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a b s t r a c t

A supervised learning algorithm for quantum neural networks (QNN) based on a novel quantum neuron
node implemented as a very simple quantum circuit is proposed and investigated. In contrast to the
QNN published in the literature, the proposed model can perform both quantum learning and simulate
the classical models. This is partly due to the neural model used elsewhere which has weights and non-
linear activations functions. Here a quantum weightless neural network model is proposed as a
quantisation of the classical weightless neural networks (WNN). The theoretical and practical results
on WNN can be inherited by these quantum weightless neural networks (qWNN). In the quantum
learning algorithm proposed here patterns of the training set are presented concurrently in super-
position. This superposition-based learning algorithm (SLA) has computational cost polynomial on the
number of patterns in the training set.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Quantum computation was proposed by Richard Feynman in
1982 [1] motivated by the observation that a quantum system
cannot be simulated by a classical computer without an expo-
nential computational cost. In quantum theory of computation, a
single quantum computer can follow many distinct computa-
tional paths in parallel and produce a final output depending on
the interference of all of them. This parallelism enables the
proposal of algorithms not matched by classical computation
regarding computational costs. Amongst those are the Deutsch-
Josza and Simon [2] with an exponential speed up. Shor’s Algo-
rithm which solves the factoring problem in polynomial time, a
problem believed to be classically intractable. Grover’s search
algorithm [3] which searches an unordered database quadrati-
cally faster then any classical one.

There are several works applying quantum computing in
artificial intelligence: quantum neural networks [4–11], decision
tree [12], pattern recognition [13] and associative memory [14].
This paper investigates the use of quantum computing techniques
to design learning algorithms for neural networks. We propose a
quantum weightless neural network and a quantum supervised
learning algorithm. The study of quantum weightless neural
networks (qWNN) was started by de Oliveira et al. in [4,5] where
it is investigated quantisations of probabilistic logic node (PLN)
and multi-valued probabilistic logic node (MPLN) [15]. Here we
propose and investigate a novel neuron model which is a
quantum analogue of the RAM node which we call q-RAM node.

The q-RAM node is very simple, but despite its simplicity it can
simulate any of its classical siblings, PLN, MPLN, goal seeking
neuron (GSN) and pRAM, and their quantisations.

The proposed learning algorithm for training weightless neural
networks, the superposition-based learning algorithm (SLA), is
based on Grover’s search algorithm [3]. The SLA is a quantum
supervised learning algorithm for neural networks where all
patterns of the training set are presented at the same time to
the network using a state in superposition. The computational
cost of SLA is polynomial in the number of patterns in the training
set. The SLA is able to train any model of weightless neural
networks that can be quantised i.e. the free parameters, inputs
and outputs of the network can be represented as qubits in
different registers and the action of the network can be repre-
sented by a quantum operator.

This paper is organised as follows: Sections 2–4 present the
basic definitions for quantum computation, classical weightless
neural networks and quantum neural networks. Section 5 describes
a novel quantum weightless neural node, one of the contributions
of this work. Section 6 describes the superposition-based learning
algorithm, another contribution of this work. Finally, Section 7
summarises our conclusions and presents future works.

2. Quantum computation

The cross-disciplinary nature of quantum computing makes it
difficult to present their main definitions and results unbiased.
The presentation which follows is biased towards Mathematics
and mostly Computer Science.

The fundamental unit of information in classical computation
is the bit which can assume one of the two possible abstract
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values in B¼ f0,1g. More complex data types are encoded as
sequences of bits. To represent a bit a classical computer must
contain a corresponding physical system which can exist in two
unambiguously distinguishable states, associated with its two
possible abstract values. For example, one such system could be a
switch in an open or a shut state; or a magnet whose magnetisa-
tion could be in two different orthogonal directions.

Similarly, the fundamental unit of information in quantum
computing is the quantum bit or qubit. One qubit is a
bi-dimensional vector in a (complex) Hilbert space.1 A qubit
represents a state of (bi-dimensional) quantum mechanical sys-
tem. In actual physical quantum systems, where ‘‘Nobody knows
how it can be like that’’ [16], Hilbert spaces can be very efficiently
used to tell what happens.

In this section we briefly introduce the concepts of quantum
computing necessary for the remaining sections. For a more
complete introduction on Quantum Computation and Informa-
tion, see [17] or [2] for a more Computing Science oriented
approach.

2.1. Quantum bits

The passage from bits to qubits can be understood via
mathematical quantisation. A very intuitive view of the quantisa-
tion procedure is put forward by Nik Weaver in the preface of
his book Mathematical Quantisation [18] which briefly says:
‘‘The fundamental idea of mathematical quantisation is sets are
replaced with Hilbert spaces’’. So the idea is to represent bits 0 and
1 as pairs of orthonormal (column) vectors, a basis2 for C2. In
spite of fact that 0 and 1 can be represented by any orthogonal
base of C2, the mostly used one is the canonical (or computational)
basis defined as the pair

90S¼
1

0

! "
, 91S¼

0

1

! "
ð1Þ

where 90S and 91S are, in a notation commonly used by
physicists (and quantum computing scientists), the computa-
tional basis states and read ‘‘ket zero’’ and ‘‘ket one’’. They are
also called basic or ground states. The ket notation was invented
in 1939 by Paul Dirac [19] and is related to inner product. This
notation is also used for an arbitrary vector 9cS. The other part of
the bracket defining the inner product (of say x and y, /x,yS) is
unsurprisingly called bra. The bra of a ket vector 9cS is its
conjugate transpose, and thus a row vector, denoted as /c9.
Their matrix product /c99cS is a scalar, their inner product.
From the inner product we obtain a norm :9cS:2 ¼/c9cS.

2.2. Superposition and parallelism

While in classical computing a one bit state can be only 0 and
1, in quantum computation we can have a continuum of linear
combinations of 90S and 91S by the quantisation procedure. For
instance the general qubit state 9cS¼ a090Sþa191S is a state
that can be seen as part 90S and part 91S as a superposition of the
basic states. 9cS is at the same time in both state 90S and 91S.

One of the main properties of quantum computation is the
quantum parallelism. If one applies a quantum operator Uf that
implements a function f(x) such that Uf 9x,0S¼ 9x,f ðxÞS in a state
in superposition 9cS¼

Pn%1
i ¼ 0 ai9xi,0S, the value of f(x) will be

computed for all qubits 9xiS. The resultant state will bePn%1
i ¼ 0 ai9xi,f ðxiÞS.
Because of the quantum parallelism, if one have a quantum

neural network implemented as a quantum operator, then it will
be possible to use states in superposition to evaluate the outputs
of all patterns in the training set, all at once in parallel.
A drawback is that the individual results of this computation
are not direct accessible, due to the properties of the measure-
ment in quantum mechanics.

2.3. Measurement

In Quantum Physics if a system is in a state which is a
superposition 9cS¼ a090Sþa191S, upon measurement the sys-
tem collapses to one of its basis state 9iS,iAf0,1g probabilistically:

pð9iSÞ ¼
9ai9

2

:9cS:2
¼

9ai9
2

Sj9aj9
2

which is the probability that the system will be found in the
ground state 9iS after a measurement.

After the first measurement of a state 9cS if one performs
another measurements will get the same result. The collapse of
the state after measurement says that one cannot see all the
results generated by the quantum parallelism. The challenge in
quantum computation is how to take advantage of the quantum
parallelism before performing a measurement.

2.4. States are rays

Note that if a state is a scalar multiple of another, say
9fS¼ b9cS the chance that the system in state 9fS will be
found, after measurement, in state 9iS,iAf0,1g is the same as if
the system were in state 9cS

pð9iSÞ ¼
9bai9

2

:9fS:2
¼

b29ai9
2

b2Sj9aj9
2
¼

9ai9
2

Sj9aj9
2

and so, the kets b9cS and 9cS describe the same physical system.
The set fa9cS j aACg is the ray generated by 9cS and represents
the same state as 9cS. A natural representative of the ray is a
normalised vector in the set. As a result, normalising the ket 9cS
i.e. multiplying it by 1=:9cS:, gives a unit length ket in which the
probability of being observed in 9iS is

pð9iSÞ ¼ 9ai9
2

So the collection of qubits are all the bi-dimensional complex
vectors 9cS¼ a090Sþa191S, such that 9a09

2þ9a19
2 ¼ 1.

For example, the ket 9cS¼ ð1=
ffiffiffi
2

p
Þð90Sþ91SÞ represents a

system which is 1=2 equiprobably to be found in any of the two
basis states upon measurement.

2.5. Multi-qubits systems

A system with more than one qubit can be represented by the
tensor product of their matrix representation. Recall that the
tensor product of two bi-dimensional vectors

9cS¼
c0

c1

" #

, 9fS¼
f0

f1

" #

is the four-dimensional vector:

9cS& 9fS¼

c0

f0

f1

" #

c1

f0

f1

" #

2

666664

3

777775
¼

c0f0

c0f1

c1f0

c1f1

2

66664

3

77775

1 A complex Hilbert space is a vector space over the complex numbers C with
a compatible inner product.

2 A basis for a vector space V is any subset of linear independent vectors
BDV such that any vAV is a linear combination of the vectors in B i.e.
v¼SxABaxv where faxgxAB is a B-indexed set of scalars.
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This obviously generalises to any pair of n- and m-dimensional
vectors producing a nm-dimensional vector or more generally a
ðn0,m0Þ-dimensional matrix by a ðn1,m1Þ-dimensional one produ-
cing a third ðn0m0,m0n0Þ-dimensional matrix and so on.

Generally we omit the tensor product operator in the notation
9iS& 9jS¼ 9iS9jS¼ 9ijS, where i,jAf0,1g. The n-qubits live in the
space C2n

.
The construction of Uf in Section 2.2 for one qubit can be

generalised to multi-qubits. Given a Boolean function f : Bn2Bm

defines the unitary operator Uf : C
2n

2C2m

where Uf 9xSn9ySm ¼
9xSn9y' f ðxÞSm and 9xSn are an n qubits base state and ' is the
bitwise XOR (addition mod 2).

2.6. Linear quantum operators

In Quantum Mechanics observables quantities are Hermitian
operators whose eingevectors form a complete orthonormal basis
for the space. The result of a measurement is its eingenvalue. The
dynamics or time evolution of the system is governed by a unitary
operator related to the Halmitonian of the system. So the next
natural step in our quantisation procedure is the representation of
the Boolean operators as unitaries.

Four our purposes, a unitary operator U is a squared matrix
over the complex numbers, UACn(n, such that

UUy ¼UyU¼ In

where In is the identity n(n matrix and Uy is the conjugate
transpose (Hermitian conjugate) of U. Being invertible, a unitary
operator is reversible. They preserve inner product and so they
are isometries. In the Bloch sphere representation of qubits, they
correspond to rotations or inversions.

Some examples of operators over one qubit in quantum
computation are: I, identity operator: does nothing; X, flip
operator: behaves as the classical NOT on the computational
basis and H, Hadamard transformation: generates superposition
of states. Together with the X matrix the Z and Y matrices (see
Eq. (2)) form the well-known Pauli matrices which plays an
important role in quantum mechanics in general and in quantum
computing in particular. Their matrix representations in relation
to the computational basis are displayed in Eqs. (2) and (3).

I¼
1 0

0 1

! "
, X¼

0 1

1 0

! "
ð2Þ

Y¼
0 %i

i 0

! "
, Z¼

1 0

0 %1

! "

Apart from these gates, the Hadamard gate H, the phase gate S,
and the p=8 -gate T are given by the matrices

H¼
1ffiffiffi
2

p
1 1

1 %1

! "
, S¼

1 0

0 i

! "
ð3Þ

T¼
1 0

0 expðip=4Þ

" #

These single qubit gates are important, as they can be used
together with the CNOT-gate to give universal sets of discrete
quantum gates.

The Hadamard gate can be used to produce equally weighted
superpositions as the following simple example shows

H90S¼
1ffiffiffi
2

p ð90Sþ91SÞ ð4Þ

H91S¼
1ffiffiffi
2

p ð90S%91SÞ ð5Þ

The CNOT-gate is an example of a two-qubit controlled operation.
It also goes under the name (quantum) XOR. Its matrix represen-
tation in the computational basis is

CNOT¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2

6664

3

7775 ð6Þ

The CNOT gate performs a NOT (i.e. an X) operation on the
target qubit t conditioned on the control bit c being 1.

2.7. Non-linear quantum operators

A new idea in quantum computing is that the quantum
evolution might be slightly non-linear [20]. The non-linearity is
useful for overcoming ‘‘the difficulties connected with the ordin-
ary linear quantum components’’ [10]. Following this idea
non-linear quantum algorithms have been proposed [21]. The non-
linear quantum gates were applied to neural networks in [10,11].

In [20] a non-linear quantum algorithm is proposed that

receives a state in superposition 9cS¼ ð1=
ffiffiffiffi
N

p
Þ
PN

i ¼ 1 9c
i,0S and

returns the state 9cS¼ ð1=
ffiffiffiffi
N

p
Þ
PN

i ¼ 1 9c
i,0S or 9cS¼ ð1=

ffiffiffiffi
N

p
Þ

PN
i ¼ 1 9c

i,1S. The last qubit is changed to 91S if and only if in

the superposition all ci are equal to 0. Note that his operator
could be used to solve the satisfiability problem.

2.8. Quantum circuits

Quantum operators can be represented as quantum circuits.
Fig. 1 shows the quantum circuit for the CNOT gate and Fig. 2 shows
a quantum circuit where an n-qubit controlled gate U whose action
on the target qubit (bottommost) is active or not by n%1 (topmost)
control qubits [17]. The output is checked by measurement gates.

2.9. Grover’s algorithm

Grover’s algorithm is a quantum algorithm for searching an
unordered data quadratically faster than any classical method [22].
Given a data set with N items the most efficient classical algorithm
will need execute an average of 0.5 N classical steps before finding
the desired item. In the worst case, N classical steps are necessary.
Grover’s algorithm outperforms any classical algorithm and realises
the task with Oð

ffiffiffiffi
N

p
Þ quantum steps. The iteration number T of the

algorithm is very important and is calculated as in Eq. (7), where M
is the number of answers in the search space:

T ¼
p
4

ffiffiffiffiffi
N
M

r$ %
ð7Þ

The Algorithm 1 is based on the one shown in [2] andM is a squared
2n-dimensional matrix whose each entry is 1=2n.

Algorithm 1 (Grover’s algorithm).

1 Initialise the system 9cS¼ 90Sn

2 Apply the Hadamard Transform 9cS¼H&n9cS
3 Apply the phase inversion operation: Uf ðI& HÞ
4 Apply the inversion about the mean operation: %Iþ2M
5 Repeat steps 3 and 4, T ¼Oð

ffiffiffiffiffiffi
2n

p
Þ times.

6 Measure the state 9cS

Fig. 1. Controlled NOT gate.
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The iterations 3 and 4 of Algorithm 1 can be represented as a
quantum operator G called the Grover iteration [22].

3. Weightless neural networks

The RAM-based neural networks were proposed by Igor
Aleksander [23] and do not have weights associated in their
connections.

A RAM node with n inputs has 2n memory locations, addressed
by the n-bit string a¼ ða1a2 . . . anÞ. A binary signal x¼ ðx1x2 . . . xnÞ
on the input lines will access only one of these locations resulting
in y¼ C½x* [15]. In Fig. 3, s and d are respectively the learning
strategy and the desired output to be learned.

Learning in weightless neural networks takes place simply by
writing into the corresponding look-up table entries. This learning
process is much simpler than the adjustment of weights. In spite of
the simplicity of the RAM-based nodes, RAM-based networks have
good generalisation capabilities [24] and computational power [25].

The PLN is based on the RAM node. The difference between the
PLN and RAM nodes is that a 2-bit number (rather than a single
bit) is now stored at the addressed memory location. The
content of this location is turned into the probability of firing
(i.e. generating 1) at the overall output of the node. In other
words, a PLN consists of a RAM node, where now a 2-bit number
00, 11 and 01 (or 10) stored at the addressed memory location are
to be interpreted respectively as 0, 1 or u. The output of the PLN
Node is given by [15]

y¼

0 if C½x* ¼ 0

1 if C½x* ¼ 1

random ð0,1Þ if C½x* ¼ u

8
><

>:

The multi-valued probabilistic logic node (MPLN) differs from
PLN by allowing a wider but still finite set of finite precision
probabilities M¼ fp0, . . . ,p2n%1g to be stored at each memory
content. The output of the MPLN Node is given by [15]

y¼
0 if C½x* ¼ 0

1 withprobability
1
p

if C½x* ¼ p

8
><

>:

The goal seeking neuron (GSN) differs from the PLN by
allowing that the node receives and generate values 0, 1 and u.
If the GSN node receives one value u in its input lines a set of
memory positions will be addressed. The set of addressed posi-
tions is derived from the original address replacing the u values in
the input vector to 0 and 1. For instance, if a three input GSN
receives the input I¼ 0u1, two addresses of the GSN node will be
accessed a1 ¼ 001 and a2 ¼ 011 because of the u value in the
second position of I. The output of the GSN node is determined by
the number of values 0, 1 and u in the addressed memory
positions.

4. Quantum weighted neural networks

The concept of quantum neural computation was first intro-
duced by Kak in 1995, creating a new paradigm using neural
networks and quantum computation which opened new direc-
tions in neural network research [26]. It is expected that quantum
neural networks are more efficient than classical neural networks,
parallel to what is expected from quantum computation in
relation to classical computation.

Since the Kak’s work further neural networks models have
been proposed [6,7,10,4,9,27,28], but there remains the challenge
of direct implementation in quantum circuits, natural adaptation
of the classical learning algorithms and quantum learning algo-
rithms respecting the postulates of the quantum mechanics.
These are characteristics not altogether found in any of the
proposed quantum weighted neural networks models but are
found in our new model.

In this section we describe some models of quantum neural
networks and their learning algorithms. We verify that the
learning algorithms for these models break the postulates of
quantum computing by the use of non-linear or non-unitary
quantum operators. Use of non-linear quantum operators is an
open question, but non-linear quantum computation implies
P¼NP [20].

The proposed learning algorithms for quantum neural net-
works [6,10,28,9] can be classified as iterative [28,9] (in each
iteration only one pattern is presented to the network) or super-
position based [10,6] (all patterns are presented to the networks
concurrently in superposition). Here we analyse one iterative
algorithm [28] and one based on the superposition [10] and we
show that these algorithms for weighted neural networks are
non-unitary and non-linear.

The one qubit output 9yS of a quantum perceptron [28] with
inputs 9x1S, . . . ,9xnS is defined in Eq. (8) where ŵj are 2( 2
matrices representing the weights of neuron and F̂ is a quantum
operator. The quantum iterative learning rule for this model is
presented with F¼ I in Eq. (9), where t is the iteration number, 9dS
is the desired output and the output of the node in time t is
described by Eq. (10):

9yS¼ F̂
Xn

j ¼ 1

ŵj9xjS ð8Þ

9yðtÞS¼
Xn

j ¼ 1

ŵjðtÞ9xjS ð9Þ

ŵjðtþ1Þ ¼ ŵjðtÞþZð9dS%9yðtÞSÞ/xj9 ð10Þ

The learning rule of quantum perceptron drives the quantum
perceptron into the desired output 9dS [28], but the learning rule
(10) does not preserve unitary operators.

Theorem 4.1. The learning rule described in Eq. (10) does not
preserve unitary operators.

Fig. 2. A quantum circuit for the general controlled U gate where U is an arbitrary
1-qubit unitary operator. Note that appropriately choosing circles (J) and bullets
(+) one could define a controlled operator which would apply U to the bottommost
qubit if the corresponding binary combination (00 s for circles and 10 s for bullets)
is present in the remaining qubits from top to bottom.

Fig. 3. RAM node.
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Proof. We construct a counterexample and execute one iteration
of the iterative quantum learning rule. In Eq. (10) set j¼1, the
weight ŵ1ðtÞ ¼ I, the desired output 9dS¼ 91S, the network out-
put is 90S, the input of ŵ1ðtÞ is 9xjS¼ 91S and Z¼ 0:5. Then

ŵjðtþ1Þ ¼ Iþ0,5ð91S%90SÞ/19¼ Iþ0,5ð91S/19%90S/19Þ

¼
1 0

0 1

$ %
þ

0 %0:5

0 0:5

$ %
¼

1 %0:5

0 1:5

$ %
ð11Þ

where we see that w1ðtþ1Þ is non-unitary. &

One may think that the trouble lies in the choice of the
learning rate but let Z be arbitrary. Then

ŵ1ðtþ1Þ ¼
1 %Z
0 1þZ

 !
-ŵ1ðtþ1Þŵ1ðtþ1Þy

¼
1þZ2 %Z%Z2

%Z%Z2 ð1þZÞ2

 !

ð12Þ

and since ŵ1ðtþ1Þ is unitary

1þZ2 %Z%Z2

%Z%Z2 ð1þZÞ2

 !
¼

1 0

0 1

$ %

and we must have Z¼ 0. In this case there is no non-zero learning
rate that allows the use of rule (10) without violating the
quantum computing postulates.

The learning algorithms that use states in superposition [10,6]
also violates the quantum computation postulates. In [10,11] it is
used as a non-linear quantum operator proposed in [20] and in [6]
it is necessary for the use of a non-linear quantum oracle. One
difficulty here is that non-linear quantum mechanics implies
P¼NP [20].

5. Quantum weightless neural networks

In [6] we define a quantisation of the RAM node, the qRAM
node. Quantum weightless neural networks do not use non-linear
activation function, like sigmoid or tangent hyperbolic. This is
important because non-linear activation functions will hardly
have an exact quantum analogous [28].

Usually the RAM node stores one bit at each addressable
location. We follow this approach by investigating first the qRAM
node which store just one qubit. This qubit will not be directly
stored in a quantum register as in the classical case. We will
rather use a selector (parameter) and an operator which applied
to the selector will produce the desired qubit. This form of
quantisation of weightless neural networks was proposed in
[4,5] using different matrices from the matrix A used here

A¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0

BBB@

1

CCCA ð13Þ

The matrix A defines a quantum operator over two qubits that
simply flip the second qubit if the first is in the state 91S and it
does nothing if the first state is in the state 90S. The reader
familiar with quantum computing terminology will notice that
our matrix A is well known as the controlled not or c-NOT gate.
We keep with the alternative notation since it gives rooms for
further generalisations as in [4,5] where more complex matrices
are used.

Definition 5.1. A qRAM node with n inputs is represented by the
operator N described in Eq. (14). The inputs, selectors and outputs
of N are organised in three quantum registers 9iS with n qubits,
9sS with 2n qubits and 9oS with 1 qubit. The quantum state 9iS

describes qRAM input, and quantum state 9sS9oS describes
qRAM state.

N¼
X2n%1

i ¼ 0

9iSn/i9nAsi ,o ð14Þ

Fig. 4 describes the quantum circuit of a qRAM node with
two inputs 9cS and 9jS. Four selectors 9siS and four operators
Asi ,o each one equals to the A operator above, where the first
qubit is the selector 9siS and the second is the state in the
output register 9oS. We can now see that learning is achieved
by adapting the value of the selectors to the training set. The
main advantage of qRAM over classical weightless neural net-
works is its capacity to receive input and selectors in super-
position. When the selectors are in the computational basis the
qRAM node acts exactly as a RAM node. But it behaves in a much
more interesting way when is fed with a superposition of
basis state.

Let us see the operation of qRAM node N when given a value in
the form 9cS¼ ð1=

ffiffiffi
2

p
Þ90Sþð1=

ffiffiffi
2

p
Þ91S in one of its input lines.

Further assume that 9jS¼ 0, 9s1s2s3s4S¼ 90111S and 9oS¼ 0.
Eq. (15) shows the operation of the qRAM. In this example the
two matrices A0 and A2 are simultaneously addressed and the
output register is in state 9oS¼ ð1=

ffiffiffi
2

p
Þð90Sþ91SÞ i.e. outputs of

00 and 10 are calculated simultaneously.

N
1ffiffiffi
2

p ð90Sþ91SÞ90S90111S90S
! "

¼
1ffiffiffi
2

p ½Nð90S90S90111S90SÞþNð91S90S90111S90SÞ*

¼
1ffiffiffi
2

p ½ð90S90S90111S90SÞþð91S90S90111S91SÞ* ð15Þ

One example of qRAM network is presented in Fig. 5, qRAM
networks have pyramidal architecture and low connectivity. The
configuration of a given qRAM network is represented by a string
of qubits ðs11,s12, . . . , s1n; . . . ; sm1,sm1,sm2 . . . ,smnÞ representing net-
work selectors, where m is the number of neurons and n is the
number of inputs of neurons.

N¼ 900S/009& As1 ,oþ901S/019& As2 ,o

þ910S/109& As3 ,oþ911S/119& As4 ,o ð16Þ

Exponential cost in simulation of quantum computers makes it
prohibitive to simulate qRAM networks. Here we present a simple
example to show qRAM network operation. We can use the qRAM
network in Fig. 5 to solve the four bit parity problem. The

Fig. 4. qRAM node.

Fig. 5. Two-layer qRAM network.
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configuration of the network is s1 ¼ 90110S, s2 ¼ 90110S and
s3 ¼ 90110S. One can present inputs simultaneously as in Eq. (17)
to qRAM network

9iS¼
1
2
ð90000Sþ90001Sþ90010Sþ90011SÞ ð17Þ

The neuron N1 receives as input the two first qubits of state
9iS, 9i1i2S¼ 900S. The action of neurons of network is described
by the operator in Eq. (16). The action of the neuron N1 and N2 are
described in Eqs. (18) and (19)

N19i1i2S9s1S9o1S¼ ð900S/009& As1 ,oþ901S/019& As2 ,o

þ910S/109& As3 ,oþ911S/119& As4 ,oÞ900S90110S90S

¼ 900S/009& As1 ,oð900S90110S90SÞ ¼ 900S90110S90S ð18Þ

N29i3i4S9s2S9o2S¼ ð900S/009& As1 ,oþ901S/019& As2 ,o

þ910S/109& As3 ,oþ911S/119& As4 ,oÞ
1
2
ð900S

þ901Sþ910Sþ911SÞ900S90110S90S

¼
1
2
ð900S/009& As1 ,oð900S90110S90SÞ

þ901S/019& As2 ,oð900S90110S90SÞ

þ910S/109& As3 ,oð900S90110S90SÞ

þ911S/119& As4 ,oð900S90110S90SÞÞ ¼ 900S90110S90S

þ901S90110S91Sþ910S90110S91Sþ911S90110S90S

ð19Þ

The outputs of neurons N1 and N2 are 9o1S¼ 90S and 9o2S¼
ð1=

ffiffiffi
2

p
Þð90Sþ91SÞ. These outputs will be used as inputs of neuron

N3. Eq. (20) shows the action of N3 and the network calculates the
outputs of all the inputs in superposition

N39o1o2S9s3S9o3S¼
1ffiffiffi
2

p ð900S/009As1o3 900S90110S90S

þ901S/019As2o3 901S90110S90SÞ

¼
1ffiffiffi
2

p ð900S90110S90Sþ901S90110S91SÞ ð20Þ

The action of the qRAM network Net can be summarised as in
Eq. (21). The network calculates the output of each input in
superposition

Net
1
2
ð90000Sþ90001Sþ90010Sþ90011SÞ

$ %
90S

¼
1
2
ðNet90000S90SþNet90001S90S

þNet90010S90SþNet90011S90SÞ

¼
1
2
ð90000S90Sþ90001S91Sþ90010S91Sþ90011S90SÞ

ð21Þ

In Section 6 the capacity to process states in superposition will
be explored to train a neural network.

5.1. Simulation of classical weightless models

Interestingly, if we perform a measurement at the output wire
of the qRAM and allow for superposition of the selectors the
qRAM node can simulate any of its siblings PLN, MPLN and pRAM
and the training algorithm of the classical weightless neural
networks can be adapted to the qRAM.

Let 9uS¼H90S be an undefined state as in Section 3, in
Eq. (15) the qRAM node behaves as a GSN node. The node can
receive and produce 90S, 91S and 9uS then the qRAM node can be
viewed as a qGSN node, but the qRAM node can receive and
produce others quantum states behaving as a sort of continuum
valued qGSN node.

Algorithm 2 (PLN net learning).

1 All memory contents are set to u;
2 while some stopping criterion is not met do
3

4

5

6

7

8
9

10

11

12
13

14
15

16

17

One of the N training patterns p
is presented to the net;

learn’FALSE

for t¼ 1 to Z do

The net is allowed to produce the output for the

pattern p

if s is equal to the desired output for the
pattern p then

learn’TRUE

break

&&&&

end

&&&&&&&&&&&&&&&&

end

if learn then
all the addressed memory content are made 7
to assume their

current output values; making those with u

become definitely 0
or 1; accordingly

&&&&&&&&&&

else
all the addressed memory content are made to assume

the u value

&&&&

end

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

end

The classical algorithm of PLN network is defined in Algorithm 2.
In order to simulated a PLN the values stored in a PLN node 0, 1 and
u, will be represented respectively by the qubits 90S, 91S and
9uS¼H90S. The probabilistic output of the PLN is obtained with a
measurement in the output of the qRAM node. The results of this
measurement is described in Eq. (22)

y¼

0 if 9oS¼ 90S
1 if 9oS¼ 91S
randomð0,1Þ if 9oS¼ 9uS

8
><

>:
ð22Þ

With a small modification of Algorithm 2 one can train the
qRAM node. It is necessary to measure the output of each node
and define 9uS¼H90S, replace the line 1 of Algorithm 2 with all
selectors are set to 9uS and replace lines 13 and 15 respectively
with all the addressed A gates have their selectors changed to
produce the current output of their nodes, making those with 9uS
become definitely 90S or 91S, accordingly and all the addressed A
gates have their selectors set to 9uS. We can see the PLN node as a
particular case of the qRAM where a measurement is realised in
the output of each node i.e. we are working only with classical
data.

The Fig. 6 shows the quantisation of lines 5–11 in Algorithm 2.
Operator Net represents a qRAM network with input 9pS,
selectors 9sS and output 9oS. There are Z Net operators to perform

Fig. 6. PLN learning iteration.
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the for loop in Algorithm 2. The operator f1 change the control
register 9cS to 90S if the desired output 9dS is equal to network
output 9oS and stop the execution of the networks. Operator f1
also changes 9oS to 90S if 9dS is different from 9oS preparing the
output register to the next Net operator.

Algorithm 3 shows the quantisation of Algorithm 2. In this
algorithm all neuron outputs are measured, data in registers 9pS,
9oS, 9dS and 9cS are in computational basis. Only the register 9sS
receives states in superposition.

Algorithm 3 (Naive qRAM net learning).

1 All selectors 9sS are set to 9uS;
2 while some stopping criterion is not met do
3

4

5

6
7

8

9

10

11

12

One of the N training patterns 9pS is
presented to the net;

Set 9cS¼ 91S and 9oS¼ 0

Let dðpÞ be the desired output of
pattern p: Set9dS¼ 9dðpÞS
Apply the quantum circuit described in Fig:6

if 9cS¼ 90S
all the addressed memory content are made
to assume their
current output values; making those with 9uS
become definitely

90S or 91S, accordingly

&&&&&&&&&&

else
all the addressed memory content are made
to assume the 9uS
value

&&&&&&

end

end

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

In [4,5] the size of matrices depends on the number of stored
probabilities which make the quantisation of the pRAMs impos-
sible. In contrast our novel model has constant size matrices
independent of the number of stored probabilities. The probability
is stored as amplitude of the input state and/or the selectors which
can be tuned during the learning phase through phase rotations.

One can easily simulate the other weightless neural nodes
with the qRAM node. Then any computation done by a weightless
neural node can be realised by a qRAM. This implies, for instance,
that the qRAM maintain the generalisations capabilities of the
weightless models. In the next section we present a quantum
learning algorithm to train the qRAM node.

Algorithm 3 is called naive because it does not explore
quantum mechanics properties. In next section we present a
quantum algorithm to train qRAM networks exploring its capacity
to receive states in superposition.

6. Superposition-based learning algorithm

Let us imagine a classically improbable learning algorithm. For
a fixed architecture the number of possible WNN is finite, say n.
Supposing we have all the required computational resource
available, we could present all the p patterns in the learning set
at once in parallel to each individual network; perhaps making p
copies of each one of the n networks. Then we could search
amongst the pn combinations networks and input patterns that
network which recognises the training set mostly accordingly to
some fixed criterion. The quantisation of this absurdly computa-
tional expensive algorithm is what we propose next and show
that in a quantum computer it is a polynomial time algorithm!

The superposition-based learning algorithm (SLA) is a super-
vised algorithm that takes advantage of states in superposition to
approximate the idea in the previous paragraph. SLA can be used
to train qRAM networks where the selectors and inputs are a
quantum state 9cS composed of four quantum registers. The first
register s will store the selectors, the second register p will store
the training pattern, the third register o, with one qubit, will store
the output of the node and the fourth register d, used only in the
learning phase of the algorithm, will store the desired output.

Algorithm 4 (Superposition-based learning).

1 Initialise all the qubits in register s with the quantum state

H90S.
2 Initialise the register p, o, d with the quantum state

9pS¼
Pp

i ¼ 1 9pi,0,diS.

3 9cS¼N9cS, where N is a quantum operator representing
the action of the neuron.

4 Use a quantum oracle to change the phase of the states

where the registers p, o, d¼
Pp

i ¼ 1 9pi,di,diS
5 Apply the operator inverse to the neuron in the state 9cS,

9cS¼N%19cS, to disentangle the state in the register s
6 Apply the inversion about the mean operation (see

Algorithm 1) in the register s
7 Repeat steps 3–6, T ¼ ðp=4Þ

ffiffiffi
n

p
times, where n is the number

of selectors of the networks.
8 Measure the register s to obtain the desired parameters.

In step 1 of Algorithm 4 a superposition of all possible
configurations for the network is created. This step is realised
setting the quantum register s to 90, . . . ,0S and applying the
Hadamard operator in all qubits of the register s, at this moment s
will hold the quantum state 9sS described in Eq. (23), where m is
the number of selectors, a¼ 2m%1 and sj ¼ j

9sS¼
1ffiffiffiffiffiffiffiffiffiffiffi
aþ1

p
Xa

j ¼ 0

9sjS ð23Þ

Let pi be a pattern of the training set and di be its desired output.
In step 2 a superposed quantum state holding all pi and di is set to
the quantum registers p and d respectively. The output register o
is set to the basis state 90S.

One can execute step 2 as in the case of quantum associative
memory proposed in [14,29]. At this moment the register p holds
all training patterns pi and the register d holds all desired outputs
di. The state of the registers p, o and d is described in Eq. (24)

9p,o,dS¼
1

ffiffiffi
p

p
Xp%1

i ¼ 0

9pi,0,diS ð24Þ

Let N be the operator associated to a quantum neural network.
The action of N may be summarised as sending the state
9s,pi,0,diS into the state 9s,pi,yi,diS, where yi is the calculated
output of the node.

In step 3 of Algorithm 4 the operator N acts on the state 9c0S
and, by linearity of the quantum operators, the desired output is
produced in all terms of the superposition. Eq. (25) describes the
state 9c1S, where m is the cardinality of the training set and
a¼ 2m%1

9cS¼
1ffiffiffiffiffiffiffiffiffiffiffi
aþ1

p
1

ffiffiffi
p

p
Xp%1

i ¼ 0

Xa

j ¼ 0

9sj,pi,yij,diS ð25Þ

Let O be the quantum oracle that sends the state
Pp%1

i ¼ 0 9pi,di,diS
into the state %

Pp%1
i ¼ 0 9pi,di,diS and that acts as the identity for the

other states. In step 4 of the SLA the oracle O receives the state 9c1S
and will mark only the states where the desired outputs are equals to
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the calculated output yij ¼ di. The action of the oracle will permit to
use the Grover’s search algorithm in the register s.

In the third step the neuron N entangled the quantum register
swith the quantum registers, p, o and d, then the quantum search
algorithm applied in the register s will change the registers p, o
and d. To avoid this change in the registers p, o and d the operator
N%1 is applied to disentangle the states in the registers in the fifth
step of the algorithm. Then the inversion about the mean opera-
tion is applied in the register s. The steps 3–6 are repeated T times
and a measurement will return the desired parameters.

6.1. Complexity of SLA

In this section we analyse the complexity of the SLA algorithm.
To simplify the analysis we suppose that all possible (Boolean)
patterns are in the training set, the number of patterns in training

set is Np ¼ 2n and each q-RAM node has two inputs. In this
situation patterns can be represented with n¼ logNp bits. A
pyramidal qRAM network with log Np input terminals will have

2logðlogNpÞ%1 neurons. Then the number of qubits in the quantum
register s will be 4ðlogNp%1Þ. The search occurs in the quantum

register s with all 24ðlogNp%1Þ possible selectors and this search will

have cost p=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24ðlogNp%1Þ

p
¼ ðp=4Þð22ðlogNp%1ÞÞ ¼ ðp=4Þð2%2 , N2

p Þ ¼

ðp=16ÞðN2
p Þ. Then the SLA algorithm has polynomial time in the

number of patterns Np in the training set. This result is similar to
the cost of the learning algorithm proposed in [10].

6.2. Training a q-RAM node with the SLA

Let us look at the concrete example of the SLA training the
q-RAM node to solve the XOR problem. We shall see that a q-RAM
node with two inputs learn the function with only one iteration.
The training is set to S¼ fð00,0Þ,ð01,1Þ,ð10,1Þ,ð11,1Þg.

A q-RAM node with two inputs has four selectors, then in step
1 the state 9sS is initialised as

9sS¼H&490000S¼
1
4

X16

i ¼ 0

9iS4 ð26Þ

In step 2 the registers p, o and d are prepared as in Eq. (27)

9p,o,dS¼
1
2
ð900,0,0Sþ901,0,1Sþ910,0,1Sþ911,0,1SÞ ð27Þ

At this moment the state 9cS can be described as in Eq. (28)

9cS¼
1
8

X16

i ¼ 0

9iS4ð900,0,0Sþ901,0,1Sþ910,0,1Sþ911,0,1SÞ ð28Þ

In step 3 the operator N is applied to 9cS which calculates the
output yip of the node for each selector i and for each pattern p as
in Eq. (29)

9cS¼
1
8

X16

i ¼ 0

9iS4ð900,y
i
00,0Sþ901,yi01,1Sþ910,yi10,1Sþ911,yi11,1SÞ

ð29Þ

In step 4 an oracle O which inverts the phase of state 9e1S¼
ð900,0,0Sþ901,1,1Sþ910,1,1Sþ911,0,0SÞ is applied to 9cS and

we obtain the state in Eq. (30), where d is the Kronecker’s delta

and xðiÞ ¼ 1 if and only if 9pi,oi,diS¼ 9e1S. The oracle marks the
state with the desired parameters

9cS¼
1
8

X16

i ¼ 0

ð%1Þd1xðiÞ 9iS4ð900,y
i
00,0Sþ901,yi01,1Sþ910,yi10,1S

þ911,yi11,1SÞ ð30Þ

In step 5 the operators N%1 and G are applied to 9cS and the
amplitude of the marked state goes to one and the amplitude of
the others state go to zero. The training finishes in three iterations
because T ¼ bðp=4Þ

ffiffiffiffiffiffi
16

p
c¼ 3, then one can measure the s register

and use the result as the parameters of the network.

7. Conclusion

A quantum weightless neural node based on the quantisation
of the RAM node, the qRAM node, was proved. Its ability to
simulate the classical weightless neural networks was demon-
strated, a very important result since all the theoretical and
practical results for WNN are inherited by our model. The main
property of the qRAM node explored in this paper is the ability to
receive all patterns from the training set in superposition.

The size of the matrices A in other models of quantum
weightless neural networks is exponential on the number of
stored probabilities [4,5]. Our model can store probabilities using
matrices A with constant size. The probabilities are stored in the
amplitudes of the selectors not in the matrices A. This reduction
in space complexity may allow classical simulations of networks
composed by qRAM nodes for small sized problems.

We also propose a quantum learning algorithm for neural
networks, the superposition-based learning algorithm (SLA). The
SLA is a supervised learning algorithm. It explores the capacity of
the qRAM to receive qubits in superposition and apply a retrieval
algorithm of a quantum probabilistic memory to choose the best
configuration of the network. The SLA receives several neural
network configurations in superposition and returns a trained
neural network.

The SLA has polynomial computational cost in the number of
patterns in the training set. This cost is mainly associated with the
use of the quantum search algorithm. Because of the super-
position capacity one can argue that it may be possible to design
an algorithm with a smaller computational cost exploring super-
position of neural networks.

A possible future work is to create an ensemble of neural
networks in a single quantum neural network with a polynomial
cost in the size of the training set. This task may be realised with
an algorithm that marks a parameter (one qubit) of the networks
in superposition. Instead of performing a measurement projecting
to the basis state one can realise a projective measurement to
collapse the network to the marked networks.

Another possible future work is to develop a probabilistic
version of the SLA where we must run the neural network only
twice, one forward and other backward. This can be obtained
changing the Grover algorithm for a retrieval algorithm of a
quantum probabilistic memory as in [13].
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