ﬁFPE
Universidade Federal de Pernambuco

‘Centro

~demformz’ltica
U-F-P-E

Centro de Informatica

Graduacao em Ciéncias da Computacao

Trabalho de Graduacado

Automatic Z Data Refinement

por

André Luis Ribeiro Didier

Orientador: Alexandre Cabral Mota

Recife, 2006



To my parents and my wife



Acknowledgements

I am really thankful to my supervisor, Alexandre, who has been teaching so many
things about science and life. I remember when I was still working in other area
- as a technician in electronics - a few years ago, and he said that it is not a good
idea to accommodate ourselves in a company for so many years. It’s true as well
as the lesson about always keep learning.

To my mother, Cléa, who has given me so many advices, like “take some rest”
or “go watch some movie” or even “stay at home this weekend”. She really wants
all the best to me.

To my main investor, Luciano, who gave me my first computer when I was
fifteen; and then my first job. My father showed me where I would find food:
working. He also taught me to love beach when I was able to walk. He told me
that life is not easy, but we must live with happiness.

To my wife, Juliana, who has shared with me many important moments, like
the graduation on the technical course, the vestibular' exams pass and now, the
graduation on Computer Science. She helped me on the decision to choose the
Computer Science as the profession to me.

To my grandparents Zezé and Roberto who have always motivated me and
do not forget their grandson on their prays.

To my mother in law, Conceicao, an example of strength and wisdom.

To my colleagues at Pitang who have been asking me for the graduate diploma
so many times. It is a subliminal message to say go ahead and achieve it. Special
thanks to Malu, Aninha, Kika, Daniela Pompilio, Pedro and Geovani.

'Exam to enter an undergraduate course

iii



Contents

Acknowledgments iii
Contents i
Abstract v
List of Symbols and Abbreviations vii
List of Figures viii
List of Tables ix
1 Introduction 1
2 7 overview 3
2.1 Formal methods . . . . . . . . ... 3
2.2 The Z notation . . . . . . . . . ..o 3
2.2.1 Schema notation . . . . . . . . . .. ... 4

2.2.2 Schemasastypes . . . .. .. .. ... .. .. ... ... 5

2.2.3 Schema operations . . . . ... ... ... ... ..., 5

2.2.4 The identity relation . . . . . . .. ... 8

2.2.5 Preconditions . . . . . . . .. 8

2.3 Data RefinementinZ . . ... ... . ... ... ... ... ... 9
2.3.1 Simulations . . . . . . ... 10

2.3.2  Simulations examples . . . . . ... ... oL 13

3 CSP Overview 19
3.1 Processes semantics . . . . . . . . ... 20
3.1.1 Traces . . . . . ..o 21

3.1.2 Refusals . . . . . . . o 21

3.1.3 Failures . . . . . . . . oo 21



i

CONTENTS

3.1.4 Divergences . . . . . . ... 22

3.2 CSPoperators . . .. .. ... 22
321 Prefix . ... ... 23
3.2.2 Recursion . . . . ... ... e 23
3.2.3 Conditional choice . . . .. ... ... .. ... ....... 23
324 Choice . . . . . . . . . e 24
3.2.5 Indexation . . ... ... ... ... 0. 24

3.3 Processrefinement . . ... ... ... ... .. ... ... ..., 25
3.3.1 Deadlock-freedom . ... ... ... ... . ......... 25

3.4 FDR . . .. 25
3.4.1 FDR deadlock-freedom command . . . . . . .. .. ... .. 26
3.4.2 The machine readable version of CSP . . . . .. .. .. .. 26
Capturing Z data refinement through deadlock analysis 29
4.1 Zdatarefinement . . . . . . . ... ... 29
4.2 7 data refinement process . . . . . .. ... e 30
4.3 Translating Z relational operators to CSPyy . . . . . . . . .. ... 31
4.3.1 Relational Composition . . . .. ... ... ... ...... 31
4.3.2 Parallel composition . . . . ... ... L oL 31
4.3.3 The identity relation . . . . . .. .. ..o oL 31
4.3.4 The domain operator . . . . . . . . . . . ... ... ... .. 32
4.3.5 The range operator . . . . . . .. ... 32
4.3.6 Domain restriction operator . . . . . . ... ... ... .. 32
4.3.7 Domain subtraction operator . . . .. ... ... ... ... 32
4.3.8 Range subtraction operator . . . . .. . ... ... ... .. 32

4.4 Forwards simulation process . . . . . . ... ... oo 32
4.4.1 Initialisation . . . .. .. .. . oo oL 33
4.4.2 Applicability . . ... ... oo o 33
4.4.3 Correctness . . . . . . . . i 33

4.5 Backwards simulation process . . . . . ... ... ... 34
4.5.1 Initialisation . . . .. .. ... oo oo 34
4.5.2 Applicability . . ... ... 35
4.5.3 Correctness . . . . . . . . . e 35
Case study 37
5.1 Average calculus: forwards simulation . . . .. ... ... ... .. 37
5.2 Vending machine: backwards simulation . . . . .. ... ... ... 39
5.3 Resultsanalysis . . . . . . ... .. ... 41
Conclusion 47
6.1 Limitations . . . . . . .. . . .. oo 47
6.1.1 State-explosion . . . . . .. ... oo 48



6.1.2 Not a fully automated task . . . .. ... ... ... ....
6.2 Future works . . . . . . . . ...
6.3 Related works . . . . . . . . ...

Bibliography
A Average calculus: complete CSP),; specification
B Vending machine: complete CSP;; specification

Index

i

49

53

59

65






Abstract

The goal of Formal Methods is to deliver high quality software using models and
precise language. 7Z and CSP are languages used for this task. 7 deals with
states, operations, data types and system properties. CSP is used to modelling
concurrency. The idea behind a data refinement is to achieve code refining the
specifications. The proof obligations required by the data refinement is always a
tedious task that requires a work by hand and the current tools requires strong
human intervention. The tools to increase productivity on the use of Formal
Methods have been demanded. On this work is presented an approach to auto-
mate the proof obligations for a data refinement for both forwards and backwards
simulations by capturing the Z specifications as CSP processes and use the FDR
model-checker to execute a deadlock-freedom test. It is presented a case study
for each of the simulations to illustrate the automation processes.






List of Symbols
and Abbreviations

Abbreviation Description Definition
CSP Communicating Sequential Processes page 19
CSPyy The machine-readable version of CSP page 26
FDR Failures-Divergence Refinement page 25

vii



List of Figures

3.1

5.1
5.2
5.3

5.4

FDR deadlock tab . . . . . . .. ... 27
Valid average calculus forwards simulation . . . . . . .. .. ... ... 42
Vending machine forwards simulation failure . . ... ... ... ... 44
Debug screen of the vending machine forwards simulation failure:

“correctErr.Vend” . . . . . ... 45
Valid vending machine backwards simulation . . .. ... ... .. .. 46

viii



List of Tables

2.1

3.1

4.1
4.2

5.1
5.2

Some math operationsusedinZ . . ... ... ... ... ....... 5
Equivalence between CSP and CSPy; . . . . . . . . . .. .. ... .. 26
Forwards simulation rules as subset inclusion . . . ... ... ... .. 30
Backwards simulation rules as subset inclusion . . ... ... ... .. 30
Average Calculus Example Executions . . . . . ... ... ... .. .. 43
Vending Machine Example Executions . . . . . . ... ... ... ... 43

X






Chapter 1

Introduction

Software is everywhere. Unfortunately software has bugs. Formal methods is
one alternative to tackle bugs. The idea is to have a specification and refine
it to achieve code. Refinement needs theorem proving which is interactive and
difficult to deal with. Our proposal is an automatic refinement approach. This
proposal is based on model checking which is an automatic technique to prove
properties of finite-state systems. We show in this work that we can formulate the
proof obligations of data refinement in terms of a deadlock-freedom test. This is
accomplished by rewrite the predicates of data refinement as relational operations
on sets.

Formal methods is an area of Software Engineering whose goal is to deliver
high quality software systems. By high quality software we mean software without
bugs (or with a minimum). Formal methods use precise (formal) languages to
describe the specification of these systems. There are some languages' with this
intent, eg., EVES, B, Z and CSP. Normally they are based on predicate logic and
algebra.

The Z language, presented in Chapter 2, is used to describe operations, their
data types, states and properties. It defines previous conditions and post condi-
tions of their execution, as we show in Section 2.2.

An execution of a program is associated with a process or a set of processes in
a computer. In the first case, the process behaviour is quite predictable if its code
is correctly written. But with two processes or more, if they communicate, the
behaviour is difficult to predict. The CSP language, presented in Chapter 3, is
used to describe processes interactions and their communications (see Section 3.1
and 3.2).

In a software development process we begin with a description in natural lan-
guage and finish with a program in machine language. We should take some steps

"http://vl.fmnet.info/



2 CHAPTER 1. INTRODUCTION

between these extremes. For example, we may describe a state of a program as
set of values, but the implementation should use a sequence. With this semantics
over states, each of these steps are called data refinement . The secure transition
between a more abstract state to a more concrete one is achieved using formal
methods languages, such as Z. The Z data refinement is presented in Section 2.3.

There are two ways to validate a data refinement: by a forwards simulation
and/or by a backward simulation. A simulation is a representation of one state
by another. The forwards simulation relates an abstract state to a concrete one
and backwards simulation relates these states in the opposite direction, relating
a concrete state to an abstract one. To validate a data refinement we must prove
some rules. The simulations and their rules are described in Section 2.3.1 and an
example of each is presented is Section 2.3.2.

The mathematical proofs needed for a data refinement in Z is a tedious hand-
work task. Everyone who has ever been put in contact with the technique has
argued it. It would be usefull if we could automate the proofs. There are some
works to do this, as we can see in [Bol05, BDW99|. In Z, there are some tools
with graphical interface like Possum?, which is used to verify or validate the Z
specifications, but requires strong human intervention.

The FDR model-checker is used to validate the failures or divergences that
may occur in a CSP specification. The failures occurs when a process refuses some
events after a sequence of events, as we show in Section 3.1.3, and a divergence
is a trace after which the process behaves chaotically. Such behaviour and the
definition of divergence are presented in Section 3.1.4. The FDR model-checker
can interpret only the machine-readable version of CSP, called CSP);. We present
a brief description and usage of the FDR in Section 3.4 and the description of
the CSPj; and the equivalence to the human readable version in Section 3.4.2.

The objective of this work is to use the combination of Z and CSP to analyse
the CSP deadlock-freedom property and use the FDR model-checker to auto-
matically prove the validity of a data refinement. We present the CSP process
refinements and the deadlock-freedom test in Section 3.3. A case-study for the
automation of the proof obligations of the data refinement rules for each of the
simulations is presented in Chapter 5. In Chapter 6 we present our conclusions,
limitations, further works and related works.

The contributions of this work are:

e Convert operations on relations to CSPyy;

e Translate Z data refinements (for both forwards and backwards simulations)
to CSPys and

e Present a case-study to use the FDR model-checker.

http:/ /citeseer.ist.psu.edu/hazel97possum.html



Chapter 2

Z overview

2.1 Formal methods

Nowadays a sensible work is spent during and after software development in
documentation, such as user guides, reference manuals and so forth. In despite
of that, there is software with unmet requirements and undesirable properties,
exposing data inconsistency. Formal methods have came to achieve full software
functionality and prevent reworking, avoiding (bad) surprises. The produced
documentation improves correctness in the development process. It is a means

of ensuring, mathematically, the software quality.

The purposes of a formal method are: “to add precision, to aid understanding,
and to reason the properties of a design” [WD96, p. 2]. But not every project
manager expect to spent men work on those techniques; some prefer to run the
risks. Costs also must be in mind and our work is intended to reduce them.

2.2 The Z notation

The Z language is a formal language used to specify systems properties and
requirements. Almost every operation defines preconditions and postconditions.
The language is based upon set theory and predicate logic.

The Z notation defines system states, data input and output, and conditions
over them. The operations properties are represented in the schema notation
using states, variables and the predicate logic. The schema definition may rep-
resent a state change or simply an output calculus, without state change. The Z
notation can be found in [Spi89] and in [WD96]. In a higher level, our usage will
be restricted to the schema notation and data refinement.
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2.2.1 Schema notation

In [WD96, p. 161] is stated that “The schema language is used to structure
and compose descriptions: collating pieces of information, encapsulating them,
and naming them for re-use.” If one do not use the schema notation the result
may be a huge amount of unintelligible data from which no one could extract
information. Also in [WD96, p. 161], is stated that “By identifying and sharing
common components, we keep our descriptions both exible and manageable”. A
common component may be, for instance, a mean operation or a sum of a set of
numbers.
The schemas may be defined inline like:

S = [declaration | predicate]
Or as a box like:

S

declaration

predicate

The declaration part defines variables such as sets - which may represent the
system state -, inputs and outputs. The predicate part expresses conditions over
which some operation is defined. The following schema may represent the valid
dates (extracted from [WD96, p. 153]):

Month = {jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec}
__Date

month : Month
day : 1..31

month € {sep, apr, jun, nov} = day < 30
month = feb = day < 29

Another simple example represents a birthday book (extracted from [Spi89,
p. 3]):
__ BirthdayBook

known : P NAME
birthday : NAME +— DATE

known = dom birthday

The mathematical toolkit presented in [Spi89, pp. 86-127] defines operations
over sets, relations, functions, sequences and bags. The Table 2.1 shows some

examples.
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Operator Description Example

Sequence concatenation (a, b) ™ (¢) = (a, b, ¢)

# Sequence length #(a,b) =2

C Subset inclusion ACB={z|z€ A=z € B}

U Union {a,b,c}U{c,d, e} ={a,b,c,d, e}
dom Domain dom fact = N

ran Range ran fact = N

Table 2.1: Some math operations used in Z

2.2.2 Schemas as types

In [WD96, p. 152] is shown how schemas may be defined as types. A simple
example is shown bellow:

SchemaOne
a:7Z
c:PZ

The declaration s : SchemaOne introduces a variable s of type SchemaOne
which means that the schema variables a and ¢ may be accessed as s.a and s.c
with types Z and P Z, respectively

2.2.3 Schema operations

Two schemas may be combined together if they are type compatible. Being type
compatible means that [Spi89, p. 31] “each variable common to the two has the
same type in both of them”. The operation results in a new schema with the
union of the declarations and the predicate joined with the same operation as
the schemas operation. It means that the schema operation must be a logical
operation. Thus, the schema operations A, V, =, =, < are valid. The following
example [Spi&9, p. 32] illustrates an operation:

Given the schemas:

__Aleph __ Gimel
x,y: 7 Yy Z
- z:1..10

T <y
Yy=2z%2

Then, Aleph A Gimel is:
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__AlephAndGimel
z,y: 7L
z:1..10

T<YNy=zx%z

Renaming

The renaming operation simply substitutes a variable name within a schema. The

general form is Schemalv),,, /vl ... v, /v5,]. Example: Given the schema:

S
a: T,
b: Ty

The schema S2 = S[c/a, d/b] is the schema:

52
c: T,
d: Ty

Decoration

The decoration definition is presented in [WD96, p. 168]. To describe an operation
upon a schema state we must have two copies of the state: the state before and
the resulting state of performing the operation. The after state is “decorated”

with an /. Then, an operation may be represented as:

__ Operation
State
State’
n?: Ty,

out! : Tous

predicate

The definition also describes two schemas AState and ZState:

AState __=State
State State
State’ State’

State’ = State
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The schema ZState may be used in those operations that do a calculus and
just outputs a value, for example.

Composition

Another usefull operator is the schema composition operator. It represents in-
termediate states that are the “end” of the first operand and the “beginning” of
the second operand. We present the operator definition from [Spi89, p. 78]:

The schema S g T has all the components of S and T , except
for the components z of S and z of T, where z is a matching state
variable. If State : Fxp is a schema containing just the matching state
variables, then S g T is defined as:

3 State” o
(3 State’ o [S; State” | OState’ = OState”]) A
(3 State o [T; State” | §State = 6State”])

There is a similar operator for relations. Given two relations R : X < Y and
S:Y « Z, the composition R g S : X « Z is defined to be:

r—2€RgS<sdy:Yer—yeRAy—2€S8

The composition U g S, where U : Y is an unary relation and S : Y <« Z,
may be defined as follows:

zeUgSedy: YeycUANy—2€5

Hiding
The hiding operation is defined to be an insertion of an existential operator (3)

in the schema predicate. In formulas [WD96, p. 181]:
Given the schema:

_ S
a: A
b: B

P

The schema S2 = S\{b} is:

_S2
a: A

Jb:BeP
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Parallel

The parallel operator relates two relations in the following way [WD96, p. 251]:

=[W.,X,Y,Z]
= (W e Y)x (X < 2)

Vo WeoYio:XoZio: X, y:Y;w:W; 2:Ze
(w,2) = (y,2) €pllocw—yeprz—zeo

2.2.4 The identity relation

The special identity relation relates an element of a set to itself. It is defined
in [WD96, p. 89]:

dX =={z: X ez —z}

2.2.5 Preconditions

The precondition is defined to be the condition over which an operation is guar-
anteed to occur. Outside the precondition nothing can be said about it. We
present the formal definition found in [WD96, p. 203]: Given an Operation, with
state State : Fxp and a list of outputs outputs, its precondition is:

pre Operation = 3 State’ o Operation\ outputs

The formal definition can also be found in [Spi89, p. 77].
In [WD96, p. 206] is presented a recipe to calculate the precondition. We
present the example. Given the schemas:

_ S _
a:N
b:N

a#b b#c

And the operation schema:

__Increment

AT
m?: N
out! : N

a =a-+in?
=10
d=c

out! = ¢
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The recipe gives us, three steps:
The first step, divides the declaration in three parts: Before, After and Mixed,
representing the state before, the state after and a mixed definition:

Before = {in? : N}
After = {out! : N}
Mized = {AT}

The second step, slices the mixed definition into the state before and state
after:

Before = {in? : N, T'}
After = {out! : N, T'}
Mized = {}

And then the last step defines the schema:

__pre Increment
T
m?: N

Jout! :N, T e
a = a+in?
=10
d=c
out! = ¢

The resulting schema can be simplified, considering the invariants and defini-
tions. The simplification steps can be found in [WD96] following the recipe. We
present the final simplification:

__pre Increment
T
m?: N

a+in?#b

2.3 Data Refinement in Z
The Oxford Advanced Learner’s Dictionary (6th edition) defines:

2 refinement of something a thing that is an improvement on an
earlier, similar thing.
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The formal methods are all about specifying software. Data refinement is the
process of removing undefinedess. The initial specifications may be as abstract as
necessary to easily capture the requirements and properties of the software being
designed, using the most convenient data types. Although, if the specifications are
closer to the software implementation then the possibility of unexpected problems
- such as performance - are avoided. In [WD96, p. 234] strengths that “several
refinement steps may be performed, each removing another degree of uncertainty,
until the specification approaches executable program code”. Spivey in [Spi89,
p. 137] says that data refinement is a step that relates an abstract data type to a
concrete one, and that a concrete data type is, in fact, another abstract data type,
considering the state space and schemas. Then, the refined operation (concrete)
must be similar - as the refinement word definition says - to the original one
(abstract) and, as formal methods mathematically specifies a system (or part of
it), data refinement is a continuous process that removes undefinedess of such
specifications.

To prove a data refinement, is necessary to define a link between the two
states data types (abstract and concrete). Such link is sometimes called a re-
trieve relation [WD96, p. 258] or an abstraction schema [Spi89, p. 137]. A data
refinement proof is a simulation [WD96, p. 244].

2.3.1 Simulations

If we imagine an execution of a program with a data type State4 and then imagine
the same program with a data type Statec, its execution should have the same
number of steps (the number of operations), inputs and outputs. A simulation
relates both program data types in a forward manner (Statesq < Statec) or in a
backward manner (Statec < Statey).

Before we present the simulations kinds, we must define the Z specification
of such program in terms of its states, initialisations and variables. The abstract
definition is subscripted as “A” and the concrete one is subscripted as “C”.

Definitions:
Stateg = a1 : Toy; -5 a, : Toy, | Inva(an, ..., ag,)]
Statec = [c1: Tey; -5 ek, 2 Tey, | Inve (e, ..., cg,)]

These definitions of state are similar to the definitions found in [MS01].

The system states may have invariants which are represented as the predicates
Invg and Inve. Each state may have any number of variables with their own
types, captured with the definitions a, : T,, and ¢ : T, , with n varying
from 1 to k, and m from 1 to k.. All these variables may be accessed from the
declaration of a variable sy of type States and a variable s¢ of type Statec as
presented in Section 2.2.2. From now on, we will use these variables.
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Every system should have an initialisation schema and n operations which
are generically obtained as:
Initialisations:

Schiit, = [y : State!y | Inita(s'y)]
= [sp @ Statey, | Initce(sp)]

where Init4 and Inito are unary relations defined as follows:

Inity : Statey
Inito @ Stateo

Operations:

Schopz = [AStatea; in? : Tin; out! s Tour | OpY((sa,in?), (s, out!))]
Schoyi, = [AStatec; in? : Ty out! : Tow | Ops((sc,in?), (sp, out!))]

where Op’, and Op}, are binary relations defined as follows:

Opf4 : (Statey, Tin) < (Statea, Tout)
Opic : (Statec, Tin) < (Statec, Tout)

the types Ty, and T,y: are the types of the input and output variables, that can
be written as tuples. The index ¢ varies from 1 to n, AStates and AStatec are
declared as:

AStateq AStatec
s4 @ Stateg s¢ : Statec
sy : State!y s¢ : Statey,

Using the schema definitions with relations (Init4, Initc, Opy and OpY) is an
important detail to achieve the simulations theorems as subset inclusion. Such

representation is found in [WD96] and we present it in the following sections.

Forwards simulation

Naming the relation between the two datatypes States and Statec as Retrieve,
the answer of the following questions - found in [WD96, p. 244] - are the rules
which one must prove be a theorem to achieve a correct (forward) data refinement:

e Can any initialisation of Statec be matched by taking an initialisation of
Statey and following it with Retrieve?

e Can any finalisation of Statec be matched by preceding it with Retrieve
and comparing it with the finalisation of States?

e Can any operation in Statec be matched by the corresponding operation
in Statey?
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The retrieve relation takes an abstract state to a concrete state in the forwards
simulation. Its predicate may be represented as the Linkp relation:

Retrieve = [s4 : Statey; sc : Statec | Linkp(sa, sc)]
and
Linkp : Statey < Statec

The forwards simulation rules of data refinement are shown in [WD96, p. 260]
and in [Spi89, p. 138]. We present them, using our notation:

F-init: V State, ® Schiyir, = 3 State’y ® Schpn, N Retrieve’

F-applic: V Statey; Statec e pre Schopi‘ A Retrieve = pre SChopg

F-correct: V Statea; Statec; Statey, e pre Schopz A Retrieve A\ SChopiC =
3 State!y ® SChopg A Retrieve’

In [WD96] the applicability is part of the correctness theorem, separating
them improves understanding.

The forwards simulation is chosen when the concrete operations are weakened
considering the abstract operations. We will see that the backwards simulation
is applied to those refinements that the concrete operations are stronger then
the abstract operations. Being weaker means that the preconditions has more
elements in the relation and being stronger means that the preconditions has
less elements in the relation. The backwards meaning of strength can be found
in [DHO3, p. 4].

Backwards simulation

The idea in a backwards simulation is as if [WD96, p. 270] “the abstract system
can simulate the concrete one by being able to anticipate its actions”.
The rules can be found in [WD96, p. 270] and we write them in our notation:

B-init: V State);; Statey, ® Schpm, N Retrieve’ = Schipit,
B-applic: V Statec o (V States ® Retrieve = pre Schopi‘) = pre Schopé
B-correct: V Statec o (V Statey e Retrieve = pre SChOp;") =

V Statey; Stateg, @ Schoy,: A Retrieve’ = 3 Statey o Retrieve A Schep

with the retrieve relation defined as:

Retrieve = [s4 : Statey; s¢ : Statec | Linkp(sc, s4)]
and:

Linkp : Statec < Statey

The retrieve in the backwards simulation relates a concrete state to an ab-
stract one. The relations Inits, Initc, Opf4 and Opic are the same defined in the
forwards simulation.
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2.3.2 Simulations examples

Now that we have shown the theory of a data refinement, we present some ex-
amples. They are used in Chapter 5 to illustrate the presented theory.

We use two examples, one for the forwards simulation and one for the back-
wards simulation. We use the predicates version of the rules to be proved. In the
automation process, the refinement is proved in the set relations version of the
rules and then, we compare the results. To use the set relations we must use a
finite state-space and the representation of infinite states as finite ones without
leaks on semantics is not the focus of our work, but we say it is possible and we
recommend the read of [Laz99] and the state-explosion avoidance with infinite
state-spaces presented in [FMS02].

Forwards simulation

The program in this example must find the average of some natural numbers. The
complete definition can be found in [WD96, p. 263]. The specification consists
of two operations: an operation AFEnter to enter a number to the data set and
an operation AMean to calculate the arithmetic mean of the numbers entered so
far. The state of the program is modelled using a sequence of natural numbers
to represent the data set. The initial state and the operations are presented:

AMemory = [s : seqN]
AMemoryInit = [AMemory’ | s = ()]

__AFEnter_____ __ AMean
AAMemory ZAMemory
n?: N m!: R
s'=s"(n?) s # ()

v )
s

Using the recipe to calculate the preconditions, we can write:

pre AEnter =
pre AMean = s # ()

Now we present the design of the arithmetic mean calculus:

CMemory = [sum : N, size : N]
CMemoryInit = [CMemory’ | sum’ = 0 A size’ = 0]
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_CEnter — CMean
A CMemory Z2CMemory
n?: N m!: R
sum’ = sum + n? size # 0
size! = size + 1 m! = sqm
size

And the preconditions are:

~

pre CEnter = true
pre CMean = size # 0

The forwards simulation retrieve can be written as:

__ SumSizeRetrieve
AMemory
CMemory

sum = Y275 (s i)
size = #s

The rules to be proved are:
Initialisation:

vV CMemory' @ CMemorylInit = (3 AMemory' e
AMemorylInit N SumSizeRetrieve’)

Applicability and correctness for the “enter” operation:

Y AMemory; CMemory; n? : N e pre AEnter A
SumSizeRetrieve = pre CEnter

YV AMemory; CMemory; CMemory’; n? : N e
pre AEnter A SumSizeRetrieve A CEnter =
(3 AMemory' @ AEnter N\ SumSizeRetrieve’)

And finally, applicability and correctness for the “mean” operation:

VY AMemory; CMemory; m!: R e pre AMean A
SumSizeRetrieve = pre CMean

YV AMemory; CMemory; CMemory’; m!: R e
pre AMean A SumdSizeRetrieve A CMean =
(3 AMemory' @ AMean N SumSizeRetrieve’)

It’s possible to assert mathematically that all rules are theorems.
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Backwards simulation

We now present a simplified version of the example of backwards simulation
found in [WD96, p. 274]. The original example has some other focus that are
not interesting to this work: it is also an operation refinement. We reduced
the number of operations on the design model to fit in a pure data refinement.
Anyway, the operation refinement in this example is not its main matter; the
author would like only to show it to treat in further chapters. The operation
“vend” is our focus.

The program is a simplified version of the software of a vending machine
which dispenses drinks in response to three-digits codes typed in by its users.
The specification does not consider the digits being typed one-by-one, i.e., the
digits are represented as an atomic sequence. The free-type Status is used to
indicate an operation in progress or a success or failure on the vending operation.
The Digits are numbers between 0 and 9 and seqs[X] is the sequence of X's whose
length is exactly 3.

Status ::= yes | no
Digit == 0.9
seqs[X] == {s :seq X | #s =3}

The state of the specification has two boolean variables to indicate an opera-
tion in progress or a success or failure in the vending operation. The initialisation
asserts a not busy status:

VMSpec = [busy, vend : Status]

VMSpecInit = [VMSpec' | busy’ = no]

The two operations on the specification are Choose and VendSpec. We present
them and their preconditions:

__Choose ___________ __ VendSpec
A VMSpec A VMSpec
i? : seqs Digit o! : Status
busy = no busy’ = no
busy’ = yes o! = vend
pre Choose = busy = no pre VendSpec = true

Note that the vend value on both Choose and VendSpec operations is nonde-

terministically chosen.
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At design level, the digits are entered separately and all we actually need to
record is the number of digits entered. When the first digit is entered, then the
machine is busy. It continues accepting digits until the max size (3) is reached.
The state and its initialisation are shown:

VMDesign = [digits : 0..3]
VMDesignInit = [VMDesign' | digits’ = 0]

Now we present the operations on the design version and their preconditions.
As we said before, they are modified from the original example. The modification
is very simple; the original version has two operations to enter digits, one to enter
the first digit (FirstPunch) and another the enter the second and the third digits
(NextPunch). In our example, we omitted the operation NeztPunch. This kind
of refinement is an operation refinement and is not our focus. Omitting the
refinement of the NextPunch operation turns the original refinement into a plain
(backwards) data refinement as we will show.

_ FirstPunch _ VendDesign
A VMDesign A VMDesign
d? : Digit o! : Status
digits = 0 digits' =0
digits’ = 1

pre VendDesign = true

pre FirstPunch = digits = 0
The o! variable can have any value:

yes or no.

The retrieve schema shown below can be used for both forwards and back-
wards simulation:

— Retrieve VM
VMSpec
VMDesign

busy = no < digits = 0

Observing the forwards simulation rules of this specification, we can conclude
that it fails on the correctness of the refinement of the operation “vend”:

YV VMSpec; VMDesign; VMDesign' e pre VendSpec N
Retrieve VM N VendDesign =
3 VMSpec' o VendSpec N Retrieve VM’
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To prove it fails, the following must be false for some value:

Y busy, vend : Status; digits, digits’ : 0..3; o! : Status e
busy = no < digits = 0 A\ digits' = 0 =
I busy’, vend’ : Status e busy’ = no A
o! = vend A busy’ = no < digits’ =0

Which is clearly false because nothing guarantees that the expression o! =
vend is true for all vend and for all o!. The rules for the backwards simulation
are:

Initialisation:

YV VMSpec'; VMDesign' @ VMDesignInit A Retrieve VM' = VMSpecInit
Applicability and correctness for the “choose” operation:

YV VMDesign e (¥ VMSpec o Retrieve VM = pre ChooseSpec) =
pre ChooseDesign

YV VMDesign e (¥ VMSpec o Retrieve VM = pre ChooseSpec) =
YV VMSpec'; VMDesign' @ ChooseDesign A Retrieve VM' =
3 VMSpec e Retriecve VM N ChooseSpec

And finally, applicability and correctness for the “vend” operation:

YV VMDesign e (¥ VMSpec o Retrieve VM = pre VendSpec) =
pre VendDesign

YV VMDesign e (Y VMSpec o Retrieve VM = pre VendSpec) =
YV VMSpec'; VMDesign' @ VendDesign N\ Retrieve VM’ =
3 VMSpec o Retriecve VM N VendSpec






Chapter 3

CSP Overview

We may define CSP as [RHB97, p. 1]

CSP is a notation for describing concurrent systems (i.e., ones where
there is more than one process existing at a time) whose component
processes interact with each other by communication. Simultaneously,
CSP is a collection of mathematical models and reasoning methods
which help us understand and use this notation.

We use the same set of conventions presented in [Hoa85, p. 2]:
1. Words in lower-case letters denote distinct events, e.g.,
coin, choc, in2p, outlp
and so also do the letters, a, b, c, d, e.
2. Words in upper-case letters denote specific defined processes, e.g.,

VMS —the simple vending machine
VMC —the complex vending machine

and the letters P, ), R (occurring in laws) stand for arbitrary processes.
3. The letters z, y, z are variables denoting events.
4. The letters A, B, C stand for sets of events.
5. The letters X, Y are variables denoting processes.
6. The alphabet of process P is denoted aP , e.g.,
aVMS = {coin, choc}

aVMC = {inlp,in2p, small, large, outlp}

19
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A channel has the same behaviour of an event, but communicates a value. It
can be an input or output channel. The following example resumes the defini-
tion [RHB97, p. 18]:

COPY = left?x : T — rightlsr — COPY

The behaviour of process COPY is copying the value x, of type T, from left to
right. So, the process contains two operations, left and right and its alphabet is
{left, right}.

In CSP, the exactly timing is not relevant. The synchronisation between
processes is one “catch” of the language. It is based on events. The events
describes a process alphabet. Thus, a process is valid under a sequence of events
and two processes are synchronised in one event (or a set of events) if it is in both
alphabets. For example, we can define an alphabet aP = {up, down} and define
a movement process P as:

P = (up — down — up — STOP)

The process should make a move up, then down, then up again. The special
process STOP never communicates, i.e., it indicates an execution termination. A
simple synchronisation example is shown bellow, given two processes H and V
supposed to be in a parallel execution:

V = up — match — down — STOP
H = left — match — right — STOP

They start their execution, synchronizes on the event “match” and then con-
tinues their executions.

Processes may have a recursive or looping behaviour. We present this defini-
tion in Section 3.2.2.

All the processes interaction and operators can be found in [Hoa85] and
in [RHB97]. We present the relevant CSP processes semantics (in Section 3.1)
and operations (in Section 3.2) to the Z data refinement automation.

In Section 3.3 and 3.4 we present the process refinements and the FDR - a
model-check tool - its commands and the machine-readable version of CSP, which
the tool can interpret.

3.1 Processes semantics

In this section we present some semantics of the processes. Some special processes
have obvious semantics that are based on their definitions (e.g. STOP).
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3.1.1 Traces

A trace is a sequence of events that a process engages. It is the “sequential record
of the process behaviour up to some moment in time” [Hoa85, p. 5]. A trace to
a CLK process might be:

(tick, tick, tick)

The complete set of all possible traces of a process P is the function traces(P).
Some processes have special traces:

traces(STOP) = {()}

There are some operations over traces sequences that can be found in [Hoa85,
p. 21]. On the failures definition we will need to use one trace operation: “after”
(symbol: /). This binary operation relates a process to a trace and is defined
to be a process behaviour after all the events of the trace [Hoa85, p. 32]. Some
examples for the process P=a — b — P:

P/(a) =b— P (P after a is b then P)
P/{a,b) = P (P after a and b is P)

3.1.2 Refusals

A refusal is a set of events that might cause a deadlock if offered to a process in
its first step. The set of all refusals of a process P is denoted by refusals(P) and
the following law [Hoa85, p. 89] clarifies the refusal idea:

refusals(c — P) = {X | X € (aP —{c})}

The law states that a process ¢ — P refuses every set that does not contains
the event c. The special process STOP has the following refusals set:

refusals(STOP4') =P A

If a process has a refusal set X then this process also refuses Y C X.

3.1.3 Failures

The failures of a process is a set of pairs. Such pair is formed from a trace and a
refusal in the following way [Hoa85, p. 109]:

failures(P) = {(s,X) | s € traces(P) N X € refusals(P/s)}

'The expression STOP4 means the process STOP under the alphabet A.
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Some properties on the failures set

There are some properties in [RHB97, p. 214] that we might use for the data
refinement:

Given a non-empty set of processes S:
failures(M S) = | J{ failures(P) | P € S}

Given a boolean condition b:

failures(P), if b evaluates to true
failures(Q), if b evaluates to false

failures(P £ b # Q) = {

3.1.4 Divergences

Before we explain what is a divergence, we ought to define the CHAOS process.
It is the most nondeterministic process, i.e., it is the [Hoa85, p. 106] “most
unpredictable and most uncontrollable of processes. There is nothing that it
might not do; furthermore, there is nothing that it might not refuse to do”. In

formulas:

traces(CHAOSy) = A*
refusals(CHAOS,) =P A

A divergence is a trace after which the process behaves cahotically. The set
of all divergences is defined [Hoa85, p. 107]:

divergences(P) = {s | s € traces(P) N (P/s) = CHAOS,p}
Hoare also presents some laws:

s € divergences(P) AN X C aP = X € refusals(P/s)
divergences(STOP) = {}

divergences(CHAOS4) = A*

divergences(P M Q) = divergences(P) U divergences(Q)

3.2 CSP operators

CSP is a rich language to model concurrency. There many operators and we
present in this section some of them that are useful to model-check Z data refine-

ments.
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3.2.1 Prefix

The prefix is the simpler operation involving a process. It defines a process en-
gagement on an event and then the process behaviour is like the suffixed process.
The prefix is the operation “then”:

z — P (read: x then P)

This operation takes a process on the right and an event on the left. The
following definitions are syntactically incorrect [Hoa85, p. 4]:

P—qQ

r—y
The last definition should be written as:

x—y— STOP

3.2.2 Recursion

Recursion in CSP is the ability of a process to enter a loop behaviour. A very
simple recursive process is a clock:

aCLK = {tick}
CLK = tick — CLK

A valid sequence of events in a clock would be:

CLK = tick — CLK
CLK = tick — (tick — CLK) (Substitution)
CLK = tick — (tick — (tick — CLK)) (Substitution again)

And its behaviour:

tick — tick — tick...

3.2.3 Conditional choice

The conditional choice operator is a CSP definition for the traditional if-then-else
operator. Its definition is [Hoa85, p. 168]:

P £b# Q (if b then P else Q)
The guard operator b & P [RHB97, p. 534] is a shorthand to:
P &£ b # STOP

It’s only available on the machine-readable version of CSP.
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3.2.4 Choice

There are three types of choice (between processes) in the CSP notation:
1. Choice: |
2. Internal Choice: M
3. General Choice (or external choice): O

The choice operator represents a process that can behave like either process
depending of the first event that happens. If the event is the same in both options,
the choice is nondeterministic.

The internal choice - also known as a “nondeterministic or” [Hoa85, p. 82] - is
a binary operator that denotes a process that behaves like either of the processes
in a nondeterministic way without the knowledge of the external environment.
Thus the process P may behave as ) or R in:

P = QM R, then
P=qQor
P=R

The general choice, which generalizes the internal choice and the choice op-
erators has the following behaviour [Hoa85, p. 86:

a—POb—Q=a—P|b— Q (ifa#b)
a—POb—>Q=a—PNb—Q (ifa=0b)

The internal choice of two processes may result in a refusal if exists at least
one refusal in one of them [Hoa85, p. 90]:

refusals(P M Q) = refusals(P) U refusals(Q)

The deadlock-freedom property (see Section 3.4.1) would pass only if the
refusals set is empty.

3.2.5 Indexation

The use of index is as usual as the math indexing. Some examples can be found
in [Hoa85, p. 190]. We present one:

M. Pi=(Pon P M...NP,)

i<n
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3.3 Process refinement

A process refinement (P C @) means that the refined process P does all opera-
tions that the resulting process () does and maybe some more operations. There
are three kinds of refinement:

e Traces refinement [RHBI7, p. 46]:

PLCr Q= traces(Q) C traces(P)

e Failures refinement:
P Crp @ = traces(Q) C traces(P) A failures(Q) C failures(P)

In words [RHB97, p. 95], “Q can neither accept an event nor refuse one
unless P does”.

e Failures-divergences refinement [RHB97, p. 97]:

PCpp Q =PC Q= failures, (Q) C failures, (P) A
divergences(Q) C divergences(P)

where

failures, (P) = failures(P) U {(s, X) | s € divergences(P)}

3.3.1 Deadlock-freedom

The deadlock-freedom property is satisfied when a process P can never refuse a
set of events in its alphabet, i.e., when there is always something it can do. It
can be done either as a failure or failures-divergences refinement. In formulas it
means that [RHB97, p. 98]:

Vs.(s,X) ¢ failures(P)

It’s well known that model-checking a failures-divergences refinement can be
slower than the failures refinement. Seems plausible that [RHB97, p. 99] “In gen-
eral we often know that processes are divergence-free for independent reasons.”
We can conclude that for our data refinement process we only need to check its
deadlock freedom property using the failures refinement because we know it does
not diverge based on some properties of the M operator and the divergences of
STOP (i.e., STOP never diverges).

3.4 FDR

The FDR is a tool to model-check state machines specified in the CSP language.
It directly supports three refinement methods [FDR|. To automate the data
refinement we use the failures method.
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Operation CSp CSPy
Prefix a— P a->P
Input prefix alr — P a?x -> P
Output prefix aly — P alx -> P
Conditional choice | P £ b %# @ if b then P else Q
Guard P<£Lb#STOP |b & P
Internal choice PnQ P 171 Q
Indexing Mica Pi [~ i:A @ P(i)
Local declaration | P(f(s)) let s’ = f(s) within P(s’)
Subset inclusion ACB A <=B

Table 3.1: Equivalence between CSP and CSPjy

3.4.1 FDR deadlock-freedom command

The command is available on one of FDR’s tab (see Figure 3.1) and in its process
context menu. The FDR tries to find out a failure upon a process definition and
if so, indicates the trace, case else, it asserts the deadlock-freedom property. The

seek process is based on expanding all possible states.

3.4.2 The machine readable version of CSP

The machine readable version of CSP is available in [RHB97, pp. 519-539]. It
is denoted as CSPj; and the Table 3.1 presents the equivalence to the human
readable version of CSP that are relevant to this work. The machine readable
version can be loaded into the FDR model-checker.
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Figure 3.1: FDR deadlock tab






Chapter 4

Capturing Z data refinement
through deadlock analysis

In this chapter we present how it is possible to automate the Z data refinement
proof obligations. In Section 4.1 we present the CSP)s processes to validate the
7 data refinement for both forwards and backwards simulations.

There are some works to semantically join together CSP and Z specifications
(see [MSO1] and its references). In this work, we use a simpler specification,
because there is only the need to check the deadlock freedom, not considering the
operations execution themselves. We are focused on translating Z to CSPjs to
model-check data refinements. In [MSO01] schemas are captured as functions and

we will use a similar approach.

4.1 Z data refinement

The Z data refinement proof obligations can be proved as a subset inclusion of
relations [WD96, p. 255]. They are summarized and written in our notation in
Tables 4.1 and 4.2. We now present how these rules can be translated into CSPjy,
indicating how each operator is translated into CSP);, and how a process can be
defined to check these rules and if the refinement is invalid, indicate where the
rules fails.

Observing the rules of both simulations we can summarize the Z relations
operators used. They are:

e 3: Relational composition;
e ||: Parallel composition;

e id: The identity relation;

29
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F-init Inite C Inity § Linkp

F-applic  ran((dom OpY4) <t (Linkp || id T4,)) € dom Opl,

F-correct (dom Op%y) < (Linkp || id Ty) 5 Opsy C OpY s (Linkr ||
id Tout)

Table 4.1: Forwards simulation rules as subset inclusion

B-init Initg g Linkg C Inity

B-applic  dom Op}, C dom((Linkg || id Tj,) & (dom Op}))

B-correct dom((Linkp || id Ty) & (dom OpYy)) < Op g (Linkp ||
id Tout) c (LGkB || id Tm) S Op‘ZA

Table 4.2: Backwards simulation rules as subset inclusion

e dom: Domain operator;

e ran: Range operator;

e <: Domain restriction operator;

e >: Range subtraction operator and

e <: Domain subtraction operator.

4.2 Z data refinement process

To model-check a Z data refinement we ought define the behaviour of the CSP
process. To aid us to this task, we present some questions:

e If any of the theorems fails what is the process behaviour?
e Case else, if noone fails, what is the process behaviour?

In the first case, if any of the rules fails, the process must have a failure,
indicating a deadlock. In the second case, the process should have no failure.
Based on the semantics of the process, presented in Section 3.1, a generic Z data
refinement process may be defined as:

ZDR = Initial |~| Applic |~| Correct

where Initial, Applic and Correct are processes capturing the initialisation,
applicability and correctness rules of the corresponding data refinement simula-
tion. Using this definition we can analyse the deadlock behaviour in the following
way: if one of the processes behaves like STOP, then the process ZDR has a failure,
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thus indicating a deadlock. We will define in the following sections the processes
in a way that we can track back the events that causes a deadlock so that we can
find out which rule has made the data refinement invalid.

4.3 Translating Z relational operators to CSPy,

We now present how each of the operators used in the simulation rules can be
translated into CSP); definitions.

In the translation process, the relations and the operators becomes sets. The
operators also becomes sets, but they are parametrized.

4.3.1 Relational Composition

Given two binary relations R : X < Y and S : Y < Z, the result of R .S may
be represented as:

R={ (G, | ... 3%
Ss=9{(G,2> | ...}
comp(R,S) = { (x,z) | (x,y1)<-R, (y2,z)<-S, yil==y2 }

In the case of an unary relation U : Y and a binary relation S : Y < Z, the
result of U g S may be represented as:

u={y | ...}
s=9{(G,2> | ...}
comp_un(U,S) = { z | yi<-U,(y2,z)<-S,yl==y2 }

4.3.2 Parallel composition

Given two relations R : W < Y and S : X < Z, the result of R || S may be
represented as:

R={ G,y | ... 7%
S=9 (x,2) | ...}
prll(R,s) = { ((w,x),(y,2)) | (w,y)<-R, (x,z)<-S }

The idea here is to rearrange the variables in a way that the parameters are
properly applied to the corresponding relations.

4.3.3 The identity relation

The identity relation may be defined as follows:

id(T) = { (t,t) | t<-T }
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4.3.4 The domain operator

For a relation R : X < Y, the domain may be defined in the following way:

R={ (G, | ...}
dom(R) = { x | (x,y)<-R }

4.3.5 The range operator

Similarly to the domain definition, the range definition can be defined as:
R={ (G, | ... 3%

ran(R) = { y | (x,y)<-R }

4.3.6 Domain restriction operator

Given a relation R : X < Y and a set A C X, the result of A << R may be
represented as:

R={ G,y | ...}
dres(A,R) = { (x,y) | (x,y)<-R, member(x,A) }

4.3.7 Domain subtraction operator

Given a relation r : X < Y and a set A C X, the result of A 9 r may be
represented as:

R={ G,y | ...}
ndres(A,R) = { (x,y) | (x,y)<-R, not member(x,A) }

4.3.8 Range subtraction operator

The translation for the range subtraction r & B of a relation r : X < Y and a
set B C Y would be:

R={ (G, | ... 3%
nrres(R,B) = { (x,y) | (x,y)<-R, not member(y,B) }
4.4 Forwards simulation process

We now present the processes in CSPj; that represents the rules of a forwards
simulation.
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4.4.1 |Initialisation
The initialisation rule

Inite C Inity § Linkp
can be translated into Finit
Finit = FHypInit <= FConsInit
FHypInit = InitC
FConsInit = comp_un(InitA,LinkF)
4.4.2 Applicability
The applicability rule

ran((dom Op'y) <t (Linkp || id Ty,)) € dom Opf,
may be translated into Fapplic in:

Fapplic(op) = FHypApplic(op) <= FConsApplic(op)

FHypApplic(op) = ran(dres(dom(schA(op)), prll(LinkF,id(Tin))))
FConsApplic(op) = dom(schC(op))

4.4.3 Correctness

The correctness rule
(dom Op'y) <t (Linkp || id T4n) s Opl € OpYy ¢ (Linkr || id Tout)
can be translated into Fcorrect in:

Fcorrect(op) = FHypCorrect(op) <= FConsCorrect (op)

FHypCorrect (op) = comp(dres(dom(schA(op)),prll(LinkF,id(Tin))),
schC(op))

FConsCorrect (op) = comp(schA(op),prll(LinkF,id(Tout)))

33

The op variable represents the current operation being evaluated. It is of type

0P which must be defined as a datatype representing all the operations. The schA

and schC are the relations that represents the schemas. The indexation is based

on the op variable. InitA and InitC defines the values of the initialisation, as a

relation. And finally the LinkF relation, representing the retrieve schema.

As we have shown in Section 4.2, a generic data refinement process is given

by:
ZDR = Initial |~| Applic |~| Correct

Then the forwards simulation of a data refinement is defined to be:
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ZFDR = FInitial |~| FApplic |”| FCorrect

The FInitial, FApplic and FCorrect should give us informations about the
validity of the data refinement, so we should define the following channels:

channel initOk, initErr
channel applicOk, applicErr: OP
channel correctOk, correctErr: OP

The channels for the applicability and correctness should output the operation
that has been either successfully refined or marked as invalid. Considering these
prerequisites, we define the forwards simulation rules processes:

FInitial = if Finit then initOk -> FInitial
else initErr -> STOP
FApplic = || op: OP @ if Fapplic(op)
then applicOk!op -> FApplic
else applicErr'!op -> STOP
FCorrect = |7| op: OP @ if Fcorrect(op)
then correctOk'!op -> FCorrect
else correctErr!op -> STOP

As we have shown in Chapter 3, for the operators ' and the conditional choice,
if one of the conditions Finit, Fapplic or Fcorrect fails for one value, then the
main process ZFDR may fail the deadlock freedom test. The FDR model-checker
may indicate such refusal with the corresponding “Err” suffixed channel and the
output “op” value.

4.5 Backwards simulation process

In this section we present a ZBDR process that represents the backwards simulation
process. The definition is similiar to the forwards simulation in the previous
Section.

4.5.1 Initialisation

The initialisation rule
Initg g Linkp C Inity

becomes Binit in:

Binit = BHypInit <= BConsInit
BHypInit = comp_un(InitC,LinkB)
BConsInit = InitA
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4.5.2 Applicability

The applicability rule
dom Opt, C dom((Linkp || id Tj) & (dom OpY))
becomes Bapplic in:

Bapplic(op) = BHypApplic(op) <= BConsApplic(op)

BHypApplic(op) = { (sc,in) | sc<-StateC,in<-Tin,
not member((sc,in), dom(schC(op))) }

BConsApplic(op) = dom(nrres(prll(LinkB,id(Tin)),
dom(schA(op))))

4.5.3 Correctness

The correctness rule

dom((Linkg || id Ti,) & (dom Opf;l)) g Opio s (Linkp || id Tou) C
(Lka H id Tm) S Opil

is translated into Bcorrect in:

Bcorrect(op) = BHypCorrect(op) <= BConsCorrect (op)

BHypCorrect (op) = comp(ndres(BConsApplic(op),schC(op)),
prll(LinkB,id(Tout)))

BConsCorrect(op) = comp(prll(LinkB,id(Tin)),schA(op))

Notice the equivalence of the correctness hypothesis part to the applicability
consequence part. The first is abbreviated to reuse the second one.
We now define the main process of the backwards simulation as:

ZBDR = BInitial |~| BApplic |~| BCorrect

We again must know where the refinement either is successful or fails and we
use the same channels defined for the forwards simulation. Then we can define
the backwards simulation processes as:

BInitial = if Binit then init0Ok -> BInitial
else initErr -> STOP
BApplic = |7| op: OP @ if Bapplic(op)
then applicOk!op -> BApplic
else applicErr!op -> STOP
BCorrect = |~| op: OP @ if Bcorrect(op)
then correctOk!op -> BCorrect
else correctErr'!op -> STOP






Chapter 5

Case study

To illustrate our data refinement processes we present the automation of the data

refinement proofs for the specifications shown in Section 2.3.2.

The conversion recipe to CSP)y is straightforward; we divide it into two parts

of enumerated steps:
Part 1: Translate

1.

4.

5.

Define the datatypes, constants and functions to be used by the schemas
definitions, such as max values, set of sequences creator and so on;

. Define the States as sets;

Define the initialisation schemas as sets which are, in fact, subsets of the
States previously defined;

Create relations that represent the schemas as sets and

Create a retrieve relation over the types of the States sets also as set.

Part 2: Link

1.

2.

Define the datatype OP;

Define the generic forwards or backward elements to use the relations de-
fined in Part 1. The elements are described in Section 4.1: StateA, StateC,
InitA, InitC, Tin, Tout, schA, schC, LinkF and LinkB.

5.1 Average calculus: forwards simulation

We present the specification in CSPj; of the example shown in Section 2.3.2.

Let’s make use of the recipe:
Part 1: Translate

37
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1. Datatypes, constants and functions. An optimization has been made here.
We are considering sequences of max size 2 and the natural number from
0 to 2. The representation of infinite sets as finite ones is possible. We
recommend the read of [FMS02].

maxSize = 2

len = 2

Nat = { 0..len }
Real = { 0..len }

{ <> | el<-values }
union({<>},{ <el>"s | el<-values,
s<-BSeq(values,n-1) })

BSeq(values,0)

BSeq(values,n)

sum0f (<>) = 0
sumOf (<a> ~ s) = a + sum0f(s)

2. States
AMemory = { s | s<-BSeq(Nat, maxSize) }
CMemory = { (sum, size) | sum<-{ 0..len * maxSize 1},

size<-{ 0..maxSize } }

3. Initialisation schemas

{ sa | sa<-AMemory, sa == <> } = { <> }
{ (sum, size) | (sum, size)<-CMemory,
sum == 0, size == 0 } = { (0,0) }

AMemoryInit

CMemoryInit

4. Schemas

AEnter = { ((s,in),(s’,out)) | s<-AMemory,s’<-AMemory,in<-Nat,

out<-Real,#s < maxSize, (s’ == s ~ <in>) }
AMean = { ((s,in),(s,out)) | s<-AMemory,in<-Nat,out<-Real,
s != <>, out == sum0f(s) / #s}

CEnter = { (((sum,size),in), ((sum’,size’),out)) |
(sum, size)<-CMemory, (sum’,size’)<-CMemory, in<-Nat,
out<-Real,
size < maxSize,
sum’ == sum + in, size’ == size + 1}
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CMean = { (((sum,size),in), ((sum,size),out)) |
(sum, size)<-CMemory,
in<-Nat,out<-Real, size != 0, out == sum / size}

5. Retrieve

Link = { (s, (sum,size)) | s<-AMemory, (sum,size)<-CMemory,
sum == sum0f(s), size == #s}

Now, we present the link part:
1. The 0P datatype
datatype OP = Enter|Mean

2. Linking the definitions

StateA
StateC
InitA = AMemoryInit

AMemory

CMemory

InitC = CMemoryInit
Tin = Nat

Tout = Real

LinkF = Link

LinkB = inv(LinkF)

inv(R) = { (y,x) | (x,y)<-R }

schA(Enter) = AEnter
schA (Mean) = AMean

schC(Enter) = CEnter
schC(Mean) = CMean

The complete CSPj; definition is in Appendix A.

5.2 Vending machine: backwards simulation

We now present the CSP); translation of vending machine specification shown
in Section 2.3.2. We again use the recipe:
Part 1: Translate

1. Datatypes, constants and functions
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datatype Status = yes|no

inputlen = 3

{ <el> | el<-values }
FSeq(values, size) = { s"<el> | el<-values,

FSeq(values, 1)

s<-FSeq(values,size-1) }

. States

VMSpec = { (busy, vend) | busy<-Status, vend<-Status }
VMDesign = { digits | digits<-{0..inputLen} }

. Initialisation schemas

VMSpecInit = { (busy, vend) | (busy, vend)<-VMSpec,
busy == no) }
= { (no, no), (no, yes) }
VMDesignInit = { digits | digits<-VMDesign, digits == 0 }
={01}

. Schemas

Choose = { (((busy,vend),in), ((busy’,vend’),out)) |
(busy,vend)<-VMSpec, (busy’,vend’)<-VMSpec,in<-Tin,
out<-Tout,
busy == no, busy’ == yes}

VendSpec = { (((busy,vend),in), ((busy’,vend’),out)) |
(busy,vend)<-VMSpec, (busy’,vend’)<-VMSpec,in<-Tin,
out<-Tout,

busy’ == no, out == vend }

FirstPunch = { ((digits,in),(digits’,out)) |
digits<-VMDesign, digits’<-VMDesign,in<-Tin,
out<-Tout,
digits == 0 and digits’ == 1 }

VendDesign = { ((digits,in),(digits’,out)) |
digits<-VMDesign, digits’<-VMDesign,in<-Tin,
out<-Tout,
digits’ == 0 }
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5. Retrieve

LinkVM = { ((busy,vend),digits) | (busy,vend)<-VMSpec,
digits<-VMDesign,
(busy == no and digits == 0) or (busy != no and digits != 0)}

Part 2: Link

1. The 0P set. Here the only two operations are defined to be First and Vend.
The original definition has another operation, but we must not consider as
we have already shown.

datatype OP = First | Vend

2. Linking the definitions. We have made an optimization here. The input set
is made of only the digits 0 and 1, thus the valid numbers are, for example,
100, 010 and 111, i.e., the sequences (1,0,0), (0,1,0) and (1,1,1).

StateA = VMSpec

StateC = VMDesign

InitA = VMSpecInit

InitC = VMDesignlInit

Tin = FSeq({0..3}, inputLen)
Tout = Status

LinkF = LinkVM

LinkB = inv(LinkF)

schA(First) = Choose
schA(Vend) = VendSpec

schC(First) = FirstPunch
schC(Vend) = VendDesign

The complete CSPj; definition is in Appendix B.

5.3 Results analysis

To check the examples, we executed both in a PC, using the following configura-
tion:

e Processor: Pentium IV, 2.8 GHz

e RAM: 512 MB, 1 GB Swap
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File Assert Process Cptions Interruptl EZIPH'IB.lS\.-’STG]‘l‘lS Help
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Figure 5.1: Valid average calculus forwards simulation

e OS: Linux Ubuntu
e FDR: version 2.82

We took two measures for each case-study. The executions and their parame-
ters for the Average Calculus example are shown in Table 5.1 and for the Vending
Machine example are shown in Table 5.2. The results show that as state enlarges,
the FDR takes more time to terminate.

The Average Calculus example terminated successfully in the second execu-
tion, proving that the forwards simulation is correct. The screenshot of the FDR
is shown in Figure 5.1.

For the second execution in the Vending Machine example we took two vali-
dations: firstly trying to prove the forwards simulation rules and secondly, trying
to prove the backwards simulation rules. In the first case the FDR successfully
pointed out the failure on the “Vend” operation correctness rule, as shown in
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Execution # | Parameter | Value
1 maxSize 5
len 10
Total execution time: more than ten minutes -
we interrupted the execution
2 maxSize 2
len 5
Total execution time: 2-4 seconds

Table 5.1: Average Calculus Example Executions

Execution # | Parameter

Value

1 Tin FSeq({0..9}, inputLen)
Total execution time: more than ten minutes -
we interrupted the execution

2 Tin FSeq({0..3}, inputLen)

Total execution time: 2-4 seconds

Table 5.2: Vending Machine Example Executions

Figures 5.2 and 5.3. For the backwards simulation rules, the FDR terminated
successfully, proving that the rules are correct as shown in Figure 5.4.
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File Assert Process Options Interruptl Fl':lPH]B,lS\.?StemS Help
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Figure 5.2: Vending machine forwards simulation failure
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Figure 5.3: Debug screen of the vending machine forwards simulation failure:

“correctErr.Vend”
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File Assert Process Options Interruptl Fl':lPH]B,lS\.?StemS Help
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FDR2 session: /home/andre/tests/ivmDesign.csp

Figure 5.4: Valid vending machine backwards simulation



Chapter 6

Conclusion

In this work we presented an approach to automate the proof obligations concern-
ing a data refinement. The approach consists in translating a Z specification as a
CSP one. The proof obligations are captured as relational operators over sets in
a convenient CSP process which must be deadlock-free iff the Z data refinement
is valid and present some deadlock otherwise.

The events are carefully defined to indicate these situations: the valid refine-
ment traces have all events suffixed with “Ok” and the invalid have exactly one
event suffixed with “Err”. The rules that involve operations have events with
outputs to indicate the operation being evaluated. The events are defined as:

e initOk and initErr, for the validation of the initialisation rules;
e applicOk and applicErr, for the validation of the applicability rules and
e correctOk and correctErr, for the validation of the correctness rules.

The case-study for each of the simulation has illustrated the automation pro-
cess. Particularly the vending machine example has shown the uncorrectness of
the forwards simulation for this case and the validity of the backwards simulation
as previewed by [WD96], the authors of the example.

6.1 Limitations

Our approach to model-check Z data refinements has some limitations. The
state-explosion is intrinsic to the model-checking approaches and the automation
is based on the proof obligations, not in the simulations automation. Thus, if the
automatic design of the retrieve relations is possible, it is out of the scope of this
work.
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6.1.1 State-explosion

To model-check the specifications, the FDR expands the states whenever it is
necessary. Thus, we can not use infinite states or even large states in this ap-
proach. In [FMS02] is presented a technique to solve this problem. The presented
algorithm either avoids a state being expanded twice or avoids an expansion when
it finds out an “infinite stable behaviour”. This behaviour occurs when a trace
is repeated.

6.1.2 Not a fully automated task

Although the proof automation is possible, some tasks may be executed by the
designer:

e Convert Z to CSPyy, i.e., convert the Retrieve relations, schemas and state-
spaces. It is the same difficulty found in [MSO01, p. 69] and

e Concern about finiteness of the states in CSP;; which are dealt, for example,
in [FMS02].

6.2 Future works

It is possible and would be usefull if we join the data refinement specification
with the dealing of larger or infinite states presented in [FMS02].

A tool to convert from CSP-Z to CSP)s has been presented in [FMS01]. It
would be possible to either reuse part of it or extend it to add the data refinement
functionality shown in this work.

6.3 Related works

A proposal of data refinement automation is presented in [Bol05]. The approach
captures Z schemas and data types as Alloy atoms and types. The simulations
rules are captured as functions of the defined state-spaces. The proposal has the
same problem of state-explosion and our advantage is that the CSP language is
more powerful than Alloy.
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Appendix A

Average calculus: complete
CSP), specification

The full CSPj; definition for the average calculus data refinement is presented
here. The file containing this specification is available. Contact us to receive it.

maxSize = 2
len = 5

Nat = { 0..1len }
Real = { 0..len }

{ <> | el<-values }
union({<>},{ <el>"s | el<-values,
s<-BSeq(values,n-1) })

BSeq(values,0)

BSeq(values,n)

sum0Qf (<>) = 0
sum0f (<a> ~ g)

a + sumOf(s)

AMemory = { s | s<-BSeq(Nat, maxSize) }
CMemory = { (sum, size) | sum<-{ 0..len * maxSize 1},

93
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size<-{ 0..maxSize } }

{ <>}
{ (0,0) }

AMemoryInit

CMemoryInit

Link = { (s, (sum,size)) | s<-AMemory, (sum,size)<-CMemory,
sum == sum0f (s), size == #s}

datatype OP = Enter|Mean

AEnter = { ((s,in),(s’,out)) | s<-AMemory,s’<-AMemory,in<-Nat,

out<-Real,#s < maxSize, (s’ == s "~ <in>) }
AMean = { ((s,in),(s,out)) | s<-AMemory,in<-Nat,out<-Real,
s 1= <>, out == sum0f(s) / #s}

preAEnter(s) = #s < maxSize
preAMean(s) = s != <>

CEnter = { (((sum,size),in), ((sum’,size’),out)) |
(sum,size)<-CMemory, (sum’,size’)<-CMemory,in<-Nat,out<-Real,
size < maxSize,

sum’ == sum + in, size’ == size + 1}
CMean = { (((sum,size),in), ((sum,size),out)) | (sum,size)<-CMemory,
in<-Nat,out<-Real, size != 0, out == sum / size}

preCEnter (p) = let (sum,size) = p within size < maxSize
preCMean(p) = let (sum,size) = p within size != 0
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StateA = AMemory
StateC
InitA = AMemoryInit

CMemory

InitC = CMemorylInit
Tin = Nat

Tout = Real

LinkF = Link

LinkB = inv(LinkF)

schA(Enter) = AEnter
schA(Mean) = AMean

schC(Enter) = CEnter
schC(Mean) = CMean

comp(R,8) = { (x,2z) | (x,yl)<-R, (y2,z)<-S, yl==y2 }
comp_un(U,S) = { z | yi<-U,(y2,z)<-S,yl==y2 }
prll(R,S) = { ((w,x),(y,z)) | (w,y)<-R, (x,z)<-S }
id(T) = { (t,t) | t<-T }

dom(R) = { x | (x,y)<-R }

ran(R) = { y | (x,y)<-R }

dres(A,R) = { (x,y) | (x,y)<-R, member(x,A) }
ndres(A,R) = { (x,y) | (x,y)<-R, not member(x,A) }
nrres(R,B) = { (x,y) | (x,y)<-R, not member(y,B) }
inv(R) = { (y,x) | (x,y)<-R }

channel initOk, initErr
channel applicOk, correctOk: OP
channel applicErr, correctErr: OP

ZFDR = FInitial |~| FApplic | ~| FCorrect
assert ZFDR :[ deadlock free [F] ]
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FInitial = if Finit then initOk -> FInitial else initErr -> STOP
FApplic = || op: OP @ if Fapplic(op)

then applicOk!op -> FApplic else applicErr!op -> STOP
FCorrect = |~| op: OP @ if Fcorrect(op)

then correctOk!op —-> FCorrect else correctErr'!op -> STOP

Finit = FHypInit <= FConsInit
FHypInit = InitC
FConsInit = comp_un(InitA,LinkF)

Fapplic(op) = FHypApplic(op) <= FConsApplic(op)
FHypApplic(op) = ran(dres(dom(schA(op)), prll(LinkF,id(Tin))))
FConsApplic(op) = dom(schC(op))

Fcorrect(op) = FHypCorrect(op) <= FConsCorrect (op)
FHypCorrect (op) = comp(dres(dom(schA(op)),
prll(LinkF,id(Tin))),schC(op))

FConsCorrect (op) = comp(schA(op),prll(LinkF,id(Tout)))

ZBDR = BInitial |~| BApplic | ”| BCorrect
assert ZBDR :[ deadlock free [F] ]

BInitial = if Binit then initOk -> BInitial else initErr -> STOP
BApplic = |~| op: OP @ if Bapplic(op)

then applicOk!op -> BApplic else applicErr!op -> STOP
BCorrect = |”| op: OP @ if Bcorrect(op)

then correctOk'!op -> BCorrect else correctErr!op -> STOP
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BHypInit = comp_un(InitC,LinkB)
BConsInit = InitA

Bapplic(op) = BHypApplic(op) <= BConsApplic(op)

BHypApplic(op) = { (sc,in) | sc<-StateC,in<-Tin,
not member ((sc,in), dom(schC(op))) }

BConsApplic(op) = dom(nrres(prll(LinkB,id(Tin)),
dom(schA(op))))

Bcorrect (op) = BHypCorrect(op) <= BConsCorrect (op)

BHypCorrect (op) = comp(ndres(BConsApplic(op),schC(op)),
prll(LinkB,id(Tout)))

BConsCorrect(op) = comp(prll(LinkB,id(Tin)),schA(op))
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Vending machine: complete
CSP), specification

Here we present the full specification of the data refinement of the vending ma-
chine. A file with this specification is also available; please contact us to receive
it.

datatype Status = yesl|no

inputlen = 3

{ <el> | el<-values }
FSeq(values, size) = { s"<el> | el<-values,

FSeq(values, 1)

s<-FSeq(values,size-1) }

VMSpec = { (busy, vend) | busy<-Status, vend<-Status }

VMSpecInit = { (no, no), (no, yes) }

Choose = { (((busy,vend),in), ((busy’,vend’),out)) |
(busy,vend)<-VMSpec, (busy’,vend’)<-VMSpec,in<-Tin,out<-Tout,

busy == no, busy’ == yes}

VendSpec = { (((busy,vend),in), ((busy’,vend’),out)) |
(busy,vend)<-VMSpec, (busy’,vend’)<-VMSpec,in<-Tin,out<-Tout,

99
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busy’ == no, out == vend }
—————— Design
VMDesign = { digits | digits<-{0..inputLen} }

VMDes

First

ignInit = { 0 2}

Punch = { ((digits,in),(digits’,out)) | digits<-VMDesign,

digits’<-VMDesign,in<-Tin,out<-Tout,

digits == 0 and digits’ == 1 }

VendD

esign = { ((digits,in),(digits’,out)) | digits<-VMDesign,

digits’<-VMDesign,in<-Tin,out<-Tout,
digits’ == 0 }

LinkV

M = { ((busy,vend),digits) | (busy,vend)<-VMSpec,

digits<-VMDesign,

(

datat

State
State
InitA
InitC
Tin =
Tout

LinkF
LinkB

schA (
schA (

busy == no and digits == 0) or (busy != no and digits != 0)}

ype 0P = First | Vend

A = VMSpec

C = VMDesign

= VMSpecInit

= VMDesignInit
FSeq({0..3}, inputLen)
= Status

= LinkVM

= inv(LinkF)

First) = Choose
Vend) = VendSpec
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schC(First) = FirstPunch
schC(Vend) = VendDesign

comp(R,8) = { (x,z) | (x,y1)<-R, (y2,z)<-S, yl==y2 }
comp_un(U,8) = { z | y1<-U,(y2,z)<-S,yl==y2 }
prll(R,S) = { ((w,x),(y,z)) | (w,y)<-R, (x,z)<-S }
id(T) = { (t,t) | t<-T }

dom(R) = { x | (x,y)<-R }

ran(R) = { y | (x,y)<-R }

dres(A,R) = { (x,y) | (x,y)<-R, member(x,A) }
ndres(A,R) { (x,y) | (x,y)<-R, not member(x,A) }
nrres(R,B) = { (x,y) | (x,y)<-R, not member(y,B) }
inv(R) = { (y,x) | (x,y)<-R }

channel initOk, initErr
channel applicOk, correctOk: OP
channel applicErr, correctErr: OP

ZFDR = FInitial |~| FApplic |~| FCorrect
assert ZFDR :[ deadlock free [F] 1]

FInitial = if Finit then initOk -> FInitial else initErr -> STOP
FApplic = || op: OP @ if Fapplic(op)

then applicOk!op —-> FApplic else applicErr!op -> STOP
FCorrect = |~| op: OP @ if Fcorrect(op)

then correctOk!op -> FCorrect else correctErr!op -> STOP

Finit = FHypInit <= FConsInit
FHypInit = InitC
FConsInit = comp_un(InitA,LinkF)



62 APPENDIX B. VENDING MACHINE: COMPLETE CSPy; SPECIFICATION

Fapplic(op) = FHypApplic(op) <= FConsApplic(op)
FHypApplic(op) = ran(dres(dom(schA(op)), prll(LinkF,id(Tin))))
FConsApplic(op) = dom(schC(op))

Fcorrect(op) = FHypCorrect(op) <= FConsCorrect (op)
FHypCorrect (op) = comp(dres(dom(schA(op)),
prll(LinkF,id(Tin))),schC(op))

FConsCorrect(op) = comp(schA(op),prll(LinkF,id(Tout)))

ZBDR = BInitial |~| BApplic |~| BCorrect
assert ZBDR :[ deadlock free [F] ]

BInitial = if Binit then initOk -> BInitial else initErr -> STOP
BApplic = |~| op: OP @ if Bapplic(op)

then applicOk!op —-> BApplic else applicErr!op -> STOP
BCorrect = |~| op: OP @ if Bcorrect(op)

then correctOk!op -> BCorrect else correctErr!op -> STOP

Binit = BHypInit <= BConsInit
BHypInit = comp_un(InitC,LinkB)
BConsInit = InitA

Bapplic(op) = BHypApplic(op) <= BConsApplic(op)

BHypApplic(op) = { (sc,in) | sc<-StateC,in<-Tin,
not member((sc,in), dom(schC(op))) }

BConsApplic(op) = dom(nrres(prll(LinkB,id(Tin)),
dom(schA(op))))
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Bcorrect(op) = BHypCorrect(op) <= BConsCorrect (op)

BHypCorrect (op) = comp(ndres(BConsApplic(op),schC(op)),
prll(LinkB,id(Tout)))

BConsCorrect (op) = comp(prll(LinkB,id(Tin)),schA(op))
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