[image: image4.png]© cenro

geinformatica

[image: image5.png]

Universidade Federal de Pernambuco

Graduação em Ciência da Computação

Centro de Informática

Recife, 5 de outubro de 2006.

Aluno: Ricardo Silva Melo Fernandes (rsmf@cin.ufpe.br)

Orientador: Augusto Sampaio (acas@cin.ufpe.br)

"Seja corajoso, não chore no meu túmulo, pois não estou mais aqui.

Mas, por favor, nunca deixe suas lembranças de mim desaparecer"
John Petrucci
Resumo

A automação de testes vem despontando como a grande promessa para agilizar o processo de verificação da qualidade de produtos de software. No entanto, a implantação de ferramentas com esse objetivo vem falhando e deixando frustradas as fábricas de software que as compraram. Isso se deve principalmente à falsa idéia de simplicidade dessas ferramentas passada pelos seus fabricantes, utilizando a técnica chamada "record/playback". Essa técnica deixa a automação construída com alto custo de manutenção. Com isso, novas técnicas estão sendo pesquisadas com o objetivo de se diminuir o esforço de manutenção do que já foi produzido. A proposta deste trabalho é implementar uma dessas técnicas, chamada de "automação baseada em palavras-chave".
Palavras-chave: Testes, Automação de Testes, Ferramentas de Automação de Testes, Keyword-Driven Automated Testing, Data-Driven Automated Testing, Functional Decomposition Automated Testing, Qualidade de Software.

Abstract
Test automation is one of the big promises to verify software quality in an agile approach. But test automation tools implementation is miserably failing, frustrating people who buy them. Those tools are sold as simple and easy to use with the "record/playback" functionality. This technique leads to high maintenance costs. That's why people are researching other techniques so maintenance becomes cheaper. The proposal of this project is to implement one of these techniques, called "keyword-driven automation".
Keywords: Testing, Tests, Test Automation, Test Automation Tools, Keyword-Driven Automated Testing, Data-Driven Automated Testing, Functional Decomposition Automated Testing, Software Quality.
Dedico este trabalho a Manuela Fernandes de Araújo Leão.

Agradecimentos

A meu orientador, Augusto, pela paciência e empenho em me ajudar. Mesmo no momento mais difícil, foi capaz de entender meu problema e ajudou a solucioná-lo.
A toda minha família, sem a qual não teria chegado tão longe.
A todos amigos da Qualiti, que além de me apoiarem emocionalmente deram contribuição técnica para a construção desse trabalho.
A todos colegas do “eixo”: Davi (o “Rei”!), Pedrosa, Galamba, Gabriel, Pacheco e Gilberto.
E a uma das pessoas mais especiais que já conheci, Lara Ximenes.
Sumário

91
Introdução

101.1
Objetivos da Monografia

101.1.1
Objetivo Principal

101.1.2
Objetivos Específicos

101.2
Relevância

101.3
Metodologia de Trabalho

111.4
Organização da Monografia

122
Automação de testes

132.1
Mitos da automação de testes

13Repetibilidade

13Todos os testes podem ser automatizados

14Automação acelera o esforço de testes

14Manutenção de scripts previamente criados é sempre simples

15Uma ferramenta apenas resolve todos os problemas

163
Abordagens de automação de testes

163.1
Record/Playback

173.1.1
Prós

173.1.2
Contras

173.2
Guiada por dados (data-driven)

183.2.1
Prós

183.2.2
Contras

183.3
Decomposição funcional

193.3.1
Prós

193.3.2
Contras

193.4
Guiada por palavras-chave (keyword-driven)

203.4.1
Prós

203.4.2
Contras

203.5
Base de dados (database)

213.5.1
Prós

213.5.2
Contras

224
Automação de testes guiada por palavras-chave

234.1
Arquitetura implementada

254.2
Como utilizar o framework

275
Conclusões

275.1
Trabalhos Futuros

286
Referências

29Apêndice A: Comparativo entre ferramentas

1 Introdução
Como descreve Dustin [Dustin, 2001], um dos maiores desafios da engenharia de software é construir sistemas em tempos mínimos, com custos cada vez mais baixos e com qualidade.
E para construir sistemas com qualidade, mas obedecendo às restrições de tempo e custo, é necessário otimizar o esforço de testes. Para atingir esse objetivo, muitas organizações estão recorrendo à automação de testes.

É sabido [Blackburn, 2000] que o esforço de testes consome, tradicionalmente, entre 40% e 75% do esforço total de desenvolvimento quando executado manualmente. Espera-se, com a automação dos testes, que esse número seja reduzido.

Sabendo dessa necessidade das organizações em encontrar meios para a redução de custos, fabricantes de ferramentas de automação de testes aproveitam-se da falta de maturidade das empresas com a disciplina de testes e vendem suas ferramentas como se fossem a solução imediata para redução de custos.
Passado algum tempo, frases como “pareceu tão fácil quando o vendedor mostrou, mas meus funcionários não conseguem fazê-la funcionar!”, “tentamos implementar a ferramenta nos últimos seis meses, mas ainda executamos a maioria dos testes manualmente” ou “é mais fácil/rápido executar manualmente!” [Zambelich, 2002] tornam-se comuns.
Isso se deve em parte a mentalidade de vender a todo custo dos fabricantes dessas ferramentas, que impressionam seus clientes com a funcionalidade record/playback (descrita na seção 3.1).

No entanto, é possível contornar esses problemas utilizando algumas técnicas já conhecidas. Uma delas será alvo de estudo desse projeto e uma implementação básica como prova de conceito será realizada.
1.1 Objetivos da Monografia
1.1.1 Objetivo Principal

Construir um framework que implemente a técnica de automação de testes funcionais baseada em palavras-chave.
1.1.2 Objetivos Específicos

· Otimizar o uso da ferramenta Rational Functional Tester;
· Diminuir o esforço de manutenção de um projeto de automação de testes;

· Difundir as melhores técnicas de automação de testes.
1.2 Relevância

A grande relevância desse projeto é diminuir a resistência das organizações com relação à automação de testes, pois propõe uma técnica comprovadamente mais eficaz [Zambelich, 2002] em comparação à técnica vendida pelos fabricantes de ferramentas.
1.3 Metodologia de Trabalho

A metodologia utilizada no desenvolvimento deste trabalho constitui das seguintes fases:

1. Revisão bibliográfica das técnicas de automação de testes funcionais – primeiramente, procurou-se analisar algumas das principais técnicas atualmente adotadas na área de automação de testes. Fez-se necessário compreender o contexto em que são aplicadas, considerando o retorno proporcionado por estas.
2. Revisão bibliográfica de automação de testes – esta atividade contemplou a investigação de como a automação de testes é enxergada e quais os seus possíveis benefícios para a indústria de desenvolvimento de software.

3. Implementação e documentação do framework proposto – neste momento, foi feita a implementação do framework e, em seguida, a documentação do mesmo.
1.4 Organização da Monografia

A monografia encontra-se organizada em 5 (cinco) capítulos:

O Capítulo 2 provê um panorama geral de Automação de Testes. São mostrados alguns desafios e alguns mitos ainda existentes dentro das organizações que desenvolvem sistemas de computador.
O Capítulo 3 fornece uma visão geral das técnicas mais utilizadas em projetos de automação de testes.
No Capítulo 4 é detalhada a técnica escolhida para esse projeto e como ela foi implementada na ferramenta Rational Functional Tester.

No Capítulo 5 são apresentadas as conclusões deste trabalho, contribuições providas pelo mesmo, bem como as atividades futuras sugeridas.

2 Automação de testes
Como descreve Thirumalai [Thirumalai, 2002], automação de testes significa a execução automática de testes que seriam executados manualmente.
No mesmo artigo, é dito que a automação de testes é particularmente útil para os testes de regressão. Dessa maneira, um pré-requisito básico para que se possa começar a automação de testes é ter um conjunto de casos de teste repetíveis. Assim, esse conjunto de casos de teste poderá ser executado toda vez que uma modificação for realizada no sistema.
Como relata Hendrickson [Hendrickson, 2001], algumas questões básicas devem ser consideradas na implantação de um processo de automação de testes:
· Estabelecer objetivos realistas e medidas de progresso, focando na automatização dos testes que podem aumentar a cobertura de testes e diminuir o tempo total de execução;
· A organização já deve possuir certa maturidade em testes, com experiência em execução de testes manuais e um processo de testes definido;
· Alinhar as expectativas de todos os stakeholders (gerentes, desenvolvedores, testadores etc.), fazê-los cientes dos objetivos e comunicar com freqüência os progressos do processo de automatização;
· Coordenar os esforços de automatização juntamente com os testadores manuais de forma a eliminar resistências e evitar duplicação de esforços;
· Encarar a automação como um projeto de desenvolvimento de software: definir um plano de projeto e estabelecer datas de entregas; definir requisitos; utilizar ferramentas para controle de versão dos documentos de teste e dos testes automatizados; realizar design dos testes antes de automatizá-los; adotar padrões de codificação, revisões, inspeções e outras boas práticas de garantia da qualidade; manter controle dos defeitos dos testes automáticos; prover manuais e tutoriais de como executar os testes automáticos.
· Definir uma arquitetura que permita a criação de códigos robustos, reusáveis, e de fácil manutenção;
· Adotar as ferramentas adequadas.

A escolha da ferramenta correta é um dos fatores mais críticos para o sucesso de um projeto de automação de testes. O custo associado à aquisição de ferramentas desse tipo é normalmente bastante alto. Dessa maneira, comprar a ferramenta errada trará grande frustração e sentimento de investimento perdido.

No Anexo 1, há um estudo comparativo entre ferramentas. Esse estudo mostra que tanto a solução da Mercury quanto a solução da IBM Rational são muito boas. A escolha da solução IBM se deu pelo maior uso no mercado local [Qualiti].
A seguir, são listados alguns dos mitos envolvendo automação de testes segundo Fajardo [Fajardo, 2002].
2.1 Mitos da automação de testes

Repetibilidade
Vendedores de ferramentas de automação de testes descrevem-nas como sendo a solução para se ter scripts consistentes e repetíveis e que poderão ser usados durante todo o ciclo de vida de desenvolvimento.
No entanto, essa é uma afirmação que dependendo do projeto pode ser considerada falsa. É apenas verdadeira quando o ambiente de testes permanece inalterado ao longo das várias execuções desses scripts.

Caso as condições de que o script depende sofram alterações, ele terá que ser modificado para que a próxima execução seja correta.
Todos os testes podem ser automatizados
É comum presenciar a falsa expectativa de que todo teste poderá ser automatizado mediante a compra de determinada ferramenta.
No entanto, há casos em que a automação ou não é possível ou é mais cara que a execução manual dos testes.

Dessa maneira, deve-se analisar com critério o que deve ser automatizado. Alguns exemplos onde às vezes não se vale à pena automatizar são:

· Cenários que serão executados apenas uma vez;

· Cenários que requerem intuição do testador;

· Cenários onde há comparação de imagens - normalmente, o suporte dado a esse tipo de operação pelas ferramentas é fraco.

Automação acelera o esforço de testes
Esse talvez seja o mito mais comum associado à automação de testes: acreditar que adotá-la irá reduzir o tempo gasto testando um programa.
A tarefa de criar scripts de automação é complexa e toma bastante tempo, principalmente quando o sistema a ser testado é novo e desconhecido.
Dessa maneira, deve-se cuidadosamente analisar se o esforço gasto com a automação irá ser recompensado mais tarde com a repetida execução dos scripts criados.
Manutenção de scripts previamente criados é sempre simples
Dependendo de como a automação foi estruturada, essa tarefa pode se tornar a grande propaganda negativa da ferramenta utilizada.
Como alguns scripts lidam com múltiplos dados parametrizáveis, a análise deles pode se tornar bastante complexa e requerer conhecimento sólido de lógica de programação.

Dessa maneira, o gerente de testes deve se esforçar para garantir que as melhores práticas e arquiteturas de automação estão sendo utilizadas. Diversas estratégias visam a minimizar o esforço de manutenção, e cabe ao gerente garantir que sua equipe está atenta a esse provável problema.

Uma ferramenta apenas resolve todos os problemas

Nenhuma ferramenta hoje no mercado suporta todos os ambientes de operação de programas.

É provável, inclusive, que nenhuma ferramenta seja capaz de atender todos os requisitos de uma organização, visto que múltiplas tecnologias são empregadas em diversos projetos.

Como ilustração disso, há ferramentas que suportam toda a família de sistemas operacionais da Microsoft, mas não interagem com Linux. Caso o programa deva ser testado em vários sistemas operacionais, será necessária a aquisição de mais de uma ferramenta.
3 Abordagens de automação de testes
A descrição de todas as técnicas abaixo foram baseadas em [Dang, 2006].
3.1 Record/Playback
Essa é a técnica mais utilizada para impressionar possíveis compradores de ferramentas de automação de testes, pois passa a imagem de simples e efetiva.
Consiste em gravar as ações do usuário no sistema para a geração de scripts. Esses scripts podem, então, ser executados e irão reproduzir exatamente as mesmas ações gravadas.
No entanto, há um problema fundamental com essa técnica: é semelhante a colocar valores hard-coded em códigos de programas. Qualquer desenvolvedor um pouco mais experiente sabe que isso não é uma boa idéia, pois esses valores podem mudar freqüentemente.
O mesmo se aplica à automação de testes. Valores hard-coded em scripts sofrerão mudanças ao longo do tempo e será gasto um tempo considerável na manutenção desses valores.

Abaixo, segue um resumo que explica o porquê dessa técnica não funcionar:

· Os scripts gerados a partir desse método contêm valores hard-coded que mudam se há alguma modificação na aplicação;

· Os custos associados a manutenção de scripts gerados a partir dessa técnica são inaceitáveis;

· Os scripts não são confiáveis: mesmo quando não há modificações na aplicação, é possível que eles venham a falhar. Basta acontecer alguma coisa no aplicativo que não ocorreu durante a gravação. Como exemplo, a aparição de uma mensagem;

· Se o testador comete um erro de digitação na entrada de dados durante a gravação, o script tem quer ser regravado;

· Se a aplicação muda, o script tem que ser regravado;

· Tudo que está sendo testado funciona. Erros encontrados durante o processo de gravação são reportados, mas o script não é finalizado até que o sistema esteja funcionando corretamente.

Mesmo com todos esses problemas, essa técnica é uma das mais utilizadas dentro das organizações. Seguem alguns motivos para isso ser realidade:
· Falta de conhecimento de alternativas;

· Vendedores insistentemente falando dessa técnica em apresentações comerciais;

· Pressa na obtenção de testes automatizados. Usando essa técnica, o tempo de desenvolvimento dos scripts é menor em comparação com uma automação mais estruturada;

· Pessoas não técnicas são alocadas para a automação.

3.1.1 Prós
· Configuração rápida;

· Fácil de aprender.

3.1.2 Contras

· Difícil de manter;

· Não suporta dados dinâmicos.
3.2 Guiada por dados (data-driven)
Da mesma maneira que na técnica de record/playback, os scripts são gerados a partir da gravação das ações do usuário.
No entanto, todos os dados hard-coded são retirados dos scripts e armazenados em repositórios externos. Com isso, os scripts gerados podem ser executados utilizando múltiplas combinações de dados armazenados nos repositórios.
Essa abordagem requer algumas habilidades de programação, tais como parametrização e laços.

Ainda conserva uma característica ruim da técnica record/playback: os scripts ainda são blocos isolados. Caso haja alguma modificação no sistema, é provável que isso afete muito a automação.

Assim, mudanças no aplicativo em teste podem levar a um custo inviável de manutenção.
3.2.1 Prós

· Configuração rápida;

· Podem-se usar múltiplas combinações de dados em um script;

· Provê separação entre dados e scripts.
3.2.2 Contras

· Muitos scripts para manter;

· Não suporta decisões lógicas. Os scripts ainda são blocos isolados.
3.3 Decomposição funcional
A idéia básica da decomposição funcional é reduzir todos os casos de teste a suas tarefas mais básicas. Em outras palavras, deve-se modularizar os scripts em funções que trabalham independentemente das demais.
Essas funções podem ser de diversos tipos:

1. Navegação – “acessar tela de pagamento no menu principal”;

2. Funções de negócio – “submeter um pagamento”;

3. Verificação de dados – “verificar que o pagamento atualiza o saldo”;

4. Navegação de retorno – “retornar ao menu principal”.

De maneira semelhante à técnica “guiada por dados”, deve-se separar os dados do script. Isso possibilita que a manutenção dos dados de entrada e saída seja feita separadamente da manutenção das funções.
Como os scripts que implementam as funções são criados separadamente, não é possível utilizar apenas record/playback para a criação dessas funções. Dessa maneira, essa técnica requer bastante conhecimento da linguagem utilizada pela ferramenta.

Além disso, requer também um conhecimento intermediário de conceitos de programação.
Uma possível arquitetura para implementar essa técnica será descrita a seguir.
3.3.1 Prós
· Provê separação entre os dados e os scripts;
· Introduz reuso;

· Provê apenas um ponto de manutenção para cada função.

3.3.2 Contras
· Tempo de implementação maior;

· Todo o time de testes necessita de conhecimentos de programação;
· Os dados de entrada e saída dos casos de teste são replicados – os dados ficam tanto no plano de testes, quanto nos arquivos para a automação.
3.4 Guiada por palavras-chave (keyword-driven)
Nesse método, a documentação criada para os testes manuais pode ser reaproveitada para a automação. Os “scripts” criados para esse tipo de automação são facilmente entendidos por pessoas não técnicas.
Todo o processo é guiado por dados, incluindo as funcionalidades: palavras-chave controlam o fluxo de execução.
Isso elimina o maior problema da decomposição funcional, que é a replicação de dados. Como esse método utiliza a mesma documentação tanto para os testes manuais quanto para os automatizados, não há duplicidade de informações.
Outra grande vantagem dessa técnica é a possibilidade de se ter pessoas técnicas e não técnicas trabalhando na automação. Na decomposição funcional, todos os membros da equipe devem ter no mínimo um conhecimento básico de programação.

Com palavras-chave, pode-se fazer uma divisão de tarefas:

· Parte da equipe implementa funções para cada palavra-chave;

· Parte da equipe constrói scripts utilizando essas palavras-chave.

Essa técnica, objeto de estudo desse trabalho, será mais detalhada no Capítulo 4.
3.4.1 Prós

· Separação entre script, dados e a aplicação em teste;
· Fácil de manter;

· Palavras-chave podem ser reutilizadas em outros projetos;

· Pessoas não técnicas podem criar casos de testes automatizados após a implementação das palavras-chave;

· Não é necessário criar duas documentações para os dados de entrada e saída;

· Caso já existam casos de teste especificados em algum formato, é fácil transformá-los para o formato esperado pela automação;

· Depois de um tempo, haverá palavras-chave suficientes para acelerar bastante o processo de automação.
3.4.2 Contras

· Exige proficiência na linguagem utilizada pela ferramenta;

· Dependendo da aplicação, o número de palavras-chave pode crescer bastante. Isso exigirá o conhecimento de diversas delas para construir os scripts;
· Tempo de implementação maior (pelo menos nos primeiros projetos).

3.5 Base de dados (database)
Bastante semelhante à técnica anterior, com a diferença básica que todas as informações relativas aos testes, tais como palavras chave e dados de entrada e saída, são armazenadas em banco de dados.
Como é de se imaginar, essa técnica preserva a maioria das características da técnica guiada por palavras-chave, introduzindo a vantagem de se fazer modificações em massa utilizando uma linguagem de manipulação de banco de dados.
3.5.1 Prós

· Todas as vantagens da técnica guiada por palavras-chave;
· É a mais fácil de manter;

· Fácil de realizar modificações em massa utilizando a linguagem de manipulação do banco de dados utilizado.
3.5.2 Contras

· Exige proficiência na linguagem da ferramenta utilizada;
· Tempo de implementação maior;

· Requer conhecimento de banco de dados.
4 Automação de testes guiada por palavras-chave

Como já apresentado na seção 3.4, todo o processo de automação de testes utilizando essa técnica é guiado por dados, incluindo as funcionalidades.

Para exemplificar, segue um caso de teste típico: “Submeter Pagamento”.

	COLUNA 1

Palavra-Chave
	COLUNA 2

Campo/Tela
	COLUNA 3

Entrada/Dado de Verificação
	COLUNA 4

Comentário
	COLUNA 5

Resultado

	
	
	
	
	

	IniciarTeste
	Tela
	Menu Principal
	Verificar se tela principal aparece
	

	
	
	
	
	

	Enter:
	Seleção
	3
	Selecionar opção de pagamento
	

	
	
	
	
	

	Ação:
	PressionarTecla
	F4
	Acessar tela de pagamento
	

	
	
	
	
	

	Verificar:
	Tela
	Payment Posting
	Verificar se tela de pagamento é apresentada
	

	
	
	
	
	

	Enter:
	Valor
	125.87
	Digitar dados do pagamento
	

	
	MétodoPagamento
	Cheque
	
	

	
	
	
	
	

	Ação:
	Press_Key
	F9
	Processar Pagamento
	

	
	
	
	
	

	Verificar:
	Screen
	Payment Screen
	Verificar se permanece na tela
	

	
	
	
	
	

	VerificarDados:
	Valor
	$ 125.87
	Verificar que valores são atualizados
	

	
	Saldo
	$1,309.77
	
	

	
	Mensagem
	Pagamento Enviado
	
	

	
	
	
	
	

	Ação:
	PressionarTecla
	F12
	Retornar ao Menu Principal
	

	
	
	
	
	

	Verificar:
	Tela
	Menu Principal
	Verificar que retorna à tela principal
	

Todo o fluxo de execução é controlado pelas palavras-chave indicadas na coluna 1.

Cada uma delas corresponde a um script utilitário que irá processar as demais colunas para realizar a ação desejada. Os dados em vermelho indicam o que precisaria ser modificado para criar casos de teste adicionais.

Como descreve Zambelich [Zambelich, 2002], a arquitetura geral para implementar um framework de automação guiada por palavras chave é:

Driver
· Executa inicializações, caso necessário;

· Executa o controlador específico da aplicação, passando para ele os nomes dos arquivos dos casos de teste;
· Executa alguma ação de finalização dos testes.
Controlador
· Lê e processa o nome do arquivo recebido do Driver;

· Faz a correspondência entre palavras-chave e scripts;

· Monta a lista de parâmetros;

· Executa os scripts utilitários associados com as palavras-chave.

Scripts utilitários
· Processa a lista de parâmetros recebida do controlador;

· Executa tarefas específicas, chamando funções definidas pelo usuário se necessário (pressionar botão, verificar dados, etc);

· Reporta o sucesso ou insucesso da ação, se necessário;

· Retorna para o controlador.

Funções definidas pelo usuário
· Funções específicas da aplicação em teste. Devem ser criadas quando a ferramenta não dá suporte direto aos componentes de interface que estão sendo testados.

Na seção 4.1, há um detalhamento de como esse framework foi implementado para esse projeto.
4.1 Arquitetura implementada

[image: image1.png]cd: KeywordDriven

arquivosList

+processarAuv SO Vo
+ehamarCortrolacor (rvoid
+iiciarTe ses(y vold
+naizarTestes()void

Controlador

—arguivorString

[RationaiTestseript]

vexenutarcaoQ:void
+reportarfe sitado(yvoid

[ProcessadorArquivos]

—arguivorString

-

acan

—palawaChave:Sting
—parametrosList
atriouto_7int

A arquitetura implementada segue o padrão sugerido por Zambelich [Zambelich, 2002] com apenas algumas modificações para adequação à ferramenta Rational Functional Tester e a para uma melhor modularização.
As classes apresentadas acima fazem parte do framework em si, com exceção da classe RationalTestScript.

Os detalhes da função de cada uma delas serão apresentados a seguir:

RationalTestScript: Essa classe faz parte da ferramenta RationalFunctionalTester. É a superclasse de todos os scripts criados na ferramenta. Dessa maneira, o Driver e o Controlador devem estendê-la para que possam ser executados.
Driver: Como já descrito anteriormente, a função do Driver é realizar quaisquer operações necessárias para o início dos testes, chamar o Controlador específico da aplicação quantas vezes forem necessárias - o número de casos de teste, finalizar a execução.
Controlador: O Controlador tem como função principal executar as ações descritas no caso de teste. Para isso, se utiliza da classe ProcessadorArquivos, que retorna a próxima ação a ser executada. Cada ação representa uma palavra-chave e é implementada como um método do controlador específico da aplicação (mais detalhes posteriormente).
ProcessadorArquivos: Essa classe tem como função processar o arquivo do caso de teste e retornar objetos do tipo Ação para o Controlador.

Ação: Nada mais é do que uma abstração da ação a ser realizada no momento. Contém a palavra-chave que representa a ação e os parâmetros a serem utilizados.

4.2 Como utilizar o framework
Agora que já foram detalhadas as classes implementadas, segue um exemplo de uso do framework.
Nesse exemplo, será descrito como seria o controlador específico para um sistema web.
[image: image2.png]e b

Controlador

Controladoreb

—arguivorString

vexeutarcioQ:void

+reportarResitado(yvoid e OYSeI okl

+iecharBrowser(yvoid
+HogerSistema(void

+presncherCampos(rvoic
+confmarOperacan (yvoid
+verfcartensagem(yvoid

Os “scripts utilitários” são implementados como métodos no controlador específico da aplicação.

Cada método desse poderá chamar funções definidas pelo usuário ou funções da própria ferramenta.

No caso do Rational Functional Tester, a maioria dos objetos de sistemas web pode sem mapeados diretamente. Assim, não há tanto esforço para a confecção de funções específicas. Cada método do controlador poderá chamar diretamente funções como “preencherCampoTexto”, “selecionarComboBox”, “selecionarEmLista”, etc.
E, finalmente, para criar os casos de teste, bastaria criamos arquivos contendo as palavras-chave – métodos do controlador específico – e seus respectivos parâmetros.
5 Conclusões

Neste trabalho, foi apresentada a implementação de uma técnica promissora para a automação de testes.
Ficou claro que apesar dos custos de implementação dela serem maiores do que o de outras técnicas, como record/playback, não são maiores o suficiente para inviabilizá-la. Pelo contrário, pois o framework ficou bastante simples e facilmente extensível.
Após a confecção do controlador específico para a aplicação em teste e de alguns scripts utilitários, o trabalho de criação dos testes automatizados é quase nulo. Caso a equipe já esteja acostumada a trabalhar com automação, o formato em que os casos de teste são escritos já estarão adequados e a execução poderá ocorrer em seguida.
Segundo Zembelich [Zambelich, 2002], dependendo da complexidade da aplicação que será testada, esse esforço inicial dura entre duas e três semanas. Assim, fica claro que para projetos com duração inferior a esse tempo, não vale a pena se valer de automação de testes.
No entanto, para projetos grandes com diversos ciclos de execução de testes, automação pode ser uma ótima opção para a diminuição do esforço total em testes e, conseqüentemente, do custo total do projeto.

5.1 Trabalhos Futuros

· Realizar estudo comparativo entre as técnicas para confirmar os benefícios de se usar um framework como o proposto.

· Implementar um mecanismo de persistência com banco de dados.
· Generalizar o framework para que o mesmo possa ser utilizado com diferentes ferramentas de automação.
· Verificar possibilidade de disponibilizar o framework no site da IBM Rational ou como um projeto open source.
6 Referências
[Zambelich, 2002] Zambelich, Keith. Totallly Data-Driven Automated Testing, Disponível em: http://www.sqa-test.com/w_paper1.html
[Dustin, 2001] Dustin, E., Rashka, J., Paul, J., Automated Software Testing – Introduction, Management and Performance, 1999.
[Dustin, 2001.2] Dustin, E. The Automated Testing Life-cycle Methodology, Disponível em: http://www.stickyminds.com/getfile.asp?ot=XML&id=2065&fn=XUS56712file1%2Edoc
[Blackburn, 2000] Blackburn, M.R., Busser, R., Nauman, A., Eliminating Requirement Defects and Automating Test
[Thirumalai, 2002] Thirumalai, V M. Cost-effective Automated Testing, Disponível em: http://www.stickyminds.com/getfile.asp?ot=XML&id=6477&fn=XDD6477filelistfilename1%2Edoc
[Hendrickson, 2001] Hendrickson, E., Better Testing — Worse Quality?, 2001
[Fajardo, 2002] Fajardo, Jose. Working with automated testing tools from a pragmatic point of view, Disponível em: http://www.stickyminds.com/getfile.asp?ot=XML&id=6471&fn=XUS2923267file1%2Edoc
[Dang, 2006] Dang, David. Test Automation: The Promise Versus The Reality, Disponível em: http://www.stickyminds.com/getfile.asp?ot=XML&id=10429&fn=XUS10356519file1%2Epdf
[Qualiti] Qualiti Software Processes: http://www.qualiti.com.br.
Apêndice A: Comparativo entre ferramentas
Este apêndice apresenta o resultado da avaliação de algumas ferramentas comerciais e gratuitas para automatização de testes funcionais. As ferramentas aqui avaliadas foram selecionadas por suportarem a execução de testes funcionais em páginas HTML para aplicações Web-based que utilizam a tecnologia Java Servlet/JSP.
Esse estudo foi baseado em um relatório que fez parte do projeto de implantação de uma metodologia de testes em uma empresa de grande porte. Com ele, foi possível estabelecer um kit de ferramentas que agregariam ao processo de testes.
As ferramentas foram avaliadas utilizando os seguintes critérios:
Facilidade de Uso

Capacidade da ferramenta de ser compreendida, utilização aprendida, operado e atraente ao usuário. Estabelecemos os seguintes critérios para analisar a facilidade:

1. Criação do script.

2. Layout da tela.

3. Menu de ajuda.

4. Instalação.

5. Customização.

5..1. Possibilidade de customizar o editor de scripts alterando cores, tamanho de fontes para melhor compreensão e também as convenções de nomenclatura para os itens criados como: scripts.

Pré-requisitos para Instalação

Importa verificar se o produto requer o mínimo de hardware e software possível, demandando desta forma uma facilidade na implementação.
1. Processador.

2. Sistema Operacional.

3. Memória.

4. Disco.

5. Browser.

Ambientes Suportados

Geralmente consideramos neste item a abrangência de suporte a vários ambientes. Porém nesta avaliação especificamente daremos foco na plataforma Java e no restante:

1. Tecnologia Java.

2. Outras Tecnologias.

3. Independência de Browser.

3.1. Possibilidade de gravar o script em um browser (IE) e reproduzir em outro (Netscape).

4. Custo adicional por add-ins.

Manutenibilidade dos scripts

Capacidade da arquitetura de automação a ser modificada. As alterações podem incluir correções, melhorias ou adaptações do software devido a mudanças no ambiente e nos seus requisitos (planejamento de teste).

Será avaliada também, a característica da linguagem, se é comum ou proprietária do fornecedor, identificando inclusive sua aderência a expertise das equipes envolvidas.

Deve-se deixar claro que, nem sempre a estratégia de utilizar a mesma linguagem de construção do software, para a construção dos scripts de automação é eficiente.

É importante que sejam analisados fatores como: envolvimento das equipes de construção na produção dos scripts de automação, custo dos engenheiros de software comparados aos automatizadores de teste, utilização de subcontratação do teste.

Os critérios estabelecidos aqui são:

1. Linguagem em que os scripts são gerados.

2. Facilidade de Manutenção.

3. Compartilhamento de objetos.

Armazenamento dos dados

Capacidade da ferramenta, gerir todos os dados pertinentes à automação dos testes, como: scripts, massa de teste e objetos.

1. Formas de armazenamento.

1.1. Banco de dados, arquivos, diretórios e integração com ferramentas de controle de versão ou gerência de configuração.

2. Escalabilidade.

2.1. Comportamento da ferramenta quando o repositório de teste cresce.

3. Itens armazenados.

3.1. Existem repositórios para cada tipo de itens armazenados: scripts, objetos de tela, log, massa de teste, etc.

Gravação e Execução dos Scripts

Facilidades que o produto oferece no método de gravação e execução dos scripts.

1. Permite a gravação a partir de qualquer parte do script.

2. Executa o script a partir de qualquer linha.

3. Mapeamento de componentes de interface.

3.1. Permite o mapeamento de componentes de interface antecipadamente sem a necessidade de aguardar uma build para teste.

4. Debug interativo.

4.1. Permite visualizar variáveis, executar scripts passo-a-passo ou alterar dinamicamente o código durante execução.

5. Acesso ao banco de dados.

5.1. Capacidade de a ferramenta disponibilizar acesso à banco de dados, levando em consideração a facilidade de se implementar este recurso no script.

6. Controle de Execução.

6.1. Permite controle de execução de múltiplos scripts simultâneos, em diversas máquinas, possibilitando estabelecer seqüência dos testes com a necessidade de outro módulo ou ferramenta.

7. Log dos resultados de teste.

Através do log deve haver uma possibilidade da integração com a ferramenta de gerenciamento de defeitos. Isto facilita no controle de gerenciamento de defeitos encontrados durante a execução dos scripts.

Cenários de Recuperação

Capacidade de tratar erros imprevistos e previstos, criando cenários de recuperação para tomar decisões sobre a continuidade, re-execução ou finalização do teste, sendo preciso neste caso verificar se a ferramenta trata erros e/ou eventos como:

1. Pop ups (Web /Windows).

1.1. Quando testamos paginas Web, é normal surgir pop-ups inesperados, ou até mesmo janelas do Windows. Verificar se a ferramenta é capaz de tratar estes eventos.

2. Mudança de Status do Objeto.

2.1. Verificar o grau de tolerância que a ferramenta oferece quando determinados objetos em uma aplicação sob teste são modificados.

3. Erro na Execução do Teste.

3.1. Se determinado passo não foi efetuado com êxito, ou se a aplicação simplesmente parou de responder. Verificar se é possível automatizar ações de re-execução.

Geração de Relatórios

O que importa neste fator é verificar o nível e formato das informações fornecidas pelos relatórios e seja ferramenta permite a captura de evidências dos testes.

1. Nível de informações.

2. Layout do Relatório.

3. Captura de evidências.

Integração da Ferramenta

Capacidade de integração com soluções de outros fornecedores, ferramentas de gestão de outros processos dependentes ao Teste e análise de custo destas integrações:

1. Integração com outros fornecedores.

2. Integração com ferramenta de Planejamento e Arquitetura de Teste.

3. Integração com ferramenta de Teste Unitário

4. Integração com ferramenta de Gerência de Requisitos.

5. Integração com ferramenta de Gerência de Defeitos.

6. Integração com ferramenta de Gerência de Configuração e Versão.

Recurso para identificação de Objetos

Capacidade da ferramenta em reconhecer objetos durante o processo de filmagem do script.

1. Existência de identificador de objetos.

2. Capacidade de adicionar os objetos ao repositório

Controle e Geração de Dados

Capacidade de gerir dados de teste, integrando-se com o planejamento de teste, permitindo a importação destes dados e seu controle.

1. Formas de Importação (txt, csv, xls ou banco de dados).

2. Capacidade de geração de massa de teste.

3. Nível de controle da massa de teste.

3.1. A massa de teste está associada ao script, à arquitetura de automação (conjunto de scripts), ou no planejamento de teste (independe da automação, podendo ser utilizada inclusive para testes manuais, ou compartilhada por outros projetos).

Suporte à Ferramenta

Capacidade de o fornecedor oferecer suporte à ferramenta tanto “on-site” quanto “remotamente”, considerando inclusive o atendimento no Brasil. Classificando em:

1. Equipe de Suporte.

2. Suporte on-line.
	Facilidade de Uso
	Peso

	Compuware
	TestPartner
	Layout da Tela: Ao abrir, é demonstrada a tela principal, onde podemos escolher a funcionalidade, criação de eventos, checkpoints, scripts e módulos. Para cada um destes casos, abre-se uma nova janela, mantendo a anterior aberta.
Help: O menu de Help é simples e bem objetivo para as consultas.

Criação de Script / Visões: Na tela, com o script carregado é possível para efeitos de depuração, obter visões do log de compilação e execução.

Instalação: A instalação é simples, basta escolher um banco de dados (SQL, Access ou Oracle). Caso for local, por default é criada uma base Access.

Customização: Permite alteração de preferências (cores e fontes) para confecção dos scripts e não há nada relacionado à padronização de nomenclatura.
	2

	IBM Rational
	Rational Functional Test
	Layout da Tela: É baseado na plataforma Eclipse. Os usuários desenvolvedores que utilizam este IDE, não terão dificuldade na exploração do produto, pois é muito similar. (Rational Software Development Platform).

Help: Possui um bom sistema de ajuda, inclusive tem um tutorial (animado) sendo mais fácil sua utilização.

Criação de Script / Visões: A depuração é feita diretamente no IDE (Rational Software Development Platform).

Instalação: A instalação é pratica e objetiva, precisando apenas optar entre as plataformas Java ou .NET.

Customização: Permite alterações, de preferência, como o produto esta sob o IDE Rational Software Development Platform, há uma sessão exclusiva para configurações do Functional Test.
	3

	Mercury
	QuickTest Professional
	Layout da Tela: A tela é bastante objetiva, tendo como principais funcionalidades: Record, Stop, Run, Objects, CheckPoint, Actions, Settings, Options e outros), logo no menu principal.
Help: È simples, e bem objetivo para consultas, podemos optar pelo Help direto da ferramenta ou pelo Book (formato PDF).

Criação de Script/ Visões: Oferece duas visões do script. Uma visão em código, Expert View e outra visão em objetos, Keyword View, facilitando a usabilidade do produto. Além disso, pode-se optar por visualizar todas as imagens das telas (visão de Active Screen e Data Table).

Instalação da Ferramenta: È bastante simples e objetiva.

Customização da Ferramenta: Na confecção dos scripts permite alteração de preferências (cores e fontes) e não há nada relacionado à padronização de nomenclatura.
	3

	Empirix
	e-Tester
	Layout da Tela: A tela é amigável e objetiva, as funcionalidades para gravação, datapools e checkpoints estão disponíveis em forma de ícones na tela principal.
Help: Possui um sistema de ajuda em formato de HTML e PDF.
Criação de Script / Visões: Para depuração de script é preciso utilizar o Visual Basic. As visões disponíveis são: Browse, local indicando URL, painel de resultados. O script é exibido em formato de árvore (treeview).

Instalação: Instalação simples, porém não e possível instalar o e-Tester separado do e-Suite.

Customização: A configuração das preferências se dá no IDE do Visual Basic.
	2

	Opensource
	Maxq-0.98
	Layout da Tela: A tela é muito simples, contendo apenas o menu para chamada de script de gravação e execução. (StartGUI – Java).

Help: Não oferece suporte em tela, toda documentação de ajuda entra em formato de html no diretório de instalação.
Criação de Script / Visões: Visão limitada, demonstra apenas duas telas, uma demonstra as chamadas (request) da página durante a execuçao e outra que exibe o próprio script A depuração é feita pelo próprio <editor>.

Instalação: A instalação é simples e objetiva.

Customização: Não se aplica.
	1

	Pré-requisitos para Instalação
	Peso

	Compuware
	TestPartner
	Processador: Pentium III 500 MHz.

Sistema Operacional: Windows XP com SP 1a e 2, Windows 2000 com SP 1,2,3 e 4, Windows Server 2003 S.E e E.E.

Memória: 256 MB.

Disco: 200 MB.

Browser: Internet Explorer 5.01 ou superior.
	2

	IBM Rational
	Functional Test
	Processador: Pentium III 500 MHz

Sistema Operacional: Windows XP, Windows 2000, Windows 2003 (professional ou server). Linux Red Hat 9.0 (todas as funções exceto gravação), SuSE Linux Enterprise Server 9 (todas as funções exceto gravação).

Memória: 256 MB.

Disco: 500 MB.

Browser: Internet Explorer 5.01 ou superior, Netscape 5 ou Superior, Mozzila.
	2

	Mercury
	QuickTest Professional
	Processador: IBM-PC ou compatível a um Pentium III 500 MHz.

Sistema Operacional: Windows 2000-Service Pack 3 or Service Pack 4, Windows XP-Service Pack 1 or Service Pack 2, or Windows 2003 Server.

Obs.: Suporta o Windows XP Service Pack 2 somente se a mecanismo de execução (conhecido como DEP- prevenção de execução de dados NX- não execução) não for ativada.
Memória: No mínimo 256 MB de RAM.
Disco: Mínimo 250 MB lifers para arquivos da aplicação e pastas. 120 MB livre no disco em que estiver o sistema operacional instalado.
Browser: Microsoft Internet Explorer 5.5 Service Pack 2-6.0 (required), Netscape 6.1, Netscape 6.22, Netscape 6.23, Netscape 7.02, e Netscape 7.1 (optional) e AOL 8.0 e 9.0 (optional).
	2

	Empirix
	e-Tester
	Processador: Pentium III

Sistema Operacional: Windows 2000 SP 1 ou superior, Windows XP, Windows 2003 e Windows NT SP 6

Memória: 256 MB

Disco: 300 MB

Browser: Não se aplica. Possui Browser próprio.
	2

	Opensource

	Maxq-0.98
	Processador: Pentium II

Sistema Operacional: Windows 95, 98, ME, Windows 2000.

Memória: 32 MB

Disco: 100 MB

Browser: Internet Explorer 5.01 ou superior e Netscape 6.01 ou superior.
	3

	Ambientes Suportados
	Peso

	Compuware
	TestPartner
	Tecnologia Java: JavaScript e Java
Outras Tecnologias: O TestPartner suporta plataformas:

Oracle, PowerBuilder, PeopleSoft, Siebel, DHTML, HTML, SAP, bowsers Netscape e Internet Explorer.

Obs.: Uma das vantagens deste produto com relação aos demais é a facilidade de integração com Mainframe. A Compuware tem forte tradição com produtos voltados à alta plataforma.
Independência de Browsers: Permite a utilização do script em browsers distinto.

Custo adicional por add-ins: Não se aplica.
	3

	IBM Rational Functional Test
	Rational Functional Test
	Tecnologia Java: IBM JRE 1.2.2-1.4.2+ e SUN JRE 1.2.2-1.4.2
Outras Tecnologias: O Functional Test suporta; para S.O:Win 2000, 2003 e XP, Linux Red Hat 9.0, Java: IBM JRE 1.2.2-1.4.2+ e SUN JRE 1.2.2-1.4.2+, HTML: Internet Explorer 5.5, 6.0, Netscape 4.7.x, 6.2.x, 7.01+, 7.1, 7.2, Mozilla 0.9.2, 1.0.x, 1.4.x, 1.5, 1.6, 1.7, VS.NET: 1.0 e 1.1.
Independência de Browsers: Permite, bastando apenas adicionar o browser na tabela de configuração de browsers. (Enabling Environment for Testing).

Custo adicional por add-ins: Não se aplica.
	2

	Mercury
	QuickTest Professional
	Tecnologia Java: Java Foundation Classes, JRE, J2EE.
Outras Tecnologias: Para Web: (I.Explorer, Netscape, AOL, XML, DHTML, AWT, Symantec Visual Cafe, ActiveX Control), ERP:(Oracle Jiniciator, NCA/11i, PeopleSoft 8.X, JD Edward Web Client), S.O: (Windows, C++, C Visual Basic, Win98, NT , 2000, ME, XP) Legado:(Emuladores de terminal 3270 e 5250, vt100) , .NET: (WinForms, WebForms, .NET Controls), Multimídia: (Real Áudio e Vídeo, Flash).

Obs.: A vantagem e é que suporta várias tecnologias.
Independência de Browsers: Permite a execução do script em browsers distintos, basta apenas escolher o browser antes da execução.

Custo adicional por add-ins: Sim, há custos adicionais.
	3

	Empirix
	e-Tester
	Tecnologia Java: Java Applets, JVM, JavaScript.
Outras Tecnologias: O Produto é voltado para testes de aplicativos Web, suporte Siebel, Wap e WinForms Plug-ins, Visual Basic, HTML.
Independência de Browsers: Não se aplica, possui browser próprio.

Custo adicional por add-ins: Não se aplica
	2

	Opensource

	Maxq-0.98
	Tecnologia Java: JavaScript, Java Applets, JVM
Outras Tecnologias: HTTP, HTML

Independência de Browsers: Não se aplica, o produto apenas faz os “requests” dos objetos / páginas, sem apresentá-los (GUI).

Custo adicional por add-ins: Não se aplica
	1

	Manutenibilidade dos Scripts
	Peso

	Compuware
	TestPartner
	 Linguagem em que os scripts são gerados: São gerados em VBA.

Facilidade de Manutenção: Para manter o script exige-se conhecimento de lógica de programação. A ausência de uma interface gráfica para inserção de parâmetros dificulta a utilização da ferramenta para iniciantes.

Compartilhamento de Objetos: Os objetos, assim como os checkpoints e scripts são armazenados em uma base de dados. Esta base pode ser diferente para cada projeto ou sistema que será testado. Isto garante a segurança e controle de utilização do produto.
	2

	IBM Rational
	Rational Functional Test
	Linguagem em que os scripts são gerados: Permite a escolha de linguagem em que os scripts serão gerados como: Java Script ou VB.NET. Esta escolha é feita no momento de instalação.
Facilidade de Manutenção: Oferece várias formas para se dar manutenção do Script. Todo processo pode ser efetuado utilizando a janela de Record, durante a gravação, sendo possível criar o datapool, inserir checkpoint e outros dinamicamente.

Compartilhamento de Objetos: Os objetos são armazenados em um diretório único e podem ser compartilhados. Os scripts relacionados ao mesmo projeto podem ser associados ao diretório de repositório de objetos.
	3

	Mercury
	QuickTest Professional
	Linguagem em que os scripts são gerados: O script é baseado em VBScript, muito comum principalmente para aplicações Windows.

Facilidade de Manutenção: Sua facilidade está no fato de possuir uma interface gráfica permitindo atuar diretamente nos objetos mapeados (snapshots). Há duas visões que permitem a customização, Keyword View e Expert View. Quando a customização demandar um conhecimento mais profundo de linguagem de programação utiliza-se o Expert View.

Esta facilidade permite a antecipação na automatização do teste, capturando a tela e conseqüentemente os objetos. Podemos confeccionar o script antes da aplicação ficar pronta.

Compartilhamento de Objetos: Possuem duas opções, podendo ser compartilhadas ou não. Um script pode ter seu próprio repositório de objetos.No entanto o mais comum e prático é o compartilhamento destes objetos entre vários scripts. Para isto, basta apenas escolher o local (geralmente File Server) antes de iniciar a gravação.
	3

	Empirix
	e-Tester
	Linguagem em que os scripts são gerados: Os scripts são apresentados em uma TreeView e customizados utilizando VBA.
Facilidade de Manutenção: Apresenta algumas facilidades para a manutenção básica do script, como inserção de parâmetros e número de iterações. No reaproveitamento de scripts ou funções é necessário o conhecimento em VBA.

Compartilhamento de Objetos: Não se aplica. Cada script possui seus próprios objetos.
	2

	OpenSource
	Maxq-0.98
	Linguagem em que os scripts são gerados: São desenvolvidos em Java.
Facilidade de Manutenção: Requer conhecimento de programação em Java e toda a tarefa de customização deve ser executada diretamente no script (código).
Compartilhamento de Objetos: Não se aplica. Cada script possui seus próprios objetos.
	1

	Armazenamento de Dados
	Peso

	Compuware
	TestPartner
	Formas de Armazenamento: é um ponto forte da ferramenta, o TestPartner arquiva todas as informações do teste em uma base de dados. Esta base é criada quando instalamos o produto. A base pode ser Access, SQLServer ou Oracle.
Escalabilidade: Permite manutenção e suporte a migração para outros gerenciadores de bancos de dados através da ferramenta Database Maintenance Utility.
Itens Armazenados: Scripts, objetos, usuários, resultados do teste, checkpoints e eventos.
	3

	IBM Rational
	Rational Functional Test
	Formas de Armazenamento: Os scripts, projetos, ou resultados de teste são armazenados em um diretório de trabalho padrão denominado workspace. O Functional Test já vem com o ClearCase LT, permitindo que os scripts possam ser controlados utilizando este produto.
Escalabilidade: Esta relacionada ao Servidor de Arquivos onde estão definidos os diretórios de trabalho.

Itens Armazenados: Projetos, scripts, objetos, datapools, checkpoints e todos os recursos que compõem um script de teste.
	2

	Mercury
	QuickTest Professional
	Formas de Armazenamento: Arquivos / Diretórios: Os scripts, projetos e/ou resultados de teste, são armazenados em um diretório de trabalho, podendo escolher um File Server como repositório central. Disponibilizando armazenamento de objetos por script (Per-Action) ou de forma compartilhada (Shared).
Escalabilidade: Esta relacionada ao Servidor de Arquivos onde estão definidos os diretórios de trabalho.

Itens Armazenados: Scripts, objetos, eventos, cenários de recuperação, resultados e datapools.
	2

	Empirix
	e-Tester
	Formas de Armazenamento: Arquivos / Diretórios; toda configuração é armazenada em um diretório padrão.
Escalabilidade: Esta relacionada ao Servidor de Arquivos onde estão definidos os diretórios de trabalho.

Itens Armazenados: Objetos, scripts, datapools.
	2

	Opensource
	Maxq-0.98
	Formas de Armazenamento: Arquivos / Diretórios
Escalabilidade: Esta relacionada ao Servidor de Arquivos onde estão definidos os diretórios de trabalho.
Itens Armazenados: Scripts.

	1

	Gravação e Execução dos Scripts
	Peso

	Compuware
	TestPartner
	Gravação a partir de qualquer parte do script: Permite a gravação desta forma.

Execução do script a partir de qualquer linha: Não é permitido, pois ao executar um script, ele inicia da primeira linha.

Mapeamento de Componentes pela interface: Não se aplica.
Debug Interativo: Não se aplica.
Acesso ao Banco de Dados: Permite este acesso, pois há uma componente para facilitar o acesso ao banco.

Controle de Execução: Não se aplica. Permite somente com o auxilio da ferramenta QA-Director.

Log de Resultados: Após a execução do script é gerado um log com resultados do teste em formato de tabela. Permite o registro de erro a partir do log/resultado do teste /script.
	2

	IBM Rational
	Rational Functional Test
	Gravação a partir de qualquer parte do script: Permite a gravação, selecionando o script, a linha e optando por Insert Recording.
Execução do script a partir de qualquer linha: Para a depuração do script há a funcionalidade que pode ser acessada pelo menu Run > Run To Line.

Mapeamento de Componentes pela interface: Não se aplica. Pode-se utilizar o Data-Driven Test como alternativa.
Debug Interativo: Permite, com o auxílio do Rational Development Plataform.
Acesso ao Banco de Dados: Deve ser implementada utilizando-se recursos externos a linguagem de geração de scripts (JDBC).
Controle de Execução: É possível. Para isto será necessária a integração com a ferramenta Rational TestManager. O que pode ser feito (sem o auxílio do Test Manager) é, a chamada de outros scripts, quando um determinado teste estiver sendo executado.

Log de Resultados: Após a execução do script é gerado um log em formato de HTML. Permite o registro de erro a partir do log/resultado do teste /script.
	2

	Mercury
	QuickTest Professional
	Gravação a partir de qualquer parte do script: Permite a gravação, bastando selecionar a linha desejada.
Execução do script a partir de qualquer linha: Permite a execução, bastando selecionar a linha desejada.
Mapeamento de Componentes pela interface: Permite criar componentes de negócios, contendo apenas uma tela com os objetos. A construção se dá ao seguinte modo: (Objeto > Método > Parâmetro), através deste modo constroem-se os componentes do processo de negócio.
Debug Interativo: Possui e pode ser executado passo a passo (linha a linha).
Acesso ao Banco de Dados: Permite o acesso, utilizando o Microsoft Query para esta funcionalidade.
Controle de Execução: Pode-se automatizar a execução de vários scripts simultâneos em diferentes equipamentos, porém o gerenciamento é mais eficiente com a utilização do Mercury Quality Center.
Log de Resultados: Após a execução do script é gerado um log em formato de HTML. Permite o registro de erro a partir do log/resultado do teste /script.
	3

	Empirix
	e-Tester
	Gravação a partir de qualquer parte do script: Permite a gravação desta forma.

Execução do script a partir de qualquer linha: Não se aplica. A execução é efetuada a partir da primeira linha do script.

Mapeamento de Componentes pela interface: Não se aplica.
Debug Interativo: O Debug é feito no Visual Basic, com os mesmos recursos deste (IDE).
Acesso ao Banco de Dados: Deve ser implementada utilizando-se recursos externos a linguagem de geração de scripts (VB).
Controle de Execução: Somente com o auxilio da ferramenta de módulo de gerenciamento de testes, a e-Manager.
Log de Resultados: Após a execução do script é gerado um log em formato de HTML. Não submete o erro automaticamente.
	1

	Opensource
	Maxq-0.98
	Gravação a partir de qualquer parte do script: Não se aplica.
Execução do script a partir de qualquer linha: Não se aplica. A execução é efetuada a partir da primeira linha do script.

Mapeamento de Componentes pela interface: Não se aplica.
Debug Interativo: Não se aplica.
Acesso a Banco de Dados: Deve ser implementada utilizando-se recursos externos a linguagem de geração de scripts (JDBC).
Controle de Execução: Não se aplica.

Log de Resultados: Após a execução do script é gerado um log em formato de TXT. Mas não submete erros automaticamente.
	1

	Cenários de Recuperação
	Peso

	Compuware
	TestPartner
	Pop up do Windows: Permite a criação de eventos como abertura de janelas (windows event).

Mudança de Status do Objeto: É possível customizar o cenário para prevenir alterações no status dos objetos (ativo ou inativo).
Erro na execução do teste: È possível, porém demanda conhecimento avançado no produto para customizar o script diretamente no código.
	2

	IBM Rational
	Rational Functional Test
	Pop up do Windows: Permite, utilizando o método waitForExistence(), sendo possível prevenir eventos como abertura de janelas.

Mudança de Status do Objeto: O Functional Test utiliza a funcionalidade ScriptAssure, sendo possível regular o nível de mudança dos objetos que o produto deve tolerar.

Erro na execução do teste: Possui uma estratégia para definir possíveis erros e utiliza para isto o SWT. Possui duas classes principais para tratar erros: SWTException e SWTError.
	3

	Mercury
	QuickTest Professional
	Pop up do Windows: Permite a criação de forma simples e objetiva, ativando o Menu > Recovery Scenarios, podendo escolher, que tipo de imprevisto poderá ser tratado.

Mudança de Status do Objeto: Permite a criação de forma simples e objetiva, ativando o Menu > Tools > Object Repository. Escolher o objeto e alterar as propriedades de acordo com a necessidade e objetivo do teste. Além do recurso Smart Identification.
Erro na execução do teste: Permite a criação de forma simples e objetiva, ativando o Menu > Recovery Scenarios, podendo escolher que tipo de imprevisto poderá ser tratado.
	3

	Empirix
	e-Tester
	Pop up do Windows: Possui mecanismo de erros conhecidos (padrões).
Mudança de Status do Objeto: Não se aplica.
Erro na execução do teste: É possível customizar o script para tratar erros de execução, porém isto demanda conhecimento avançado na linguagem Visual Basic.
	1

	Opensource
	Maxq-0.98
	Pop up do Windows: Não se aplica.
Mudança de Status do Objeto: Não se aplica.
Erro na execução do teste: Não se aplica.
	0

	Geração de Relatórios
	Peso

	Compuware
	TestPartner
	Nível de informações: No TestPartner é possível obter relatórios com as seguintes informações; número de execuções, data de execução, comandos utilizados, resultados de cada linha executada, número da linha, nome do checkpoint, nome do usuário (Executor do Teste), hostname da máquina em que o teste foi executado.
Layout do relatório: Formato de Tabela, podendo ser exportado para txt. Não há indicação alguma para converter a tabela em html ou xls.
Captura de evidências: É possível customizar o script, para obter a captura de uma tela utilizando os recursos de criação de eventos.
	2

	IBM Rational Functional Test
	Rational Functional Test
	Nível de informações: Após a execução do teste é gerado um log em formato de html contendo as seguintes informações: Nome do Script, data de execução, Failures, Warnings, Pontos de Verificações, data e hora de início, fim dos testes e comando que inicia a aplicação.
Layout do relatório: Em formato de HTML.
Captura de evidencias: Possui mecanismo de salvar snapshots e gerar evidências.
	3

	Mercury
	QuickTest Professional
	Nível de informações: No QuickTest Professional é gerado um relatório com as seguintes informações: Resumo da execução contendo nome do script, data e hora de início/fim, descrição do resultado, número de iterações e status. Há uma tabela contendo a data pool utilizado na execução do teste.

Layout do relatório: Há uma visão pela árvore, que pode ser completamente expandida para visualização de todos os passos do teste (linha a linha), demonstrando os objetos, métodos, parâmetros, dados utilizados, status e a visualização de cada passo (telas).
Captura de evidencias: Permite configuração para captura de telas com a finalidade de gerar as evidencias.
	3

	Empirix
	e-Tester
	Nível de informações: As informações geradas pelo e-Tester são: nome do script, diretório de trabalho, data e hora de início, resumo do teste, e detalhes do script (iterações, total de paginas, falhas, sucesso e resultado completo).

Layout do relatório: O relatório é gerado em formato de HTML, não há menção quanto à possibilidade de exportar para outro formato.
Captura de evidencias: Não se aplica.
	2

	Opensource
	Maxq-0.98
	Nível de informações: Somente informa o status do teste, após a execução (se erro, demonstra a linha e motivo no log de execução).

Layout do relatório: O relatório é gerado em formato de TXT.

Captura de evidencias: Não se aplica.
	1

	Integração da Ferramenta
	Peso

	Compuware
	TestPartner
	Outros Fornecedores: A diferença deste produto é a sua fácil integração com Mainframe. A Compuware tem uma tradição para esta plataforma. Porém, a integração, com outras soluções de teste (disponíveis no mercado), é ineficiente.

Ferramentas utilizadas pelo CESAR: Não se aplica.

Ferramenta de Planejamento e Arquitetura: Possui uma Integração com a ferramenta Compuware QA-Director.
Ferramenta de Gerência de Requisitos: Possui uma Integração com a ferramenta Compuware Reconcile e DOORS.
Ferramenta de Gerência de Defeitos: Possui uma Integração com a ferramenta Compuware TrackRecord
Ferramenta de Gerência de Configuração e Versão: Não se aplica.
	1

	IBM Rational
	Rational Functional Test
	Outros Fornecedores: Não há documentação a respeito de integração com outros fornecedores de forma nativa. Mas disponibiliza API’s para integração.

Ferramentas utilizadas pelo CESAR: Uma das vantagens da Ferramenta Functional Test é a integração nativa com o Clear Case e CVS.

Ferramenta de Planejamento e Arquitetura: Possui uma Integração com a ferramenta Rational TestManager, Rational Test Projet.
Ferramenta de Gerência de Requisitos: Pode se integrar via Rational TestManager e Rational Team Unifying Plataform.

Ferramenta de Gerência de Defeitos: Pode se integrar via Rational TestManager e Rational Team Unifying Plataform.

Ferramenta de Gerência de Configuração e Versão: Possui integração com ClearCase LT.
	2

	Mercury
	QuickTest Professional
	Outros Fornecedores: QuickTest pode ser integrado facilmente com outras suítes de testes. Como utiliza VBScript é possível que as ferramentas de Gerencia de Testes de outros fornecedores submetam testes automaticamente no QuickTest.

Ferramentas utilizadas pelo CESAR: Pode-se utilizar o ClearCase ou CVS para controlar versão dos scripts.

Ferramenta de Planejamento e Arquitetura: Possui integração com as ferramentas Mercury Quality Center, RSI\QA-Teste, TestDirector.
Ferramenta de Gerência de Requisitos: Integração nativa com o Mercury Quality Center e TestDirector.
Ferramenta de Gerência de Defeitos: Integração nativa com o Mercury Quality Center e TestDirector.

Ferramenta de Gerência de Configuração e Versão: Não se aplica
	2

	Empirix
	e-Tester
	Outros Fornecedores: Não há informações de integração deste produto com suítes de outros fornecedores.

Ferramentas utilizadas pelo CESAR: Não se aplica.

Ferramenta de Planejamento e Arquitetura: Possível integração com o Empirix e-Manager.
Ferramenta de Gerência de Requisitos: Possível integração com o Empirix e-Manager.
Ferramenta de Gerência de Defeitos: Possível integração com o Empirix e-Manager.
Ferramenta de Gerência de Configuração e Versão: Não se aplica.
	1

	Opensource
	Maxq-0.98
	Outros Fornecedores: Não se aplica.

Ferramentas utilizadas pelo CESAR: Pode-se utilizar o Clear Case ou CVS para controlar versão dos scripts.

Ferramenta de Planejamento e Arquitetura: Não se aplica.
Ferramenta de Gerência de Requisitos: Não se aplica.
Ferramenta de Gerência de Defeitos: Não se aplica.
Ferramenta de Gerência de Configuração e Versão: Não se aplica.
	0

	Recurso para Identificação de Objetos
	Peso

	Compuware
	TestPartner
	Identificador de Objetos: O TestPartner possui o identificador de objetos e cria perfis de attachment com tecnologias distintas (.net, Java, Visual Basic e Etc..).
Capacidade em adicionar objetos: Adiciona os objetos identificados de forma organizada e por tipo de tecnologia.
	3

	IBM Rational
	Rational Functional Test
	Identificador de Objetos: O Functional Test também possui um identificador de objetos no qual é possível verificar todas as propriedades dos objetos e modificá-la quando necessário.
Capacidade em adicionar objetos: Durante a gravação, é possível também adicionar um mapa de objetos de outros scripts.
	3

	Mercury
	QuickTest Professional
	Identificador de Objetos: Possui a funcionalidade de Object Spy que identifica o objeto, suas propriedades e as modifica sempre que for necessário.
Capacidade em adicionar objetos: Independe se está gravando ou não o script, pois está disponível a qualquer momento.
	3

	Empirix
	e-Tester
	Identificador de Objetos: Não se aplica.
Capacidade em adicionar objetos: Não se aplica.
	0

	Opensource
	Maxq-0.98
	Identificador de Objetos: Não se aplica.
Capacidade em adicionar objetos: Não se aplica.
	0

	Controle e Geração de Dados
	Peso

	Compuware
	TestPartner
	Formas de Importação: Importa arquivos txt e csv.

Geração de massa de teste: O TestPartner oferece um mecanismo para gerar um banco de dados controlado, antes da confecção do script, o processo é auto-explicativo, facilitando a criação, após isto basta popular a massa de dados, possui também integração com a ferramenta Compuware File-Aid, que é uma ferramenta específica para manipulação de dados.

Nível de controle da massa de teste: Em nível de script, ou arquitetura de automação.
	2

	IBM Rational
	Rational Functional Test
	Importação de arquivos: Importa dados de arquivos csv.

Geração de massa de teste: Podemos criar uma massa de dados durante, antes ou após a confecção dos scripts ou importá-la da ferramenta Rational TestManager. Disponibilizando também a funcionalidade Data Driven Test.

Nível de controle da massa de teste: Pode estar associada ao script, ou a arquitetura de automação.
	2

	Mercury
	QuickTest Professional
	Formas de Importação: Importa dados de tabelas de Excel, txt , csv e utiliza o Microsoft Query para criar as querys e selecionar os dados a serem importados de bancos Access, SQL Server e Oracle.

Geração de massa de teste: Pode gerar massa durante, antes ou após a gravação do script, não há geração automática de dados.

Nível de controle da massa de teste: Em nível de script, arquitetura de automação, ou ao planejamento de teste quando se integrando a ferramenta ao QualityCenter ou RSI/QA-Teste®.
	2

	Empirix
	e-Tester
	Formas de Importação: Importa arquivos csv. Em caso de outros formatos, estes teriam que ser convertidos em csv para possibilitar a importação.
Geração de massa de teste: Possui facilidade na geração de massa de dados, sem ser automático, mas demonstrando todos os campos que podem ser transformados em variáveis. Possui também um bom mecanismo para gerar massa de dados para os testes. (Data Bank Wizard).

Nível de controle da massa de teste: Em nível de script.
	2

	Opensource
	Maxq-0.98
	Formas de Importação: Não há esta facilidade na interface, para importação de massa de dados ou utilização de datapools, é preciso customizar o script (código).
Geração de massa de teste: Não se aplica.

Nível de controle da massa de teste: Não se aplica.
	1

	Suporte a Ferramenta
	Peso

	Compuware
	TestPartner
	Equipe de Suporte: Possui suporte técnico no Brasil. E prestadores de serviço com larga experiência em suas ferramentas, com uma grande quantidade projetos implementados. Porém a maioria dos projetos ainda está com antiga solução da Compuware, o QA-Run.
Suporte On-line: A Compuware dispõe de um site para atendimento on-line, mas, o material disponível para pesquisas, dúvidas, ainda deixa muito a desejar.
	2

	IBM Rational
	Rational Functional Test
	Equipe de Suporte: Possui suporte técnico no Brasil. E prestadores de serviço com experiência em suas ferramentas, com projetos implementados. Tem menos tempo de mercado que seus principais concorrentes Mercury (apenas em nível mundial) e Compuware.
Suporte On-line: A ferramenta Functional Test V6.1 vem com uma facilidade de suporte “IBM Support Assistent User Guide”. Com ele é possível ter acesso aos serviços de suporte, a vantagem é que com este recurso você pode abrir um “chamado” diretamente pelo produto, enviando as informações detalhadas do seu sistema. Tudo isto de forma automática.
	2

	Mercury
	QuickTest Professional
	Equipe de Suporte: Possui suporte técnico no Brasil, vem sendo melhorado continuamente com a implementação de parcerias com prestadores de serviços.
Suporte On-line: A Mercury oferece vários documentos em seu site, desde fóruns de discussões até artigos e compartilhamento de dicas das melhores práticas. A única exigência é o cadastramento.
	2

	Empirix
	e-Tester
	Equipe de Suporte: Não possui suporte técnico no Brasil.
Suporte On-line: Como os demais, possui um site para suporte. Quanto à eficiência, parece questionável uma vez que para conseguir a licença do Trial levou cinco dias úteis.
	1

	Opensource
	Maxq-0.98
	Equipe de Suporte: Não se aplica.
Suporte On-line: A documentação do produto e o acesso ao suporte para tirar eventuais dúvidas devem ser feitos através do site.
	0

[image: image3.png]oL

13|

10|

eyuaweLIaS ¢ apodns - z|

‘sopeq ap 0g5e19 ap 210U07 - ||

Sopgey op 0g3eI90 - §

ogeiadnaay ap sougus) - /

511108 50p 0g3N98X @ 0p3eAe1D -

sopeq

S sop

sopenodng sa)

og3efaisul eied soysnbayaid 7

osq) ap apepy|pe -|

3

sos|jeuy ap saiojeq

Ferramentas

TestPartner

Functional Test

K Test

o Tester

Max-q

Automação de Testes Baseada em Palavras-Chave Utilizando a Ferramenta Rational Functional Tester

�

PAGE
8

