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Chapter 1

Introduction

The evolution of technological processes maintains its exponential growth; 810
Mtrans/chip in 2003 will become 2041 Mtrans/chip in 2007. This obliges an in-
crease in the designer productivity, from 2.6 Mtrans/py in 2004 to 5.9 Mtrans/py
in 2007, that is, a productivity increase of 236% in three years[2]. Most of these
new products will be embedded System-on-Chip (SoC) and include embedded
software. In fact, embedded software new routinely accounts for 80% of embed-
ded system development costs[5].

Today, most embedded systems are deigned from RT level description for
HW part and the embedded software code separately. Using a classical top-
down methodology (synthesis and compilation) the implementation is obtained.
The 2001 International Technology Roadmap for Semiconductors (ITRS) pre-
dicts the substitution (during upcoming years) of waterfall methodology by an
integrated framework where co-design, logical, physical and analysis tools op-
erate together. The design step being where the designer envisages the whole
set of intended characteristics of the system to be implemented, system-level
specification acquires a key importance in this new design process since it is
taken as the starting point of all the integrated tools and procedures that lead
to an optimal implementation[5, 2].

The lack of an unifying system specification language has been identified
as one of the main obstacles bedeviling SoC designers[7]. Among the different
possibilities proposed, languages based on C/C++ are gaining a wider consensus
among the designer community[14], SystemC[3] being one of the most promising
proposal.

In order to accelerate the SW design a model of development platform is
necessary. ArchC is an open-source SystemC-based architecture description
language ADL that is specialized for processor architecture description, its pri-
mary goal is to provide enough information, at the right level of abstraction, in
order to allow users to explore a new architecture and automatically generate
software tools like assemblers, simulators or even compiler back-ends.

This work has the objective to develop a functional model of processor Infi-
neon(R) TriCore in ArchC. The Infineon(R) TriCore is a 32-bit microcontroller-
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DSP architecture optimized for real-time embedded systems. The TriCore In-
struction Set Architecture (ISA) combines the real-time capability of a micro-
controller, the computational power of a DSP, and the high performance/price
features of a RISC load/store architecture. The architecture supports both 16-
bit and 32-bit instruction formats. The 16-bit instructions are a subset of the
32-bit instructions, chosen because of their frequency of use.

The contents of the work are as follows. In this chapter, motivation and
objectives have been presented. In chapter 2, the ArchC ADL resources are
briefly explained in order to show how to write an executable processor model. In
chapter 3, an architecture overview of the embedded processor Infineon TriCore
1.3 will be presented. In chapter 3, the development details of Infineon TriCore
1.3 ArchC model will be presented. In chapter 4, some performance comparison
of processor model written in ArhcC, an instructions set simulator (ISS) and
a TC1IMP-S core integrated on the FPGA Spyder System will be provided.
Finally, the conclusions will be drawn in chapter 5.



Chapter 2

The Architecture Description
Language ArchC

In this chapter we introduce the architecture description language (ADL) called
ArchC. The information on this chapter was collected of ArchC manuals and
articles, which are cited in elapsing of the text.

ArchC is an open-source SystemC-based ADL that is specialized for proces-
sor architecture description. Its primary goal is to provide enough information,
at the right level of abstraction, in order to allow users to explore a new archi-
tecture and automatically generate software tools like assemblers, simulators or
even compiler back-ends. It is a simple language that follows SystemC syntax
style, which makes clear the connection between these two languages.

ArchC key features are a storage-based co-verification mechanism that au-
tomatically checks the consistency of a refined ArchC model against an ArchC
reference description, memory hierarchy modeling capability and the possibility
of integration with other SystemC IPs.

An architecture description in ArchC is divided in two parts: the Instruc-
tion Set Architecture (AC_ISA) description and the Architecture elements
(AC_ARCH) description. Into AC_ISA description, the designer provides to
ArchC details about instruction formats, size and names combined with all in-
formation necessary to decoding and the behavior of each instruction. The
AC_ARCHC description informs ArchC about storage devices, pipeline struc-
ture, etc. Based on these two descriptions, ArchC will generate a behavior sim-
ulator for the architecture in SystemC. The ArchC tools run on a GNU/Linux
environment and on MS-Windows with CYGWIN installed.

Up to this point[15], functional and cycle-based simulators have been synthe-
sized starting from ArchC descriptions for the MIPS, Intel 8051, PIC 16F84 and
SPARC processors. Functional models for the Texas TMS320C62x, Intel XS-
cale, Motorola ColdFire, PowerPC, Altera NIOS, OpenCores OR1k, and Hitachi
SH-4 where also developed in ArchC, some of them are still in the verification
phase.
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Figure 2.1: Architecture Resources of TriCore in tricorel3.ac file

AC_ARCH(tricorel13) {
ac_wordsize 32;
ac_fetchsize 16;

ac_reg PCXI;
ac_reg PSW;
ac_reg SYSCON;
ac_reg BIV;
reg BTV;
ac_reg ISP;
ac_reg ICR;
ac_reg FCX;
ac_reg LCX;

ARCH_CTOR(tricorel3) {
ac_isa("tricorel3_isa.ac");
set_endian("little");

};

2.1 Describing Architecture Resources

ArchC uses some structural information about the resources available in the
architecture in order to automatically generate a simulator. The designer must
provide an information in the AC_ARCH description, which is basically composed
of storage elements and pipeline declarations.

The level of details used for this description will depend on the level of
abstraction that designer wants for his model. An architecture resources de-
scription starts with the keyword AC_ARCH. The designer is supposed to inform
a name for the project, like is usually done for modules in SystemC. The follows
the storage device declarations. In the TriCore Model architecture resources de-
scription, showed in Figure 2.1, we have used the keyword ac_cache to declare
instruction and data caches. The number after the colon represents the size in
bytes, of the device. Following with the description, a register file is declared
through the keyword ac_regbank. We need 32 data registers, 32 address regis-
ters and 9 specials registers to model the TriCore. The declaration of ARCH_CTOR
constructor finishes the AC_ARCH description and uses the ac_isa keyword to
inform in which file the ArchC pre-processor will find AC_ISA description.

In order to get a more detailed model, like a cycle-accurate model the de-
signer must provide more information about the architecture. The designer is
allowed to declare the word-size for the architecture using the ac_wordsize key-
word. Memories and caches are byte-addressed but their return type is always
a word. If not declared, ArchC assumes that the word-size is 32 bits by default.
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Figure 2.2: Instructions and format declaration for TriCore in tricore_isa.ac
file.

AC_ISA(tricorel3) {
//16bit opcodes
ac_format SB = "}opl:8 %disp8:8";
ac_format SBC = "Jopl:8 Ydisp:4 %const4:4";

//32bit opcodes

ac_format ABS = "Jopl:8 %sl:4 %off18_17_14:4 Yoff18_5_0:6
%off18_13_10:4 %op2_2b:2 %offl18_9_6:4";
ac_format RR = "}opl:8 ¥sl:4 %s2:4 ¥n:2 %RESERVED:2 %op2_8b:8 %d:4";

//instruction instantiation
ac_instr<RR> add__dc_da_db, add_a__ac_aa_ab, ...;

ISA_CTOR(tricoreld) {
add__dc_da_db.set_asm("add d%d, d%sl, d%s2");
add__dc_da_db.set_decoder (op1=0x0B, op2_8b=0x00) ;

2.2 Describing the Instruction Set Architecture

The AC_ISA description provides ArchC with all information it needs to auto-
matically synthesize a decoder, along with the behavior of each instruction the
architecture. This description is dived in two files, one containing the instruc-
tions and format declarations and another containing the instruction behaviors.

2.2.1 Providing instructions and format declarations

Figure 2.2 shows the AC_ISA description extracted from our TriCore model.
The beginning is similar to the AC_ARCH description, starting with the keyword
AC_TISA, along with the name of the project. The designer continued by declar-
ing the instruction formats. This is done by using the ac_format keyword.
Next step is to declare instructions. Every instruction must have a previously
declared format associated to it.The designer declares an instruction through
the keyword ac_instr and he can assign it a format using a syntax similar
to C++ templates. In the TriCore model, format RR is associated to instruc-
tion add __dc_da_ db. This allows the designer to access each instruction field
individually when describing instruction behaviors.

The description follows with th AC_ISA constructor declaration (ISA_CTOR).
This is here the designer will have to initialize some key values for each in-
struction. An assembly syntax is assigned to an instruction using the set asm
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Figure 2.3: Instruction Behavior of add__dc_da_dain tricorel3-isa.cppfile.

void ac_behavior( add__dc_da_db ){
dprintf("add d%d, d%d, d%d",d, si, s2);

sc_int<33> result = ((sc_int<32> )DB.read(sl)) + ((sc_int<32> )DB.read(s2));

DB.write(d, result );
set_PSW( result );

method. The decodification sequence is a key element to the automatic genera-
tion of an instruction decoder. It is provided to ArchC though the set_decoder
method, and is composed by sequence of pairs <field_name = value>. In Fig-
ure 2, examine the add__dc_da_dbinstruction. Thecalltoadd _dc_da_db.set

__decoder

method states that a bit stream coming from memory actually is an add__dc_da_db

instruction if, and only if, fields op1 and op2_8b contain the values 0x0B and
0x00, respectively. The decoder will know where to look for the field values in
the bit stream, because this information is available in the format previously
associated to the instruction.

2.2.2 Providing Instruction Behavior

The behavior description file is where the designer provides a description of
which operations are executed by each instruction in the architecture. By issuing
both description files introduced so far, AC_ISA and AC_ARCH, to ArchC pre-
processor (acpp), the designer gets a template of the behavior description file.
This template is a skeleton of a . cpp (SystemC source) file where the designer is
going to fill out the behavior method of each instruction in the architecture. The
behavior description file is named as project_name-isa.cpp.tmpl, by default.

This behavior information can be expressed in several levels of abstraction.
For example, at the very early stages of the design, cycle-accuracy may not be
important. Normally, the first model of a new architecture does not have timing
information. So, for this preliminary model, the behavior of a given instruction
is just a sequence of C+-+ statements representing the operations that this in-
struction would execute in the hardware. Figure 2.3 illustrates how we could
model the behavior of add__dc_da_db instruction in the TriCore architecture.
At this abstraction level, the simulator will execute one instruction per cycle, so
it is not necessary to worry about data hazards and forwarding, because every
time an instruction begins its execution, the previous will have been completed
for sure. A so high-level modeling style will provide the designer with an exe-
cutable specification of the architecture very rapidly, but this specification will
be suitable only for experimenting with the instruction set, not for performance
measurements, due to its lack of timing information.



CHAPTER 2. THE ARCHITECTURE DESCRIPTION LANGUAGE ARCHC11

Figure 2.4: Generic behavior for ABS format instructions.
/* ABS Generic Instructions

* Result: Compute effective absolute address for ABS type instructions
*/
void ac_behavior( ABS ){

EA_abs.range(31, 28) = off18_17_14;

EA_abs.range(27,14) = 0;

EA_abs.range(13,10) = off18_13_10;

EA_abs.range(9,6) = off18_9_6;
EA_abs.range(5,0) = off18_5_0;
}
Figure 2.5: Execution hierarchy

m
- Instruction
e (generic)
&
=
9
(ol
[g] T [lsi_w_ﬂ_a._n ff18__ abs ] [ add  dcdg db ]
q

2.2.3 Providing Format and Generic Instruction Behavior

Often , there are many instructions in a particular architecture that execute
exactly the same task as part of their behavior. As mentioned above, in the
TriCore microcontroller, an instruction of ABS type need always calculate a
effective address to access the memory. As a consequence, a piece of code
to check that would have to be inserted into the behavior method of every
instruction in this class, showed in Figure 2.4.

In ArchC, instead of repeating the code for every instruction, the designer
is able to use formats in order to factor out this behavior, Figure 2.5 show
a example, writing it once and using it for whole class of instructions. This is
possible because ArchC provides the designer with the possibility of overloading
the ac_behavior method so that if can take an instruction format as argument.

There is still another situation, where the designer wants that all instruction
in the architecture execute a piece of code before running its own behavior
method. This is also possible in ArchC, by describing a generic instruction
behayvior, i.e., a behavior method that belongs to all instructions. Following the
same style used above, the designer has to pass the keyword instruction as the
argument of the behavior method:

The hierarchy of behavior methods in ArchC states that the simulator will,
at a given simulation time, start the execution by the generic instruction be-
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Figure 2.6: ArchC Simulator Generation Flow
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havior method, followed by the behavior of the format corresponding to the
current instruction and, finally, the current instructions behavior itself. The
same sequence is performed by each pipeline stage in the case of a pipelined
architecture. Through this ArchC behavior hierarchy, we were able to factorize
a lot of operations that would have to be repeated into several instruction be-
haviors, what ended up saving a great amount of redundant code in our models.

2.3 The ArchC Simulator Generator

We called as ArchC Simulator Generator (acsim) the tool that takes an ArchC
description, composed by an instruction set architecture description (AC_ISA)
and an architecture resource description (AC_ARCH), and generates a behavioral
model of the architecture. Acsim uses two other tools that are not visible to the
user: the ArchC Pre-Processor (acpp), which is composed by a lexical analyzer
and a parser for the language, and a decoder generator. The parser extracts
information from the description files and stores it into data structures that are
used by acsim to create all C++ classes and/or SystemC modules necessary to
build the architecture simulator. This generation flow is showed in Figure 2.6.
The decoder generated by ArchC is capable of handling ISAs from simple RISC
machines till multi-word of variable length instructions, like in many DSPs.
ArchC can generate simulators using the interpreted technique. Interpreted
simulators execute instruction decoding, schedule and behavior dynamically.
Since the decoding process is too costly in terms of simulation performance,
these interpreted simulators may use a cache for decoded instructions in order to
speed-up simulation. This technique can be disabled by command-line options
passed to acsim, in order to enable the execution of self-modifying code.
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2.3.1 Fast Static Compiled Simulation

The traditional approach to simulate an architecture is to mimic the hardware:
fetch an instruction from memory, decode, and execute it. This is the interpreted
simulation method. Unfortunately, the growing system complexity makes the
traditional simulation approach inefficient for todays architectures and time-to-
market pressure, makes performance one of the most important features of an
instruction-set simulator.

The new approach is based on creating a simulator optimized for the ap-
plication that will be executed, using an additional pre-processing step before
the simulation. ASIPs and many DSPs applications that can be fully analyzed
at design-time are the focus. Also, programs need to be run-time static, as all
the programs in typical benchmarks suites like MediaBench|[13] and MiBench][8].
During the pre-processing phase, the application is fully decoded and the in-
structions are instantiated statically.

The Fast Static Compiled Simulation (FSCS) need more information about
the instruction set that is available from architecture description manual. Use
information about jump instructions to produce a simulator that tests for control
flow changes only after those instructions, meaning less work to be done at run-
time. Optimizations techniques detailed could be found in [6].

2.4 Emulating Operating System Calls

Programming in a high level language like C/C++ is mandatory for the the
current embedded software development flow. The majority of applications
are designed using C/C++ together with some hand-tuned assembly code to
improve performance of critical inner-loops. Any non-trivial C/C++ program
uses the standard C library (stdlib), which provides the most essential routines
for I/0O, dynamic memory allocation and other utilities.

ArchC generate simulators capable of being instrumented with an OS call
emulation mechanism, which enables ArchC models to simulate applications
containing I/O operations. The ArchC team hat grouped the system call rou-
tines in a retargetable library written in the C language, so only a recompilation
is needed to port it to any other target. The designer of a new architecture is
able to tell from which storage elements (memory, register bank, etc) the argu-
ments to the system call will come from. It is done by writing interface functions
that provide the required information to the ADL compiler. Typical examples
of information that is required by most of the operating system calls are: how
to get the first three arguments provided by a function call and how to save the
return value as an integer or pointer.

Functions in this group are normally very small, with less then five lines. The
information required to implement them is taken from the processor Application
Binary Interface manual. The Figure 2.7 summarize how to control flow is
transfered from user program running inside ArchC simulator to the native
host OS routine.
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Figure 2.7: Summary for calling the host OS

User Program
int main (int argec, char *argv[]) {

FILE *£d;
fd = fopen("input™,_"r"); Newlib
= KI FILE *fopen(...) {

l;r;:l;n("input", O _RDONLY) ; Syscalls Library
k'int open(...) {

1 goto SYSC OPEN CODE; ArchC Simulator
} id ac_syscall::open()
{
}

This feature allows ArchC to simulate programs extracted from real-world
benchmarks, like MediaBench and MiBench, running them with realistic data
samples.



Chapter 3

Infineon TriCore 1.3

The ArchC ADL has been used to describe diverse architectures but none with
the characteristics of the Infineon TriCore Architecture. These chapter present
these architecture, a 32-bit microcontroller-DSP architecture optimized for real-
time embedded systems. The TriCore Instruction Set Architecture (ISA) com-
bines the real-time capability of a microcontroller, the computational power of
a DSP, and the high performance/price features of a RISC load/store archi-
tecture. The architecture supports both 16-bit and 32-bit instruction formats.
The 16-bit instructions are a subset of the 32-bit instructions, chosen because
of their frequency of use.

In section 3.1 present a overview of architecture and congregates the infor-
mation about the register and memory organization, addressing modes, task
and context concepts. The section 3.2 describe briefly the instruction set and
how the 16-bit instructions are implemented. These 2 sections contains repro-
ductions of originals, copied of TriCore Datasheets|9, 10].

The 3.3 section is a survey of the existing tools development, that is im-
portant for the future use of the developed model. Finally the 3.4 section is
overview of a IP-core based on TriCore Architecture, that can in future base
the development of a TriCore cycle-accurate model.

3.1 Architecture Overview

The key features of the TriCore Instruction Set Architecture (ISA) are:

e 32-bit architecture. 4 GBytes of address space.
e 16-bit and 32-bit instructions for reduced code size.
e Most instructions executed in one cycle.

e Dedicated interface to application-specific co-processors to allow the ad-
dition of customised instructions.

15



CHAPTER 3. INFINEON TRICORE 1.3 16

e Zero overhead loop capabilities.

e Dual single-clock-cycle 16 x 16-bit multiply-accumulate unit (with optional
saturation).

e Optional Floating-Point Unit (FPU) and Memory Management Unit (MMU).
e Extensive bit handling capabilities.

e Single Instruction Multiple Data (SIMD) packed data operations (2x16-
bit or 4x8-bit operands).

e Byte and bit addressing.
e Little-endian byte ordering for data memory and CPU registers.

e Memory protection.

3.1.1 Architectural Registers

The architectural registers, showed in Figure 3.1 consist of:

e 32 General Purpose Registers (GPRs).
e Program Counter (PC).

e Two 32-bit registers containing status flags, previous execution informa-
tion and protection information (PCXI - Previous Context Information
register, and PSW - Program Status Word).

The PCXI, PSW and PC registers are crucial to the procedure for storing
and restoring a tasks context.

The 32 General Purpose Registers (GPRs) are divided into sixteen 32-bit
data registers (D[0] through D[15]) and sixteen 32-bit address registers (A[0]
through A[15]).

Four of the General Purpose Registers (GPRs) also have special functions:

e D[15] is used as an Implicit Data register.
e A[10] is the Stack Pointer (SP).
e A[ll] is the Return Address (RA) register.

e A[15] is the Implicit Address register.

Support of 64-bit data values is provided with the use of odd/even register pairs.
In the assembler syntax these register pairs are either referred to as a pair of
32-bit registers (for example, D[9]/D[8]) or as an extended 64-bit register. For
example, E[8] is the concatenation of D[9] and D[8], where D[8] is the least
significant word of E[8].
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Figure 3.1: Architectural Registers

31 i ) il 3 0
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Address Data System

In order to support extended addressing modes, an even/odd address register
pair holds the extended address reference as a pair of 32-bit address registers
(A[8]/A9] for example).

There are no separate floating-point registers. The data registers are used to
perform floating-point operations. The floating-point data is saved and restored
automatically using the fast context switch support.

Registers [0 - 7] are referred to as the lower registers and registers [8H - FH]
are called the upper registers.

Registers A[0], A[1], A[8], and A[9] are defined as system global registers.
These are not included in either the upper or lower context and are not saved
and restored across calls or interrupts. They are normally used by the operating
system to reduce system overhead.

In addition to the General Purpose Registers (GPRs), the core registers are
composed of a certain number of Core Special Function Registers (CSFRs).

3.1.2 Memory Model

The architecture has an address width of 32 bits and can access up to 4 GBytes
of memory. The address space is divided into 16 regions,[0 - FH], showed in
Figure 3.2, . Each segment is 256 MBytes. The upper 4 bits of an address select
the specific segment. The first 16 KBytes of each segment can be accessed using
either absolute addressing or absolute bit addressing.

Many data accesses use addresses computed by adding a displacement to
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Figure 3.2: Address map and memory model

Segment |
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the value of a base address register. Using a displacement to cross one of the
segment boundaries is not allowed and if attempted causes a MEM trap. This
restriction allows direct determination of the accessed segment from the base
address.

3.1.3 Addressing modes

Addressing modes allow load and store instructions to efficiently access simple
data elements within data structures such as records, randomly and sequentially
accessed arrays, stacks and circular buffers. Simple data elements are 8-bits, 16-
bits, 32-bits, or 64-bits.The TriCore 1 architecture supports seven addressing
modes, they are:

e Absolute Addressing

Base + Short-Offset Addressing

Base + Long-Offset Addressing

e Pre-Increment and Pre-Decrement Addressing

Post-Increment and Post-Decrement Addressing

Circular Addressing

Bit-Reverse Addressing
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These addressing modes support efficient compilation of C/C++ programs, easy
access to peripheral registers and efficient implementation of typical DSP data
structures (circular buffers for filters and bit-reversed indexing for Fast Fourier
Transformations). Addressing modes which are not directly supported in the
hardware can be synthesized through short instruction sequences.

3.1.4 Tasks and Contexts

A task is an independent thread of control. There are two types: Software
Managed Tasks (SMTs) and Interrupt Service Routines (ISRs). SMTs are cre-
ated through the services of a real-time kernel or Operating System, and are
dispatched under the control of scheduling software. ISRs are dispatched by
hardware in response to an interrupt. An ISR is the code that is invoked di-
rectly by the processor on receipt of an interrupt. SMTs are sometimes referred
to as user tasks, assuming that they execute in User Mode.
Each task is allocated its own mode, depending on the tasks function:

e User-0 Mode: Used for tasks that do not access peripheral devices. This
mode cannot enable or disable interrupts.

e User-1 Mode: Used for tasks that access common, unprotected peripherals.
Typically this would be a read or write access to serial port, a read access
to timer, and most I/O status registers. Tasks in this mode may disable
interrupts for a short period.

e Supervisor Mode: Permits read/write access to system registers and all
peripheral devices. Tasks in this mode may disable interrupts.

Individual modes are enabled or disabled primarily through the I/O mode bits
in the Processor Status Word (PSW).

A set of state elements are associated with any task, and these are known
collectively as the tasks context. The context is everything the processor needs
to define the state of the associated task and enable its continued execution.
This includes the CPU General Registers that the task uses, the tasks Program
Counter (PC), and its Program Status Information (PCXI and PSW). The
architecture efficiently manages and maintains the context of the task through
hardware. The context is subdivided into the upper context and the lower
context.

Context Save Areas

The architecture uses linked lists of fixed-size Context Save Areas (CSAs). A
CSA consists of 16 words of memory storage, aligned on a 16-word boundary.
Each CSA can hold exactly one upper or one lower context. CSAs are linked
together through a Link Word.

The architecture saves and restores context more quickly than conventional
microprocessors and microcontrollers. The unique memory subsystem design
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Figure 3.3: TriCore Instructions Overview
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with a wide data path allows the architecture to perform rapid data transfers
between processor registers and on-chip memory.

Context switching occurs when an event or instruction causes a break in
program execution. The CPU then needs to resolve this event before continuing
with the program.

The events and instructions which cause a break in program execution are:

e Interrupt or service requests.
e Traps.

e Function calls.

3.2 Instruction Set

The instruction set of the TriCore is formed basically by 339 instruction mnemon-
ics, divided in 5 types as showed in Figure 3.3.

The General Purpose Instructions is formed by arithmetic, logic, address
arithmetic, comparison, load/store and context switch instructions. The Ad-
vanced Control Instructions is formed by bit-field, bit-logical, min/max com-
parison and branch instructions. The Coprocessor Instructions is formed by
floating point instructions. The DSP Instructions is formed by MAC, saturated
math, DSP addressing modes and SIMD packed arithmetic instructions. The
16-Bit Subset is formed by load/store, arithmetic and branch instructions.

The 16-Bit instructions are subset of the 32-bit instruction set, chosen be-
cause of their frequency of static use. The 16-bit instructions significantly reduce
static code size and therefore provide reduction of the cost of the code memory
and a higher effective instruction bandwidth. Because the 16-bit and 32-bit
instructions all differ in primary opcode, the instruction sizes can be freely in-
termixed. The registers D[15] and A[15] are used as implicit registers in many
16-bit instructions.
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Had to the 7 different types of addressing the number of instruction behaviors
increases for 758. This number represents the total number of methods to be
implemented in the ArchC processor model. Document [10] presents details
about the implementation of each instruction.

The majority of the instructions executes in an machine cycle. The docu-
ment [11] describes the timing of version v1.3 of the TriCore architecture, these
information is necessary for the refinement of the functional model of the pro-
cessor to a cycle-accurate model.

3.3 Compilers and Development Support

The TricoreTricoreTM architecture is well supported by a robust and compre-
hensive suite of development tools and services such as compiler-assembler tool
chains, real-time operating systems, emulators, simulators, evaluation boards,
training and consulting. In addition, SPACE Program|x]|, a partnership program
of Infineon Technologies and third party vendors, the , places all development
tool information for Infineon’s embedded architectures at the developers finger-
tips.

For performance and trade-off analysis, and for developing and debugging a
customized design, Infineon offer the TSIM, a configurable, instruction-accurate
model of TriCore-1.3 core architecture that is integrated into all supported
source-level debuggers. TSIM provides a simulation environment that models
the TriCore core, memory configuration and interrupt mechanism.

To help designers to reduce DSP application development time and to under-
stand the general purpose signal processing routines and their implementation
on TriCore, is made available a DSP Library for TriCore (TriLib) containing
more than 60 commonly used DSP routines.

The market pressure for productivity compels the development in languages
as C/C++ and only little parts, performance sensitive, in assembly. Therefore
the availability of compilers of these languages if becomes essential. Below 3
options for this architecture are related:

e TASKING TriCore VX family C/C++ compiler package: It
is a proprietary solution of Altium Limited®), for MS-Windows® and
Solaris® platforms. It brings C++/EC++/C compilers, Macro Assem-
bler, Linker /Locator tools, a Debugger and a Development Environment.

e Unicals (R) C/C++ Preprocessor: That is a proprietary of Uni-
cals(r), only for MS-Windows® ) platform. It brings a Hi-end meta-programming
solution.

e HighTec GNU TriCore C/C++ Compiler: It is a commercial solu-
tion, for MS-Windows®), Solaris® and GNU/Linux platforms. It is based
on a not public port of Gnu Compiler Collections[x]. It brings C Com-
piler, Assembler, Integrated Linker/Locator tools, a Debugger and various
others tools to inspect and manipulate objects, libraries and executables.
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Table 3.1: OS available for TriCore 1.3
| 0s | SUPPLIER | CODE-SIZE DISTRIBUTION
MicroC/OS-1I Infineon 5-16kB freely available source;use in
product requires one-time
licensing cost; no royalties
CMX-RTX CMX Company | ~5kB source code: licensed per seat.
no royalties
Nucleus Plus 25-40kB source code: licensed per

product. no royalties

OSE OSE application de- | binary or source code: licensed
pendent~60kB per project; royalties or buy-out
PXROS Hightec application binary-only and source code
dependent available, licensed per-user,
per-product or buy-out basis
VxWorks WindRiver 60-250Kb source code not provided;
licensed per product; royalties
Linux Infineon application Freely available source code, no
dependent? royalties, no license

The fact, that these development tool-set run on GNU /Linux, as ArchC
tools, and the availability of this tool in our environment of development,
had guided the choice of this tool in the generation of the code of the
applications in this work.

3.3.1

Compatibles Operating Systems

The existence of an operational system, that appears as an intermediate layer
above of the hardware, offers to the designer some easiness when develop more
complex applications, as for example, the creation and manipulation of threads.The
table 3.1 shows some operating systems available for these architecture, the sup-
plier, the code-size of OS in bytes and the distribution model of each one.

3.4 TriCore IP-core

The TriCore was ideally suited to SoC applications that require both micro-
controller and DSP functionality together with high performance, low cost
and minimal power consumption, Second Infineon Website, TriCore meets the
needs of automotive, industrial, mass storage and communications applications
where TriCore based ASSP silicon devices from Infineon are already successful.
TC1MP-S is the synthesizable implementation of the TriCore architecture and is
now available as a coreKit in the highly popular Synopsys DesignWare®) library,
an industry standard delivery package. The coreKit is a complete configurable
subsystem (available in either VHDL or Verilog) with an industry standard
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AMBA AHB interface, enabling simple integration into the wider platform,
saving engineering time and effort to market.

e Latest implementation - 0.13 micron technology generation

e Clock Frequency - 300 MHz

e Performance - 450 sustainable MIPS

e Performance - 600 sustainable MMACs

e Core Area - 2.2 sq mm (including CPU, Code and Data Memory interfaces)

e Core Power Dissipation - 0.65 mW /MHz (running Dhrystone 2.1)

Design Views of the TriCore 1 coreKit are provided on request with the standard
DesignWare®) license, set to a default configuration. On completion of a License
Agreement with Infineon, Synopsys can deliver the Implementation Views which
include the synthesizable RTL in encrypted form. Under some circumstances
unencrypted RTL may also be made available for licensing. Business terms
consist of an up-front license fee and piece part royalties. Support and mainte-
nance are included as part of the DesignWare®) license between the customer
and Synopsys.



Chapter 4

Model Development

In this chapter the main stages of TriCore processor model development are
presented. The adopted solutions to solve the difficulties found in the way to
generate a correct model are described.

Before initiating the creation of the processor model it was necessary to
configure the development environment, which is composed in its majority for
open-source tools, details on the environment configuration in section 4.1. As it
was said in the previous chapter, the TriCore processor has many of instructions
behaviors, due to the time limit we decides to initially implement a subgroup
of these instructions. The criterion of choice and other implementation details
are described in section 4.2. It is essential to assure that the model is correct to
make possible the use of this model in future projects. With this objective two
different approaches have been used that are described in section 4.3. Section
4.4 describes the creation of programs for the simulator from C code.

Finishing the chapter, two expansions in the model are presented in section
4.4.

4.1 Setting Project Environment

ArchC is an open-source SystemC-based ADL that is specialized for processor
architecture description. SystemC is developed on the GNU/Linux environ-
ment, therefore we opted to use the distribution SUSE GNU/Linux 9.3, that
has a rich tool-sets, broad standards support and is packed with tools that make
it easy to develop applications.

During the development of the model we needed to compile the code and to
execute simulation frequently, these activities were made remotely in an Intel(R)
Pentium(R) 4 CPU 2.60GHz machine with 1GB of memory RAM.

It was used the versioning control tool CVS jointly with some verification
Scripts, these tools automated the management of the code produced. Below
we list the versions of the tools that were used.

e GCC 335

24
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e SystemC 2.0.1

e ArchC 1.3, 1.5, 1.5.1, and initially an unreleased version that corrected a
problem in the decoding of 16bit instructions.

e CVS1.12.12

This environment kept stable during all development period. The fact that all
the software used is open-source facilitates the redistribution of the developed
model.

4.2 Describing Processor Model

The initial proposal describes the implementation of all the instructions of the
TriCore processor, our initial analysis pointed a great number of instructions,
but since they were simple instructions we believed the time would be enough.
The plan was to implement about 60% of the instructions in the first month
and the rest in the second month. At the end of the first month only 13% of
the instructions were implemented and verified, due to the complexity in the
addressing modes and also to the discovery of a BUG in the ArchC tool that
did not correctly decode a code with 16bit.

Thus, from this moment on, it was determined that the instructions nec-
essary to execute a set of 6 applications (described in chapter 5) were to be
implemented. We initiate with the analysis of the Viterbi application assem-
bly code that required the implementation of 80 new instructions behaviors.
The necessary instructions for the other applications have been implemented
gradually, and at the end 29% of the TriCore processor instruction-set were
implemented.

The developed model is composed of the files:

e tricorel3.ac: here we describe the information about the architecture,
register banks, word size, endianess, etc.

e tricorel3_isa.ac: here we provide information about the instructions,
instruction formats, instruction opcodes and mnemonics.

e tricorel3-isa.cpp: here we implement the instructions behaviors. Be-
cause of the great number of instructions, similar instructions have been
grouped and divided in different files to facilitate the navigation in the
code during the development.

Table 4.1 shows each one of these files, associating them with the instructions
implemented. The field #TI means total instruction number of each file. The
field I1% indicates the percentage of implemented instructions of each file. The
field #lines shows the number of lines of each file. At the end of the table the
total values will be showed.
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Table 4.1: Implemented files

26

File

Description

| #TT |

I1%

| #lines |

tricorel3-isa-abs.cpp

eq, eq.a, eq. b, eq.h, eq.w, eqany.b, eqany.h, eqz.a, ge, ge.u,
ge.2, 1t, lt.u, lt.a, 1t.b, lt.bu, 1t.h, 1t.hu, 1lt.w, lt.wu, ne.a,

ne, nez.a

12

0%

20

tricore13-isa-add.cpp

add, add.a, add.b, add.h, addec, addi, addih, addih.a, adds, adds.h,

adds.hu, adds.u, addsc.a, addsc.at, addx

30

100%

238

tricorel3-isa-and_or_xor.cpp

and, and.and.t, and.andn.t, and.nor.t, and.or.t, and.eq, and.ge,
and.ge.u, and.lt, and.lt.u, and.ne, and.t, andn, andn.t, or,
or.and.t, or.andn.t, or.mor.t, or.eq, or.ge, or.ge.u, or.lt, or.lt.u,
or.ne, or.t, ornm orn.t, Xor, Xor.eq, Xor.ge, Xor.ge.u, xor.lt,

xor.1lt.u, xor.ne, xor.t, nand, nand.t, nor, mor.t, xmor, xmor.t

74

20,3Y%

204

tricorel3-isa-cadd_csub_sel_cmov.cpp

cadd, caddn, csub, csubn, sel, seln, cmov, cmovn

16

37,5%

84

tricorei3-isa-clo_cls_clz.cpp

clo, clo.h, cls, cls.h, clz, clz.h

0%

tricorei3-isa-context.cpp

ldlex, lducx, stlcx, stucx, svlex, rslex, bisr

12

8,3%

80

tricorel3-isa-dv.cpp

dvadj, dvinit, dvinit.u, dvinit.b, dvinit.bu, dvinit.h, dvinit.hu,

dvstep, dvstep.h

44,4y,

118

tricorei3-isa-eq_ge_lt_ne.cpp

eq, eg.a, eq.b, eq.h, eq.w, eqany.b, egany.h, eqz.a, ge, ge.u, ge.a,
1t, 1t.u, lt.a, 1t.b, lt.bu, 1t.h, lt.hu, 1t.w, lt.wu, ne.a, ne,

nez.a

35

25,74

141

tricorel3-isa-extr_dextr_insert.cpp

extr, extr.u, dextr, insert, ins.t, insn.t

16

259,

55

tricorel3-isa-j.cpp

J» ja, jeq, jeq.a, jge, jge.u, jgez, jgez, jgtz, ji, jl, jla, jlez,
jli, jit, jilt.u, jltz, jne, jne.a, jned, jmei, jnz, jnz.a, jnz.t, jz,

jz.a, jz.t, call, calla, calli, ret, rfe, loop, loopu

57

68,4/

651

tricorel3-isa-1d.cpp

ld.a, 1d.b, 1d.bu, 1d.d, 1d.da, 1d.h, 1d.hu, 1ld.q, 1d.w, ldmst, lea,

inask, swap.w

93

29Y,

308

tricore13-isa-madd.cpp

madd, madds, madd.h, madds.h, madd.q, madds.q, madd.u, madds.u,
maddm.h, maddms.h, maddr.h, maddrs.h, maddr.q, maddrs.q, maddsu.h,

.h, h, maddsums.h, maddsur.h, maddsurs.h

88

1,1%

129

tricorel3-isa-min_max_sat.cpp

max, max.u, max.b, max.bu, max.h, max.hu, min, min.u, min.b, min.bu,
min.h, min.hu, sat.b, sat.bu, sat.h, sat.hu, ixmax, ixmax.u, ixmin,

ixmin.u

28

10,7%

73

tricore13-isa-mov.cpp

mov, mov.a, mov.aa, mov.d, mov.u, movh, movh.a

15

100%

85

tricorel3-isa-msub.cpp

msub, msubs, msub.h, msubs.h, msub.q, msubs.q, msub.u, msubs.u,
msubad.h, msubads.h, msubadm.h, msubadms.h, msubadr.h, msubadrs.h,

msubm.h, msubms.h, msubr.h, msubrs.h, msubr.q, msubrs.q

88

0%

120

tricorei3-isa-mul.cpp

mul, muls, mul.h, mul.q, mul.u, muls.u, muls.u, mulm.h mulr.h, mulr.q

33

12,1%

86

tricorel3-isa-mxcr_trapxv_rstv.cpp

mfcr, mtcr, trapv, trasv, rstv

40%

89

tricorel3-isa-others.cpp

bmerge, bsplit, cachea.i, cachea.w, cachea.wi, debug, rfm, pack,

unpack

23

15%

60

tricore13-isa-sh_sha_shas.cpp

sh, sh.eq, sh.ge, sh.ge.u, sh.h, sh.lt, sh.lt.u, sh.ne, sh.and.t,
sh.andn.t, sh.nand.t, sh.nor.t, sh.or.t, sh.orn.t, sh.xnor.t,

sh.xor.t, sha, sha.h, shas

32

15,67

145

tricore13-isa-st.cpp

st.a, st.b, st.d, st.da, st.h, st.q, st.t, st.w

62

100%

411

tricorel3-isa-sub.cpp

sub, sub.a, sub.b, sub.h, subc, subs, subs.u, subs.h, subs.hu, subx,

rsub, rubs, rusbs.u

19

42,1

82

tricorel3-isa-system.cpp

syscall, dsync, isync, emable, disable, nop

50

18

tricorel3-isa-utils.cpp

auxiliary functions

450

tricorei3.ac

architecture description

36

tricore13_isa.ac

instructions description

2844

tricorel3-isa.cpp

instruction behavior implementation

287

TOTAL

756

6801
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4.2.1 Compiling and Simulating the Model

As it was already presented in Figure 2.6, the generation process of the exe-
cutable simulator model consists basically of:

1. Describe the model of the processor in ArhcC;

2. Execute the acsim tool that will generate the component’s code in Sys-
temC;

3. Compile the SystemC code that at the end will generate an executable
model of the processor.

To execute an application, we execute the simulator model file and pass as
command line parameter the path for the archive that contains the application
to be executed. It is enough to compile it only one time to execute the various
applications. The compilation process in a Intel Pentium 4 2.6GHz machine
with 1GB of memory lasts about 1 minute.

At the simulation end 3 files with information on the simulator execution
are generated, these files are:

e tricorel3.trace: This file shows the change in the program counter

(PC).

e tricorel3.dasm: This file shows to the decoded instructions and its
operators.

e tricorel3.stats: This archive presents the amount of times that each
instruction was executed, the amount of times that each memory device
was used and the total number of executed instructions.

Information on simulation performance are presented in chapter 5.

4.3 Verifying

We planned the process of verification of implemented instructions on the fol-
lowing form. We describe the instructions in ArchC, after that would be created
the test-vector, a program that tests the main functionalities of the implemented
instruction. The lack of an assembler made that much time in the creation of
each vector of test was expense in the creation of the test program. Because of
the limited time we decide to change this verification method. It was continued
the implementation of the instructions, without verification.

When we find a compiler for TriCore, we use then the following technique
to verify the model. We executed an application in parallel in the simulator
of instructions TSIM and the model that we develop, at the execution end
the number of instructions executed in each model and the content of specific
variable must have equal values.
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Figure 4.1: Optimization information example

j__disp24.is_jump(Q);
j__disp24.delay(1);

4.4 Running C Programs

In order to run more complex applications in the model, e.g. C code, we need
a cross-compiler. It was used the Hightec GCC port to generate the code of
applications. The output of this cross-compiler is a file in the ELF format.
Initially, to execute this file with the ArchC model we had to change the code of
the ArchC tool, currently this alteration is no longer necessary. A link-script was
developed, in which file we inform the position of the program in the memory
to the ELF file. The link-script file is called tricore13_archc.1d and has 208
lines of code.

4.5 Model Expansion

The model was expanded beyond the initial proposal in two ways. The first one
with the objective of increasing the simulation performance using the Fast Static
Compiled Simulation approach described previously in chapter 2. The second
with the objective of increasing the observation capacity during simulation,
making the model usable jointly with gdb debugger.

4.5.1 Compiled Simulation

In order to archive better performance for the simulator, we must identify the
instructions that can change the execution flow. Using this information, the
ArchC tool creates that saves execution time by testing for testing for control
flow changes only after those instructions, 179 lines in the tricorel3_isa.ac
file had been added with this information. Figure 4.1 shows an example of the
information that must be written.

The generation of the optimized simulator is a little different, now we need
to use the tool accsim and to pass to it for command line already the appli-
cation. With this the code of the specific simulator for this application will be
generated. Using the Viterbi (bigger application) as example, the compilation
has duration of about 43 seconds. The simulator executes 4774298 instructions
in 2.27 seconds what it gives to a average of 2103.21 K intr/s.

4.5.2 GDB Support

Simulators built with ArchC can use the GDB protocol. We must only imple-
ment a few processor dependent methods for the interface and the simulator
will be able to respond to GDB, allowing users to debug software inside the
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simulator. We implemented methods to interface the architecture and GDB,
mapping registers and memory to the desired GDB format. These methods are:

e int nRegs(void), ac_word reg_read(int) and void reg_write(int,
ac_word) : so the simulator can send the read and write register packets
to GDB.

e ac_word mem_read(unsigned int) and void mem_write(unsigned int,
byte) : to inform how to read and write memory regions.

These methods are implemented in the tricorel13_gdb_funcs.cpp file that has
180 lines.



Chapter 5

Results and Conclusions

This chapter provides the comparison results between the TriCore model devel-
oped in ArchC, an instruction-set simulator (ISS) TSIM[12] and the TC1MP-S
core integrated on the FPGA system.

5.1 Benchmarks

Schmitt compares the execution time of an instruction-set simulator (ISS) TSIM[12]
with the TC1IMP-S core integrated on the FPGA system. The TSIM ISS can
be found in software development tools from GNU or Tasking for TriCore in [4].
We used this data to compare the execution times of same the programs in the
model developed in ArchC.

For performance analysis of the different platforms, benchmarks from the
Embedded Microprocessor Benchmark Consortium (EEMBC)[1] are used. The
consortium was formed in 1997 to develop meaningful performance benchmarks
for the hardware and software used in embedded systems. Through the com-
bined efforts of its members, EEMBC®) benchmarks have become an industry
standard for evaluating the capabilities of embedded processors, compilers, and
Java implementations according to objective, clearly defined, application-based
criteria.

Since releasing its first certified benchmark scores in April 2000, EEMBC
scores have effectively replaced the obsolete Dhrystone mips, especially in situ-
ations where real engineering value is important. EEMBC benchmarks reflect
real-world applications and the demands that embedded systems encounter in
these environments. Since the benchmark suite is not freely available Stephen
Schmitt reimplemented six algorithms of EEMBC benchmarks, we use the same
application code in TriCore ArchC model. Below are described the six used ap-
plications:

e FFT: Fast Fourier Transformation is a fundamental method from the
signal processing domain. It transforms signals from the time domain
into the frequency domain. There it works on discrete values. To get

30
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reasonable values for TSIM the FFT function works on 8 input values and
transforms them 1000 times.

e DCT: Discrete Cosine Transformation is used as a compression technique
in image processing. There, it can be found e.g. in JPEG and MPEG
compression. We used a 8x8 matrix form transformation.

e JPEG: JPEG algorithm (Joint Pictures Experts Group) compresses pic-
tures by removing frequency parts of an image not visible for a human
eye. Quality of the pictures is configurable. For the benchmark a picture
with eight pixels is used. The pixels are described with an 8x8 matrix.

e LU: LU is a triangular decomposition of a matrix A into the product of a
left lower (L) matrix and a right upper (U) matrix such that P+ A = LxU
holds. Matrix P is the permutation matrix with a one in each column and
row. The measurement was done with a 3x3 matrix.

e Packet flow: Packet flow algorithm is a subset of the packet forwarding
procedure of network routers. Potential performance of a microprocessor
for an IP routing system can with this benchmark. For the measurement
the link layer header war already removed from the packet.

e Viterbi: Viterbi decoding is used in data transmission systems over chan-
nels with noise e.g. GSM or WLAN networks. Before transmission starts
the data is encoded with a Reed Salomon Encoder from which the Viterbi
algorithm can reconstruct the data with a maximum likelihood decoding.
The benchmark uses 32 input values, simulates a transmission channel
with noise and decodes data at the end of transmission. This procedure
is done 100 times.

Schmitt made the runtime measurements for TSIM ISS on a Windows worksta-
tion with a Pentium 4 processor with 2.8 GHz and 1 GB memory. Figure 5.1
shows statistical values for benchmarks mentioned above.

5.2 Conclusion and future work

In this work a functional model of the processor Infineon TriCore 1.3 was devel-
oped using the architecture description language ArchC. Although just 29% of
the instruction set was implemented, this number is enough to execute a spe-
cific applications subset. The model was validated comparing the outputs of the
simulation with the instruction-set simulator TSIM. The link-script developed
allows the model to execute ELF files, these are generated by a cross-compiler.
The model was expanded beyond the initial proposal to increase the simulation
performance using the Fast Static Compiled Simulation and increase the ob-
servation capacity during simulation making the model usable along with gdb
debugger.



CHAPTER 5. RESULTS AND CONCLUSIONS 32

Figure 5.1: Simulation time
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In order to improve the verification of processor model we can use the public
benchmarks MediaBench and MiBench, which supply all test vectors. Prior to
that, it is necessary to implement the Application Binary Interface (ABI) in
the TriCore ArhcC model. This interface will allow the model to read the test
vector and save the results in another one. The output can then be compared
with the output vector of the public benchmark.

A natural evolution of the model, would be to implement the totality of
its instructions, a relatively simple task. Another alternative would be to im-
plement the cycle-accurate version with pipeline, based on the TC1MP-S IP
core.

Finishing, the developed simulator showed to have satisfactory performance
in comparison with ISS TSIM. Because the model is based on the SystemC
library, it can be easily integrated in a SoC simulation platform.
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