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Abstract

The change in conductivity of conducting polymers when exposed to volatile gases can be exploited for the construction of aroma
sensors. In this communication we report the preliminary tests of two versions of an aroma sensor based on arrays of doped polypyrrole
films. We have used these prototypes for the identification of simple organic vapors and complex aromas. The input signal was the
fractional change in the resistance of the films and the data acquisition was performed automatically. The pattern recognition process was
implemented by a multivariate analysis and by neural network processing. The discriminating power among different odorants was better

than 90%.
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1. Introduction

After exposure to a vapor of volatile substances, conducting
polymer samples can have their conductivity altered in a
reproducible manner. If slightly different polymeric films are
used as an ensemble, the combined pattern of variation of the
individual conductivities can be treated as a specific “signature”
of the volatile compound. This is the operation principle of the
conducting polymer based “electronic noses” [1] currently in
development in different laboratories. Those equipments could
find an appropriate niche in industrial and commercial
applications, since aroma analysis and classification continues to
be a very subjective matter, mostly dependent on the judgement
of human panels.

In this communication we present initial results of a polypyrrol
(PPY) based gas sensor, in which an array of differently doped
PPY films was used to identify odorant substances. The
calibration tests of the equipment were performed using simple
odors (such as those of specific chemical compounds) and
complex aromas (e.g. those of different types of wine).

Several important steps have to be followed to assure a good
reliability of the instrument. First, it is essential that the
polymeric films be prepared in a very controlled manner. Second,
the data acquisition process must be automatic to allow for the
collection of a large amount of input data (i.e. the change in the
conductivity of the films as a function of the exposure time) with
minimum noise. Finally, the key to a good performance of the
device rests in the use of an adequate algorithm of pattern
recognition.
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In each case considered, we have examined the discriminating
features of a Prncipal Component Analysis (PCA) - a
chemometric technique [2, 3] - and of the Multi Layer Perceptron
(MLP) model of neural network [4]. In these preliminary
analyses, the instruments were able to discriminate among the
odorant substances tested with a success rate of the order of 90%.

2. Experimental

2.1 Materials and Methods

Pyrrole (Aldrich, USA) was freshly distilled under reduced
pressure before use. As doping agents we have used p-
toluenesulfonic acid sodium salt (p-TSA(Na)), tetrabutyl-
ammonium tetrafluoroborate (TBATFB), p-toluene-sulfonic acid
monohydrate  (pTSA), octanesulfonic acid (OA) and lithium
perchlorate (all of them from Aldrich, USA). Water, acetonitrile
(AcCN) (Aldrich, USA) and propylene carbonate (PC) (Janssen,
USA) were used as solvents. All reagents had analytical grade
and were used as received.

2.2 Preparation of Sensors

Two different types of sensors were prepared, determining the
two versions of the instrument (P-1 and P-2, respectively) used in
this work. In the first prototype, the sensors were composed by
two steel needles fixed in a V-shape on top of a rigid insulating
support. The doped PPY films were galvanostatically prepared
using a current density of 2.5 mA/cm® and would grow to bridge
the ~40 um gap between the needles. The electrical resistance of
the films was measured using a model 195A digital multimeter
(Keithley, USA) with a GPIB interface and the data were
automatically collected every 30s and stored in a personal
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computer for posterior analysis. Three sensors, identified
respectively as P1-S1 (PPy—pTSA (water)), P1-S2 (PPy-
TBATFB (PC)), and P1-S3 (PPy -LiCl04 (AcCN)), were used.

On the other hand, the sensors used in prototype P-2 were
doped PPY films electrochemically grown on top of
commercially available 300 nm thick gold 4-probe electrodes
(MB-4000, Smart Microsystems, UK). The 10 pm wide colinear
probes had a 10 um separation and offered an active length of 2.0
mm for the polymer deposition. All electrochemical procedures
were carried out using a three-electrode cell, controlled by a
model AFRDE4 bipotentiostat (Pine, USA). (The reference
electrode was Ag-AgCl and the counter electrode was a platinum
plate.) Before deposition, the gold working electrodes were
cleaned by cyclic voltammetry in 2 mol.dm™ sulfuric acid and
subsequent immersion in water, they were kept under pure water
until the moment of use. All films were prepared at a constant
potential V using a mixed solution of pyrrole (0.05M) and of the
doping agent (0.1M). In Table 1 the six sensors prepared in this
manner are identified.

Table 1
Doped PPY films used as sensors in P2 prototype

Sensor Composition (nature of solution) V, (Volts)
P2-S1 PPy —pTSA (water) 0.9

P2-82 PPy -LiClO4 (AcCN) 1.10
P2-S3 PPy - TBATFB (PC) 1.20
P2-S4  PPy- OA (water) 0.85
P2-S5 PPy- pTSA(Na) (water) 0.95
P2-S6 PPy —-pTSA(Na) (water) 0.95

For this prototype the 4-points probe method [5] can be used to
determine the film conductivity during exposure to the volatile
compounds. A 30 pA constant current was injected through the
two more external probes, while the potential difference Va3
between the two more internal probes was measured. Typical
values of V,3 were in the (200 pV - 2.00 mV) range, as this
potential difference would depend on the polymer resistivity.
With this method metal-polymer contact resistance effects were
eliminated, and the sensors had an ohmic behavior for currents in
the (10 pA - 200 pA) range.

2.3 Sensor arrangement and test chamber

While for prototype P-1 each individual sensor was
successively placed directly on the top of an Erlenmeyer
containing the volatile substance of interest, in version P-2 of the
equipment a 6-sensor array was fixed on the top part of a sealed
chamber (see Fig. 1). Special fixtures allowed the controlled
entrance of a N, flow, used both to purge the system after data
acquisition and to collect the baseline. If necessary, the sample
could be heated and agitated prior or during measurement.

2.4 Electronic circuit and data acquisition system

For the prototype P-2 a specific electronic circuit was designed
to control the current in each individual sensor (Fig. 1). A single
CI-741 and a adjustable resistor (trimpot) were used as a current
source so that Vj,, the input tension on the CI, was the same for
all sensors.

For all sensors, the values of V,3 were acquired via a
differential voltage input of a Data Acquisition Processor (DAP)
interface (Microstar Laboratories, USA), capable of digital
filtering to eliminate most of the noise characteristic of DC

measurements and amplify the input signals. Although only six
sensors were used in these preliminary tests, 16 single ended or 8
differential input were available in the interface (2 per sensor, in
a total of 8 possible simultaneous input data).
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Fig. 1: Diagram of the P-2 prototype, with an indication of the
current source for one of sensor units.

2.5 Systems analyzed

The P-1 system was calibrated by exposing the sensors to
ethanol (ET), carbon tetrachloride (CT), and methanol (MET)
vapors, and the fractional change of the electrical resistance of
the films measured. In Fig. 2 the normalized value of this
quantity for each sensor is shown after exposure to these
substances.
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Fig. 2: Fractional change of the electrical resistance of P-1
sensors after exposure to the volatile compounds.

Complex aromas were analyzed with the P-2 prototype. Since
sensors S5 and S6 were lost before the end of the tests, complete
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data sets were available only for the remaining ones. In Fig. 3 we
present the fractional change of the input voltage on these sensors
after exposure to different types of wine.
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Fig. 3: Fractional change of Va3 in four of the P-2 sensors
after exposure to rosé, red and white wines.

In Fig. 4 we show the corresponding results for the P-2 sensors
after exposure to red wines of different vintage.
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Fig. 4: Fractional change of Vo3 in the P-2 sensors after
exposure to red wines of different vintages.

3. Pattern Recognition Procedures

The data were examined by Principal Components Analysis
(PCA) and by an artificial neural network procedure to
discriminate characteristic patterns of the odorant substances.

3.1 Principal Component Analysis (PCA)

PCA is a powerful linear supervised pattern recognition
technique that has been widely used for extracting information
from complex multidimensional input patterns. It is a data
reduction technique based on the projection of the data set on the
basis formed by the principal components (PC) of the covariance
matrix. The first principal component (PC1) contains the
maximum information available into a single dimension, PC2
(the second PC) is orthogonal to the first one and contains as
much of the remaining information projected in that second
direction, and so on [2,3].

3.2 Neural Networks

Artificial neural network (ANN) is an artificial intelligence
procedure specially suited for the recognition of complex
patterns, and as such the method has been applied in different

fields [4]. From the several alternative models of ANN, in this
work we have chosen to implement a Multi Layer Perceptron
(MLP) scheme [6], composed by an input layer, an intermediate
(hidden) layer, and an output layer of artificial neurons. The
network is optimized by a backpropagation “learning algorithm”
consisting of i) a forward step in which the input data is applied
to the network and the resulting error is estimated by comparing
the output to the desired answer, and i) a retropropagation step
in which the estimated errors are used in the backward direction
to adjust the weights and operating conditions of the different
layers.

4. Results

While prototype P-1 was used to identify simple odors of pure
chemical compounds, the version P-2 of the equipment was
tested in the more complex task of identifying aromas of different
types of wines.

4.1 Simple odors

The system was calibrated by exposing the sensors to ethanol,
carbon tetrachloride, and methanol (Fig. 2). While the variance
explained by the PCA was 100% for the two principal
components (PC1: 76%; PC2: 24%), the recognition percentage
in the ANN analysis was 100% for both alcohols and 94% for CT.
(The ANN configuration was 3:6:3 — i.e. the number of neurons in
the input, hidden and output layers were respectively equal to 3, 6
and 3 - and from the total data available, 191 were used for the
training of the ANN, and the remaining 64 were used for testing.)

4.2 Complex aromas

We have tested the reliability of the P-2 prototype to
discriminate amongst complex aromas in two separate
experiments: /) identification of different types of wine (rosé, red
and white), and i) recognition of different vintages (1995, 1996
and 1997) of red wine. All wines were of Brazilian origin
(Almadén, Santana do Livramento).

For the type identification experiment, the explained variance
by PC1 and PC2 was respectively equal to 66% and 34%. In the
ANN analysis the configuration was 4:8:3 (see Fig. 5), and from
the 372 Va3 input data, 279 were used in the training step and 93
reserved for testing. The recognition was complete (i.e. 100%).

Fig. 5: ANN architecture for the analysis of different types of
hidden layer
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Since the vintage identification experiments were of a more
complex nature, five repetitions of the data acquisition were
performed for each vintage. (During the analysis one of the six



C.P. de Melo et al. | Synthetic Metals 102 (1999) 12961299 1299

sensors became unreliable and the corresponding input data were
discarded in the following analysis.)

From the 180 data points, the variance explained by the first
two principal components in PCA was above 77% (and as high as
86% if PC3 was included). In Fig. 6 we present the corresponding
plot for the PC1 and PC2 scores.
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Fig. 6: Scores for the first two PCs for an analysis of red wines
of different vintages (5 repetitions; 180 data points).

The ANN had a 7:14:3 configuration for the successive layers,
and from the total of 1800 data points, 1350 were used for
training and 450 reserved for testing. The average recognition
percentage for the years 1995, 1996 and 1997 was 96%, 96% and
97%, respectively.

5. Conclusion

In this work we present preliminary results of the development
work of an aroma sensor based on doped PPY films. The changes
in conductivity of the polymeric films after exposure to different
odors were automatically collected and a pattern recognition
algorithm is used to discriminate among different odorant
species.

In two different versions of the instrument, the electrical
resistance of the polymeric films was determined using either
two- or four-probe measurements. In this manner we have been
able to establish that the contact resistance is very large (~30% of
the total resistance effectively measured), but also that its value
changes much less after exposure to the odorants than the

resistance of the film itself. Hence, although the use of four-probe
type of sensors is desirable (because in this case the resistivity of
the film would be the single varying parameter), simpler two-
probe sensors can still be adopted [7].

Acquisition times varying from 30 s to 5 min were examined.
Although the discriminating power of the instrument was not
severely affected by the amount of input data, in operational
terms the convergence of the recognition pattern algorithms
becomes progressively more difficult as the shorter is the
acquisition period of time. This is an important consideration for
the development of real-time instruments.

At present, we plan to continue extensive tests of prototype P2
to better estimate its reliability under different operating
conditions. At the same time, there are several points being
considered for improvement of the performance of the
instrument. For instance, all measurements have been performed
under ambient conditions with no control of humidity. Through
an alternative design, the spatial arrangement of the sensors could
also be varied to assure a better homogeneity of the headspace,
the data collection volume.

Likewise, ANN procedures other than MLP (such as cascade
correlation and radial basis function [8]) are also under
consideration to optimize the pattern recognition step.

Finally, use of thin organic films produced by different
techniques (such as self-assembly) could add more flexibility to
the instrument and smaller response times.
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