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This paper presents approaches to interval-valued time series forecasting. The first and second

approaches are based on the autoregressive (AR) and autoregressive integrated moving average (ARIMA)

models, respectively. The third approach is based on an artificial neural network (ANN) model and the

last is based on a hybrid methodology that combines both ARIMA and ANN models. Each approach fits,

respectively, two models on the mid-point and range of the interval values assumed by the interval-

valued time series in the learning set. The forecasting of the lower and upper bounds of the interval

value of the time series is accomplished through a combination of forecasts from the mid-point and

range of the interval values. The evaluation of the models presented is based on the estimation of the

average behavior of the mean absolute error and mean squared error in the framework of a Monte Carlo

experiment. The results demonstrate that the approaches are useful in forecasting alternatives for

interval-valued time series and indicate that the hybrid model is an effective way to improve the

forecasting accuracy achieved by any one of the models separately.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Interval-valued data arise quite naturally in many situations in
which such data represent uncertainty (for instance, confidence
intervals), variability (minimum and maximum of daily tempera-
ture), etc. Interval-valued data have been considered from
different points of view. The field of interval analysis [20,24]
assumes that observations and estimations in the real world are
usually incomplete or uncertain and, consequently, do not
precisely represent the real data. According to this field, if
precision is needed, data must be represented as intervals
enclosing real quantities.

Interval-valued data have been also considered in the field of
symbolic data analysis (SDA) [6]. This field, which is related to
multivariate analysis, pattern recognition and artificial intelli-
gence, aims to extend classical exploratory data analysis and
statistical methods to symbolic data. Symbolic data allow multi-
ple (sometimes weighted) values for each variable and new
variable types (set-valued, interval-valued, and histogram-valued
variables) have been introduced. These new variables make it
possible to take into account the variability in the data. In the field
of SDA, interval-valued data do not come from noise assumptions,
but rather from aggregation or the expression of variation. They
arise in situations such as recording daily interval temperatures at
meteorological stations, daily interval stock prices, etc. Another
ll rights reserved.
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source of interval-valued data is the aggregation of huge data
bases in a reduced number of groups, the properties of which are
described by interval-valued variables. Therefore, tools for inter-
val-valued data analysis are very much required.

Different approaches have been introduced to analyze interval-
valued data. A number of authors have considered neural network
models for managing interval-valued data (see [2,12,18,25,27,
28,30]). In the field of SDA, Billard and Diday [4] have introduced
central tendency and dispersion measures that are suitable for
interval-valued data. Cazes et al. [8] and Lauro and Palumbo [21]
have introduced principal component analysis methods that are
suitable for interval-valued data. Concerning supervised classifi-
cation, Ichino et al. [17] have introduced a symbolic classifier as a
region-oriented approach for interval-valued data. Linear regres-
sion models have also been considered by Billard and Diday [3]
and Lima Neto and De Carvalho [22]. SDA also provides a number
of clustering methods for interval-valued data (see [9,10,14]).
These methods differ in the type of the symbolic data considered,
their cluster structures and/or the clustering criteria considered.

Interval-valued time series are interval-valued data collected
in a chronological sequence. Tools for interval-valued time series
data analysis are also very much required. In the framework of
SDA, this paper introduces models for forecasting interval-valued
time series. We first present an extension of the autoregressive
(AR), autoregressive integrated moving average (ARIMA) and
artificial neural network (ANN) model estimation methodologies
for the analysis of interval-valued time series. Next, we introduce
a new methodology based on a hybrid ARIMA and ANN model
following Zhang’s proposal [35] in order to forecast time series of
interval-valued data. A number of issues led us to consider a
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hybrid model. Firstly, it is very difficult in practice to determine
when a time series is generated by either a linear or non-linear
process or when a particular method is more efficient than
another for forecasting the series. Secondly, real time series are
rarely pure linear or non-linear processes and often contain both
patterns. Thirdly, there is no single method that is best in all
situations. Through the combination of the ARIMA and ANN
models, complex autocorrelation structures in the data can be
modeled so as to obtain greater forecasting accuracy. Examples of
combinations of the ARIMA and ANN models can be found in
[31–33].

In Section 2, we present a brief review of the AR, ARIMA and
ANN models for time series forecasting. Hybrid models are also
presented in Section 2. Section 3 presents an extension of these
models in such a way that they are able to handle interval-valued
time series. Section 4 describes the framework of Monte Carlo
simulations and presents experiments with synthetic and real
interval-valued data sets. Finally, Section 5 offers concluding
remarks.
2. Time series forecasting models

For decades, a number of authors have used different statistical
methods for modeling and forecasting time series. Such methods
vary from a moving average and exponential smoothing to linear
and non-linear regressions. Box and Jenkins [7] developed ARIMA
models for time series forecasting. ARIMA models are used under
linearity presuppositions, that is, the future value of a variable is
assumed to be a linear function of several past observations and
random errors. However, there are many series for which the
linearity supposition is not satisfied. Consequently, ARIMA models
cannot provide satisfactory results when used to capture the non-
linear structure of data. This leads to an increase in forecasting
errors.

A number of alternative methods have been developed
to improve the forecasting of time series with non-linear
patterns, such as the autoregressive conditional heteroscedastic
(ARCH) model [13]. Despite the fact that such methods are
superior to ARIMA models with regard to the forecasting
of time series with non-linear patterns, they tend to be specific
to particular applications. Neural network approaches have
also been integrated into time series forecasting. Kaastra and
Boyd [19] provide a general introduction to how an ANN
model should be developed to model financial and economic
time series. Neural network and traditional time series
techniques have been compared in several studies. Sharda
and Patil [29] found that neural networks performed as good as
the automatic Box–Jenkins procedure. Maier and Dandy [23]
suggest that the ARIMA model is better suited for short-term
forecasts and that neural networks are better suited for longer-
term forecasts.

This section presents traditional AR, ARMA, ARIMA time series
models and multilayer perceptron ANN models for time series.

2.1. Box–Jenkins time series models

An often-used methodology in handling and predicting time
series is known as the Box–Jenkins method or simply ARIMA. An
autoregressive (AR) model is simply a model used to find an
estimation of a variable based on previous input values of the
variable. The actual equation for the AR model is as follows:

yt ¼ y0 þ
Xp

i¼1

fiyt�i þ �t ,
where yt is the current value of the time series at time t. The
fi ði ¼ 1;2; . . . ; pÞ are the model parameters to be estimated. The
model consists of three parts: a constant part y0, a random error
part �t (white noise) and the AR summation. The parameter p

represents the order of the model ARðpÞ.
Autoregressive moving average (ARMA) models are created

from a finite, linear combination of past values of the series and a
finite linear combination of past errors. The particular model that
will be used in the present paper, known as ARMAðp; qÞ, is
represented as follows:

yt ¼ y0 þ
Xp

i¼1

fiyt�i þ �t þ
Xq

j¼1

yj�t�j,

where �t is the random error at time t; fi ði ¼ 1;2; . . . ; pÞ and
yj ðj ¼ 1;2; . . . ; qÞ are the model parameters to be estimated; p and
q refer to the order of the model; the random errors �t are
assumed to be independent and identically distributed with a zero
mean and s2 constant variance. In practice, one applies the ARMA
process not to the original time series, but to the transformed
time series. Often, the time series of differences is stationary
despite the non-stationarity of the underlying process. Stationary
time series can be well estimated by the ARMA model. This leads
to the definition of the ARIMA model:

Ddyt is ARMAðp; qÞ process¼)yt is ARIMAðp; d; qÞ process,

where Ddyt is the d order differencing operator. The differencing
operator is applied to the time series until it becomes stationary.
Thus, an ARIMAðp; d; qÞ process models the stationary differences
of the order d of the time series yt using the ARMAðp;qÞ process.

2.2. ANN models for time series

When the linearity restriction regarding the model form is
relaxed, the number of possible models that can be used in time
series forecasting for capturing non-linear structures is very large.
For example, ANN models are able to approximate various forms
of non-linearity in the data and, unlike ARIMA models, they do not
require any presupposition regarding the form of the model. There
is a huge variety of different ANN types, but the most popular one
is the multilayer perceptron (MLP). MLP networks with two layers
(one hidden and one output layer) connected acyclically are often
used for modeling and forecasting time series. These MLP
networks are similar to the AR process described in Section 2.1.
The main advantage over other non-linear models is that MLPs are
universal function approximators [16].

In the model we use here, the relation between the output yt

and inputs yt�1, yt�2,. . ., yt�p is as follows:

yt ¼ a0 þ
Xq

j¼1

aj � g b0j þ
Xp

i¼1

bijyt�i

 !
þ �t ,

where a’s and b’s are the model parameters (weights); p is the
number of input nodes; q is the number of hidden nodes; and g is
the transfer function. There are several types of transfer functions
that can be used in the hidden layer, but the logistic function

gðxÞ ¼
1

1þ e�x

is the most often used function in MLPs. The reason for the
popularity of this transfer function lies in the fact that its first
derivative (which is needed for training the ANN) is a very simple
expression.

Finally, notice that the MLP neural network seems very similar
to the classical AR model. However, the MLP models are more
powerful due to the non-linear functional mapping from past
observations to the future value. From this standpoint, a neural
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network is a non-linear AR model. Compared to classical AR
models, such a neural network has several advantages [11]: a
neural network can model much more complex underlying
characteristics of the series. However, the neural network
approach also has some disadvantages [11]: neural networks
require large numbers of sample data due to their large number of
parameters (weights); neural networks can present a variety of
problems such as overfitting, capture in local minima, etc.; neural
networks do not necessarily include the linear case in a trivial
way. Examples of neural networks used for time series prediction
purposes can be found in [19,23,29].

2.3. Hybrid models

Box–Jenkins and ANN models have had considerable success in
their linear and non-linear domains, respectively. However, the
use of Box–Jenkins models for complex non-linear problems may
not be adequate. Similarly, using ANNs to model linear problems
has produced conflicting results in the literature [35]. Through a
combination of different models, different series patterns can be
captured. Thus, a hybrid methodology that can simulataneously
model linear and non-linear processes seems to be a good strategy
for practical use. For example, Su et al. [31] used a hybrid model
to forecast a time series of reliability data with a growth trend.
Their results showed that the hybrid model produced better
forecasts than either the ARIMA model or the neural network
alone. Wedding and Cios [34] proposed a hybrid model by
combining radial basis function networks and traditional ARMA
models. Hansen and Nelson [15] reported their success in
combining neural networks, such as time-delay networks and
back-propagation networks, with traditional time series models,
such as ARIMA.

Zhang [35] states that a time series is composed of a linear
autocorrelation structure and a non-linear component,

yt ¼ Lt þ Nt , (1)

where Lt and Nt , respectively denote the linear and non-linear
components. The hybrid model that Zhang proposed [35] consists
of two steps. First, ARIMA is used to model the linear component
of Eq. (1). The residuals of the ARIMA model contain information
on the non-linearity of the series,

et ¼ yt �
bLt . (2)

After adjusting the ARIMA model, the residuals are modeled
through an ANN in order to capture the non-linear relation of the
series using p input nodes:

et ¼ f ðet�1; et�2; . . . ; et�pÞ þ �t .

In the precedent expression, f is a non-linear function determined
by the neural network and �t is the random error. The prediction
of the residual et is denoted through the ANN model as bNt . Thus,
the combined forecast provided by the hybrid model is given by

byt ¼
bLt þ

bNt .

Note that this methodology does not require any presupposition
regarding the correlation structure of the time series.

In summary, the methodology that Zhang proposes [35]
consists of two steps. In the first step, an ARIMA model is used
to analyze the linear part of the problem. In the second step, a
neural network model is developed to model the residuals from
the ARIMA model. Thus, it could be advantageous to model linear
and non-linear patterns separately by using different models and
then combine the forecasts to improve the overall modeling and
forecasting performance. For further details on the methodology
used, see [35].
3. Constructing models for interval-valued time
series forecasting

In classical data analysis, each input variable assumes a single
value. The need to consider data that contain information which
cannot be represented by classical models has led to the
development of SDA. Interval data are data in which the values
of the variables are intervals in R. Different methodologies have
been developed to analyze interval-valued data. One way to
represent this type of data is through the mid-point and range of
interval [22].

When interval-valued data are collected in a chronological
sequence, we say that we have a time series of interval-valued
data. At each instant in time, t ¼ 1;2; . . . ;n, where n is the number
of intervals observed in the time series, we have XUt

and XLt
, with

XLt
pXUt

as the upper and lower bounds of the interval,
respectively,

½XL1
;XU1
�; ½XL2

;XU2
�; . . . ; ½XLn

;XUn
�. (3)

In the methods presented here, two time series are considered:
the interval mid-point series Xc; and the half-range interval
series Xr . Consider the time series given by Eq. (3), we can,
respectively, represent the mid-point and the half-range interval
series by,

Xc
t ¼

XUt
þ XLt

2
and Xr

t ¼
XUt
� XLt

2
ðt ¼ 1;2; . . . ;nÞ.

In the extension of the Box–Jenkins and ANN models for interval-
valued time series forecasting, we apply each of the models
described in Section 2 to the mid-point interval-valued series Xc

t

and to the half-range interval-valued series Xr
t . The values fitted

for these two series will be used to predict future values of the
upper and lower bounds of the intervals. Thus, the values
predicted by these models for the lower and upper bounds of
the interval, bLUt

and bLLt
, are, respectively, given by

bLUt
¼ bXc

t þ
bXr

t and bLLt
¼ bXc

t �
bXr

t ,

where bXc
t and bXr

t represent the values predicted by the linear
adjustment for the mid-point and the half-range interval-valued
series, respectively.

Concerning the hybrid model for interval-valued time series
forecasting, the idea here is to use a methodology based on the
hybrid system that Zhang proposed [35] for modeling the mid-
point and the half-range interval-valued series. According to the
equation of the residuals from the linear model (Eq. (2)), we can
denote the residuals of the mid-point and half-range adjustments,
respectively, as

eXc
t
¼ Xc

t �
bXc

t and eXr
t
¼ Xr

t �
bXr

t ,

where bXc
t and bXr

t are, respectively, the values predicted by the
linear adjustment for the mid-point and half-range interval-
valued time series. Moreover, Xc

t and Xr
t are the corresponding

observed values. Thus, after the linear adjustment of the interval-
valued series, we have two new series: one from the non-linear
residuals of the adjustment of the interval mid-point series eXc

t

and the other from the non-linear residuals of the adjustment of
the half-range interval series eXr

t
.

It should be pointed out that there is no need for strict
pressupositions in this approach regarding the model (linearity,
same correlation structure for the interval bounds of the series,
etc.). Thus, the final forecast of the bounds of the interval time
series is given by

byUt
¼ bLUt

þ bNUt
and byLt

¼ bLLt
þ bNLt

,

where bNUt
and bNLt

are the errors predicted by the ANN model
for the upper and lower bounds of the interval, respectively.
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These errors are obtained from the following expression:

bNUt
¼ beXc

t
þ beXr

t
and bNLt

¼ beXc
t
� beXr

t
,

where beXc
t

and beXr
t
, respectively, represent the error for the mid-

point series and the error for the half-range interval series at
time t.
4. Empirical results

This section shows the usefulness of the models presented
through experiments with synthetic interval-valued time series
data simulated with different degrees of forecasting difficulties
and the study of two time series of interval-valued data from a
meteorological station in China and stock prices from the
Brazilian Petroleum Company (Petrobras).

MLP networks with two layers (one hidden and one output
layer) connected acyclically are used in the ANN and hybrid
models. We train the MLP using a conjugate gradient error
minimization. In summary, the conjugate gradient learning
algorithm has a second-order convergence property without
complex calculation of the Hessian matrix. The conjugate gradient
approach finds the optimal weight vector along the current
gradient by doing a line-search. It computes the gradient at the
new point and projects it onto a subspace defined by the
complement of the space defined by all previously chosen
gradients. The new direction is orthogonal to all previous search
directions. Details on the conjugate gradient algorithm can be
found in [5].

The selection of the best number of hidden units in the ANN
involves experimentation. In this paper, a group of neural
networks with different numbers of hidden units are trained
and each is evaluated in the training set using a reasonable
number of randomly selected starting weights. To perform the
experiments, we used 50 iterations of the conjugate gradient
algorithm, in which the initial weights were randomly generated
to reduce the local minimum problem [26]. To determine the best
number of hidden units, we used the mean squared error of the 50
iterations. The ANN with the best performance (regarding the
mean squared error) in the training set is selected for modeling
the time series.

4.1. Synthetic interval-valued time series

In order to assess the performance of the AR, ARIMA, ANN and
hybrid models in terms of accuracy in the adjustment and
forecasting of interval-valued time series, we have simulated
some time series configurations with 200 observations. The
simulations of the interval-valued time series were executed as
follows:
(1)
 Let the mid-point interval time series Xc
t ðt ¼ 1;2; . . . ;nÞ,

which is obtained from the interval-valued time series
Xt ¼ ½XLt

;XUt
� ðt ¼ 1;2; . . . ;nÞ, be a process generated with a

known structure, such as an AR(1) process.

Table 1
(2)

Simulated interval-valued time series configurations

Configuration Xc process Xr process

C0 Xc
t ¼ Xc

t�1 þ �t U½5;10�
c c
After Step 1, we construct the half-range interval series.
Suppose the half-range interval time series Xr

t ðt ¼ 1;2; . . . ;nÞ
obtained from the interval-valued time series Xt ¼ ½XLt

;XUt
�

ðt ¼ 1;2; . . . ;nÞ is uniformly distributed in the interval ½a; b�, for
example, Xr

t�U½10;20�.

C1 Xt ¼ 10þ 0:7Xt�1 þ �t U½10;1�

c c

(3)
C2 Xt ¼ 1þ Xt�1 þ �t U½8;10�

C3 Xc
t ¼ 4Xc

t�1ð1� Xc
t�1Þ U½2;5�

C4 c Xc
c U½2;4�
In the construction of the interval time series, we know that
the series Xt ¼ ½XLt

;XUt
� presents the following relationship to

Xc
t and Xr

t : XLt
¼ Xc

t � Xr
t and XUt

¼ Xc
t þ Xr

t .

Xt ¼ 0:2 t�17

1þ ðXc
Þ
10
� 0:1Xt�1
(4)
t�17

At each replication, the simulated interval-valued time series
is partitioned in a training set and test set.
Table 1 displays five different configurations for the generation
of the interval-valued time series that were used to compare the
performances of the AR, ARIMA, ANN and hybrid models. These
configurations consist of a combination of the mid-point and
range series generated. The first configuration, C0, is the so-called
random walk process. One implication of the random walk process
is that the history of the process has no relevance to its future
course. Configuration C0 and configurations C1 and C2 present a
linear relationship between the future value and past value of the
mid-point series plus a random error term, �t , normally dis-
tributed with a zero mean and constant variance, �t�Nð0;1Þ. The
non-linear configurations C3 and C4 are examples that present
complex, chaotic behavior. An example of each of the simulated
interval-valued time series is presented in Fig. 1. In this figure,
each vertical line segment represents an observed interval-valued
data; the extremes correspond to the minimum and maximum
interval values.

It is expected that the use of the AR and ARIMA models for
complex non-linear problems does not lead to satisfactory
forecasting results and, therefore, the ANN and hybrid models
are expected to provide greater forecasting accuracy.

4.2. Experimental evaluation

The performance evaluation of the presented interval-valued
time series forecasting models, AR, ARIMA, ANN and hybrid
model, was accomplished through the following measures:
upper bound mean absolute error ðMADUÞ, lower bound mean
absolute error ðMADLÞ, upper bound mean squared error ðMSEUÞ

and lower bound mean squared error ðMSELÞ. The values
of the error measures were obtained from the observed values
Xt ¼ ½XLt

;XUt
� ðt ¼ 1;2; . . . ;nÞ and corresponding predictive valuesbXt ¼ ½

bXLt
; bXUt
�.

The forecasting error measures were calculated for the AR,
ARIMA, ANN models and the hybrid model in the framework of a
Monte Carlo experiment with 1000 replications in the training set
and test set. For the results evaluated in the test set, two forecast
horizons are considered; 6 and 12 steps ahead. The consistency or
variation of the results in the out-of-sample sets is an important
performance measure [19]. At the end of the experiments, the
average and standard deviation were calculated for the MADU,
MADL, MSEU and MSEL measures in the 1000 Monte Carlo
replications. The selection of the best AR model and best ARIMA
model for adjusting the mid-point and half-range of interval series
was accomplished through the minimization procedure of the
Akaike Information Criterion (AIC) [1]. These parameters were
estimated for maximum likelihood.

Tables 2, 4 and 6 display the results of the Monte Carlo
experiments for the five configurations. The standard deviations
for the error measures considered are in parentheses.

Significance of the differences between the average of the error
measures in the framework of this Monte Carlo experiment was
tested using a suitable one-side Student’s t-test for independent
samples and a 5% significance level was adopted. The results of
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Fig. 1. Examples of simulated interval-valued time series.
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these comparisons between models are displayed in Tables 3, 5
and 7. In these tables, the symbol ‘‘¼’’ means that the null
hypothesis has not been rejected (the difference between the
average of the error measures concerning a pair of models is not
statistically significant) and that the respective models present
the same performance in terms of accuracy in the adjustement
and forecasting of interval-valued time series. Moreover, concern-
ing the comparison of the performance of the AR and ARIMA
models for configuration C2 through the measure lower bound

mean absolute error in Table 3, the symbol ‘‘�’’ means that the null
hypothesis has been rejected and that the performance of the
ARIMA model is inferior to that of the AR model. This remark
illustrates the meaning of the symbol ‘‘-’’. Finally, concerning the
comparison of the performance of the AR and ARIMA models for
configuration C3 through the measure lower bound mean absolute

error in Table 3, the symbol ‘‘þ’’ means that the null hypothesis
has been rejected and that the performance of the ARIMA model is
superior to that of the AR model. This last remark illustrates the
meaning of the symbol ‘‘þ’’.

Table 2 presents the experimental results evaluated in the
training set and Table 3 presents the comparison between models
according to a Student’s t-test for independent samples at a 5%
significance level for the training set. We can see that the hybrid
model achieved a better average performance than the AR and
ARIMA models in forecasting interval-valued time series in the
training set for nearly all the situations considered (except in
configuration C0 for the upper bound mean absolute error

measure). The performance of the hybrid model was also superior
to that of the ANN model (except for configuration C0), specially
for the series with a non-linear correlation structure (C3 and C4).
Note that, even for the series with a linear correlation structure
(C0, C1 and C2), the hybrid model achieved better accuracy in the
predictions than the AR and ARIMA models. For this training set,
the ANN model had the second best performance. AR and ARIMA
models had a similar performance for configurations C0 and C1.
For the others configurations, ARIMA performed better regarding
the mean absolute error measure, whereas AR performed better
regarding the mean squared error measure.

Table 4 displays the results evaluated in the test set over the
forecast horizon of 6 periods ahead. Table 5 presents the
comparison between models according to a Student’s t-test for
independent samples at a 5% significance level in the test set over
the forecast horizon of 6 periods ahead. Considering this forecast
horizon, the ANN model achieved the best average performance
among the four models for configurations C0 and C1; as expected,
in configurations C3 and C4 the ANN and hybrid models were
superior to the AR and ARIMA models. Moreover, the hybrid
model outperformed the other models for configuration C4 (see
Table 5).

Table 6 displays the results evaluated in the test set over the
forecast horizon of 12 periods ahead. Table 7 presents the
comparison between models according to a Student’s t-test for
independent samples at a 5% significance level in the test set over
the forecast horizon of 12 periods ahead. Considering this forecast
horizon, the hybrid model presented a higher predictive perfor-
mance in all configurations except configuration C0, for which the
ANN model was better. The performance of the ARIMA model was
superior to that of the AR model concerning configuration C0 and
the performance of the AR model was superior to that of the
ARIMA model for configurations C2 and C4.
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Table 5
Comparison between models according to a Student’s t-test for independent

samples at a 5% significance level for the test set: 6-step ahead forecast

Model Measure C0 C1 C2 C3 C4

XU XL XU XL XU XL XU XL XU XL

AR

ARIMA MAD þ þ þ ¼ þ þ ¼ þ � �

MSE ¼ ¼ ¼ þ ¼ ¼ þ ¼ ¼ �

ANN MAD þ þ þ þ þ þ þ þ þ þ

MSE þ þ þ þ þ þ þ þ ¼ ¼

Hybrid MAD þ þ þ þ þ þ þ þ þ þ

MSE þ þ þ þ þ þ þ þ þ þ

ARIMA

ANN MAD þ þ � þ þ þ þ þ þ þ

MSE þ þ þ þ þ þ þ þ þ þ

Hybrid MAD þ þ � þ þ þ þ þ þ þ

MSE þ þ ¼ ¼ þ þ þ þ þ þ

ANN

Hybrid MAD � � � � þ þ þ ¼ þ þ

MSE � � � � ¼ þ � ¼ þ þ

Table 2
Average and standard deviation of the mean squared errors and mean absolute

errors calculated from 1000 replications in the framework of a Monte Carlo

experiment for the training set

Model MAD MSE

XU XL XU XL

Configuration C0

AR 1.2421 (1.1655) 1.2198 (1.1366) 1.2233 (1.1232) 1.2234 (1.1232)

ARIMA 1.2234 (1.1599) 1.1989 (1.1367) 1.2500 (1.1232) 1.2893 (1.1252)

ANN 1.1756 (1.1276) 1.0354 (1.1489) 1.1006 (1.1565) 1.0998 (1.1555)

Hybrid 1.1567 (1.1276) 1.0033 (1.1488) 1.1104 (1.1559) 1.1330 (1.1554)

Configuration C1

AR 1.9875 (1.1178) 1.8918 (1.1177) 1.5447 (1.1431) 1.4481 (1.1448)

ARIMA 1.9871 (1.1175) 1.9271 (1.1175) 1.5434 (1.1438) 1.4458 (1.1431)

ANN 1.8817 (1.1813) 1.8778 (1.1177) 1.3531 (1.1448) 1.3951 (1.1437)

Hybrid 1.7573 (1.1888) 1.7575 (1.1811) 1.1788 (1.1437) 1.1731 (1.1435)

Configuration C2

AR 1.3231 (1.1340) 1.3332 (1.1232) 1.2938 (1.1234) 1.2158 (1.1227)

ARIMA 1.4008 (1.1207) 1.4321 (1.1235) 1.4433 (1.1232) 1.3432 (1.1234)

ANN 1.2343 (1.4945) 1.2291 (1.5433) 1.1754 (1.1125) 1.1703 (1.1023)

Hybrid 1.1381 (1.1212) 1.1226 (1.1349) 1.0843 (1.1146) 1.0864 (1.1298)

Configuration C3

AR 0.6654 (0.1345) 0.6656 (0.0102) 0.2455 (0.0171) 0.2123 (0.0180)

ARIMA 0.6545 (0.1245) 0.6447 (0.0202) 0.2468 (0.0113) 0.2166 (0.0120)

ANN 0.4227 (0.1748) 0.4067 (0.0106) 0.1489 (0.0122) 0.1762 (0.0154)

Hybrid 0.3996 (0.1669) 0.4006 (0.0143) 0.1467 (0.0129) 0.1486 (0.0127)

Configuration C4

AR 0.4688 (0.1145) 0.4746 (0.1153) 0.1211 (0.0677) 0.1387 (0.0658)

ARIMA 0.4477 (0.1453) 0.4566 (0.1344) 0.1218 (0.0653) 0.1223 (0.0670)

ANN 0.3776 (0.1130) 0.4009 (0.1154) 0.1190 (0.0634) 0.1044 (0.0553)

Hybrid 0.2064 (0.1144) 0.2100 (0.1134) 0.1008 (0.0525) 0.1065 (0.0676)

Table 3
Comparison between models according to a Student’s t-test for independent

samples at a 5% significance level for the training set

Model Measure C0 C1 C2 C3 C4

XU XL XU XL XU XL XU XL XU XL

AR

ARIMA MAD ¼ ¼ ¼ ¼ ¼ � þ þ þ þ

MSE ¼ ¼ ¼ ¼ � � � � ¼ þ

ANN MAD ¼ þ þ ¼ ¼ þ þ þ þ þ

MSE þ þ þ ¼ þ ¼ þ þ ¼ þ

Hybrid MAD þ þ þ þ þ þ þ þ þ þ

MSE þ þ þ þ þ þ þ þ þ þ

ARIMA

ANN MAD ¼ þ þ ¼ þ þ þ þ þ þ

MSE þ þ þ ¼ þ þ þ þ ¼ þ

Hybrid MAD ¼ þ þ þ þ þ þ þ þ þ

MSE þ þ þ þ þ þ þ þ þ þ

ANN

Hybrid MAD ¼ ¼ þ þ ¼ þ þ þ þ þ

MSE ¼ ¼ þ þ þ þ þ þ þ ¼

Table 4
Average and standard deviation of mean squared errors and mean absolute errors

calculated from 1000 replications in the framework of a Monte Carlo experiment

for the test set: 6-step ahead forecast

Model MAD MSE

XU XL XU XL

Configuration C0

AR 1.2422 (0.1538) 1.2444 (0.1302) 1.6707 (0.6095) 1.6787 (0.5723)

ARIMA 1.1343 (0.1404) 1.1467 (0.1129) 1.6487 (0.5014) 1.6445 (0.4234)

ANN 1.0554 (0.1323) 1.0049 (0.1743) 1.3987 (0.3051) 0.3343 (0.3973)

Hybrid 1.1087 (0.1475) 1.1164 (0.1643) 1.4326 (0.3709) 0.4565 (0.3310)

Configuration C1

AR 1.3329 (0.1345) 1.3236 (0.1235) 1.4655 (0.4305) 1.5645 (0.4497)

ARIMA 1.0132 (0.1134) 1.3235 (0.1124) 1.4445 (0.3402) 1.4641 (0.4566)

ANN 1.0431 (0.1074) 1.1975 (0.1034) 1.2664 (0.4068) 1.2365 (0.4045)

Hybrid 1.1332 (0.1545) 1.2388 (0.1349) 1.4246 (0.3567) 1.4423 (0.4657)

Configuration C2

AR 2.4034 (0.2332) 2.4534 (0.2246) 8.4320 (0.3443) 8.4861 (0.3459)

ARIMA 2.0545 (0.2439) 2.0765 (0.2246) 8.4342 (0.3454) 8.4327 (0.4157)

ANN 0.5452 (0.2767) 0.5666 (0.2857) 0.2423 (0.4534) 0.2646 (0.3416)

Hybrid 0.4335 (0.2565) 0.4436 (0.2342) 0.2248 (0.3789) 0.2366 (0.2256)

Configuration C3

AR 1.2880 (0.2314) 1.2876 (0.2388) 1.8844 (0.2578) 1.8676 (0.3455)

ARIMA 1.2897 (0.2332) 1.2645 (0.2309) 1.8234 (0.2788) 1.8789 (0.2576)

ANN 1.0487 (0.2736) 1.1332 (0.2658) 1.5456 (0.2656) 1.6619 (0.2637)

Hybrid 1.0263 (0.2312) 1.1213 (0.2323) 1.6789 (0.2254) 1.6762 (0.3876)

Configuration C4

AR 0.9489 (0.1244) 0.9403 (0.1641) 1.1433 (0.3442) 1.2398 (0.3475)

ARIMA 0.9726 (0.1245) 0.9863 (0.1436) 1.1659 (0.3564) 1.2656 (0.3355)

ANN 0.8390 (0.1456) 0.8664 (0.1836) 1.1376 (0.3435) 1.2167 (0.3434)

Hybrid 0.8112 (0.1245) 0.7945 (0.1850) 0.9782 (0.3343) 0.9998 (0.3334)

1 Available at http://dss.ucar.edu/datasets/ds578.5/data/
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4.3. Meteorological station in China interval-valued data set

The forecasting models presented for interval-valued time
series have been applied to an interval-valued data set extracted
from the Long-Term Instrumental Climatic Database of the
People’s Republic of China.1 Among other variables, this database
contains temperatures observed at meteorological stations in

http://dss.ucar.edu/datasets/ds578.5/data/
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Table 6
Average and standard deviation of mean squared errors and mean absolute errors

calculated from 1000 replications in the framework of a Monte Carlo experiment

for the test set: 12-step ahead forecast

Model MAD MSE

XU XL XU XL

Configuration C0

AR 1.7732 (0.2656) 1.7655 (0.2643) 3.3420 (0.5564) 3.3348 (0.5852)

ARIMA 1.4456 (0.2533) 1.4325 (0.2975) 3.2426 (0.6564) 3.0447 (0.5587)

ANN 0.9844 (0.2344) 0.9825 (0.2987) 1.1543 (0.4056) 1.9409 (0.4976)

Hybrid 1.2904 (0.2328) 1.2538 (0.2458) 2.0337 (0.4508) 2.0700 (0.4554)

Configuration C1

AR 0.8565 (0.0553) 0.8578 (0.0575) 0.9545 (0.1531) 0.9678 (0.1596)

ARIMA 0.8569 (0.0577) 0.8479 (0.0556) 0.9573 (0.1532) 0.9600 (0.1467)

ANN 0.8303 (0.0786) 0.8428 (0.0527) 0.9648 (0.1466) 0.9505 (0.1688)

Hybrid 0.8104 (0.0676) 0.8217 (0.0675) 0.8392 (0.1690) 0.8532 (0.1558)

Configuration C2

AR 3.3321 (0.2321) 3.3670 (0.2654) 11.2578 (0.9342) 11.1776 (0.9423)

ARIMA 3.3312 (0.2759) 3.4656 (0.2773) 11.4575 (1.1564) 11.4980 (1.0553)

ANN 1.1213 (1.2675) 1.1554 (1.2879) 2.0252 (1.3533) 2.0300 (1.4672)

Hybrid 0.8977 (0.1679) 0.9052 (0.1578) 0.7874 (0.4349) 0.7480 (0.3937)

Configuration C3

AR 1.2560 (0.2440) 1.2549 (0.2980) 1.6447 (0.3074) 1.6557 (0.3097)

ARIMA 1.2864 (0.2453) 1.2554 (0.2566) 1.6164 (0.3097) 1.6672 (0.2983)

ANN 1.1367 (0.2653) 1.1692 (0.2323) 1.2855 (0.1344) 1.3504 (0.1479)

Hybrid 1.0974 (0.2864) 1.0999 (0.2553) 1.2578 (0.1373) 1.2748 (0.1249)

Configuration C4

AR 0.7533 (0.1324) 0.7786 (0.1534) 0.2340 (0.0344) 0.2353 (0.1100)

ARIMA 0.8237 (0.1580) 0.8064 (0.1686) 0.2554 (0.0575) 0.2498 (0.0976)

ANN 0.6481 (0.1736) 0.6344 (0.1456) 0.1878 (0.0654) 0.1786 (0.0437)

Hybrid 0.6100 (0.1843) 0.6256 (0.1469) 0.1755 (0.0643) 0.1578 (0.0729)

Table 7
Comparison between models according to a Student’s t-test for independent

samples at a 5% significance level for the test set: 12-step ahead forecast

Model Measure C0 C1 C2 C3 C4

XU XL XU XL XU XL XU XL XU XL

AR

ARIMA MAD þ þ ¼ þ ¼ � � ¼ � �

MSE þ þ ¼ ¼ � � þ ¼ � �

ANN MAD þ þ þ þ þ þ þ þ þ þ

MSE þ þ ¼ þ þ þ þ þ þ þ

Hybrid MAD þ þ þ þ þ þ þ þ þ þ

MSE þ þ þ þ þ þ þ þ þ þ

ARIMA

ANN MAD þ þ þ þ þ þ þ þ þ þ

MSE þ þ ¼ ¼ þ þ þ þ þ þ

Hybrid MAD þ þ þ þ þ þ þ þ þ þ

MSE þ þ þ þ þ þ þ þ þ þ

ANN

Hybrid MAD � � þ þ þ þ þ þ þ ¼

MSE � � þ þ þ þ þ þ þ þ
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Fig. 2. Part of the interval-valued time series of the temperatures observed at the

BaoDing station in China.

Table 8
Comparison for the BaoDing meteorological interval data set: training data set

Training data set

Model MAD MSE

XU XL XU XL

AR 1.5705 1.3966 4.1494 3.0068

ARIMA 1.5232 1.2530 3.7570 2.5581

ANN 1.0311 0.9322 1.6378 1.3218

Hybrid 1.1237 1.0220 2.3550 1.7202

2 Available at http://finance.yahoo.com/q/hp?s=PBR-A (URL accessed on

January, 2007).
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China. We considered an average temperature series from the
BaoDing meteorological station. A natural representation of the
BaoDing station is given by the description of each month through
an interval of minimum and maximum daily average tempera-
tures. Here, we worked with the monthly temperatures for the
period 1974 to 1988, with a total of 180 observations (intervals).
Fig. 2 displays part of the interval-valued time series of the
temperatures observed at the BaoDing station from January 1986
to December 1988.

To assess the forecasting performance of the AR, ARIMA, ANN
and hybrid models, the data set is divided into two samples
of training and test sets, and two forecast horizons of 6 and
12 periods ahead were considered. The training data sets were
used exclusively for model development and the test data sets
were used to evaluate the established model.

Tables 8 and 9 give the error measures for BaoDing meteor-
ological station interval-valued time series in the training set and
test set, considering forecasts of 6 and 12 steps ahead. The
performances of the AR, ARIMA, ANN and hybrid models are
evaluated through the calculation of MADU, MADL, MSEU and MSEL

measures. We conclude that, ANN model had the best perfor-
mance in this database among the four models compared.
4.4. Stock prices of the Petrobras interval-valued data set

In this section, we analyze the interval-valued time series of
historical stock prices for the Brazilian Petroleum Company S.A.
(Petrobras).2 This database contains the daily open, highest,
lowest, and close prices of the Petrobras stocks. Here, we
considered daily prices over the period from January 2005 to
December 2006, with a total of 484 intervals representing highest
and lowest daily prices. Fig. 3 displays the interval prices of the
Petrobras stocks over part of the interval-valued time series.

To evaluate the forecasting performance of the four models,
the interval-valued time series of Petrobras stock prices is divided
into training and test sets, over two forecast horizons: 5 and 20
periods ahead. Tables 10 and 11 present the results of the error
measures. In general, the ANN and hybrid models outperform the

http://finance.yahoo.com/q/hp?s=PBR-A
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Fig. 3. Part of the interval-valued time series of Petrobras stock prices.

Table 10
Comparison for stock prices in the Petrobras interval data set: training data set

Training data set

Model MAD MSE

XU XL XU XL

AR 0.9944 1.0760 1.7791 2.1185

ARIMA 0.9758 1.0610 1.7248 2.0941

ANN 0.9486 1.0004 1.5439 1.7922

Hybrid 0.9210 0.8964 1.3566 1.6998

Table 9
Forecasting comparison for the BaoDing meteorological station interval data set, 6-

step and 12-step ahead forecasts: test set

Model MAD MSE

XU XL XU XL

6-steps ahead

AR 0.9784 1.2689 2.8297 1.7290

ARIMA 0.9598 0.7831 2.7687 0.6970

ANN 1.0064 0.5642 1.8001 0.6884

Hybrid 1.1354 0.6842 2.6761 0.8239

12-steps ahead

AR 1.5353 1.2444 4.5351 1.7363

ARIMA 1.4598 0.9357 3.8211 1.1112

ANN 1.0034 0.8942 1.7549 0.8680

Hybrid 1.1356 0.9821 2.9723 1.3628

Table 11
Forecasting comparison for stock prices in the Petrobras interval data set, 5-step

and 20-step ahead forecasts: test set

Model MAD MSE

XU XL XU XL

5-steps ahead

AR 0.9387 1.1098 1.3528 1.5392

ARIMA 0.9469 1.0275 1.3483 1.3440

ANN 1.1345 0.8982 1.4549 1.4598

Hybrid 0.8851 1.1009 0.7560 1.2350

20-steps ahead

AR 1.7986 1.8335 5.1923 5.4265

ARIMA 1.7677 1.8068 4.8932 5.0949

ANN 0.8851 1.0977 1.3245 1.5789

Hybrid 1.1330 1.2589 2.0872 2.3697
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AR and ARIMA models in this data set. This result is expected,
since this time series has irregular behavior.
5. Concluding remarks

This paper presented four new methods for modeling and
forecasting interval-valued time series. The first and second
approaches are based on AR and ARIMA models, respectively.
The third approach is based on ANN models and the last is based
on a hybrid methodology that combines both ARIMA and ANN
models. We adjusted the models on the mid-point and interval
range series in the training set. The prediction of values for the
lower and upper bounds of the intervals was accomplished
through a combination of the mid-point and interval range
forecasts.

The evaluation of the four methods was accomplished through
the average behavior of the mean absolute error and mean
squared error of the forecasts in the framework of a Monte Carlo
experiment. The Monte Carlo simulations demonstrated that the
four methods exhibited a satisfactory performance in forecasting
interval series with either a linear or non-linear behavior and are a
useful forecasting alternative to interval-valued time series.
However, the hybrid model using ARIMA to model the linear
component of the series and artificial neural networks to capture
the nonlinearity aspects achieved the best average performance
concerning the error measures considered. Note that the hybrid
model outperformed the AR and ARIMA models even in situations
in which the series had linear behavior. When the interval-valued
time series exhibited chaotic behavior, the hybrid model and the
ANN model were superior to the AR and ARIMA models. Two
applications considering real data sets were also analyzed. For the
BaoDing meteorological station interval-valued time series, the
ANN model had the best performance among the four compared
models. The results of the second application demonstrated the
superiority of the ANN and hybrid models in the interval-valued
time series of historical stock prices of the Petrobras company.
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