
Journal of Intelligent & Fuzzy Systems 13 (2002/2003) 85–98 85
IOS Press

Turing’s analysis of computation and artificial
neural networks∗
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Abstract. A novel way to simulate Turing Machines (TMs) by Artificial Neural Networks (ANNs) is proposed. We claim that
the proposed simulation is in agreement with the correct interpretation of Turing’s analysis of computation; compatible with the
current approaches to analyze cognition as an interactive agent-environment process; and physically realizable since it does not
use connection weights with unbounded precision. A full description of an implementation of a universal TM into a recurrent
sigmoid ANN focusing on the TM finite state control is given, leaving the tape, an infinite resource, as an external non-intrinsic
feature. Also, motivated by the results on the limit of what can actually be computed by ANNs when noise is taken into account,
we introduce the notion of Definite Turing Machine and investigate some of its properties.
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1. Introduction

Warren McCulloch and Walter Pitts published their
paper “A Logical Calculus of the Ideas Immanent in
Nervous Activity” [27] back in 1943. This paper is
seminal to both the field of Artificial Neural Network
(ANN) and to that of Automata Theory. Their logical
model of the behavior of the nervous system turned out
to be model of a Finite State Machine (FSM). The two
fields, despite their common origin, grew apart from
each other. The “finite automata” branch focused on
computability, whereas the “neural network” branch
focused on learning. The former was influenced by the
work in [20,28] which gave a more mathematical lay-
out, culminating in its current form [37] first introduced
in [33]. The latter was initially influenced by the works
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in [30,35] and then by studies in [15,22,36,48]. Only
recently the two branches interacted again through the
use of ANNs as sequence processors [7,17,32] in the
late 80 s; and in the early 90 s, with the theoretical
analysis of the computational capabilities of ANNs [1,
11,40,41].

Regarding universal computation – the relationship
between ANNs and Turing Machines – an odd situa-
tion arise. While computer scientists (automata theo-
reticians) agree that a TM is a finite state automata with
an external auxiliary memory realized as a read-write
tape and free-moving head [2,29], the neural network
researchers insist in viewing the ANN “computer” as a
system closed in itself in which all the memory/storage
is kept within it. Hence, in their proposed simulation
of TM, the infinite tape of the TM is represented as
an infinite number of neurons or unbounded weights.
This approach somehow mimics the conventional ar-
chitecture of modern days computers where storage,
memory and processors come in a closed box. For a
very good collection of arguments and critics in favor
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of approaches that regard cognition as an interactive
agent-environment processe see [47].

A different approach is taken here which is in
agreement with the original work of McCulloch and
Pitts [27]. Back in the 40’s they already claimed that
recurrent ANNs are computationally universal. They
suggested a neural implementation of a TM, in which
the network would both simulate the finite-state control
part of the machine and have a read/write head and an
infinite tape tape attached to it. Therefore, ourNeural
Turing Machineis similar to a Turing Machine only
that the next state control function is not realized as fi-
nite state automata (or finite state machines) but rather
as ANNs.

However, it should be said, researchers in the ANN
field claim that such a simulation is not “neural” in
that the tape should be a intrinsic part of the network,
not an external device [9,13,31,40,44]. But looking at
the process of human calculation1 one can abstract two
main agents: the brain and the environment. These can
be further abstracted to brain plus sheet(s) of papers(s).
Theoretical computer scientists agree to view them re-
spectively as a finite-state automaton plus an infinite
tape, i.e., a Turing Machine.

Thus, this work proposes to substitute the classical
model of computation

Turing Machine= Tape+ Finite State Automaton
(FSA)

by the neural model of computation

Neural Turing Machine (NTM)= Tape+ Artificial
Neural Networks (ANN)

Cognitive and Physical arguments for this approach are
given and the mathematical consequences of it are in-
vestigated. Among the main consequence of the ap-
proach is the definition of a novel Turing machine mod-
el, Definite Turing Machine(DTM), which arises when
noise is taken into account.

It is widely known in the neurocomputing theory
community the results in [26] which states that not
every arbitrary FSA can be implemented in ANNs when
noise or limited precision is considered. ANNs are just
Definite Automata[21] under these conditions. This
result reflects on the second equality above giving

(noisy) NTM= Tape+ (noisy) ANN

1Actually, the process of number theoretic calculations by a math-
ematician. This really was the original motivation of people such as
Gödel, Turing, Church, Kleene, Herbrand, Post, Markov, etc. when
attacking theEntscheidungsproblem.

with a corresponding

Definite Turing Machine= Tape+ Definite Finite
State Automaton (DFSA)

The computational abilities of these Definite Turing
Machines are investigated. It is proved that they com-
pute the class of elementary functions from Recursion
Theory [4]. Another kind of limited memory automata,
the finite memory automata [21], leads toFinite Memo-
ry Turing Machine. The latter is shown to be equivalent
to (unlimited) Turing machines.

The remainder of this paper is divided into 6 sec-
tions. Section 2 presents the main definitions used in
this work. In Section 3, in order to put this work in
perspective, the main approaches for TM simulation in
ANN are presented. Then, in Section 4, a critique to
these current approaches for neural Turing simulation
is presented. Based on the claims stated in the previous
sections, in Section 5 we show how the finite control
of a TM can be considered as a Mealy machine. Then,
using the procedure presented in [5], we explain how to
implement the control of a TM in a ANN. Some exam-
ples are presented – in particular a minimal universal
TM is implemented as an ANN. All this provides the
intuition for the proof of the universality of our model.
Next, motivated by the results on the limit of what can
actually be computed by ANNs when noise is taken
into account, in Section 6 we introduce the notion of
Definite Turing Machine and investigate some of its
properties. We also show that the corresponding notion
of Finite-Memory Turing Machine is computationally
equivalent to Turing machines. Finally, in Section 7
we present some final remarks and possible extension
of this work.

2. Main definitions

Below we start by formalizing the intuitive notion
of a Turing machine depicted above. Then, we define
the notion of Mealy machine, which is a finite state au-
tomaton with an output function. Finally, we define the
kind of neural networks we use, the first-order recur-
rent neural network, where the units have the logistic
function as activation function [5].

Definition 2.1. A Turing MachineT overa finite al-
phabetΣ is a quintupleT = (ΣT , QT , δT , sI , DT ),
(the subscripts are used when necessary) where: (1)
Q = {q1, . . . , q|Q|} is a finite set of states with a distin-
guished(initial) state,qI (usuallyq1); (2) δ : Q×Σ →
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Q× Σ×D is a function, whereD = {−1, 0, 1} is the
set of possible head movements.δ is to be thought as
a finite set of instructions andδ(qi, σ) = (qj , σ′,m)
means that the machine being in the stateqi ∈ Q and
reading the symbolσ ∈ Σ from the current cell in the
tape will take the following actions: eraseσ from the
cell and writeσ′ in its place; change the internal state
fromqi to qj and move the head position one cell to the
left (m = −1), one to the right(m = 1) or does not
move(m = 0). �

Definition 2.2 Mealy machine is a sixtupleM =
(Σ,Γ, Q, δ, λ, qI), where: (1) Q = {q1, q2, · · · , q|Q|}
is a finite set of states;(2) Σ = {σ1, σ2, · · · , σ|Σ|} is
a finite input alphabet;(3) Γ = {γ1, γ2, · · · , γ|Γ|} is a
finite output alphabet;(4) δ : Q × Σ → Q is the next
state function.δ(qj , σk) = qi should be interpreted as
“the machine being in stateqj and reading symbolσk

goes to stateqi”; (5) λ : Q× Σ → Γ. λ(qj , σk) = λi

should be interpreted as ”the machine being in state
qj and reading symbolσk writes symbolλi; and (6)
qI ∈ Q is the initial state where the machine is before
the first symbol is read.�

Remark 2.1. A pair (Q, δ) is usually called a transi-
tion system(over Σ). We can sometimes refer to the
transition system of the Mealy machine.�

For the class of ANNs used, in what follows in the
definition below, superscripts in the weights indicate
the computation involved: for example thexu inW xu

indicates that the weight is used to compute a state (x)
from an input (u); thex inW x (a bias) indicates that it
is used to compute a state. Thus,u, x, y andz in the
subscript means respectively input, state, output and
hidden output layer. The definition of ANN that we use
is basically theaugmented Robinson-Fallside network
of the Mealy kind in [5]. Throughout letg : 	 → [0, 1]
be thelogistic map: g(x) = 1

1+exp(−x)

Definition 2.3. A Deterministic Time Recurrent Neural
Network(DTRNN) is a sixtupleN = (X,U, Y, f, h, x0)
where: (1) X = [0, 1]nX , thenX−dimensional unit
cube, is the state space of the network andnX is the
number of units or neurons;(2) U = 	nU is the set of
possible input vector, with	 the set of real numbers and
nU the number of input lines;(3)Y = [0, 1]nY is the set
of outputs of the network, withnY the number of output
units; (4) f : X × U → X is the next state function
which computes a new statex[t] from the previous state
x[t−1] and the input just readu[t]. Thei−th coordinate

of f is given by

fi(x[t− 1], u[t]) = g
 nX∑

j=1

W xx
ij xj [t− 1] +

nU∑
j=1

W xu
ij uj [t] +W x

i




�

(5) h : X × U → Y is theoutput functionwhich
computes a new outputy[t] from the previous state
x[t−1] and the input just readu[t]. Thei−th coordinate
of h is given by

hi(x[t− 1], u[t]) = g


 nZ∑

j=1

W yz
ij zj[t] +W y

i




where

zi[t] = g
 nX∑

j=1

W zx
ij xj [t− 1] +

nU∑
j=1

W zu
ij uj [t] +W z

i




(6) and finally,x0 is the initial state of the network
which simply is the value that will be used forx(0).

Remark 2.2. As shown in [11], a network as previously
defined can represent the output function of all Mealy
machine as long as a two-layer scheme is used. Hence,
we assumeZ = [0, 1]nZ be the hidden output layer
wherenZ is the number of such units.�

3. Related work

Most researchers in the ANNs field claim that in
neural Turing simulation the tape should be a intrinsic
part of the network, not an external device [9,13,31,
40,44]. Thus, in order to “internalize” the tape of a
TM, these researchers have come up with the following
approaches:

– Networks with an infinite number of nodes [9,13,
44]; and

– Networks with finite number of nodes but with
unbounded weights [31,40,38].

3.1. Networks with infinite number of neurons

A recurrent ANN with an infinite amount of nodes
can simulate a TM by using this potentially infinite
amount to build the TM’s machine tape [9,13,44].
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Franklin and Garzon in [9] defend the study of these in-
finite networks for they claim that there exists a relation
between finite and infinite networks such as, for ex-
ample, that of Finite State Machines (FSMs) and TMs.
That is, although each physically implemented machine
is, in principle, a FSM, the concept of TM is needed
for a deeper understanding on the complete computa-
tional power of sequential computers. For example, an
asymptotic analysis is seen as providing a good under-
standing of the behavior of algorithms – when the size
of the input scales up. Therefore, the TMs, with their
infinite tape, provide a convenient way to study these
scaling up of individual solutions.

Franklin and Garzon [9] also claims that infinite re-
current ANNs are strictly more powerful than TMs.
Thus, for them, an understanding of the computation-
al power of infinite networks would provide a better
understanding of the neurocomputing. On the other
hand, one can argue that, because these models contain
an unbounded number of neurons, they cannot really
explain the true power of their networks. They provide
not only infinite memory (a fair source), but they be-
come infinite automata. Some researchers, thus, argue
that it would be more appropriate to consider compu-
tational models which include a finite number of neu-
rons, but still allow for growing memory by allowing,
for example, for growing precision in the neurons.

3.2. Networks with a finite number of neurons

The first neural computation model that combined a
finite number of nodes and infinite precision was intro-
duced by Pollack [31]; he proved it to be universal in
power. Each node computed a second-order polyno-
mial or threshold function. Pollack’s networks did not
allow for first polynomials, as it is common in ANNs,
nor did it allow for any continuous activation function.
Continuity, as already mentioned, is an important re-
quirement when one wants to model physical systems
with ANNs.

Thus, in this section, the attention will be focus on the
findings of Sigelmann and Sontag [38,40] who studied
the computability of analog recurrent networks. So far,
their study has triggered much other work – e.g. [18,
23,39]. More specifically, Sigelmann and Sontag [40]
showed that a single-input, single-output, first-order,
recurrent ANN employing the saturated-linear activa-
tion function can simulate arbitrary TMs step per step
(the network is similar to the one in Definition 2.3).
Hence, by implementing universal TM, any function
computable by a TM in timeT (n) can be computed

by a fixed recurrent network with only 886 units in
timeO(T (n)). The size of this universal network can
further be reduced even to 25 neurons at the cost of
increasing the simulation time to(n2T (n)) [16]. Their
architecture, as mentioned before, is a simple first-order
network:

xi[t] = gσ


 nX∑

j=1

Wijxj [t− 1] +Wiu[t] +Wi



(1)

y[t] = x1[t]

wherexi[t] are rational numbers,u[t] is either 0 or 1,
and gσ is 0 if x < 0, 1 if x > 1 and x otherwise
(saturated-linear function). The input tape is the se-
quenceu[1]u[2] . . .; the output tape is the sequence
y[1]y[2] . . ..

The proof presented in [40] stands on the following
assumptions [8]:

– A TM can always be simulated by a pushdown au-
tomaton with three (in fact two) unary stacks [14];

– An unary stack can be encoded as a rational
number: qs = 0.1111 = 15/16 represents four
items. Popping an item is the same as perform-
ing a subtractionq

′
s = σ(2qs − 1); whereas push-

ing an item is the same as doing an addition
q
′
s = σ(1/2 + qs/2);

– All stack operations and all state transitions trig-
gered by the states of the control unit and the sym-
bols at the top of the stacks can be computed in at
most two time steps of the network.

In addition, Turing universality has been shown for
a more general class of activation function, including
the standard sigmoid function [19,24], although in this
case the simulation requires exponential time overhead
per each computational step. Recently, the class of
NARX networks has also been shown to be equivalent
to TMs [39].

Another important point with respect to the sim-
ulation of TMs by first-order recurrent ANNs with
saturated-linear activation function is that their power
depends on the descriptive complexity of their weights.
For integer weights, these networks coincide with re-
current networks of threshold gates as activation func-
tion, that is, they are equivalent to FSMs [40]. If ra-
tional weights are employed, this class of networks be-
comes equivalent to TMs.

On the other hand, when these networks are used
with real weights, they can present super-Turing com-
putational capabilities [38]. In particular, the compu-
tational power of such networks working within time
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T (n) is exactly the same as that ofnon uniformTuring
machines2. That is, non realizable TMs that receive
in their input tape, in addition to the inputw, another
stringW (|w|) called the “advice” to assist the compu-
tation. This means that polynomial-time computations
by such networks correspond to the non uniform com-
plexity class P/poly, and within exponential time any
input-output mapping can be computed.

4. A critique to current implementations of TMs in
neural networks

In this section, we present arguments against the
claim that the infinite tape should be considered as an
intrinsic feature of a TM, as it has often been done
in the neurocomputing literature [9,13,40,44]. First,
we argue that there is a misunderstanding in the way
these works on neural simulation of TMs interpret the
Turing’s analysis of computation – this argument was
first presented in [6]. Then, using as support the work
by [47], we claim that an external view of the TM’s tape
is compatible with current studies of cognition based
on the agent-environment paradigm. Next, we argue
that, by considering the TM tape as an external device
to the ANN, problems related to physical implementa-
tion of analog networks are avoided [25]. Finally, we
present some objections for super-Turing computation
in ANNs.

4.1. Turing’s analysis of computation

One can argue that the “mind” of a Turing Machine
is its control: a finite state automaton (more specifical-
ly a Mealy Machine). The access to the tape is only for
helping the computation storing partial results. What
makes a TM computationally powerful enough as to
model effective computations (Church-Turing Thesis)
is the set of permissible operations on the tape. The
various classical kinds of finite automata in the Com-
puter Science literature can then be roughly classified
according to the set of permissible operations on their
tape(s).

A finite state automaton (regular languages recogniz-
ers) have one input and one output tape, but it is allowed
to just move the heads to the right and as a consequence
is not able to reuse past computations. A pushdown

2Non uniform TMs are unrealizable because the length ofw is not
bounded. Thus, the number of possible advice strings is infinite and
cannot be stored in finite memory previous to any computation

automaton (context-free languages recognizers) has its
access to the tape restricted tostack operations. A
linear bounded automaton (context sensitive languages
recognizers) is a TM with the restrictions that the head
cannot leave those cells on which the input was placed.
In contrast, a Turing machine have unrestricted access
to the tape. For all types of machines previously de-
scribed, the tapes are assumed to be infinite and the
“mind” of each type of machine3 is indeed a finite state
automaton.

The point is that the fact that this memory ispoten-
tially infinite should not be considered as an intrinsic
feature of a Turing machine, as it has been indicated in
some neural computing literature [9,13,31,40,44]. This
memory is there for use, however at any time step the
TM is not allowed to use the whole infinite resource.
Only finite portions of the tape can be used at any stage
of a computation. It is the finitistic, repetitive and unin-
spired execution ofinstructionsdone by the finite state
control that matters. Because of this, one could regard
this finite state control as the “mind” of the TM.

Of course, as seen above, the set of permissible op-
erations is also of fundamental significance. Indeed,
these aspects of a TM capture reasonably well the no-
tion of effective computability. The access to an infi-
nite tape has also obvious technical advantages. One
can speak, for example, of computations of number
theoretic functions,f : N → N , whereN is the set
of natural numbers, even if it is not possible for any
existing device or any human being to actually com-
pute the whole of a such function. Take as an example
the addition of natural numbers; we know how to per-
form the addition of two given numbers, but it would
not be possible for us to actually compute the func-
tion + : N 2 → N for its whole domain of definition:
just imagine sufficiently large numbers whose addition
would take us, say, a billion of years to perform; how-
ever that is not what matters for the study of effective
computations but rather the fact that there is something
mechanical, repetitive, effective,algorithmicabout ad-
dition that one can capture. And once one haslearned
how to add a finite set of pairs ofsmallnatural numbers
it can be said that this person can (in principle) add any
two given natural numbers when the person actually
knows how to perform an algorithm for addition.

3In some cases it is important to distinguish between deterministic
and non deterministic machines but this is out of the scope of the
present work and the interested reader should consult the literature
(e.g., the classic [14])
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4.2. Turing machines and the study of cognition

In the past years there have been many debates on
two distinct approaches to the study of human cogni-
tion (see articles in [42]). One approach, the tradition
upon which cognitive science was founded, is that of
symbolic processing [45]. The other more recent ap-
proach, emphasizing the role of the environment, the
context, the social and cultural setting, and situations
in which actors find themselves, is often calledsituated
actionor situation cognition[12].

In the first approach, symbol systems theorists argue
that the human brain functions in the way as a TM.
Thus, by hypothesis, there must be mechanisms in the
brain that are functionally equivalent to the finite con-
trol and to the tape [45]. As pointed by [47], sym-
bol systems theorists pay particular attention to mem-
ory/tape mechanisms because they are hypothesized to
contain structured representation of the world. The
manipulation and transformation of these representa-
tions constitute cognitive activity. Since this approach
assumes that both the principal parts of the TM are
instantiated in the brain, it has been referred to as the
internalist interpretation of the Turing Machine archi-
tecture [47]. The internalist interpretation is essentially
what has been supported by many theorists [10].

In the context of the neurocomputing, the internalist
interpretation has also been often accepted. For exam-
ple, representative works on the neural simulation of
TMs such as [9,13,31,40,44] simulate both parts of the
TM within the neural network. On the other hand, in
this work we share similar views such as those present-
ed by Wells [47]. He argues for an alternative approach
for the internalist interpretation in which only one of
the principal parts, the finite state control/central pro-
cessor, is instantiated in the brain. The other principal
parts, the tape/memory mechanism, is hypothesized to
exist in the external environment. Consequently, cogni-
tive computation is a process of organism-environment
interaction. This approach is based on what Wells calls
theinteractiveinterpretation of the Turing machine ar-
chitecture [47].

Under this interactive conception, the brain instanti-
ates not the full task architecture of a Turing machine,
but only the control architecture. The input architec-
ture is found in the external environment. Therefore,
according to Wells [47], this leads to a view of cog-
nitive computation processes of structured interaction
between the control architecture of the brain and the in-
put architecture of the environment. In other words, the
cognizer is embedded in an environment which consti-

tutes part of the cognitive architecture. This approach
is compatible with one of the central claims of situa-
tion theories: cognitive activities should be primarily
as interactions between agents and physical systems
and with other people [12].

As seen above, the interactive interpretation of TMs
results in a view of cognitive architectures which is in-
compatible with architectures of symbols systems, as
well as most neural simulation of TMs such as the ones
in [40]. However, by re-interpreting Turing’s analysis
of computation (see previous section) and rescuing the
original work by McCulloch and Pitts [27], our neural
simulation of TMs proposed here shows that connec-
tionist and interactive approaches to cognitive architec-
tures can be theoretically compatible in that both can
see the organism as a finite controller embedded in a
wider environment that might form part of the archi-
tecture.

4.3. Analog noise and ANNs

The results on the Turing capabilities of analog neu-
ral networks presented in Section 3 hold only for the
noise-free case. For instance, Maass and Orponen [25]
showed that, in the presence of any reasonable type of
analog noise, these networks can deal only with regular
languages. This is true even if unlimited computation
time is allowed and if arbitrary real-valued parameters
are employed. Furthermore, they showed that if this
analog noise is bounded, then all regular languages can
be recognized by such systems. But if the noise is
unbounded, then the neural network will no longer be
able to recognize arbitrary regular languages.

In fact, Maass and Sontag [26] have shown that when
the output gates of these analog networks are subjected
to unbounded Gaussian noise, or any other common
noise distribution, they can recognize only a small sub-
class of the regular languages called definite languages.
Thus, in this context, and even for the bounded noise
case, the computability of analog neural networks is
limited to that of FSMs, despite the potential “infinite”
number of states. This result implies severe constraints
on the possibility for constructing recurrent analog net-
works that are robust against realistic types of analog
noise.

Therefore, from a theoretical point of view, although
the neural implementations of TM that internalize the
tape as the ones in [13,40,44] could simulate the behav-
ior of TMs; from a practical point of view, if these net-
works are subject to – let say – bounded analog noise,
they will be nothing more than finite state automaton.
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Hence, this is another argument to support our claim
that the TM’s tape should not be encoded within the
neural network.

4.4. Objections for super-turing computation in ANNs

From a mathematical perspective, allowing neural
networks to have real weights leads them to a richer
representational ability than a machine that uses a fi-
nite number of discrete symbols on an infinite tape.
However, as it is widely acknowledged, if a TM is to
process in a finite time, and each square or digit on the
tape takes a finite time to be read, then only a finite
portion of the infinite tape can actually be used. This
limits the device to dealing with a subset of rational
numbers (those rational numbers that can be represent-
ed by the particular number of symbols or bits that can
be read in the allotted time). Thus, in order to represent
a continuous-valued quantity, the set of real numbers,
R, must be mapped on to (at most) the set of rational
numbersQ.

There are more irrational than rational numbers,
though both sets are infinite, the former has cardinality
N1, whereas the latter has cardinalityN0. As a con-
sequence, many states in the original continuous func-
tion map to a single number within the Turing machine.
This loss of information between the continuous-valued
world and the TMs is the source of the proposed non
Turing ability of recurrent ANNs with real weights.

As pointed in [3], in order to avoid the problem
above, one can argue that for any given process, the
TM can be designed to use enough bits to produce the
correct answer. However, while this could be possi-
ble for many engineering applications, it is not prac-
tical for intelligent systems designed to function in an
unforeseeable universe.

5. Our model of simulation

Based on the arguments presented in the previous
section, we show a proof for the Turing universality of
a class of ANNs (DTRNN), in which the tape is seen
as a non-intrinsic part of the network. But, before pre-
senting the formal proof, we give some intuition. First,
we show how the finite control of a TM can be simulat-
ed by the network. Then, we show an implementation
of a universal Turing machine as an ANN. Finally, we
show the formal proof.

5.1. Simulating the finite control of a TM in an ANN

The simulation can easily be grasped by first observ-
ing that computations in a Turing machine is actually
controlled by a Mealy machine:

δT (q, σ) = (q′, σ′, d)

can be seen as

δM (q, σ) = q′

and

λM (q, σ) = (σ′, d)

i.e., to a given TMT = (ΣT , QT , δT , sI , DT ) it is asso-
ciated a Mealy machineM=(ΣT ,Γ, QT , δM , λM , sI),
whereΓ = ΣT × DT , andδM andλM are defined
as above. The Mealy machineM can be seen as the
“brain” of the Turing machineT .

Remark 5.1 The number of output symbols is3 ∗ n,
wheren is the number of symbols inΣ. �

Closely following the procedure for stable imple-
mentation of a Mealy machine in DTRNNs presented
in [5], from the Mealy machine M above it is construct-
ed thesplit-state split-outputMealy machine

M ′ = (ΣT ,Γ′, Q′, δ′, λ′, q′I)

where
– Γ′ = Γ × Σ, Q′ = Q × Σ, ands′I is any of the

(sI , σ), σ ∈ Σ;
– δ′((q, σ), σ′) = (δM (q, σ′), σ′) and
– λ′((q, σ), σ′) = (λ(q, σ′), σ′).

Remark 5.2 The number of output symbols ofM ′ is
2 ∗ n2 and the number of states ism ∗ n, wherem is
the number of states we start with, i.e.,|QT | = m. �

Remark 5.3 The procedure in [5] gives a DTRNN with
the number of state space units, input lines and output
units, respectively,nX = |Q′|, nU = |Σ| andnY =
|Γ′|, which amounts ton+ 3n2 +mn units. �

Example 5.1 Below in Fig. 1(a) is given an example of
a Turing MachineT with 6 states and 2 input symbols
which multiplies by two a given input in unary base.
The corresponding Mealy machineM implementing
the control ofT is shown in Fig. 1(b). In Fig. 2(a) the
split-state split-output machineS fromM is illustrated.
S has states which are unreachable from the initial state
0. Then, when these states are removed the machine in
Fig. 2(b) is produced. Using the results in [5] one finds
H = 9.14211, ε0 = 0.0415964 andε1 = 0.988652. �
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δT (0 , 0) = (0 , 0, 1)
δT (0 , 1) = (1 , 0, 1)
δT (1 , 0) = (2 , 1, 2)
δT (1 , 1) = (1 , 1, 1)
δT (2 , 0) = (3 , 0, 1)
δT (2 , 1) = (4 , 0, 1)
δT (3 , 0) = (0 , 1, 0)
δT (3 , 1) = (3 , 1, 1)
δT (4 , 0) = (5 , 1, 2)
δT (4 , 1) = (4 , 1, 1)
δT (5 , 0) = (2 , 1, 2)
δT (5 , 1) = (5 , 1, 2)

(a)

δM (0 , 0) = 0 and λ M (0 , 0) = 1
δM (0 , 1) = 1 and λ M (0 , 1) = 1
δM (1 , 0) = 2 and λ M (1 , 0) = 5
δM (1 , 1) = 1 and λ M (1 , 1) = 4
δM (2 , 0) = 3 and λ M (2 , 0) = 1
δM (2 , 1) = 4 and λ M (2 , 1) = 1
δM (3 , 0) = 0 and λ M (3 , 0) = 3
δM (3 , 1) = 3 and λ M (3 , 1) = 4
δM (4 , 0) = 5 and λ M (4 , 0) = 5
δM (4 , 1) = 4 and λ M (4 , 1) = 4
δM (5 , 0) = 2 and λ M (5 , 0) = 5
δM (5 , 1) = 5 and λ M (5 , 1) = 5

(b)

Fig. 1. (a)A Turing machineT that multiplies by two a given number in unary base (b)The control of the TMT as a Mealy machineM , as in
the text. The composed output pairs(σ, d), σ ∈ Σ, d ∈ D, have been coded into the integerσ|M | + d, i.e., it is seen as a number in base|D|
(which is 3 in this case).

δS (0 , 0) = 0 and λ S (0 , 0) = 1
δS (0 , 1) = 7 and λ S (0 , 1) = 7
δS (1 , 0) = 2 and λ S (1 , 0) = 5
δS (1 , 1) = 7 and λ S (1 , 1) = 10
δS (2 , 0) = 3 and λ S (2 , 0) = 1
δS (2 , 1) = 10 and λ S (2 , 1) = 7
δS (3 , 0) = 0 and λ S (3 , 0) = 3
δS (3 , 1) = 9 and λ S (3 , 1) = 10
δS (4 , 0) = 5 and λ S (4 , 0) = 5
δS (4 , 1) = 10 and λ S (4 , 1) = 10
δS (5 , 0) = 2 and λ S (5 , 0) = 5
δS (5 , 1) = 11 and λ S (5 , 1) = 11
δS (6 , 0) = 0 and λ S (6 , 0) = 1
δS (6 , 1) = 7 and λ S (6 , 1) = 7
δS (7 , 0) = 2 and λ S (7 , 0) = 5
δS (7 , 1) = 7 and λ S (7 , 1) = 10
δS (8 , 0) = 3 and λ S (8 , 0) = 1
δS (8 , 1) = 10 and λ S (8 , 1) = 7
δS (9 , 0) = 0 and λ S (9 , 0) = 3
δS (9 , 1) = 9 and λ S (9 , 1) = 10

δS (10 , 0) = 5 and λ S (10 , 0) = 5
δS (10 , 1) = 10 and λ S (10 , 1) = 10
δS (11 , 0) = 2 and λ S (11 , 0) = 5
δS (11 , 1) = 11 and λ S (11 , 1) = 11

(a)

δR (0 , 0) = 0 and λ R (0 , 0) = 1
δR (0 , 1) = 1 and λ R (0 , 1) = 7
δR (1 , 0) = 2 and λ R (1 , 0) = 5
δR (1 , 1) = 1 and λ R (1 , 1) = 10
δR (2 , 0) = 3 and λ R (2 , 0) = 1
δR (2 , 1) = 5 and λ R (2 , 1) = 7
δR (3 , 0) = 0 and λ R (3 , 0) = 3
δR (3 , 1) = 4 and λ R (3 , 1) = 10
δR (4 , 0) = 0 and λ R (4 , 0) = 3
δR (4 , 1) = 4 and λ R (4 , 1) = 10
δR (5 , 0) = 6 and λ R (5 , 0) = 5
δR (5 , 1) = 5 and λ R (5 , 1) = 10
δR (6 , 0) = 2 and λ R (6 , 0) = 5
δR (6 , 1) = 7 and λ R (6 , 1) = 11
δR (7 , 0) = 2 and λ R (7 , 0) = 5
δR (7 , 1) = 7 and λ R (7 , 1) = 11

(b)

Fig. 2. (a)The split-state split-output Mealy machineS, from M , above. Again we have encoded pairs into integers. The encoding takes(q, σ)
into q + |Σ| ∗ σ (b)The Mealy machineR obtained fromS above removing the unreachable states.

5.2. Implementing a universal TM

Example 5.2 Repeating the steps in the previous sec-
tion by starting now with a(minimal) Universal Tur-
ing Machine [34] with 24 states and 2 input sym-
bols (UTM(24,2)); one findsH = 9.862505, ε0 =
0.0200119 and ε1 = 0.991678. The number of units
depends on the amount of unreachable states being re-
moved and cannot obviously be generally predicted.
But it can easily be found the upper bound as follows.

The numbers of units for a Turing machine withm
states andn symbols is3n2 + mn + n which in our
case(two symbol TM) becomes2(m + 7). The whole
process is illustrated in Fig. 3 to Fig. 6.�

6. A proof of universality of ANN

Theorem 6.1 Any Turing machine overΣ withm states
can be simulated by a sigmoid Turing neural network
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δT (0 , 0) = (4 , 0, 1)
δT (0 , 1) = (1 , 1, 1)
δT (1 , 0) = (0 , 1, 1)
δT (1 , 1) = (2 , 1, 2)
δT (2 , 0) = (3 , 0, 2)
δT (2 , 1) = (1 , 0, 2)
δT (3 , 0) = (11 , 1, 2)
δT (3 , 1) = (8 , 0, 2)
δT (4 , 0) = (1 , 1, 1)
δT (4 , 1) = (5 , 0, 2)
δT (5 , 0) = (6 , 0, 2)
δT (5 , 1) = (6 , 1, 2)
δT (6 , 0) = (7 , 0, 2)
δT (6 , 1) = (5 , 0, 2)
δT (7 , 0) = (6 , 0, 2)
δT (7 , 1) = (1 , 1, 1)
δT (8 , 0) = (18 , 0, 1)
δT (8 , 1) = (3 , 1, 2)
δT (9 , 0) = (3 , 1, 2)
δT (9 , 1) = (12 , 0, 1)

δT (10 , 0) = (3 , 0, 2)
δT (10 , 1) = (0 , 1, 0)
δT (11 , 0) = (18 , 0, 1)
δT (11 , 1) = (13 , 1, 2)

δT (12 , 0) = (9 , 0, 1)
δT (12 , 1) = (23 , 1, 1)
δT (13 , 0) = (14 , 0, 2)
δT (13 , 1) = (10 , 1, 2)
δT (14 , 0) = (15 , 0, 1)
δT (14 , 1) = (16 , 1, 1)
δT (15 , 0) = (14 , 0, 1)
δT (15 , 1) = (9 , 1, 1)
δT (16 , 0) = (15 , 0, 1)
δT (16 , 1) = (20 , 1, 1)
δT (17 , 0) = (18 , 0, 1)
δT (17 , 1) = (19 , 1, 1)
δT (18 , 0) = (2 , 1, 2)
δT (18 , 1) = (17 , 1, 1)
δT (19 , 0) = (17 , 1, 1)
δT (19 , 1) = (17 , 0, 1)
δT (20 , 0) = (21 , 0, 1)
δT (20 , 1) = (22 , 1, 1)
δT (21 , 0) = (9 , 1, 2)
δT (21 , 1) = (20 , 1, 1)
δT (22 , 0) = (20 , 1, 1)
δT (22 , 1) = (20 , 0, 1)
δT (23 , 0) = (12 , 0, 1)
δT (23 , 1) = (2 , 0, 2)

Fig. 3. A minimal universal Turing machines on 24 states and two symbols.

δM (0 , 0) = 4 and λ M (0 , 0) = 1
δM (0 , 1) = 1 and λ M (0 , 1) = 4
δM (1 , 0) = 0 and λ M (1 , 0) = 4
δM (1 , 1) = 2 and λ M (1 , 1) = 5
δM (2 , 0) = 3 and λ M (2 , 0) = 2
δM (2 , 1) = 1 and λ M (2 , 1) = 2
δM (3 , 0) = 11 and λ M (3 , 0) = 5
δM (3 , 1) = 8 and λ M (3 , 1) = 2
δM (4 , 0) = 1 and λ M (4 , 0) = 4
δM (4 , 1) = 5 and λ M (4 , 1) = 2
δM (5 , 0) = 6 and λ M (5 , 0) = 2
δM (5 , 1) = 6 and λ M (5 , 1) = 5
δM (6 , 0) = 7 and λ M (6 , 0) = 2
δM (6 , 1) = 5 and λ M (6 , 1) = 2
δM (7 , 0) = 6 and λ M (7 , 0) = 2
δM (7 , 1) = 1 and λ M (7 , 1) = 4
δM (8 , 0) = 18 and λ M (8 , 0) = 1
δM (8 , 1) = 3 and λ M (8 , 1) = 5
δM (9 , 0) = 3 and λ M (9 , 0) = 5
δM (9 , 1) = 12 and λ M (9 , 1) = 1

δM (10 , 0) = 3 and λ M (10 , 0) = 2
δM (10 , 1) = 0 and λ M (10 , 1) = 3
δM (11 , 0) = 18 and λ M (11 , 0) = 1
δM (11 , 1) = 13 and λ M (11 , 1) = 5

δM (12 , 0) = 9 and λ M (12 , 0) = 1
δM (12 , 1) = 23 and λ M (12 , 1) = 4
δM (13 , 0) = 14 and λ M (13 , 0) = 2
δM (13 , 1) = 10 and λ M (13 , 1) = 5
δM (14 , 0) = 15 and λ M (14 , 0) = 1
δM (14 , 1) = 16 and λ M (14 , 1) = 4
δM (15 , 0) = 14 and λ M (15 , 0) = 1
δM (15 , 1) = 9 and λ M (15 , 1) = 4
δM (16 , 0) = 15 and λ M (16 , 0) = 1
δM (16 , 1) = 20 and λ M (16 , 1) = 4
δM (17 , 0) = 18 and λ M (17 , 0) = 1
δM (17 , 1) = 19 and λ M (17 , 1) = 4
δM (18 , 0) = 2 and λ M (18 , 0) = 5
δM (18 , 1) = 17 and λ M (18 , 1) = 4
δM (19 , 0) = 17 and λ M (19 , 0) = 4
δM (19 , 1) = 17 and λ M (19 , 1) = 1
δM (20 , 0) = 21 and λ M (20 , 0) = 1
δM (20 , 1) = 22 and λ M (20 , 1) = 4
δM (21 , 0) = 9 and λ M (21 , 0) = 5
δM (21 , 1) = 20 and λ M (21 , 1) = 4
δM (22 , 0) = 20 and λ M (22 , 0) = 4
δM (22 , 1) = 20 and λ M (22 , 1) = 1
δM (23 , 0) = 12 and λ M (23 , 0) = 1
δM (23 , 1) = 2 and λ M (23 , 1) = 2

Fig. 4. The control of the TMT as a Mealy machineM , as in the text. The composed output pairs(σ, d), σ ∈ Σ, d ∈ D, have been coded into
the integerσ|M | + d, i.e., it is seen as a number in base|D| (which is 3 in this case).

with 3n2 + n+ nm units. �

Proof: Given a TMT = (ΣT , QT , δT , sI , DT ) its

associated Mealy machineM=(ΣT ,Γ,QT ,δM ,λM ,sI)

(as shown above), whereΓ = {0, . . . , k − 1} with
k = |ΣT ×DT |, andδM andλM are defined as:

if

δT (q, σ) = (q′, σ′, d)
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δS (0 , 0) = 4 and λ S (0 , 0) = 1
δS (0 , 1) = 25 and λ S (0 , 1) = 10
δS (1 , 0) = 0 and λ S (1 , 0) = 4
δS (1 , 1) = 26 and λ S (1 , 1) = 11
δS (2 , 0) = 3 and λ S (2 , 0) = 2
δS (2 , 1) = 25 and λ S (2 , 1) = 8
δS (3 , 0) = 11 and λ S (3 , 0) = 5
δS (3 , 1) = 32 and λ S (3 , 1) = 8
δS (4 , 0) = 1 and λ S (4 , 0) = 4
δS (4 , 1) = 29 and λ S (4 , 1) = 8
δS (5 , 0) = 6 and λ S (5 , 0) = 2
δS (5 , 1) = 30 and λ S (5 , 1) = 11
δS (6 , 0) = 7 and λ S (6 , 0) = 2
δS (6 , 1) = 29 and λ S (6 , 1) = 8
δS (7 , 0) = 6 and λ S (7 , 0) = 2
δS (7 , 1) = 25 and λ S (7 , 1) = 10
δS (8 , 0) = 18 and λ S (8 , 0) = 1
δS (8 , 1) = 27 and λ S (8 , 1) = 11
δS (9 , 0) = 3 and λ S (9 , 0) = 5
δS (9 , 1) = 36 and λ S (9 , 1) = 7

δS (10 , 0) = 3 and λ S (10 , 0) = 2
δS (10 , 1) = 24 and λ S (10 , 1) = 9
δS (11 , 0) = 18 and λ S (11 , 0) = 1
δS (11 , 1) = 37 and λ S (11 , 1) = 11
δS (12 , 0) = 9 and λ S (12 , 0) = 1
δS (12 , 1) = 47 and λ S (12 , 1) = 10
δS (13 , 0) = 14 and λ S (13 , 0) = 2
δS (13 , 1) = 34 and λ S (13 , 1) = 11
δS (14 , 0) = 15 and λ S (14 , 0) = 1
δS (14 , 1) = 40 and λ S (14 , 1) = 10
δS (15 , 0) = 14 and λ S (15 , 0) = 1
δS (15 , 1) = 33 and λ S (15 , 1) = 10
δS (16 , 0) = 15 and λ S (16 , 0) = 1
δS (16 , 1) = 44 and λ S (16 , 1) = 10
δS (17 , 0) = 18 and λ S (17 , 0) = 1
δS (17 , 1) = 43 and λ S (17 , 1) = 10
δS (18 , 0) = 2 and λ S (18 , 0) = 5
δS (18 , 1) = 41 and λ S (18 , 1) = 10
δS (19 , 0) = 17 and λ S (19 , 0) = 4
δS (19 , 1) = 41 and λ S (19 , 1) = 7
δS (20 , 0) = 21 and λ S (20 , 0) = 1
δS (20 , 1) = 46 and λ S (20 , 1) = 10
δS (21 , 0) = 9 and λ S (21 , 0) = 5
δS (21 , 1) = 44 and λ S (21 , 1) = 10
δS (22 , 0) = 20 and λ S (22 , 0) = 4
δS (22 , 1) = 44 and λ S (22 , 1) = 7
δS (23 , 0) = 12 and λ S (23 , 0) = 1
δS (23 , 1) = 26 and λ S (23 , 1) = 8

δS (24 , 0) = 4 and λ S (24 , 0) = 1
δS (24 , 1) = 25 and λ S (24 , 1) = 10
δS (25 , 0) = 0 and λ S (25 , 0) = 4
δS (25 , 1) = 26 and λ S (25 , 1) = 11
δS (26 , 0) = 3 and λ S (26 , 0) = 2
δS (26 , 1) = 25 and λ S (26 , 1) = 8
δS (27 , 0) = 11 and λ S (27 , 0) = 5
δS (27 , 1) = 32 and λ S (27 , 1) = 8
δS (28 , 0) = 1 and λ S (28 , 0) = 4
δS (28 , 1) = 29 and λ S (28 , 1) = 8
δS (29 , 0) = 6 and λ S (29 , 0) = 2
δS (29 , 1) = 30 and λ S (29 , 1) = 11
δS (30 , 0) = 7 and λ S (30 , 0) = 2
δS (30 , 1) = 29 and λ S (30 , 1) = 8
δS (31 , 0) = 6 and λ S (31 , 0) = 2
δS (31 , 1) = 25 and λ S (31 , 1) = 10
δS (32 , 0) = 18 and λ S (32 , 0) = 1
δS (32 , 1) = 27 and λ S (32 , 1) = 11
δS (33 , 0) = 3 and λ S (33 , 0) = 5
δS (33 , 1) = 36 and λ S (33 , 1) = 7
δS (34 , 0) = 3 and λ S (34 , 0) = 2
δS (34 , 1) = 24 and λ S (34 , 1) = 9
δS (35 , 0) = 18 and λ S (35 , 0) = 1
δS (35 , 1) = 37 and λ S (35 , 1) = 11
δS (36 , 0) = 9 and λ S (36 , 0) = 1
δS (36 , 1) = 47 and λ S (36 , 1) = 10
δS (37 , 0) = 14 and λ S (37 , 0) = 2
δS (37 , 1) = 34 and λ S (37 , 1) = 11
δS (38 , 0) = 15 and λ S (38 , 0) = 1
δS (38 , 1) = 40 and λ S (38 , 1) = 10
δS (39 , 0) = 14 and λ S (39 , 0) = 1
δS (39 , 1) = 33 and λ S (39 , 1) = 10
δS (40 , 0) = 15 and λ S (40 , 0) = 1
δS (40 , 1) = 44 and λ S (40 , 1) = 10
δS (41 , 0) = 18 and λ S (41 , 0) = 1
δS (41 , 1) = 43 and λ S (41 , 1) = 10
δS (42 , 0) = 2 and λ S (42 , 0) = 5
δS (42 , 1) = 41 and λ S (42 , 1) = 10
δS (43 , 0) = 17 and λ S (43 , 0) = 4
δS (43 , 1) = 41 and λ S (43 , 1) = 7
δS (44 , 0) = 21 and λ S (44 , 0) = 1
δS (44 , 1) = 46 and λ S (44 , 1) = 10
δS (45 , 0) = 9 and λ S (45 , 0) = 5
δS (45 , 1) = 44 and λ S (45 , 1) = 10
δS (46 , 0) = 20 and λ S (46 , 0) = 4
δS (46 , 1) = 44 and λ S (46 , 1) = 7
δS (47 , 0) = 12 and λ S (47 , 0) = 1
δS (47 , 1) = 26 and λ S (47 , 1) = 8

Fig. 5. The split-state split-output Mealy machineS, from M , above. Again we have encoded pairs into integers. The encoding takes(q, σ) into
q + |Σ| ∗ σ.

then

δM (q, σ) = q′

and

λM (q, σ) = ν(σ′, d)

where

ν(x, y) = x|M | + y,

i.e., the pair(x, y) is seen as a number in base|D|
(which is 3 in this case). Next thesplit-state split-output
Mealy machine

M ′ = (ΣT ,Γ′, Q′, δ′, λ′, q′I)

fromM is obtained, where
– Γ′ = Γ × Σ, Q′ = Q × Σ, ands′I is any of the

(sI , σ), σ ∈ Σ;
– δ′((q, σ), σ′) = (δM (q, σ′), σ′) and
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δR (0 , 0) = 1 and λ R (0 , 0) = 1
δR (0 , 1) = 8 and λ R (0 , 1) = 10
δR (1 , 0) = 2 and λ R (1 , 0) = 4
δR (1 , 1) = 29 and λ R (1 , 1) = 8
δR (2 , 0) = 0 and λ R (2 , 0) = 4
δR (2 , 1) = 3 and λ R (2 , 1) = 11
δR (3 , 0) = 4 and λ R (3 , 0) = 2
δR (3 , 1) = 8 and λ R (3 , 1) = 8
δR (4 , 0) = 5 and λ R (4 , 0) = 5
δR (4 , 1) = 27 and λ R (4 , 1) = 8
δR (5 , 0) = 6 and λ R (5 , 0) = 1
δR (5 , 1) = 12 and λ R (5 , 1) = 11
δR (6 , 0) = 7 and λ R (6 , 0) = 5
δR (6 , 1) = 9 and λ R (6 , 1) = 10
δR (7 , 0) = 4 and λ R (7 , 0) = 2
δR (7 , 1) = 8 and λ R (7 , 1) = 8
δR (8 , 0) = 0 and λ R (8 , 0) = 4
δR (8 , 1) = 3 and λ R (8 , 1) = 11
δR (9 , 0) = 6 and λ R (9 , 0) = 1
δR (9 , 1) = 10 and λ R (9 , 1) = 10

δR (10 , 0) = 11 and λ R (10 , 0) = 4
δR (10 , 1) = 9 and λ R (10 , 1) = 7
δR (11 , 0) = 6 and λ R (11 , 0) = 1
δR (11 , 1) = 10 and λ R (11 , 1) = 10
δR (12 , 0) = 13 and λ R (12 , 0) = 2
δR (12 , 1) = 25 and λ R (12 , 1) = 11
δR (13 , 0) = 14 and λ R (13 , 0) = 1
δR (13 , 1) = 20 and λ R (13 , 1) = 10
δR (14 , 0) = 13 and λ R (14 , 0) = 1
δR (14 , 1) = 15 and λ R (14 , 1) = 10
δR (15 , 0) = 4 and λ R (15 , 0) = 5
δR (15 , 1) = 16 and λ R (15 , 1) = 7
δR (16 , 0) = 17 and λ R (16 , 0) = 1

δR (16 , 1) = 18 and λ R (16 , 1) = 10
δR (17 , 0) = 4 and λ R (17 , 0) = 5
δR (17 , 1) = 16 and λ R (17 , 1) = 7
δR (18 , 0) = 19 and λ R (18 , 0) = 1
δR (18 , 1) = 3 and λ R (18 , 1) = 8
δR (19 , 0) = 17 and λ R (19 , 0) = 1
δR (19 , 1) = 18 and λ R (19 , 1) = 10
δR (20 , 0) = 14 and λ R (20 , 0) = 1
δR (20 , 1) = 21 and λ R (20 , 1) = 10
δR (21 , 0) = 22 and λ R (21 , 0) = 1
δR (21 , 1) = 23 and λ R (21 , 1) = 10
δR (22 , 0) = 17 and λ R (22 , 0) = 5
δR (22 , 1) = 21 and λ R (22 , 1) = 10
δR (23 , 0) = 24 and λ R (23 , 0) = 4
δR (23 , 1) = 21 and λ R (23 , 1) = 7
δR (24 , 0) = 22 and λ R (24 , 0) = 1
δR (24 , 1) = 23 and λ R (24 , 1) = 10
δR (25 , 0) = 4 and λ R (25 , 0) = 2
δR (25 , 1) = 26 and λ R (25 , 1) = 9
δR (26 , 0) = 1 and λ R (26 , 0) = 1
δR (26 , 1) = 8 and λ R (26 , 1) = 10
δR (27 , 0) = 6 and λ R (27 , 0) = 1
δR (27 , 1) = 28 and λ R (27 , 1) = 11
δR (28 , 0) = 5 and λ R (28 , 0) = 5
δR (28 , 1) = 27 and λ R (28 , 1) = 8
δR (29 , 0) = 30 and λ R (29 , 0) = 2
δR (29 , 1) = 32 and λ R (29 , 1) = 11
δR (30 , 0) = 31 and λ R (30 , 0) = 2
δR (30 , 1) = 29 and λ R (30 , 1) = 8
δR (31 , 0) = 30 and λ R (31 , 0) = 2
δR (31 , 1) = 8 and λ R (31 , 1) = 10
δR (32 , 0) = 31 and λ R (32 , 0) = 2
δR (32 , 1) = 29 and λ R (32 , 1) = 8

Fig. 6. The Mealy machineR obtained fromS above removing the unreachable states.

– λ′((q, σ), σ′) = (λ(q, σ′), σ′).

M ′ is then implemented using the procedure shown
in [5]. The number of units is calculated as in Re-
mark 5.3.

7. TMs with finite memory

Motivated by our previous results on the relationship
between classical and neural computation, and by the
results in [25,26] on the limitation of the capability of
analog neural computation, in this section we propose
two novel classes of Turing machines by restricting
the type of finite control of the machine. The Defi-
nite Turing Machines and Finite-Memory Turing Ma-
chines. As will be seen in the next sections, the latter
is equivalent to the classical Turing machine. For the
former, we show that such a class of TM is capable of
computing the class of simple function, giving the first
steps in order to characterize its actual computational
power.

7.1. Definite TMs and simple functions

Definition 7.1 A Turing machine isk−definite if, and
only if, its transition system is.�

There are various algorithms for deciding if a given
transition system is definite or not. We use one based
on testing tableand testing graphpresented in [21].
The testing table hasp = |Σ| columns, one for each
symbol in the input alphabet. Its rows are divided into
two parts, the upper part correspond to the states of the
machine, and the table entries are the state transitions.
The row headings in the lower part of the table are
all unordered pairs of non equal sates, while the table
entries are the corresponding pair of state transitions.
The testing graph is a directed graph which has as
vertices the row headings in the lower part of the testing
table and there is an edge from(p, s), p, s ∈ Q, to
(p′, s′), p′ �= s′, if, and only if, there is an entry(p ′, s′)
in row (p, s) columnσ ∈ Σ. The edge is labelledσ.
No edge if(p, s) implies(p′, p′). The transition system
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δ(0 , 0) = (0 , 0, 1) δ(0 , 1) = (1 , 1, 2)
δ(1 , 0) = (2 , 1, 1) δ(1 , 1) = (1 , 1, 2)
δ(2 , 0) = (10 , 0, 1) δ(2 , 1) = (3 , 0, 1)
δ(3 , 0) = (4 , 0, 1) δ(3 , 1) = (3 , 1, 1)
δ(4 , 0) = (4 , 0, 1) δ(4 , 1) = (5 , 0, 1)
δ(5 , 0) = (7 , 0, 2) δ(5 , 1) = (6 , 1, 2)
δ(6 , 0) = (6 , 0, 2) δ(6 , 1) = (1 , 1, 2)
δ(7 , 0) = (7 , 0, 2) δ(7 , 1) = (8 , 1, 2)
δ(8 , 0) = (9 , 0, 2) δ(8 , 1) = (8 , 1, 2)
δ(9 , 0) = (2 , 0, 1) δ(9 , 1) = (1 , 1, 2)
δ(10 , 0) = (11 , 0, 1) δ(10 , 1) = (10 , 1, 1)
δ(11 , 0) = (11 , 0, 2) δ(11 , 1) = (11 , 1, 2)

Fig. 7. A non definite Turing machineT that finds the gcd of two
number in unary notation using the Euclid’s algorithm.

δ(0 , 0) = (9 , 0, 0) δ(0 , 1) = (1 , 1, 1)
δ(1 , 0) = (7 , 0, 2) δ(1 , 1) = (2 , 0, 1)
δ(2 , 0) = (7 , 0, 2) δ(2 , 1) = (3 , 0, 1)
δ(3 , 0) = (9 , 0, 0) δ(3 , 1) = (4 , 1, 2)
δ(4 , 0) = (4 , 0, 2) δ(4 , 1) = (5 , 1, 1)
δ(5 , 0) = (8 , 1, 1) δ(5 , 1) = (6 , 1, 0)
δ(6 , 0) = (6 , 0, 1) δ(6 , 1) = (6 , 1, 1)
δ(7 , 0) = (7 , 0, 2) δ(7 , 1) = (9 , 0, 0)
δ(8 , 0) = (8 , 0, 1) δ(8 , 1) = (1 , 0, 1)
δ(9 , 0) = (9 , 0, 0) δ(9 , 1) = (9 , 1, 0)

Fig. 8. A definite Turing machineT that divides a number in unary
notation by 3.

is k−definite if, and only if, its testing graphG is loop
free and the length of the longest path inG is k − 1.

A non-definite TM is shown in Fig. 7, while in Fig. 8
a definite one is presented.

In Computing Theory, on the class of primitive re-
cursive functions we can define a hierarchy of classes of
functionsL0 ⊂ L1 ⊂ L2 · · · x0 ⊂ x1 ⊂ x2 of increas-
ing complexity (e.g., see [4]). They are related to pro-
grams having a maximum depth of nesting FOR state-
ments in a toy programming language.L i is the class
of functions computed by programs having a maximum
depth of nestingi FOR statements. One should note
that the whole of the primitive recursive functions can
be computed by programs with no GOTO statements
(see Theorem 3.3 page 53 in [4]). Two classes in this
hierarchy are particularly interesting.L1, the class of
simple functions, andL2, theelementary functions. For
L1, the equivalence of programs is decidable while for
all i � 2 the equivalence is undecidable.L2 is claimed
to contain all real problems since a program for a not
elementary function sayg(x) must, for anyk, use more
than

fk
2 (x) = 22..

.2
x }

k

steps on infinitely many inputs. For this reason the ele-
mentary functions are also calledpractical computable
functions

In order to show that definite TM computes the class
of simple functions, we need the following characteri-
zation of the classL1 (see [4]).

Theorem 7.1 The class of simple function is the small-
est class which contains the basic simple functions

d(x) = (x, x)
e(x, y) = (y, x)

i(x) = x
p(x) = ()
z() = (x)

s(x) = x+ 1
x+ y
x−̇1
x/k for each constantk � 1

mod(x, k) for each constantk � 1

a(x, y) = ¬x→ y =
{
y if x = 0
0 if x > 0

and which is closed under composition and combina-
tion. �

The Euclidean algorithm shows that thegcd(x, y) is
an elementary function and our Fig. 7 shows a non def-
inite TM for it. It remains to be shown that it is impos-
sible to find a definite TM for the Euclidean algorithm
in particular and the elementary functions in general.

In contrast, for the simple functions the situation is
straightforward.

Theorem 7.2 The classL1 of simple function is com-
putable by definite Turing machines�

proof: We use the characterization in Theorem 7.1.
The less trivial case in the list of basic simple function
are those which involves division:x/k andmod(x, k).
But already in Fig. 8 we show a definite TM for division
by 3, which can obviously be extended for any fixed
k � 1. The TM for mod(x, k) is a submachine (in
the graph theoretical sense) of the TM forx/k and a
definite transition system does not have non definite
subsystem.

The operations of composition and combinations are
nothing but the serial and parallel operations, respec-
tively, in [43], where is proved that they preserve defi-
niteness.
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7.2. Finite memory and TMs

For Mealy machines there is another notion of finite
memory which are also related to the output and not
only to the input as in the definite case. In ak−definite
automaton the present state is completely determined
by the lastk inputs.

Definition 7.2 A Mealy machineM is finite-memory
machine of orderk if k is the least integer, so that the
present state ofM can be determined uniquely from the
knowledge of the lastk inputs and the correspondingk
outputs.�

Definition 7.3 A Turing machine is finite-memory
if and only if, its associated Mealy machine if finite-
memory.�

In contrast to the definite machines, which does
not recognize all regular language, finite-memory ma-
chines are computationally capable of computing all
regular languages.

Theorem 7.3 For any regular languageL there exists
a finite-memory machineM which recognizesL. �

Proof: Let N = (Σ, Q, δ, qI , F ) be the finite state
automaton recognizingL. Define the machineM =
(Σ,Γ, δ, qI), whereΓ = Q. M is obviously finite-
memory of order 1 and the language represented by the
subsetF ⊆ Γ of output letters is equal toL.

Corollary 7.1 Turing machines and finite-memory
Turing machines are computationally equivalent.�

8. Conclusions

Proofs of equivalence between Turing machines and
artificial neural networks are important in that they al-
low, at least from a theoretical point of view, for the
use of neural networks in cognitive tasks such as nat-
ural language processing and logical or common rea-
soning. However, such simulations often assume an
unbounded number of weights or nodes and are not
realistically implementable. Furthermore, Maass and
Sontag [26] have proved that any analog neural network
whose computational units are subject to unbounded
Gaussian noise or other common noise distributions
cannot recognize arbitrary regular languages. In fact,
these networks will be able to recognize only definite
regular languages.

We have proposed an alternative point of view in how
to simulate a Turing machine by actually implement-
ing the finite control of the machine and leaving the
machine’s tape out as an external non-intrinsic feature.
As a result, the simulation is conceptually simpler and
has more cognitive/biological appeal than the previous
works. Besides, from results on the actual limits on
the measurement of analogical data and on bounds on
the information capacity of any physical system our
proposal is physical realizable in contrast to the other
approach.

By focusing on the implementation of the finite con-
trol of a TM we are thus led to the huge amount of work
on finite state automata implementation on neural net-
works andlearning, a subject not tackled in this work
but which obviously is a next step.

Another contribution of this work is the presentation
of two novel kind of Turing Machines: definite and
finite memory Turing machine. We proved that the lat-
ter is computationally equivalent to (unrestricted) Tur-
ing machines. With respect to the former, we showed
that they can compute simple functions (in the class of
primitive recursive functions), but the complete charac-
terization of their computational power is left as further
work.
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[46] J.Š́ima, Hopfield languages, in: Proc. 22nd SOFSEM95 Sem-
inar on Current Trends in Theory and Practice of Informatics,
Vol. LNCS 1012, Milovy, Czech Republic, Berlin:Springer-
Verlag, 1995, pp. 461–468.

[47] A. Wells, Turing’s analysis of computation and theories of
cognit-ve architecture,Cognitive Science22(3) (1998), 269–
294.

[48] P.J.Werbos,Beyond Regression: New Tools for Prediction and
Analkysis in the Behavioural Sciences, Doctoral dissertation,
Applied Mathematics, Havard University, Boston, MA, 1974.


