

44

5. Case Study

This chapter summarizes the results of some experiments that were made in the Motorola’s
context. These experiments aim to evaluate the effectiveness of the automation strategy achieved
by the tool presented in the previous chapter. Their mainly goal is to show examples of usage of the
tool related to its input and output points of view. Hence, two experiments have been accomplished,
involving real Motorola’s requirements documents.

Section 5.1 explains how the experiments have been executed and Section 5.2 lists the

main points of their results in a brief and comprehensive manner.
5.1. Experiments

The experiments made included requirements documents that contain both user and
component view uses cases. For each experiment it was defined different use cases. However, all
use cases were essentially the same size, including a main execution flow and at least one
alternative or exception flow.

For the first experiment, two requirements documents were chosen. Each one contained
only one use case from a different view of the system.

The second experiment was composed of two different requirements documents, including

two use cases each.

5.1.1. First experiment

For the first experiment execution, there were chosen two simple requirements documents,
one containing a user view use case, and another containing a component view use case. There
were chosen simple documents structures so that it could be possible to verify if our proposed tool
is, in fact, translating the use cases steps sentences from CSP to CNL and organizing the
documents as they are organized in the templates defined by [Cab06]. The original Motorola’s
documents selected, written in these templates, can be seen in Appendix A, Sections A.1 and A.3.

At the beginning of the experiment, the Use Model Generator tool developed by [Cab06]
was used in order to generate the CSP files, containing the use cases formal models. Fragments of
these files are illustrated in Chapter 4, Figures 4.6 and 4.9.

Once the use cases formal models were created, they became our CSP 2 CNL inputs. After
executing our tool, it successfully translated the CSP files into Word 2003 documents files written in

English CNL, as can be seen, in their complete version, in Appendix A, Sections A.2 and A.3.

45

5.1.2. Second experiment

For the second experiment execution, there were chosen two requirements documents, one
containing two user view use cases, and another containing two component view use cases.

There were chosen more elaborated requirements documents with two use cases each in
order to verify if our proposed tool is not only translating the use cases steps sentences from CSP
to CNL and organizing the documents following the defined templates, but also to verify that it is
also treating documents with more than one use case and organizing them, keeping their steps and
flows links as they appear in the original Motorola’s documents. These documents can be seen in
Appendix B, Section B.1 and B.3.

At the beginning of the experiment, in the same way as the first experiment did, the Use
Model Generator tool developed by [Cab06] was used in order to generate the CSP files, containing
the use cases formal models. Figures 4.6 and 4.9, in Chapter 4, show fragments of the CSP files
used.

Once the use cases formal models were created, again they became our CSP 2 CNL
inputs. After executing our tool, it has successfully translated the CSP files into Word 2003

documents files written in English CNL, as can be seen in Appendix B, Sections B.2 and B.3.

5.2. Obtained results

The two experiments have had satisfactory results as can be verified by the comparison
between Motorola’s documents and the ones generated by CSP 2 CNL tool, that are showed in
Appendix at the end of this work.

Although the documents generated by our tool have some mismatched format structures,
for instance different font types in some words, and some different arranging of the spaces between
flows, in general they are very similar to the templates used by Motorola’s documents.

The main automation strategy was achieved as the documents generated by our tool show
the uses cases, with the right connections between their flows and steps, in accordance to the

original documents.

46

6. Conclusion

When comparing the development of software systems to other projects types, as
engineering projects for instance, it is a fact that they present different challenges to be achieved.
Software systems may suffer frequent changes in their specifications throughout their life cycle as
their development projects are prone to change. Original requirements almost always change after
activities of design or implementation have started. No matter what the reasons are, whether
external, internal, technical or learning, requirements change. That is a factor of life. Besides,
software projects have the capacity to allow changes that engineering projects do not have.
Renaming an artifact, throwing away a project prototype, or even deleting some parts of what is not
important anymore for the project are characteristics not presented in the physic reality of Civil
Engineering projects, for instance. Throwing away prototypes is complicated, even to elaborate
them is a tough work to be accomplished by engineers. It is true that they build houses for a longer
time than we develop software, so it is reasonable that Engineering has stronger established
concepts than we do.

Even though the idea that something has to change, most of time, brings apprehension,
changing requirements need to stop to be seen as a threat and start to be seen as an opportunity. If
the requirements of a software system do not change, this means that they are fixed and known.
The truth is that anyone can implement them, even their competitors. In other words, the
requirements stop being “utility” to become “commodity”, they are not anymore what makes a
difference between a software and another. Keeping well informed with the evolution of
requirements is critical as requirements represent the rationale behind development and the
milestones against which project success is measured.

As requirements are the agreement between clients and developers, writing their
documents in a controlled natural language has demonstrated that their resulting artifacts are non-
ambiguous and better understood by the ones involved with the software system development.
Besides, the requirements changes management becomes less painful, as they are clearly written.

However, dealing with changes in requirements means that a set of related documents has
also to be changed. And that is a pain in the neck. It takes time, and usually, it wastes more time
than expected.

As software developers, our work is to create mechanisms that make it possible to
automate tasks to our clients. It is more than natural that we bring to our environment automations
that help us to develop software with more quality and speed. Working with the requirements
changes in an automated way it is nothing else than to use the philosophy that we use with our

clients. It seems to be a great catch to automate the requirements maintenance so that their

47

documents would be frequently updated as soon as new changes arise. The use of formal models
has become a hand on the wheel to specify requirements and to enable automation.

Our work presented an approach to automate the translation form formal models
specifications, written in CSP notation, to requirements documents, written in an English controlled
natural language. The CSP 2 CNL tool implemented makes it possible to keep in track with
requirements changes as they happen during the entire software life cycle. It has demonstrated to
be effective dealing with CSP models files so that they could be transformed into use cases Word

2003 documents written in English.

6.1. Future works

This section contains some suggested improvements to make the use of our proposed

approach more practical.

6.1.1. CSP models standardization

The automation strategy presented in this work and implemented by the tool CSP 2 CNL is
the link that was missing between the tools developed by [Cab06] and [Sou06] so they could work
together. These last two tools constitutes a part of a major project inserted in Motorola's context,
where there were proposed some strategies to automate the process of keeping requirements
documents updated by their related test cases.

Thus, in order to make these three tools work together, it is necessary that the CSP models
files generated by [Cab06] and the ones generated by [Sou06] are created following the same
format. Currently, as these projects were developed separately, the CSP models created by them
are structured in different formats.

As the input CSP models files of our tool use the format adopted and created by [Cab06], a
suggested future work is to get the CSP files generated by [Sou06] and modify their format so that it

become the same format as our tool input files.

6.1.2. Automatic requirements update by test cases

Another suggestion for a future work is to make it possible that our CSP 2 CNL tool works
attached to the tools developed by [Cab06] and [Sou06], so that the transformation from CSP to
CNL could be executed automatically, without users interaction.

As soon as a CSP model is generated by the tool in [Sou06], which translates test cases

into their corresponding CSP models, the CSP 2 CNL tool should transform it to its corresponding

48

use case written in English CNL. Thus, the use cases documents could be always updated at the

moment new changes are assigned to their corresponding test cases.

6.1.3. Modify CSP file format

As the Use Model Generator tool developed by [Cab06] generates CSP files, which formats
were adopted as our tool input files formats, and some important information about the use cases
they belong to is lost after the transformation to CSP models, it is necessary the addition of some
fields into these files. This necessity is explained in Chapter 4, Section 4.3.

Thus, another suggestion for a future work is to modify the CSP files generated by [Cab06]

so that they present the missing information.

49

Bibliography

[Cab06] G. F. L. Cabral, (2006) Geracgdo de Especificacdo Formal de Sistemas a partir de

Documento de Requisitos. Master’s Thesis, Universidade Federal de Pernambuco (UFPE).

[CIUFPEO7] Centro de Informatica da Universidade Federal de Pernambuco (CIn/UFPE).
http://www.cin.ufpe.br, 2007.

[CRO4] E. Clayberg and D. Rubel, (2004) Eclipse: Building Commercial-Quality Plug-Ins.

[Fil76] C.J. Fillmore, (1976) Frame semantics and the nature of language. In Annals of the

New York Academy of Sciences: Conference on the Origin and Development of Language and

Speech.

[Gra97] M. Grand, (1997) Java Language Reference. O’Reilly, 2nd edition.

[Hoa85] C. A. R. Hoare, (2004) Communicating Sequential Processes.

[HT99] A. Hunt and D. Thomas, (1999) The Pragmatic Programmer: From Journeyman to

Master. Addison Wesley.

[Inc07] Motorola Inc http://www.motorola.com.br, 2007.

[Lei06] D. A. Leitdo, (2006) Nlforspec: Uma ferramenta para geracdo de especificacbes
formais a partir de casos de teste em linguagem natural. Master’s thesis, Universidade Federal de

Pernambuco (UFPE).

[LLMO4] S. S. Laurent, E. Lenz and M. McRae, (2004) Office 2003 XML: Integrating Office
with the rest of the world. O’Reilly & Associates, Inc., Sebastopol, CA, USA.

[MCO03] Microsoft Corporation, (2003) Overview of WordprocessingML.
[RMO1] E. T. Ray and C. R. Maden, (2001) Learning XML.
[Ros97] A. W. Roscoe, (1997) The Theory and Practice of Concurrency.

50

[Sch99] S. Schneider, (1999) Concurrent and Real-time Systems: The CSP Approach.
[SLHO3] R. Schwitter, A. Ljungberg, and D. Hood, (2003) ECOLE - a look-ahead editor for a
controlled language, in: Controlled translation. In Joint Conference combining the 8th International
Workshop of the European Association for Machine Translation and the 4th Controlled Language
Application Workshop, Proceedings of EAMT-CLAWO03, May 15-17, Dublin City University, Ireland.

[SomO03] I. Sommerville, (2003) Engenharia de Software. Addison Wesley, 6™ edition.

[Sou06] C. F. Sousa, (2006) Modelling and Integrating Formal models: from Test Cases and

Requirements Models. Master’s Thesis, Universidade Federal de Pernambuco (UFPE).

[Vel07] The Apache Velocity Project http://velocity.apache.org/, 2007.

51

Appendix

Here, we present the documents involved in the experiments made in the case study
presented in Chapter 5. The documents are exposed in their integral format, without none
modifications, keeping the arranging of spaces as they are in the original documents.

For better visualization, the original Motorola’s documents are emphasized in blue, and the

documents generated by our tool are emphasized in green.

52

Appendix A - First experiment’'s documents

A.1. Motorola’'s user view document

Feature 11166 - IM conversation

Structured Data

Use Cases

UC 01 - IM Main Functionalities

Related requirement(s)

Regquirements Codes

TRS 14293

Description

Thi=s use case starts a conversation with a contact in the contact list.

Main Floar

From 3tep: STLRT
To Step: EMND

Step Id User Action Sy=tem State

Sy=stem Besponse

UC_ 01 1M | 3tart IN
application.

IM application is
displayed.

UC 01 2M | Log in IM Zerver.

User i=s logged in.

Uc_01 3M | Select all
contacts. 3tart
Conversation.

Conversation screen
is displayed. IHN
editor iz empty.

Blternative Flows

From 3tep: UC 01 1M

To Step: END

Step Id User Action Svstem State Svystem Response

UC_ 01 14| Go to Saved Saved Conversations
Conversations folder is displayed.
folder.

53

A.2. User view document generated by CSP 2 CNL tool

Feature 11166

Use Cases

UC 01 - IM Main Functionalities

Related requirement(s)

Requirements Codes

TRS_14293

Description

This use case starts a conversation with a contact in the contact list.

Main Flow

From Step: START
To Step: END

Step Id User Action System State
UC_01_1M Start IM
application.
UC_01 2M Log in IM Server.
UC_01_3M sSelect all
contacts. Start
conversation.

Alternative Flows

System Response
IM application is
displayed.
User is logged in.
Conversation screen
is displayed. IM
editor is empty.

From Step: UC_01_1M
To Step: END
Step Id User Action System State

System Response

54

A.3. Motorola’s component view document

Feature -

12898

Use Cases

UC 02 - Incoming message is moved to the Important

Messages folder

Main Flow

From Flow: START
To Flow: EMD
Step Sender Message System State Receiver

U 02 1 Lser Head incoming Message App
Message.

U 02 26 | Message App | Open incoming Message
MEessage. Viewer

U 02 3 User Clpen menu. Message App

U 02 AM | Message App | Display menu. henu

Contraller

UC 02 &M hlenu hove to lmportant User

Contraller | Messages option is
displayed.

LU 02 BM Lzer Select the Move to Message App
Important Messages
option.

UC 02 M | Message App | Select the Move to hdenu
Important Messages Contraller
optian.

L 02 8M benu Save message to Message Message

Controller Important Messages | starage is not Storage App
folder. full

LI 02 S Message fessage moved to User

Storage App | Important Message
folder is displayed.

LC 02 10k Lser WWait for at most 2 User
geconds.

U 02 116 Message App | Mext inbox message List App
iz highlighted.

L 02 12M List App Available message is User
selected.

55

Exception Flows

From Flow: UC_ 02 7M

To Flow: END
Step Sender Message System State Receiver
uc 0z 1E hdenu Save message to hMessage hMessage
Controller Important Messages | Storage is full Storage App
folder
Lc 02 2 hMessage hemory required Display App
Storage App | message is displayed
LUc 02 3k Lzer Confirm memary hMessage App
infarmation dialog
LUC 02 AE | Message App [Message is displayed User

56

A.4. Component view document generated by CSP 2 CNL tool

Feature — 12898

UC 02 - Incoming message Is moved to the Important Messages

folder
Main Flow
From Flow: START
To Flow: END
Step Sender Message System State Receiver
UC 02 1M User Read incoming Message App
message.
UC_02_2M | Message App | Open incoming Message
message. Viewer
UC 02_3M User Open csm menu Message App
list.
UC_02_4M | Message App | Display csm menu | Important Menu
list. Messages feature Controller
is on.
UC_02_5M Menu Move to Important User
Controller | Messages option is
displayed.
UC_02_6M User Select Move to Message App
Important
Messages option.
UC 02 7™M User Select Move to Message App
Important
Messages option.
UC_02_8M Menu Save message to | Message storage Message
Controller | Important is not full. Storage App
Messsages folder.
UC 02 9Mm Message |Message moved to User
Storage App | Important Message
folder is displayed.
UucC _02_10M User Wait for at most 2 User
seconds.
UC_02_11M | Message App | Next inbox List App
message is
highlighted.
UC 02 _12M List App Avaiable message User
is selected.
Exception Flows
From Flow: UC _02_7M
To Flow: END
Step Sender Message System State Receiver
ucC & 1E Menu Save message to Messag_;e storag_;e is Messag_;e

57

Controller | Important Messsages | full. Storage App

folder.

UC 02 _2E Message Memory required Display App

Storage App | message is

displayed.

UC_02_3E User Confirm memory Message App
information dialog.

UC_02_4E | Message App | Message content is User

displayed.

58

Appendix B - Second experiment’s documents

B.1. Motorola’s user view document

Feature 11166
Structured Data

IM conversation

Use Cases

uc 01 -

IM Main Functionalities

Felated requirement(s})

Regquirements Codes

TE3 14293

Description

Thiz use case starts a conversation with a contact in the contact list.

Main Flow

Frowm Step: START
To Step: END
Step Id User Action System State Sy=ztem Response
Uc_01 1M | 3tart IN IM application is
application. dizsplayed.
UC 01 2M |Log in IN Server. User i=s logged in.
Uc_ 01 3M(3elect all Conversation sScreen
contacts., 3tart iz displayed. IHN
cohversation. editor is empty.

ABlternative Flows

From Jtep: TUTC 01 1M

To Step: END
Step Id User Action System State Sy=ztem Response
Uc 01 1k |Go to 3Javed Jawved Conversations

Conversations
folder.

folder i=s displaved.

Uc 02 - IM message that contains a phone number

structured data

59

Related requirement(s)

Regquirements Codes

Description

Thizs use case starts with a conversation in which there is an IN message

with at least an enbedded phone number.

Main Flow

From Step: TUC 01 3M
To Step: END

Step Id User Action Sy=stem State Svstem Response

U 0z 1M | Send IM message. FPhone i= in
IN message Conversation Screen.
contains at least
1 embedded phone
nurber .

Uc_ 0z ZM | Press Options IM editor is not Jend Message To
softkev. ewwpty. Video Calling |option is displaved.

iz available. Video Call option is
displayed.

Oc_0& 3M | Select 3end Multiple Li=st Picker
Message To screen iz displaved.
option.

Uc 02 4M | Select at least 1| UTnified Meassaging Tnified Messaging
phone nunber. Composer iz flexed Composer is

On. displavyed.
UC 02 S5M | 3end message. Message is sent.

Alternative Flows

From 3tep: UC 02 1M

To 3tep: Uc 0z 5HM

Step Id User Action System State Svystem Response

UZ 02 14 | Highlight phone IM editor is empty. Fhone nuber is
T munber in I highlighted.

message .

UZ 02 24 | Press Center Send Message option
T Select kevy. iz displayed.

Uc_0z 34 [3elect Send UTnified Messaging UTnified Messaging

Message option.

Composer iz flexed
an.

Composer is
displayed.

60

Fromw Step:

Uc oz z2M

To Step: END
Step Id User Action System State System Response
UC 02 44 |Jelect Video Call Multiple List Picker
option. soreen is displavyed.
UC_0Z2 54 [3elect phone Video Calling screen
number. iz displaved.
From Step: UC_02Z 3HM
Ta Step: END
Step Id User Action System State | System Response
UC_02 ad | 3elect at least 1 Unified Messaging Phone is in Message

phone nurber.

Composer is flexed
off.

Type sScreen.

61

B.2. User view document generated by CSP 2 CNL tool

Feature 11166

Use Cases

UC 01 —

IM Main Functionalities

Related requirement(s)

Requirements Codes

TRS 14293

Description

This use case starts a conversation with a contact in the contact list.

Main Flow

From Step: START

To Step: END
Step Id User Action System State System Response
UC_0O1_1M |Start IM IM application is

application.

displayed.

UC 01 2M |Log in IM Server. User is logged in.

UC 01 3M |Select all Conversation screen
contacts. Start is displayed. IM
conversation. editor is empty.

Alternative Flows

From Step: UC_01 1M
To Step: END
Step Id User Action System State System Response
UC 01 1A |Go to Saved Saved Conversations
Conversations folder is displayed.
folder.

UC 02 — IM message that contains a phone number

structured data

62

Related requirement(s)

Requirements Codes

Description

This use case starts with a conversation in which there is an IM message
with at least an embedded phone number.

Main Flow

From Step: UC_01_3M

To Step: END

Step Id User Action System State System Response

UC_02_1M |Send IM message. Phone is in
IM message Conversation Screen.
contains at least
1 embedded phone
number.

UC_02_2M |Press Options IM editor is not Send Message To
softkey. empty. Video Calling |option is displayed.

is available. Video Call option is
displayed.

UC 02 3M | Select Send Multiple List Picker
Message To screen is displayed.
option.

UC_02_4M |Select at least 1 |Unified Messaging Unified Messaging
phone number. Composer is flexed Composer is

on. displayed.
UC_02_5M | Send message. Message is sent.
Alternative Flows
From Step: UC_02_1M
To Step: uC_02_5M

Step Id User Action System State System Response

UC_02_1A |Highlight phone IM editor is empty. Phone number is
number in IM highlighted.
message.

UC_02_2A |Press Center Send Message option
Select key. is displayed.

UC_02_3A |Select Send Unified Messaging Unified Messaging
Message option. Composer is flexed Composer is

on. displayed.

63

From Step: UC_02_2M
To Step: END
Step Id User Action System State System Response
UC 02 4A |Select Video Call Multiple List Picker
option. screen is displayed.
UC_02_5A |Select phone Video Calling screen
number. is displayed.
From Step: UC_02_3M
To Step: END
Step Id User Action System State System Response
UC_02_6A |Select at least 1 |Unified Messaging Phone is in Message

phone number.

Composer is flexed
off.

Type screen.

64

B.3. Motorola’s component view document

Feature - 12898
Use Cases
UC 02 - Incoming message is opened and moved to the

Important Messages folder

Main Flow

From Flow: START
To Flow: EMD
Step Sender Messagqe System State Receiver

LUC 02 Th User Fead incoming Message App
message.

LC 02 28 | Message App | Open incoming Message
MEessane. Wiewer

LC 02 3M User Dpen menu. Message App

UC 02 AM | Message App | Display menu. flenu

Controller

L 02 &M flenu Move to Important User

Controller | Messages option is
displayed.

LC 02 BM User oelect the Move to Message App
Important Messages
option.

UC 02 78 | Message App | Select the Move to henu
Impartant Messages Contraller
option,

L 02 8M flenu Dave message to Message hessage

Controller | Important Messages | storage is not Storage App
falder. full

L 02 9k Message Message moved to User

Storage App | Important Message
folder is displayed.

LC 02 10 User Wait for at most 2 Lser
seconds.

UC 02 110 | Message App | Mext inbox message List App
is highlighted.

LS 02 120 List App Avallable message is User
selected.

65

Exception Flows
From Flow: LC 02 4
Ta Flowe: EMD
Step Sender Message ng:te;" Receiver
uc 02 1E Messags R LTpnrtant Menu
App pray ' ﬂef{si?g; Cantroller
uc 02 2k flenu Move to Important Messages U
S : ser
Controller | option is not display ed.
Fram Flow: LIC 02 8
Ta Flowe: EMD
Step Sender Message ng:te;“ Receiver
Lc 02 3k hlenu =ave selected message to Message Message
Contraller | Important Messages folder. storage is Storage
full. App
UC_02 4E | Message
Storage | Display Memary full message. Display App
App
HEIZEsS ME;;SQE Dizplay Clean up dialog. Display App
HEAIZIES DEELEY Clean up request is displayed. User
SIS Lser Perform clean up. ME:;SQE
SSRGS Mejssge Display messages for detetion. List App
Uc 02 9k List Agp Meaa_age list is displayed far User
deletion.
LUc 02 10E T select all messages. Delete Message
ser
Messages. App
uc 02 11E Messans Message
Iy 4 Delete messages. Storage
PR App
SRS MEE;SQE Display Message moved message. Display App
UC_02_13E| Display |Message moved to Important User
App Message folder is displayed. __
Uc 02 14E| Message Feturn to inbox folder. Mavigation
L 02 _15E oo Ap
- - Naﬁ;g:]?jtmn System returns to inbox folder. Lzer

UC 04 - Clean up and Important Messages folder

Main Flow

From Step: START
To Step: EnD
Step Sender Message System State Receiver
User 5o to Message Mavigation App
e Center.
Mavigation | Display Message [rmp ortant hMessage App
LC 04 2h App Center screen. Message flex
is an.
hessage App [Important messages User
L8 e folder is displayed.
LIC 04 4 Lser Open menu Message App
hessage App | Display menu flenu
LIC 04 &M
- = Controller
UC 04 M flenu Cle_an up Meaaagea User
- - Controller option is displayed.
User =elect Clean up hessage App
e hessages option.
Message App | Scrall to Clean up Impartant [E
hessages optian. Message Contraller
LC 04 8k Select option. folder contains
at least 1
Message.
UC 04 9M flenu !mpn_rtanlt hessages User
- - Controller | itemn is displayed.
User =elect Important hessage App
S R Messages item.
Message App | Scrall to Impoartant fenu
Uc 04 11m hessages item. Contraller
Select itern.
flenu hessage types list is User
UC_04_12M Controller displayed.
UC_ 04 _13M User tSyn:jlsct message hessage App
Message App | Scrall to message [E
UC 04 14m type. Select Contraller
message type.
flenu Display Clean up Dialog App
Uz 04 150 Controller Important Messages
dialog.
Dialog App | Clean up Important User
Uc 04 16M Messages dialog is
displayed.
UC 04 17M User Cnnﬁrm clean up Message App
- - operation.

67

Message App | Confirm operation henu
IS E _ Controller
UC 04 19M henu Confirm operation Dialog App
- - Cantroller
Dialog App | Transient notice is User
A displayed.
UC 04 1M Dialog App | Display Messages Display App
- Deleted message
Display App | Messages Deleted User
LC_04 220 transient is
displayed.
UC 04 23M Message App | Heturn to Message. Mavigation App
- - Center
Mavigation |Message Center User
e App folder is displayed
Exception Flows
From Step: LC 04 8
To Step: EnD
System .
Step Sender Message State Receiver
Important fenu
hMessage Controller
Message | Scroll to Clean up Messages |folder
SOl IS App option. Select aption. containg at
least 1
message.
_ _ Important
UC 04 26E flenu Impnrtant hessages item is not Message User
- - Controller | displayed. folder is
ampty.
From Step: UC 04 17
To Step: EnD
System .
Step Sender Message State Receiver
Uc 04 27E ST Cancel clean up operation. ME;;SQE
Message |Open Clean up messages screen Mavigation
LG 261D App is displayed. App
UC 04 29E Naﬁ;g:jztmn Clean up screen is displayed. User

68

B.4. Document generated by CSP 2 CNL tool

Feature — 12898

UC 02 - Incoming message is opened and moved to the

Important Messages folder

Main Flow
From Flow: START
To Flow: END
Step Sender Message System State Receiver

UcC _02_1M User Read incoming Message App
message.

UC_02_2M | Message App | Open incoming Message
message. Viewer

UC 02 3M User Open menu. Message App

UC_02_4M | Message App | Display menu. Menu

Controller

UC 02 _5M Menu Move to Important User

Controller | Messages option is
displayed.

UC _02_6M User Select the Move to Message App
Important Messages
option.

UC_02_7M | Message App | Select the Move to Menu
Important Messages Controller
option.

UC_02_8M Menu Save message to Message Message

Controller | Important Messages |storage is not Storage App
folder. full

UC_02_9M Message Message moved to User

Storage App | Important Message
folder is displayed.

UC 02_10M User Wait for at most 2 User
seconds.

UC_02_11M | Message App | Next inbox message List App
is highlighted.

UC 02_12M List App Available message is User
selected.

Exception Flows

From Flow: UC 02 _4M

To Flow: END

Step Sender Message Sétsatlteén Receiver
UC 02 _1E M Important
€SSa9€ | pisplay menu. Message Menu
Al play sag Controller
bp flex is off. on

69

UC 02 2E Menu Move to Important Messages U
A : ser
Controller | option is not displayed.
From Flow: UC _02_8M
To Flow: END
System .
Step Sender Message State Receiver
UC 02 _3E Menu Save selected message to Message Message
Controller | Important Messages folder. storage is Storage
full. App
UC 02_4E | Message
Storage | Display Memory full message. Display App
App
UC_02_5E MeAsssge Display Clean up dialog. Display App
UC_02_6E Dﬁglsly Clean up request is displayed. User
uc_0z_7E User Perform clean up. MeAsggge
UC_02_8E Me:;sge Display messages for detetion. List App
UC 02 9E List App Messfage list is displayed for User
deletion.
UC_02_10E U Select all messages. Delete Message
ser
messages. App
UC 02 _11E Messaqe Message
Appg Delete messages. Storage
App
UC_02_12E Me:;gge Display Message moved message. Display App
UC 02 _13E| Display |Message moved to Important User
App Message folder is displayed.
UC_02_14E| Message Return to inbox folder. Navigation
App_ App
UC_02_15E Na\g\%z;tlon System returns to inbox folder. User

UC 04 — Clean up and Important Messages folder

Main Flow
From Step: START
To Step: END
Step Sender Message System State Receiver
UC_04_1M User Go to Message Navigation App
Center.
Navigation | Display Message Important Message App
UC 04 2Mm App Center screen. Message flex
is on.

70

Message App | Important messages User
UC_04_3M folder is displayed.
UC 04 4M User Open menu Message App
Message App | Display menu Menu
UC_04_5M Controller
Menu Clean up Messages User
UC_04_6M Controller | option is displayed.
User Select Clean up Message App
Uc_04_7M Messages option.
Message App | Scroll to Clean up Important Menu
Messages option. Message Controller
UC 04 8M Select option. folder contains
at least 1
message.
UC 04 9M Menu Important Messages User
- = Controller item is displayed.
UC 04 10M User Select Important Message App
- = Messages item.
Message App | Scroll to Important Menu
Uc 04 11M Messages item. Controller
Select item.
Menu Message types list is User
UC_04_12M Controller | displayed.
UC_04_13M User tSyf)leect message Message App
Message App | Scroll to message Menu
UC 04 _14M type. Select Controller
message type.
Menu Display Clean up Dialog App
UC_04_15M Controller Important Messages
dialog.
Dialog App | Clean up Important User
UC_04_16M Messages dialog is
displayed.
UC 04 17M User Confirr_n clean up Message App
- - operation.
UC 04 18M Message App | Confirm operation Menu
- = Controller
UC 04 19M Menu Confirm operation Dialog App
- = Controller
Dialog App | Transient notice is User
UC_04_20M displayed.
UC 04 21M Dialog App | Display Messages Display App
— Deleted message
Display App | Messages Deleted User
UC_04_22M transient is
displayed.
UC_04_23M Message App (Fi:mg; to Message Navigation App
Navigation | Message Center User
UC_04_24M App folder is displayed

Exception Flows

71

From Step: UC 04 8M
To Step: END
System .
Step Sender Message State Receiver
Important Menu
Message Controller
UC_04_25E Message Scrpll to Clear) up Messages folder.
App option. Select option. contains at
least 1
message.
Important
UC_04_26E Menu Important Messages item is not Messa_ge User
Controller |displayed. folder is
empty.
From Step: UC 04 _17M
To Step: END
System :
Step Sender Message State Receiver
UC 04 27E User Cancel clean up operation. MeAssgge
UC_04 28E Message ngn Clean up messages screen Navigation
App is displayed. App
UC_04 29E Na\g\%?)hon Clean up screen is displayed. User

72

	Automatic English Requirements Generation from CSP Models
	
Assinaturas
	
Acknowledgments
	
Resumo
	
Abstract
	
Contents
	
List of Figures
	
Introduction
	
Objectives and Context
	
Document Organization

	
CSP Overview
	
Basic Concepts
	
Operators
	
Prefix
	
Recursion
	
Sequential Composition
	
Choice
	
Parallel Composition

	
Controlled Natural Language
	
Lexicon
	
Verb
	
Term
	
Modifier

	
Ontology
	
Case Frame
	
Case Frame Restriction
	
CSP Alphabet
	
Ontology class to CSP datatype
	
Case frame to channel

	
CSP 2 CNL Tool
	
Architecture
	
Overview
	
User view use case generation
	
Component view use case generation
	
Word 2003 document generation

	
Some considerations

	
Case Study
	
Experiments
	
First experiment
	
Second experiment

	
Obtained results

	
Conclusion
	
Future works
	
CSP models standardization
	
Automatic requirements update by test cases
	
Modify CSP file format

	
Bibliography
	
Appendix

